• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    POINTWISE SPACE-TIME BEHAVIOR OF A COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM IN DIMENSION THREE*

    2022-11-04 09:07:12XiaopanJIANG姜曉盼ZhigangWU吳志剛

    Xiaopan JIANG (姜曉盼) Zhigang WU (吳志剛)

    Department of Mathematics,Donghua University,Shanghai 201620,China

    E-mail: 1783685777@qq.com;zgwu@dhu.edu.cn

    Abstract The Cauchy problem of compressible Navier-Stokes-Korteweg system in R3 is considered here.Due to capillarity effect of material,we obtain the pointwise estimates of the solution in an H4-framework,which is different from the previous results for the compressible Navier-Stokes system in an H6-framework [24,25].Our result mainly relies on two different descriptions of the singularity in the short wave of Green’s function for dealing initial propagation and nonlinear coupling respectively.Our pointwise results demonstrate the generalized Huygens’ principle as the compressible Navier-Stokes system.As a corollary,we have an Lp estimate of the solution with p >1,which is a generalization for p ≥2 in [33].

    Key words Navier-Stokes-Korteweg system;Green’s function;Large time behavior

    1 Introduction

    The compressible fluid model of Korteweg type was introduced by Korteweg [20] and deduced rigorously in Dunn and Serrin [9].The model governs the motions of the compressible isothermal viscous capillary fluids and is formulated as

    Here the unknownsρ(x,t),u(x,t) are the density and velocity of fluid,respectively.The pressurep=p(ρ) satisfiesp′(ρ)>0 forρ >0.The constantsμ >0 andν≥0 are the viscosity coefficients,andκ >0 is the capillary coefficient.

    There are a lot of mathematical studies on the compressible Navier-Stokes-Korteweg system(1.1),including on the weak solution in [2,11],the existence in Besov spaces in [3],the local existence of strong solutions in [21] and the global existence of strong solutions in [32],the maximalLp-Lqregularity in [28],the global existence of a smooth solution in [12] and theL2-decay rate of the smooth solution in [10,33].With regard to the nonisothermal case,we refer to [15] and [16] for the global existence and the decay rate of the smooth solution with small initial energy,respectively,and [17] for the vanishing capillarity limit.

    We were interested in space-time estimates on the wave propagation of the smooth solution.Since the conservative structure of the system on the densityρand momentumm=ρuis needed when dealing the nonlinear convolution estimates,we supplement the system with initial data

    The large time behavior of the compressible Navier-Stokes system is one of the most important topics in studying fluid models;see [7,8,18,19,22,27] and references therein.Nevertheless,L2estimates can only exhibit the dissipative properties of solutions;cannot reveal the behavior on wave propagation.In order to explicitly describe the wave propagation,one needs to consider the space-time pointwise estimates.The pioneering works were Zeng [39] for the isentropic Navier-Stokes system and Liu and Zeng [26] for quasilinear hyperbolic-parabolic systems in dimension one.For three dimensional case,Hoffand Zumbrun [14] and Liu and Wang[25] studied the pointwise estimates of Green’s function and the pointwise estimates of the solution for the nonlinear problem for the isentropic Navier-Stokes system,respectively.Later on,there appeared a series of efforts on these kinds of estimates for other models,including on the Euler system with damping [30,36],refined estimates for the isentropic and non-isentropic Navier-Stokes system [4,5,24],the Navier-Stokes-Poisson system and the Navier-Stoke-Maxwell system [6,31,34,35],thermal non-equilibrium flow and the Boltzmann equation [23,37,38].

    The aim in this paper is to investigate the capillarity effect of material and look for the difference betweenκ >0 (NSK) andκ=0 (NS) when deducing the pointwise estimates by using Green’s function method.Whenκ=0,the pointwise estimates in [4,24,25] are established in theH6-framework due to the singularity of Green’s function and the quasi-linearity of the system.For NSK here,the Korteweg termκρ?Δρhas the third order derivative;it seems that one needs higher regularity assumption on the initial data to close the ansatz on the pointwise estimates due to the quasi-linearity of NSK.However,we can derive the pointwise results in theH4-framework for NSK.The outline of the proof is as follows:

    Step 1We give the representation of the Fourier transform of Green’s function and get the approximate expansions for the eigenvalues in the short wave and the long wave.

    Step 2We divide the space-time domain into two parts: inside the finite Mach number region |x| ≤3Mc(1 +t) and outside the finite Mach number regionwith the basic sound speedand some suitably large constantM >1.

    Step 3When |x| ≤3Mc(1 +t),we give the detailed analysis on the long wave,short wave and the middle part of Green’s function to obtain the pointwise estimates of the Green’s function by using complex analysis.When,we use the weighted energy method to obtain exponential pointwise estimates of Green’s function.

    Step 4We deduce the pointwise estimates of the solution for the nonlinear problem through the representation of the solution from Duhamel’s principle.Some convolution estimates on different wave patterns are used to control the initial propagation and nonlinear coupling.

    In order to facilitate interpretation,we first state the Fourier transform of Green’s function for the system (1.1) as

    with the eigenvalues

    Hereξis the variable in the space of the Fourier transform.As we know,there exist singularities in the short wave for the previous results on NS mentioned above.One of these is from the eigenvalueλ(ξ)~-|ξ|2which is like a heat kernel when |ξ| ?1,and it leads to the short wave behaving in a pointwise sense as(denoted byGS1).Obviously,this is singular whent=0.The other one is from the eigenvalue satisfying -C1≤λ(ξ) ≤-C2with positive constantsC1andC2when |ξ| ?1;this causes the short wave to behave as a Diracδ-function or aδ-like function with an exponential decay rate denoted byGS2.Since NS is quasi-linear,to close the ansatz on the pointwise estimates one needs to use the method of Green’s function together with the energy method.In fact,the pointwise estimates for the solution are based on utilizing the representation of the solution from Duhamel’s principle and Green’s function.Thus,we need to develop the ansatz assumption concerning the pointwise estimates of the lower order derivatives and theL∞-estimates of the higher order derivatives for the solution.For the initial propagation,one has to put all of the derivatives on the initial data due to these two singularities.For the nonlinear interplay,the different singularities ofGS1andGS2in the short wave mean that one has to put all the derivatives on the nonlinear terms when estimating the convolution ofGS2and the nonlinear terms,and one can only put one derivative onGS1when estimating the convolution betweenGS1and the nonlinear terms.

    A question that arises is,how can we minimize the requirement on the regularity of the initial data for NSK? First of all,from (1.3)–(1.4),we find that all of the eigenvalues for NSK behave asλ(ξ)~-|ξ|2when |ξ| ?1,which is different from NS.Based on this,we can relax the regularity condition on the initial data by developing two different descriptions on the short wave of NSK.On the one hand,to replace the exponential decay assumption of the initial data on the spacial variablexand its derivatives for NS [4] by the algebraic decay assumption on the spacial variablexfor NSK here,the singular partGS1cannot be used when dealing with the convolution of the short wave and the initial data.In fact,the exponential decay in space of the initial data is used to avoid the singularity ofGS1att=0 when dealing with the convolution of the short wave and the initial data;at this time one needs to separate the space-time domain and use the weight energy estimates.To relax the exponential decay assumption on the initial data,we replace the previous descriptionGS1by a new one,which is similar toGS2.That is,we useδ(x) orDxδ(x) to describeGS1.This will help us to avoid using the exponential decay assumption onx.At the same time,this new description is also used to estimate Green’s function outside a finite Mach number regionto obtain the regular estimate,since this description of singularity for the short wave is regular when |x| ≥1.

    On the other hand,we consider the nonlinear coupling.Notice that the convolution on the interplay of the Huygens’ waves in the long wave determines that we require the pointwise ansatz ofdue to the nonlinear term of the capillarity effect when deriving the pointwise estimate of the solution (ρ,m).To minimize the requirement on the regularity,we want to put more derivatives on Green’s function when estimating the nonlinear convolutions due to the quasi-linearity of the system.Hence,in this situation,we use the description of the short wave asGS1such that one can take the integral by parts once,since the nonlinear convolution is on both spatial and temporal variables.With these preparations,we can close the pointwise ansatz in theH4-framework.We believe that using different descriptions for the singularity of the short wave to deal with initial propagation and nonlinear coupling,respectively,could also be applied to the other hyperbolic-parabolic systems.

    The following is the main result in this paper:

    Theorem 1.1Assume that the initial data (ρ0,m0) satisfying:=ε0are small and the background density>0.Then there exists a unique,global,classical solution (ρ,m) to the Cauchy problem (1.1)–(1.2).If,furthermore,for 0 ≤k≤2,

    Remark 1.2The estimate (1.6) shows that NSK also exhibits the generalized Huygens’principle as NS.Compared to the previous space-time estimates for NS in theH6-framework in [24,25],we obtain the similar pointwise result for NSK under a relaxed condition: theH4-framework.Here the capillarity effect of material is so crucial that we can freely use these two different descriptions for the short wave as required.

    Corollary 1.3(Lpestimates) Under the assumptions in Theorem 1.1,we have the followingLp(R3) estimates of the solution:

    Throughout the paper,CandCidenote positive generic constants that may vary at different places.is theαorder derivative of a smooth functionf,and sometimes we also useto denote thek-order derivative offwith |α|=k.We useLpandWm,pto denote the usual Lebesgue and Sobolev spaces on RnandHm=Wm,2,with norms ‖ · ‖Lp,‖ · ‖Wm,p,‖ · ‖Hm,respectively.

    The rest of this paper is arranged as follows: in Section 2,we give the pointiwse estimates of Green’s function by the decomposition of the long and short waves together with the decomposition of the space-time domain.In Section 3 we deduce the pointwise estimates of the solution for the nonlinear problem by some convolution estimates.In Appendix,we give some lemmas that are used in Sections 2 and 3.

    2 Green’s Function

    This section is devoted to giving the pointwise description of Green’s function.

    2.1 Preliminaries

    In this section,we consider the Cauchy problem for the linearized Navier-Stokes-Korteweg system of the reformulated nonlinear problem:

    HereG(x,t) is Green’s function and its Fourier transform is

    The representation above holds for |ξ|0.

    To derive the pointwise estimates of Green’s functionG(x,t),we will use the decomposition of the long wave and short wave forG(x,t) as follows:

    After direct computations,we can get the following estimates for the spectrumsλ±(ξ):

    Lemma 2.1Whenη2-4κ′c=0 and |ξ| ?1,it holds that

    Whenη2-4κ′c0 and |ξ| ?1,it holds that

    Whenη2-4κ′c >0 and |ξ| ?1,it holds that

    Whenη2-4κ′c <0 and |ξ| ?1,it holds that

    Note that for all of the cases above,the spectrums are analytic when |ξ| ?1,otherwise the complex variable technique cannot be applied.

    2.2 Pointwise estimate of Green’s function

    In this section,we shall derive pointwise estimates of Green’s functionG(x,t),to this end,we first study its Fourier transform ?G(ξ,t) by the decomposition of the long and short wave.Additionally,since there exists Riesz transform and the Huygens’ wave in Green’s function,to analyse it clearly,we also decompose the temporal and spatial region inside the finite Mach number region |x| ≤3Mc(1 +t),and outside the finite Mach number region |x| ≥Mc(1 +t),whereM >1 is a suitably large positive constant to be determined later.

    2.2.1 Inside the finite Mach number region |x| ≤3Mc(1 + t)

    First,we consider the long wave,that is,|ξ| ?1.After direct computations,we get

    whereβis an analytic function in |ξ|2andβ(0)=0.

    To overcome the singularity of the Riesz operator inin (2.15) when |ξ| ?1,we should rewriteas follows:

    The estimate for the inverse Fourier transforms ofI1,I2,I3can be deduced as Lemma 4.5 in [5],through complex analysis for the long wave inside the finite Mach number region,which shows that they behave as the heat kernel:

    Here the additional decay rate forI1,I2,I3is from the factorξξτcompared with that ofI6.Then,by using Lemma A.1,we have that

    For the Riesz waveI4,one can also deduce the following estimate from Lemma 4.7 in [5]:

    Finally,the Riesz waveI5can be estimated with the following process:

    In summary,we have the pointwise estimate for the long wave ofG22(x,t):

    The other terms ofχ1(D)G(x,t) can be treated similarly.For simplicity,we just state these estimates in a conclusion.

    Lemma 2.2For any |α| ≥0,the estimates of the long waveχ1(D)G(x,t) inside the finite Mach number region |x| ≤3Mc(1 +t) are

    We find that the estimates forχ1(D)G11(x,t) andχ1(D)G12(x,t) only contain the Huygens’wave.This is the basis on which one can obtain that the pointwise estimate of the density is better than that of the momentum;see (1.6).

    Next,we study the short wave,which contains the singularity from the initial singularityδ(x) att=0.The capillarity effect causes all of the eigenvalues for the short wave of the Navier-Stokes-Korteweg system to behave asλ±(ξ)=-θ|ξ|2with some constantθ >0.This is the biggest difference in the short waves between the Navier-Stokes equations and the Navier-Stokes-Korteweg system.In particular,from Lemma 2.1 and the representation of ?G(ξ,t),we can conclude that

    To minimize the regularity condition on the initial data,we need the ensuing lemmas to describe the short wave.

    whereδ(x) is the Dirac function.Furthermore,for any |α| ≥0 and any positive integerN,,‖f2‖L1≤C,suppf2(x) ?{x: |x|<2η0},withη0being sufficiently small.

    On the other hand,by the Hausdorf-Young inequality and a similar procedure of the proof in Proposition 4.3 in [14],we have

    Lemma 2.4Suppose that(ξ,t)=χ3(ξ)(ξ)e-θ|ξ|2t(θ >0) is smooth onξand satisfies

    Then,for any |α| ≥0 and any positive constantN >0,it holds that

    Combining these two lemmas and (2.22)–(2.23),we have the pointwise estimates for the short wave of Green’s functionχ3(D)G(x,t).

    Lemma 2.5a) The short wave of Green’s functionχ3(D)G(x,t) satisfies

    whereδ(x) is the Dirac function.Furthermore,for any |α| ≥0 and any integerN >0,we have that

    withη0being sufficiently small.

    b) For any |α| ≥0 and any integerN >0,the short waveχ3(D)G(x,t) also satisfies

    Remark 2.6The first estimate (2.26) implies that the singularity is only atx=0,which can help us to derive the regular estimates outside the finite Mach number region |x| ≥Mc(1 +t).Additionally,we also use (2.26) to estimate the initial propagation in the last section.On the other hand,we use the second estimate (2.27) to deal with the nonlinear interplay,since at this time one can put a derivative on the short wave when dealing with the convolution of the short wave and the nonlinear terms,such that one can reduce the requirement of the regularity of the initial data.

    Finally,the procedure for estimating the middle part of Green’s function is standard,since the difficulties from |ξ| ?1 and |ξ| ?1 do not exist any longer;see [5,24].For simplicity,we give the following estimate without proof:

    Lemma 2.7For any |α| ≥0,the estimate of the middle partχ2(D)G(x,t) inside the finite Mach number region |x| ≤3Mc(1 +t) is

    In summary,Lemma 2.2,Lemma 2.5 and Lemma 2.7 yield the pointwise estimate for Green’s function inside the finite Mach number region.

    Proposition 2.8For any |α| ≥0,Green’s functionG(x,t) in the finite Mach number region |x| ≤3Mc(1 +t) satisfies

    whereχ3(D)Gij(x,t) satisfies the estimate in Lemma 2.5.

    2.2.2 Outside the finite Mach number region|x| ≥Mc(1 +t)

    We should use the estimate of Green’s function inside the finite Mach number region to give the estimate outside the finite Mach number region as in [29].To this end,we consider the homogeneous initial condition and non-homogeneous boundary value problem:

    We are going to use the weighted energy method to derive the estimate of the problem (2.31).Thus,we introduce the weight functionw(x,t)=eδ(|x|-Lt)with a small positive constantδand a large positive constantL,which will be determined later.It is easy to see,and,?tw=-δLw.Then we have the following:

    Lemma 2.9For,there exists a constantC >0 independent of |x| andtsuch that Green’s function satisfies,for any |α| ≥0,

    Here the boundary terms are from the Divergence theorem and the Co-area formula.We denote all the boundary terms byI2,for convenience.

    I1can be estimated as follows by using integration by parts and the Schwarz inequality:

    Then,by choosing a suitably large constantL >0 and a suitably small constantδ >0,and noticing,we know that there exists a constantC1>0 such that

    ForI2,we need the information of the variables (ρ,m) and their derivatives on the boundary?Dtfrom Proposition 2.8.Notice that the second term in (2.30) disappears when |x|>c(1+t).Hence,we know that there exists a constantC2>0 such that

    where we have also used the assumption,which excludes the singularity at|x|=0 in (2.26) in Lemma 2.5.Then,(2.34),together with the smallness ofδin the weight functionw(x,t),suffices to imply that

    From (2.33) and (2.35),we can obtain,by using the Grnwall’s inequality,

    Next,in order to apply the Sobolev inequality to obtain the pointwise estimate,we need the higher order derivative of the solution (ρ,m) for (2.31).The process is similar to that above,we omit it for simplicity.Finally,we have the following estimate for any positive integerl:

    Then,by using the Sobolev embedding theorem,we immediately get that

    By using the smallness ofδagain,we can immediately get (2.32). □

    In conclusion,we obtain the following pointwise estimates forG(x,t):

    Proposition 2.10For any |α| ≥0,Green’s functionG(x,t) satisfies

    3 Pointwise Estimates of the Nonlinear System

    Since there exists a Huygens’ wave in Green’s function,to derive the pointwise estimates for the nonlinear system,we have to use the conservative structure of the nonlinear system,due to the convolution estimates in the Appendix.To this end,we rewrite the capillary term

    The linearized system is given by

    whereμ′,ν′,κ′are defined as in Section 2.1.

    Then,we give the representation of the solution (ρ,m) of (3.2) by Duhamel’s principle as follows:

    3.1 Initial propagation

    We first study the propagation of the initial data.The assumption on the initial data is

    By Proposition 2.10,the Assumption (3.4) and Lemma A.3,we immediately get that

    In the same way,we can get,for 0 ≤k≤1,that

    Here the second term on the right hand side of (3.8) is from the convolution of the Riesz wave in the long wave ofG22and the initial data.

    3.2 Nonlinear coupling

    First of all,it is easy to see the nonlinear term

    To derive the pointwise estimates for the solution of the nonlinear system,we shall give the following ansatz for 0 ≤k1≤2 and 0 ≤k2≤1:

    In what follows,we mainly prove thatM(T) ≤C.Since the Navier-Stokes-Korteweg system is quasi-linear,one needs the a priori estimates of the higher derivatives of the solutions in [33]for the closure of the nonlinearity.

    We only consider the nonlinear couplingfor the momentumm,since N1can be treated similarly.In fact,

    Because there is no singularity inGHandGR,we can put all the derivatives ontoGHandGRwhen estimatingIn these cases,the estimates fork=1 are just the same as the case fork=0.We focus on the convolution containing the nonlinear term

    since this nonlinear term has the highest order of the derivative of the unknown variableρ.In particular,this term determines the highest order of the derivative ofρin the ansatz (3.10).In fact,based on the convolution estimates for the coupling of these wave patterns in Lemma A.4,we know that we need the pointwise estimates forto get the pointwise estimate for (ρ,m).This is the reason that we give the ansatz (3.10) in the pointwise sense where the order of the derivatives of the densityρis from 0 to 2.The second term N22can be estimated similarly.

    where we have used the fact thatwhich is based on theL2-decay rate of the solution and its derivatives in [10,33] and the Sobolev inequality.This determines that we need the regularity assumption of the initial data to be in theH5×H4-framework.Note that the convolutions in (3.15) are not included in Lemma 4.4 given in the Appendix,however,we can estimate them in the same way as in [24].In fact,for the long time 0<t0≤τ <twith suitablet0,J1andJ2have been estimated in [24] even for the case without the factorFor the short time 0 ≤τ <t0<t,the authors of [24] obtained that

    Obviously,the nonlinear terms inJ1andJ2have worse pointwise information on the spacial variablexthan those in (3.16) and (3.17).However,forJ1andJ2in the short time,the additional factorwill provide the exponential decay rate.Hence,one can also get the same pointwise estimates forJ1andJ2as in (3.16) and (3.17).The proof is tedious but direct,we omit the details.

    Then,combining the above estimates forwithi=1,2,3,we have

    This together with the initial propagation (3.8) forand the representation (3.3),yields that

    Simultaneously,noticing the better estimates for both the long wave and the short wave ofG11(x,t) andG12(x,t) compared with those ofG21(x,t) andG22(x,t) in Section 2,it also holds that

    These two estimates give thatM(T) ≤C(ε0+M2(T)) with a positive constantCindependent ofT,which together with the smallness ofε0and the continuity ofM(T),implies thatM(T) ≤C.Thus,we have closed the ansatz (3.10) and completed the proof of Theorem 1.1.

    Appendix: Some Useful Estimates

    The first lemma is used to derive the Huygens’ wave for the long waves of NS and NSK.

    Lemma A.1(see [5]) Letw(x,t) be the wave operator such that its inverse Fourier transformation is.Then one has

    We also need the following lemma when describing the singular part of the short wave:

    Lemma A.2(see [30]) If supp(ξ) ?OK=: {ξ,|ξ| ≥K >0},and(ξ) satisfies

    then there exist distributionsf1(x) andf2(x) and a constantC0such that

    whereδ(x) is the Dirac function.Furthermore,for any |α| ≥0 and any positive integerN,we have that

    withη0being sufficiently small.

    The next two lemmas are used to deal with initial propagation and nonlinear coupling,respectively.

    Lemma A.3(see [34]) There exists a constantC >0 such that

    Lemma A.4(see [24]) There exists a constantC >0 such that

    国产精品亚洲美女久久久| 国产高清三级在线| 99热精品在线国产| 亚洲国产精品合色在线| 亚洲精品在线美女| 国产伦精品一区二区三区视频9 | 亚洲av五月六月丁香网| 男人和女人高潮做爰伦理| 丰满人妻一区二区三区视频av | 久久精品91无色码中文字幕| 成年女人永久免费观看视频| 亚洲熟妇中文字幕五十中出| 国产一区二区在线观看日韩 | 国产精品电影一区二区三区| 桃红色精品国产亚洲av| 男人的好看免费观看在线视频| 亚洲,欧美精品.| 亚洲狠狠婷婷综合久久图片| 久99久视频精品免费| 制服人妻中文乱码| 久久国产精品影院| 国产蜜桃级精品一区二区三区| 国产真人三级小视频在线观看| 久久精品国产清高在天天线| 欧美成人一区二区免费高清观看 | 精品国产亚洲在线| 一进一出好大好爽视频| av视频在线观看入口| 两人在一起打扑克的视频| 夜夜躁狠狠躁天天躁| 三级男女做爰猛烈吃奶摸视频| 日韩欧美 国产精品| 午夜免费观看网址| 麻豆av在线久日| www国产在线视频色| 看片在线看免费视频| 亚洲 欧美 日韩 在线 免费| 波多野结衣高清作品| 黄片大片在线免费观看| 日本一本二区三区精品| 国产精品一区二区精品视频观看| 婷婷精品国产亚洲av在线| 九色成人免费人妻av| 青草久久国产| 中文字幕久久专区| 男人舔奶头视频| 亚洲精品美女久久av网站| 国产亚洲av嫩草精品影院| 久久伊人香网站| 亚洲av五月六月丁香网| 宅男免费午夜| 成年人黄色毛片网站| 国产又黄又爽又无遮挡在线| 国产精品亚洲一级av第二区| 国产精品久久久久久精品电影| 天堂√8在线中文| 亚洲成av人片免费观看| 日日摸夜夜添夜夜添小说| 免费在线观看影片大全网站| 亚洲精品色激情综合| 18美女黄网站色大片免费观看| 黄色片一级片一级黄色片| 日本一本二区三区精品| 欧美一区二区精品小视频在线| 亚洲成人中文字幕在线播放| 我要搜黄色片| 在线看三级毛片| 亚洲国产欧美网| 91字幕亚洲| 九色成人免费人妻av| 毛片女人毛片| 日日夜夜操网爽| 国产99白浆流出| 精品乱码久久久久久99久播| 18禁裸乳无遮挡免费网站照片| 操出白浆在线播放| 成人精品一区二区免费| 女人高潮潮喷娇喘18禁视频| 90打野战视频偷拍视频| 国产单亲对白刺激| 国产av一区在线观看免费| 国产精品国产高清国产av| 丁香欧美五月| 久久久久国内视频| 久久人妻av系列| 麻豆成人av在线观看| 香蕉av资源在线| 日韩高清综合在线| 看免费av毛片| 国产乱人视频| 国产精品av久久久久免费| 无人区码免费观看不卡| 国产成人精品久久二区二区免费| 全区人妻精品视频| 日韩三级视频一区二区三区| 国产日本99.免费观看| 免费一级毛片在线播放高清视频| ponron亚洲| 亚洲精品美女久久av网站| 熟女人妻精品中文字幕| 成人高潮视频无遮挡免费网站| 精品国产乱子伦一区二区三区| 欧美乱码精品一区二区三区| 99re在线观看精品视频| 日本免费a在线| a级毛片在线看网站| 欧美丝袜亚洲另类 | 亚洲av五月六月丁香网| 日本免费一区二区三区高清不卡| 国产精品乱码一区二三区的特点| 国产亚洲精品一区二区www| 欧美绝顶高潮抽搐喷水| 在线观看免费视频日本深夜| 大型黄色视频在线免费观看| 国产真人三级小视频在线观看| 日本 av在线| 久久久久久久午夜电影| 欧美成人性av电影在线观看| 国产精华一区二区三区| 又爽又黄无遮挡网站| 观看免费一级毛片| 国产熟女xx| 熟女电影av网| 伊人久久大香线蕉亚洲五| www日本黄色视频网| 国产三级黄色录像| 久久久久国内视频| 国产美女午夜福利| 国产成人啪精品午夜网站| 精品国内亚洲2022精品成人| 又黄又粗又硬又大视频| 日韩人妻高清精品专区| 丰满人妻一区二区三区视频av | av天堂中文字幕网| 91字幕亚洲| 国产三级黄色录像| 欧美在线一区亚洲| 可以在线观看的亚洲视频| 国产淫片久久久久久久久 | 色综合婷婷激情| 制服人妻中文乱码| 欧美精品啪啪一区二区三区| 搡老岳熟女国产| 99热只有精品国产| a在线观看视频网站| 又爽又黄无遮挡网站| 99久久精品一区二区三区| 白带黄色成豆腐渣| 欧美一区二区精品小视频在线| 黑人巨大精品欧美一区二区mp4| av福利片在线观看| 又黄又爽又免费观看的视频| 国内少妇人妻偷人精品xxx网站 | 别揉我奶头~嗯~啊~动态视频| 在线免费观看不下载黄p国产 | 天堂影院成人在线观看| 亚洲国产欧美网| 动漫黄色视频在线观看| 午夜福利欧美成人| 久久久精品欧美日韩精品| 香蕉国产在线看| 老司机福利观看| 国产成人精品久久二区二区免费| 久久久久免费精品人妻一区二区| 村上凉子中文字幕在线| 欧美在线一区亚洲| 两个人看的免费小视频| 日本与韩国留学比较| 国产高清有码在线观看视频| 最新美女视频免费是黄的| 日本黄色视频三级网站网址| 天天添夜夜摸| 制服人妻中文乱码| 国产三级中文精品| 成人午夜高清在线视频| 级片在线观看| 午夜福利高清视频| 国产成人精品久久二区二区91| 一级作爱视频免费观看| 天天一区二区日本电影三级| 精品国产美女av久久久久小说| 国产成人福利小说| 色综合欧美亚洲国产小说| 亚洲av五月六月丁香网| 国产亚洲欧美在线一区二区| 少妇的丰满在线观看| 日韩精品中文字幕看吧| 亚洲国产欧洲综合997久久,| www国产在线视频色| av福利片在线观看| 国产av不卡久久| av片东京热男人的天堂| 三级男女做爰猛烈吃奶摸视频| 少妇人妻一区二区三区视频| 亚洲黑人精品在线| 啦啦啦韩国在线观看视频| 日韩免费av在线播放| 叶爱在线成人免费视频播放| 亚洲人成网站高清观看| avwww免费| 99在线视频只有这里精品首页| 国产精品一区二区免费欧美| 日韩成人在线观看一区二区三区| 90打野战视频偷拍视频| 一本精品99久久精品77| 国产一区在线观看成人免费| 一级作爱视频免费观看| 在线a可以看的网站| 老汉色av国产亚洲站长工具| 日韩欧美在线二视频| 色哟哟哟哟哟哟| 天天添夜夜摸| 久久久久久久久免费视频了| 搡老岳熟女国产| 国产精品女同一区二区软件 | h日本视频在线播放| 亚洲精品国产精品久久久不卡| 久久中文字幕一级| 亚洲在线观看片| 2021天堂中文幕一二区在线观| 麻豆久久精品国产亚洲av| 天天添夜夜摸| 欧美一级a爱片免费观看看| 99国产极品粉嫩在线观看| av视频在线观看入口| 我的老师免费观看完整版| 欧美性猛交黑人性爽| 成年女人毛片免费观看观看9| 香蕉久久夜色| 免费av毛片视频| 精品一区二区三区视频在线 | 叶爱在线成人免费视频播放| 亚洲精品456在线播放app | 国产精品98久久久久久宅男小说| 丁香欧美五月| 这个男人来自地球电影免费观看| 亚洲第一欧美日韩一区二区三区| 成人欧美大片| 无遮挡黄片免费观看| а√天堂www在线а√下载| 国产av一区在线观看免费| 精品国产超薄肉色丝袜足j| 淫秽高清视频在线观看| 欧美另类亚洲清纯唯美| 18禁观看日本| 俄罗斯特黄特色一大片| 日日摸夜夜添夜夜添小说| 国内揄拍国产精品人妻在线| 免费在线观看亚洲国产| www日本在线高清视频| 欧美+亚洲+日韩+国产| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩无卡精品| 深夜精品福利| 九九热线精品视视频播放| 成人av在线播放网站| 日本在线视频免费播放| 中文资源天堂在线| 亚洲中文字幕一区二区三区有码在线看 | 一区福利在线观看| 97人妻精品一区二区三区麻豆| 两个人的视频大全免费| 美女免费视频网站| 国产三级在线视频| 99精品欧美一区二区三区四区| 国产主播在线观看一区二区| 亚洲国产欧洲综合997久久,| 欧美日韩一级在线毛片| 两个人看的免费小视频| 日韩国内少妇激情av| 欧美在线黄色| 亚洲五月天丁香| 国产成人啪精品午夜网站| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区三| 性色avwww在线观看| 一卡2卡三卡四卡精品乱码亚洲| 伦理电影免费视频| 亚洲欧美精品综合一区二区三区| 不卡av一区二区三区| 亚洲国产精品sss在线观看| 欧美成人性av电影在线观看| www国产在线视频色| 91九色精品人成在线观看| 亚洲欧美日韩无卡精品| 我要搜黄色片| 亚洲av电影不卡..在线观看| 欧美不卡视频在线免费观看| 最新中文字幕久久久久 | 成在线人永久免费视频| 久99久视频精品免费| 91九色精品人成在线观看| 亚洲av成人不卡在线观看播放网| 欧美中文综合在线视频| 成人三级做爰电影| 岛国在线观看网站| 国产高清激情床上av| 18禁裸乳无遮挡免费网站照片| 欧美成人一区二区免费高清观看 | 欧美极品一区二区三区四区| 老熟妇乱子伦视频在线观看| 黄色女人牲交| 中国美女看黄片| 伦理电影免费视频| 中文亚洲av片在线观看爽| 国产欧美日韩精品亚洲av| 亚洲av片天天在线观看| 国产亚洲精品久久久久久毛片| 91在线观看av| 黑人巨大精品欧美一区二区mp4| 国产亚洲av高清不卡| 国内揄拍国产精品人妻在线| 欧美性猛交黑人性爽| 桃色一区二区三区在线观看| 国内精品久久久久精免费| 后天国语完整版免费观看| av黄色大香蕉| 人妻夜夜爽99麻豆av| 亚洲真实伦在线观看| 久久精品夜夜夜夜夜久久蜜豆| 成人国产综合亚洲| 色尼玛亚洲综合影院| 亚洲av片天天在线观看| 我的老师免费观看完整版| 亚洲18禁久久av| 操出白浆在线播放| 中文字幕av在线有码专区| 美女大奶头视频| 国产精品久久视频播放| 中文资源天堂在线| 美女免费视频网站| 性色avwww在线观看| 成人精品一区二区免费| 亚洲成人中文字幕在线播放| 国产精华一区二区三区| 久久精品国产综合久久久| avwww免费| 免费在线观看成人毛片| 亚洲 欧美 日韩 在线 免费| 久久久精品欧美日韩精品| 亚洲男人的天堂狠狠| 国产爱豆传媒在线观看| 久久久久九九精品影院| 精品不卡国产一区二区三区| 母亲3免费完整高清在线观看| 欧美黄色淫秽网站| 好男人电影高清在线观看| 精品欧美国产一区二区三| 在线a可以看的网站| 99久久无色码亚洲精品果冻| 国产精品99久久久久久久久| 精品久久久久久久毛片微露脸| 精品日产1卡2卡| 婷婷精品国产亚洲av在线| 黄色片一级片一级黄色片| 国产99白浆流出| 美女cb高潮喷水在线观看 | 女人高潮潮喷娇喘18禁视频| 久久久久性生活片| 欧美一区二区精品小视频在线| 成人特级av手机在线观看| 免费观看精品视频网站| 十八禁网站免费在线| 制服人妻中文乱码| 国产成年人精品一区二区| 真实男女啪啪啪动态图| 在线免费观看的www视频| 高清在线国产一区| 亚洲av美国av| 日韩欧美国产在线观看| 99热只有精品国产| 人妻丰满熟妇av一区二区三区| 国产不卡一卡二| 中文字幕精品亚洲无线码一区| www日本在线高清视频| 最近视频中文字幕2019在线8| 亚洲人成伊人成综合网2020| 久久人人精品亚洲av| 欧美黄色淫秽网站| 搡老岳熟女国产| 亚洲第一欧美日韩一区二区三区| 黄色 视频免费看| 男插女下体视频免费在线播放| 久久人妻av系列| 巨乳人妻的诱惑在线观看| 国产一区在线观看成人免费| 成人三级黄色视频| 麻豆av在线久日| 国产伦精品一区二区三区四那| 在线观看66精品国产| 国产午夜精品久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 又黄又爽又免费观看的视频| 一二三四社区在线视频社区8| 久久久色成人| 亚洲色图av天堂| 久久久国产精品麻豆| 国产精品永久免费网站| 神马国产精品三级电影在线观看| 亚洲精品美女久久久久99蜜臀| 国产亚洲欧美98| 成人午夜高清在线视频| 色综合欧美亚洲国产小说| 国产午夜福利久久久久久| 90打野战视频偷拍视频| 亚洲色图 男人天堂 中文字幕| 国产又色又爽无遮挡免费看| 听说在线观看完整版免费高清| 精品欧美国产一区二区三| 无限看片的www在线观看| 最新中文字幕久久久久 | 青草久久国产| 怎么达到女性高潮| 丁香欧美五月| 亚洲色图 男人天堂 中文字幕| 欧美一级a爱片免费观看看| 少妇人妻一区二区三区视频| 国产亚洲av嫩草精品影院| 欧美绝顶高潮抽搐喷水| 九色成人免费人妻av| 级片在线观看| 搡老岳熟女国产| 亚洲成av人片免费观看| 在线十欧美十亚洲十日本专区| 一a级毛片在线观看| 亚洲成人久久爱视频| 又黄又爽又免费观看的视频| 1024香蕉在线观看| 成人亚洲精品av一区二区| 亚洲美女视频黄频| svipshipincom国产片| 久久精品aⅴ一区二区三区四区| 欧美xxxx黑人xx丫x性爽| 一个人看的www免费观看视频| 一二三四社区在线视频社区8| 午夜激情福利司机影院| 亚洲国产精品sss在线观看| 亚洲国产中文字幕在线视频| 国产精品香港三级国产av潘金莲| 国产美女午夜福利| 国产三级在线视频| 精品99又大又爽又粗少妇毛片 | 18禁黄网站禁片午夜丰满| 久久久久久九九精品二区国产| 啦啦啦免费观看视频1| bbb黄色大片| 精品国产亚洲在线| 国产美女午夜福利| 无遮挡黄片免费观看| 精品久久久久久成人av| 丰满人妻一区二区三区视频av | 成人亚洲精品av一区二区| 欧美又色又爽又黄视频| 久久久国产成人免费| 国产午夜福利久久久久久| 99精品久久久久人妻精品| av在线蜜桃| 亚洲成人久久爱视频| 亚洲 国产 在线| 淫秽高清视频在线观看| 两性夫妻黄色片| 国产高清激情床上av| 久久久久九九精品影院| 国产成+人综合+亚洲专区| 国产91精品成人一区二区三区| 午夜a级毛片| 毛片女人毛片| 国产精品99久久99久久久不卡| 国产三级在线视频| 久久久久国内视频| 黑人操中国人逼视频| 欧美黑人欧美精品刺激| 欧美中文日本在线观看视频| 午夜视频精品福利| 在线观看午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜久久久久精精品| 精华霜和精华液先用哪个| 午夜激情福利司机影院| 岛国在线观看网站| 欧美黄色片欧美黄色片| 夜夜夜夜夜久久久久| 国产爱豆传媒在线观看| 一边摸一边抽搐一进一小说| 天天一区二区日本电影三级| 国产一区二区三区在线臀色熟女| 99在线视频只有这里精品首页| 99精品在免费线老司机午夜| 很黄的视频免费| 亚洲熟女毛片儿| 亚洲中文av在线| 精品久久久久久久久久免费视频| 国产黄片美女视频| 欧美性猛交黑人性爽| 国产精品永久免费网站| 欧美在线黄色| 国产成人aa在线观看| 老熟妇乱子伦视频在线观看| а√天堂www在线а√下载| 丁香六月欧美| 男女下面进入的视频免费午夜| 亚洲av熟女| 男女那种视频在线观看| 法律面前人人平等表现在哪些方面| 欧美中文日本在线观看视频| 亚洲一区二区三区色噜噜| 亚洲九九香蕉| 亚洲欧洲精品一区二区精品久久久| 日本熟妇午夜| 亚洲精品美女久久久久99蜜臀| 男女视频在线观看网站免费| 亚洲午夜理论影院| 丰满人妻一区二区三区视频av | 老熟妇乱子伦视频在线观看| 久久久久久国产a免费观看| 国产人伦9x9x在线观看| 久久亚洲精品不卡| 女人被狂操c到高潮| 亚洲成人久久性| 免费观看的影片在线观看| 国产一区二区三区视频了| 国产日本99.免费观看| 在线视频色国产色| 成人三级做爰电影| 亚洲av免费在线观看| 久久久精品大字幕| 在线观看美女被高潮喷水网站 | 国产美女午夜福利| 国产精品香港三级国产av潘金莲| 色av中文字幕| 亚洲乱码一区二区免费版| 在线播放国产精品三级| 88av欧美| 成人永久免费在线观看视频| 夜夜爽天天搞| 国产三级中文精品| 91麻豆av在线| 十八禁网站免费在线| 午夜日韩欧美国产| 嫩草影院入口| 精品国产亚洲在线| 久久草成人影院| 嫩草影视91久久| 亚洲男人的天堂狠狠| 精品国产美女av久久久久小说| 精品国产乱子伦一区二区三区| 一进一出好大好爽视频| 久久精品国产综合久久久| 亚洲欧美一区二区三区黑人| 999久久久精品免费观看国产| 久久午夜亚洲精品久久| 日韩欧美 国产精品| 99热这里只有精品一区 | 一级作爱视频免费观看| 午夜免费成人在线视频| 黄片大片在线免费观看| 一区二区三区激情视频| 欧美成狂野欧美在线观看| 国产精品影院久久| 国产aⅴ精品一区二区三区波| 国产蜜桃级精品一区二区三区| 国产精品一区二区免费欧美| 日韩三级视频一区二区三区| 亚洲色图av天堂| 成年人黄色毛片网站| 搡老岳熟女国产| 午夜久久久久精精品| 香蕉丝袜av| 可以在线观看毛片的网站| 久久亚洲真实| 日本黄色视频三级网站网址| 99久久综合精品五月天人人| 五月玫瑰六月丁香| 中文字幕高清在线视频| 国产成人精品久久二区二区91| 国产精品国产高清国产av| 色播亚洲综合网| 亚洲 欧美 日韩 在线 免费| 亚洲欧美精品综合久久99| 精品国产三级普通话版| 国产欧美日韩精品一区二区| 欧美黑人巨大hd| 亚洲 国产 在线| 国产v大片淫在线免费观看| 国产一区二区在线av高清观看| 国产亚洲精品一区二区www| 欧美成狂野欧美在线观看| av中文乱码字幕在线| 亚洲av成人精品一区久久| www.999成人在线观看| 欧美不卡视频在线免费观看| 国内精品久久久久久久电影| 精华霜和精华液先用哪个| 国产伦精品一区二区三区四那| 最近最新中文字幕大全免费视频| 九九在线视频观看精品| 精品一区二区三区视频在线 | 国产精品久久久av美女十八| 日韩大尺度精品在线看网址| 亚洲黑人精品在线| 国产男靠女视频免费网站| 国产精品永久免费网站| 91av网站免费观看| 国产高清视频在线播放一区| av黄色大香蕉| 欧美一区二区国产精品久久精品| 手机成人av网站| 国产日本99.免费观看| 精品乱码久久久久久99久播| 小蜜桃在线观看免费完整版高清| 狠狠狠狠99中文字幕| 每晚都被弄得嗷嗷叫到高潮| 成年免费大片在线观看| 亚洲熟妇中文字幕五十中出| 一二三四在线观看免费中文在|