• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXPONENTIAL STABILITY OF A MULTI-PARTICLE SYSTEM WITH LOCAL INTERACTION AND DISTRIBUTED DELAY*

    2022-11-04 09:07:24

    College of Liberal Arts and Sciences,National University of Defense Technology,Changsha 410073,China

    E-mail: liuyc2001@hotmail.com

    Abstract For a collective system,the connectedness of the adjacency matrix plays a key role in making the system achieve its emergent feature,such as flocking or multi-clustering.In this paper,we study a nonsymmetric multi-particle system with a constant and local cut-offweight.A distributed communication delay is also introduced into both the velocity adjoint term and the cut-offweight.As a new observation,we show that the desired multiparticle system undergoes both flocking and clustering behaviors when the eigenvalue 1 of the adjacency matrix is semi-simple.In this case,the adjacency matrix may lose the connectedness.In particular,the number of clusters is discussed by using subspace analysis.In terms of results,for both the non-critical and general neighbourhood situations,some criteria of flocking and clustering emergence with an exponential convergent rate are established by the standard matrix analysis for when the delay is free.As a distributed delay is involved,the corresponding criteria are also found,and these small time lags do not change the emergent properties qualitatively,but alter the final value in a nonlinear way.Consequently,some previous works [14] are extended.

    Key words semi-simple eigenvalue;flocking emergence;clustering emergence;distributed delay;exponential convergence

    1 Introduction

    Self-organized collective systems arise very naturally in artificial intelligence,physical,biological and social sciences.Such systems have a remarkable capability to regulate the flow of information from distinct and independent components to achieve a prescribed performance.It is of particular interest,in terms of both theory and application,to understand how self propelled individuals use only limited environmental information and simple rules to organize themselves into an ordered motion.In terms the modelling and analysis frame,multi-particle models have been widely used to verify practical observations;see [2,14,28] and the references therein for examples.Our main motivation in the current work is to analyze and explain emergent patterns on a delayed particle model,while individual particles interact only locally and connectedness is also lost.

    As we know,to gain ordered collective performance,there are three items would be included in modelling and qualitative analysis.One is symmetry,which means that the interactions between each pair of particle is the same.The second is global interaction for all individuals.The final item is the connectedness of the adjacency structure.Taking these things into consideration,the celebrated Cucker-Smale model [5,6],proposed in 2007,provided a framework for examining the emergent properties of flocks in order to explain self-organized behaviors in one kind of complex system.In successive contributions,non-symmetric interaction,local interaction weight and delay arguments were all incorporated in more general model settings.For more detailed discussions,we refer readers to [2,9,12–18,22,25,29] and the references therein.These works imply that the connectedness of the underlying adjacency matrix plays a crucial role in the analysis of synchronization.Naturally,removing the troublesome connectedness condition or finding the balance between local interaction and connectedness is a difficult problem,in theory.

    In this paper,we consider anN-particle system with a distributed communication delay:

    where the communication weightaijis selected from the candidate symmetric adjacency matrixA=(aij)N×N.Ifaij=1 for alli,j,thendi(t)=Ni(t).For more delayed collective models,see [2–4,7,8,11,19,23,24,27].

    In particular,whenτ=0,this is a free delay forvj,i.e.,.Also,we have.Thus,the system (1.1) becomes

    For the above equation,Jin [14] posted some criteria for achieving a flock when allaij=1.Whenris large enough,viwill be independent of |xi-xj|,and then system (1.1) degenerates into a first-order delayed system,as an opinion model;this was investigated by Atay in [1].

    For our observations,the parameterris sensitive to the dynamics of system (1.2).Whenris small enough,each particle will be almost free of interaction from the others,and each particle evolves for itself uncertainly and strongly depends on its initial value.The dynamics of system (1.2) is complex in this case.Whenris large enough,each particle will interact with all of the others with the candidate adjacency matrixA.In this case,ifAis a connected matrix,then all particles achieve synchronization for arbitrary initial values.The dynamics of system (1.2) becomes simple.A natural question is: how do we verify the dynamical behaviors of system (1.1) when the distributed communication delay is involved? Our goal here is to give some new viewpoints regarding the dynamical behavior of system (1.1) when the connectedness of the adjacency matrix is absent and the distributed delay is involved.

    The rest of this paper is organized as follows: in Section 2 we give more details for the model analysis and give some assumptions.In Section 3,for both the non-critical and general neighbourhood situations,some criteria regarding flocking and clustering emergence with an exponential convergent rate are established when the delay is free.In Section 4,when the distributed delay is involved,the criteria of flocking and clustering emergence are also found,and it is shown that these small time lags will not change the emergent property qualitatively,but alter the final value in a nonlinear way.

    2 Preliminaries and Assumptions

    2.1 Preliminaries

    First,we give the mathematical definitions flocks and clusters.

    Definition 2.1Suppose that (xi(t),vi(t)) ∈Rn×Rn(i=1,2,···,N) is a solution to(1.1).The above system is said to achieve a flock if

    wherev∞∈Rnis a constant vector.

    Definition 2.2Suppose that (xi(t),vi(t)) ∈Rn×Rn(i=1,2,···,N) is a solution to(1.1).The above system is said to achievep-clusters if there exist some vectorsφj∈Rnand setsSj?{1,2,···,N} satisfyingSj∩Si=? (empty set),φjφi(wheneverij) and∪jSj={1,2,···,N},such thatfor alli∈Sj,j=1,2,···,p.The numbersφj

    are then called the clustering velocity.

    To specify a solution for the multi-particle system (1.1),we need to specify the initial conditions

    wherefiandgiare given continuous vector-value functions.

    Also,to quantify the sensitivity of the adjacency matrix when the distance of two particles is nearr,we use the following variables ont:

    lM(t)=max{lij(t): 1 ≤i,j≤N} andlm(t)=min{lij(t): 1 ≤i,j≤N} for allt >0.Naturally,we have Γ(t) ≥0.If Γ(t)>0,we call this case a non-critical neighbourhood situation.If Γ(t)=0,we call it general neighbourhood situation;see [14].

    Define the adjacency matrix and average matrix byandP(t)=(pij(t))N×N,respectively,where

    Recalling the matrix theory [26],a matrixS=(sij)N×Nis called stochastic ifsij≥0 and.The matrixSis said to be connected if,for arbitrary integersiandj(1 ≤i,j≤N),there are a sequence of integersk1,k2,···,kqsuch thatskl-1,kl>0,l=1,2,···,q+1,wherek0=i,kq+1=j.Noting that,from the above definitions,we see that the corresponding average matrixP(t) is a connected stochastic matrix.The matrixL(t)=I-P(t)is called the Laplacian matrix of the system (1.1).

    Note that the average matrix will change when the distance from another particle is nearr.By the continuity of the trajectory ofxi(1 ≤i≤N),there existst1>0 such that the average matrixP(t) remains unchanged on [0,t1).Denotetnas the switching point at thenthtime.Then {tn} is called the switching point sequence,which can be finite or infinite.Since the average matrix remains unchanged at each interval (tn,tn+1),n=0,1,2,···,(t0=0),the matrixP(t) will be a constant matrix on (tn,tn+1),sayP(tn).In particular,setP(θ)=P0forθ∈[-τ,0].

    In the sequel,we need the following vector norms: define

    IfSis a square matrix,then ‖S‖ is the largest eigenvalue ofS.Using the above definitions and the Cauchy-Schwarz inequality,we see that

    2.2 Assumptions

    As we know,an eigenvalue is said to be semi-simple if its algebraic multiplicity equals its geometric multiplicity.Throughout the paper,we assume that 1 is a semi-simple eigenvalue of the matrixP0with algebraic multiplicityn0.Assume that the other eigenvalues ofP0areμ2,···,μm0,with the corresponding algebraic multiplicityp2,···,pm0,respectively.From the matrix theory,we see that |μi|<1 fori=2,···,m0,and there is a non-degenerate matrixT0such that,whereJ0is a diagonal matrix with the first block being 1,saywhere0is a zero matrix with a matchable dimension.Inspired by [14],we reset

    ThenMis a symmetric matrix andPis similar toM.Therefore,Pis a diagonalizable matrix and all eigenvalues of matrixPare real.Also,there is an orthogonal matrixOsuch thatM0=OJ0O-1.Thus

    Letdmax=max{d1(0),···,dN(0)} anddmin=min{d1(0),···,dN(0)}.Then the condition number of matrixP0has an upper bound,which reads as

    Without loss of generality,we assume that

    Finally,to discuss the dynamical behaviors of system (1.1),we give the following assumptions:

    (A1) Assume that the eigenvalue 1 of the initial average matrixP0is semi-simple and that the corresponding algebraic multiplicity isn0.

    (A2) There exist positive constantsδ,γandsuch that

    (A2τ) There exist positive constantsδ,γandsuch that

    (A3) Assume that the amplitude ‖P(t) -P0‖ is bounded uniformly ont.Setη=

    Remark 2.3Ifn0=1,then the matrixP0is a connected matrix,and whenevern0>1,the connectedness of matrixP0will be lost.

    Remark 2.4To overcome the difficulty in the critical situation,we need that the average matrixP(t) does not change frequently and sharply.For this,we assume that all switching intervals have a uniform minimum gap in (A2) and (A2τ).Meanwhile,we assume that the average matrixP(t) admits a priori bound in (A3),although this depends on the dynamics of solutions.These assumptions are valid for making the designed system achieve a flock.

    3 Convergence Analysis Without Delay Effects

    As we know,the model (1.1) is a piecewise continuous system,and the successive system works with the initial values generated by the current system.In each continuous interval,model (1.1) is a linear system and has a unique solution.Thus,the solutions of model (1.1)have global existence and uniqueness.In this section,we focus on the convergence analysis of model (1.1) without delay effects.

    LetX=(x1,x2,···,xN)Tand letV=(v1,v2,···,vN)T.Then system (1.2) becomes

    Theorem 3.1Assume that (A1) holds,and that Γ(0)>0 and<λ(1 -μ2)Γ(0).Then

    In particular,whenn0=1,system (1.2) achieves a flock.

    ProofFrom the matrix theory and Assumption (A1),we see that there is a non-degenerate matrixT0such that

    whereIn0is an0×n0identity matrix,andJ*is a Jordan block matrix.From equation (1.2),we have that

    By direct computation,we obtain

    Next,we show thatt1=∞.Ift1<∞,then the average matrixP0will change att=t1.Thus,there exists (i0,j0) such that

    Case In0=1.Recalling the first equation of (1.2),we havei0(t)=vi0(t) and

    Thus,we get that

    Thus,forj0∈Ni0(0),

    On the other hand,forj0Ni0(0),

    Obviously,the inequalities (3.3) and (3.4) contradict the fact that there exists (i0,j0),such thatli0j0(t1)=r.Thus,t1=∞andP(t) ≡P0for all time.

    Case IIn0>1.Without loss of generality,if necessary,we exchange the rows of matrixP0and relabel the subscript ofvi.We assume thatP0is a block diagonal matrix;that is,P0=diag(Q1,Q2,···,Qn0) (see the details in Appendix A).In this case,we consider the subsystem

    whereQiis also a stochastic matrix with a simple eigenvalue 1 fori=1,2,···,n0.Letμ2i=max{Rez: det(zI-Qi)=0,z1}.For,thek-th column ofP0is partially located inQi},and for,thek-th column ofP0is partially located inQi},so we have

    Since the eigenvalue 1 ofQiis simple,following similar arguments as to those in Case I,we conclude thatt1=∞.

    Thus,from inequality (3.2),we have that

    Next,we will verify that all of the components are the same.Indeed,recalling thatP0=,we assume that the first column ofT0is the vector (1,1,···,1)T.Letting

    where ?denotes the Kronecker product.Thus,all of components are the same.

    By Definition 1.1,system (1.2) achieves a flock whenn0=1.This completes the proof. □

    Remark 3.2We remark that the final valueis independent of the choice ofT0.Indeed,takingT0=(c1,···,cn0,*) and,ri· ci=1 fori=1,2,···,n0.If we selectkici(ki0) as thei-th column ofT0,then thei-th row ofwould be.Then,

    Thus,the final value is independent of the choice ofT0.

    Remark 3.3In Theorem 3.1,ifn0=1 andaij=1,we obtain the results in Theorem 2.1 in [14].Thus Theorem 3.1 extends the corresponding results.

    For whenn0>1,to understand the final collective performance,we give more details of.To this end,we have the following lemma:

    Lemma 3.4([20],Lemma 3.2) Assume that zero is a semi-simple eigenvalue of the Laplacian L with multiplicityn0.Then there exists a unique family of normal zero-one vectorsa1,···,an0such thatLai=0 anda1+a2+···+an0=1.

    Recalling that each of the firstn0columns ofT0is the eigenvector of matrixI-P0with an eigenvalue 0,from Lemma 3.1 and setL=I-P0,we choose zero-one vectorsa1,···,an0as the firstn0columns ofT0,sayT0=(a1,···,an0,*).Lettinguibe thei-th component of

    Since allaiare zero-one vectors,we see that the number of elements different from one and other in set {u1,u2,···,un0} will determine the number of clusters of system (1.1).Indeed,assume that the set {φ1,φ2,···,φk} consists of all elements different from one and other in set{u1,u2,···,un0}.Then

    where1,···,kare zero-one vectors too.Let

    Then ∪jSj={1,2,···,N} andfor alli∈Sj.Following Definition 1.2,system(1.2) achievesk-clusters.Thus we conclude with a following result.

    Theorem 3.5Let (A1) hold and.Then the system (1.2)will achievek-clusters,wherekis the number of elements different from one and other in set{u1,u2,···,un0}.In particular,ifn0=1 orφ1=φ2=···=φk,then the system also achieves a flock.

    3.1 Flocking and clustering analysis in a general situation

    In this subsection,we focus on the general case in which the average matrixP(t) will change according to time.As we know,to make the designed systems of (1.2) achieve a prescribed flocking behavior,we need to assume that the average matrixP(t) does not change frequently and sharply.Also,the neighbouring particles do not stay in the critical situation (the neighbourhood of circle |xi-xj|=r) for a long time.For this,under the additional assumptions(A2) and (A3),we obtain similarly results in a noncritical situation.

    Theorem 3.6Assume that (A1),(A2) and (A3) hold,and thatDη <1 -μ2.Then the system is convergent with

    and the convergent rate is given as

    In particular,whenn0=1,the system achieves a flock.Whenn0>1,the system achieves a flock or multi-cluster.

    ProofFirst,we rewrite system (1.2) as

    By using the variation-of-constant formula,we have that

    and recalling the fact that

    we see that

    whereηis given in Assumption (A3).That is,

    By solving the above Gronwall’s inequality,we get that

    Recalling the inequalityDη <1 -μ2,we find that there is a positive integral numberk0such that

    whereγandδare as given in Assumption (A2).

    Next,we show thattk0+1=∞.From Assumption (A2) again,there is a constant(tk0,tk0+1) such that.Indeed,iftk0+1<∞,then there exists (i0,j0) such thatli0j0(tk0+1)=r.

    Ifn0=1,we see that

    Obviously,the inequalities (3.7) and (3.8) contradict the fact that there exists (i0,j0) such thatli0j0(tk0+1)=r.Thustk0+1=∞.

    Ifn0>1,with arguments similar to those in the proof of Theorem 3.1,by using the fact that

    we claim thattk0+1=∞too.

    Noticing that

    is bounded uniformly ont,we see that the limit

    Using the triangle inequality,we have that

    With arguments similar to those in the proof of Theorem 3.1 and associated discussions,we conclude that the system achieves a flock whenn0=1,and achieves a flock or multi-cluster whenn0>1.This completes the proof. □

    4 Dynamics Analysis for the Delayed Model

    In this section,we investigate the effects of the distributed communication delay to the dynamics of system (1.1)–(2.1).Also,assume that the average matrixP(θ) remains unchanged in initial time;that is,P(θ) ≡P0forθ∈[-τ,0].Then we rewrite system (1.1)–(2.1) in a vector form,as

    LetS1(t) be a fundamental solution of the equationdsand let S*(t) be a fundamental solution of the equation

    Then the solutionV(t) of (4.1) is

    The characteristic equation of the first part in (4.2) is an algebraic equation

    and the characteristic equation of the second part in (4.2) is

    AsJ*is a Jordan block matrix,the above equation becomes

    wherem0is the number of the different eigenvalues ofP0,andpiis the corresponding algebraic multiplicity.To find the convergence rate,we establish the following lemma (the details of the proof can be found in Appendix B):

    Lemma 4.1Letλ >0 and.Ifλ+1>0,then equation (4.4) has a simple root at zero and all other roots have negative real parts,and

    Ifμi∈(-1,1),then all roots of (4.5) have negative real parts and

    Lemma 4.2([10],Theorem 5.2) Ifa0=max{Rez:h(z)=0},then,for anyα >a0,there is a constantK=K(α) such that the fundamental solutionX(t) of the second equation(4.2) satisfies the inequality

    wherec0=min{|c1|,|c2|},.In particular,whenn0=1,the system achieves a flock.Whenn0>1,the system achieves a flock or multi-cluster.

    First,to find the convergent rate,we decompose the solution operatorS1(t) in null-subspace.It follows from the theory of functional differential equations [10] that the spaceC([-τ,0],R)can be decomposed by the invariant null-subspaceC0and its complement.From Lemma 4.1,and the fact that the zero eigenvalue is simple,we see thatC0is a one-dimensional space.ThusS1(t)=a0+bt,wherea0∈C0is a constant operator.

    Letting

    we have following technical lemmas:

    Lemma 4.4Let (A1) andλ||<1 hold.Then there is a positive constantKsuch that

    ProofRecalling the equalities (4.3) and (4.6),we have that

    Following Lemma 4.1,we see that all other roots of the characteristic equation (4.4) have negative real parts except zero.Also,from Lemma 4.2,there is a constantK1>0 such that

    for allα1∈(0,-c1),c1given in Lemma 4.1.

    Similarly,notice thatS*(t) is the fundamental solution operator and all roots of the characteristic equation (4.5) have negative real parts,and from Lemma 4.2,we see that there is a constantK2>0 such that

    for allα2∈(0,-c2),c2given in Lemma 4.1.

    whereK=Dmax{K1,K2} andc=min{α1,α2} ∈(0,c0).Thus,

    This completes the proof. □

    Lemma 4.5If<c0Γ(0),thent1=∞andP(t) ≡P0for all time.

    ProofIft1<∞,then the average matrix will change att=t1.Thus there exists (i0,j0)such that

    Recalling the first equation of (1.1),we have thati0(t)=vi0(t) and that

    Ifn0=1,then all the row components ofVin(θ) are the same.From Lemma 4.3,we get that

    Whenθ∈[-τ,0] andj0Ni0(0),we have that

    This implies that

    Similarly,whenθ∈[-τ,0] andj0∈Ni0(0),we have that

    Obviously,the inequalities (4.9) and (4.10) contradict the fact that there exists (i0,j0) such thatThust1=∞andP(t) ≡P0for all time.

    Ifn0>1,with arguments similar to those in the proof of Theorem 3.1,we conclude thatt1=∞.This completes the proof. □

    Proof of Theorem 4.3For the non-critical neighbourhood situation case,it follows fromthat the average matrix remains unchanged,and the initial matrixP0is a constant matrix for allt >0.In order to formulateVin(θ),let (u1(t),u2(t),···,un0(t),u*(t))Tbe a solution of system (4.2),and from Lemma 4.1 directly,we see that.Denoteu11(t) as the first component ofu1(t).First,we calculate the limit ofu11(t) ast→∞.Using a similar argument as for that in [1,21],consider the initial functional spaceC([-τ,0],R),which is the Banach space of real-valued continuous functions on [-τ,0] equipped with the supremum norm.LetC*=C([-τ,0],R),and define the bilinear form 〈ψ,φ〉cforφ∈Candψ∈C*by

    Since the characteristic equation (4.4) has a simple root at zero,its characteristic subspace is a one-dimensional space,say,C0.Denote bythe dual one-dimensional space.Let the constant functionφ(θ)=1 be the basis ofC0.Then its dual basis inwith〈ψ,φ〉c=1,where

    Also,letat(θ)=u11(t+θ) for allθ∈[-τ,0].It follows from the theory of Functional Differential Equations [10] that the spaceCcan be decomposed using the invariant subspaceC0and its complement.Thusat=+bt,where∈C0.Following Lemma 4.1,we see that the characteristic equation has a simple root at zero and all other roots have negative real parts.Thusuniformly forθ∈[-τ,0].Noting thatis a constant and is determined by the initial condition,we conclude that it is given as the constant functionThus,by direct calculation,we have that

    Similarly,fori=2,···,n,we obtain that

    Also,from Lemma 4.4,we see tha.This means that Vin(θ) is independent ofθand that

    Using Lemma 4.4 again,we see that

    As mentioned in (3.5),whenn0=1,all the row components of Vτ∞are the same.Furthermore,we have that

    Thus system (1.1) achieves a flock asn0=1.Also,it follows from Theorem 3.1 that system(1.1) achieves a flock or multi-cluster whenn0>1.This completes the proof. □

    Letting

    for general situation case,we have the following result:

    Theorem 4.6Assume that (A1),(A2τ) and (A3) hold.IfληDK2<|c2|,then

    whereK2andc2are given in (4.8) and Lemma 4.1,respectively.In particular,whenn0=1,the system achieves a flock.Whenn0>1,the system achieves a flock or multi-cluster.

    ProofTo investigate the flocking behaviors of system (1.1) in the general situation,we rewrite it as

    we have that

    It follows fromληDK2<|c2| and (4.8) that there is ac∈(0,|c2|) such thatληDK2<cand‖S*(t)‖ ≤K2e-ct.Noting that

    we have that

    By solving the above Gronwall’s inequality,we get that

    Recalling the inequalityληDK2<c,we find that there is a positive integer numberk1such that

    whereδandγare given as in Assumption (A2τ).

    Next,we show thattk1+1=∞.Indeed,iftk1+1<∞,then there exists (i0,j0) such that

    Ifn0=1,for allθ∈[-τ,0] and,we have that

    This implies that

    Also,for allθ∈[-τ,0] and,we have that

    Obviously,the inequalities (4.13) and (4.14) contradicts the fact that there exists (i0,j0) such thatThustk1+1=∞andP(t) ≡Pk1for all timet >tk1.Ifn0>1,with arguments similar to those used in the proof of Theorem 3.1,we conclude thattk1+1=∞.

    Using Theorem 4.3,we have that

    uniformly forθ∈[-τ,0].Also,for the solution operator ‖S1(t-s)‖ being bounded,sayM0,we see that

    Then the limit

    Combining this with the inequality (4.12),we have that

    With arguments similar to those in the proof of Theorem 3.1 and associated discussions,we conclude that the system achieves a flock whenn0=1,and achieves a flock or multi-cluster whenn0>1.This completes the proof. □

    Remark 4.7Finally,we consider two kinds of particular cases: those of uniform distribution and those of exponential distribution.For the normal uniform distribution on [-τ,0],In this case,For the normal exponential distribution on[-τ,0],.Then

    Appendix A

    Lemma A.1If 1 is a semi-simple eigenvalue of the stochastic matrixP0with multiplicityn0,thenP0is a block diagonal matrix (if necessary,we exchange the rows of matrixP0and renumber the subscript).

    Proof(for more details refer to [20]) Without loss of generality,we assume that the zeroone vectorsa1,···,an0are of the following forms (if necessary,we exchange the rows of matrixP0and relabel the subscript ofvi):

    Also,we see thattiis the minimum number of components 1 inaiand thatt1+t2+···+tn0=N.In this case,noting thatP0ai=ai(i=1,···,n0) and thatpij≥0,we see thatP0is a block diagonal matrix;that is,

    This completes the proof.□

    Appendix B

    Proof of Lemma 4.1Letdsfor givenμi∈(-1,1].We first claim that iff(z)=0 has a rootzwith Re(z) ≥0,thenzmust be zero andμi=1.In fact,if we letz=x+iywith the real partx≥0,then

    Now the above inequality is strict wheneverx >0 ory≠0 orμi<1.Thus,f(z)=0 holds forx=y=0 andμi=1,which proves the claim.Therefore,all roots off(z)=0 have negative real parts,except possibly for a root at zero.Furthermore,it follows fromf′(0)=1 +λ>0 that zero is a simple root whenμi=1.Thus,the equation (4.4) has a simple root at zero and all other roots have negative real parts when 1 +λ>0,and all roots of (4.5) have negative real parts.

    Ifc1=0,then there is a sequence {zn} (zn=xn+iyn≠0) with

    Thusy=0 is the unique root of equationg(y)=0 onRwhenxnis small enough.This contradicts (B.1).Thus

    Similarly,ifc2=0,then there is a sequence {zn} with

    Lettingn→∞,we have thatλ|μi| ≥λ,which contradicts the fact thatμi∈(-1,1).Thusc2<0.This completes the proof.

    亚洲国产精品sss在线观看| 久久欧美精品欧美久久欧美| 国产av在哪里看| 国产精品人妻久久久影院| 中国国产av一级| 午夜福利视频1000在线观看| 免费黄网站久久成人精品| 尾随美女入室| 日韩精品青青久久久久久| 热99在线观看视频| 久久午夜福利片| 色av中文字幕| 国产探花极品一区二区| 国产午夜精品久久久久久一区二区三区 | 国产乱人视频| 日产精品乱码卡一卡2卡三| 一进一出抽搐gif免费好疼| 欧美三级亚洲精品| 国产亚洲av嫩草精品影院| 春色校园在线视频观看| 国产精品美女特级片免费视频播放器| 国内久久婷婷六月综合欲色啪| 亚洲av电影不卡..在线观看| 人妻久久中文字幕网| 九九爱精品视频在线观看| 色视频www国产| 性欧美人与动物交配| a级一级毛片免费在线观看| 亚洲欧美日韩东京热| 老熟妇乱子伦视频在线观看| 黄色日韩在线| 久久精品人妻少妇| 在线观看av片永久免费下载| 国产精品无大码| 看非洲黑人一级黄片| 蜜臀久久99精品久久宅男| 久久久国产成人免费| 男女边吃奶边做爰视频| 美女黄网站色视频| 搡老岳熟女国产| 综合色丁香网| 久久午夜亚洲精品久久| 毛片一级片免费看久久久久| 一夜夜www| 国产成年人精品一区二区| 国产不卡一卡二| 国产蜜桃级精品一区二区三区| 欧美在线一区亚洲| 国产 一区 欧美 日韩| 三级经典国产精品| 久久精品91蜜桃| 亚洲欧美精品自产自拍| 国产av不卡久久| 精品欧美国产一区二区三| 国产在线精品亚洲第一网站| 午夜福利高清视频| 综合色av麻豆| 一边摸一边抽搐一进一小说| 国产精品女同一区二区软件| 一本久久中文字幕| 插阴视频在线观看视频| 高清毛片免费观看视频网站| 春色校园在线视频观看| 最近在线观看免费完整版| 亚洲成人久久爱视频| 国产成人a∨麻豆精品| 一区福利在线观看| 哪里可以看免费的av片| 免费电影在线观看免费观看| 婷婷六月久久综合丁香| 亚洲精品色激情综合| 观看美女的网站| 51国产日韩欧美| 精品久久久久久久人妻蜜臀av| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧美人成| 老司机午夜福利在线观看视频| 日韩国内少妇激情av| 日本色播在线视频| 日韩高清综合在线| a级一级毛片免费在线观看| 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 精品99又大又爽又粗少妇毛片| 少妇高潮的动态图| 99热只有精品国产| 韩国av在线不卡| 熟妇人妻久久中文字幕3abv| 在线观看av片永久免费下载| 美女黄网站色视频| av国产免费在线观看| 一级毛片aaaaaa免费看小| 国产在线精品亚洲第一网站| 日日摸夜夜添夜夜添小说| 小蜜桃在线观看免费完整版高清| 一个人看视频在线观看www免费| 午夜精品一区二区三区免费看| 最后的刺客免费高清国语| 亚洲av第一区精品v没综合| 国产一区二区激情短视频| a级一级毛片免费在线观看| 男人狂女人下面高潮的视频| 亚洲av电影不卡..在线观看| 尤物成人国产欧美一区二区三区| 国产亚洲欧美98| 淫秽高清视频在线观看| 五月玫瑰六月丁香| 成人永久免费在线观看视频| 在线国产一区二区在线| 尾随美女入室| 99精品在免费线老司机午夜| 国产欧美日韩精品亚洲av| 亚洲一级一片aⅴ在线观看| 国产精品免费一区二区三区在线| 日本精品一区二区三区蜜桃| 最近的中文字幕免费完整| 99久久成人亚洲精品观看| 99热这里只有是精品50| 麻豆精品久久久久久蜜桃| 精品日产1卡2卡| 亚洲图色成人| 人人妻人人澡人人爽人人夜夜 | 亚洲人成网站高清观看| 亚洲欧美日韩高清在线视频| 少妇的逼水好多| 亚洲最大成人中文| 国产蜜桃级精品一区二区三区| 俺也久久电影网| 一级毛片aaaaaa免费看小| 真实男女啪啪啪动态图| 国产在视频线在精品| 国产精品一区www在线观看| 免费在线观看成人毛片| 免费黄网站久久成人精品| 亚洲国产精品合色在线| 3wmmmm亚洲av在线观看| 久久久久久久午夜电影| 免费观看人在逋| 99riav亚洲国产免费| 最近在线观看免费完整版| 成年女人毛片免费观看观看9| 亚洲欧美日韩东京热| 免费av毛片视频| 男人和女人高潮做爰伦理| 欧美潮喷喷水| 夜夜看夜夜爽夜夜摸| 国产免费一级a男人的天堂| 亚洲成人久久性| 亚洲国产精品sss在线观看| АⅤ资源中文在线天堂| 国产欧美日韩一区二区精品| 久久精品国产亚洲av涩爱 | 舔av片在线| 成人亚洲精品av一区二区| 婷婷亚洲欧美| 最好的美女福利视频网| 亚洲精品日韩av片在线观看| 在线观看一区二区三区| 亚洲自偷自拍三级| 亚洲国产精品成人综合色| 精品久久久久久久久久久久久| 亚洲中文字幕日韩| 久久精品国产亚洲av香蕉五月| 少妇的逼好多水| 亚洲最大成人av| 久久亚洲精品不卡| av天堂在线播放| 久久久久久久久大av| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合久久99| 大又大粗又爽又黄少妇毛片口| 亚洲欧美成人精品一区二区| 搞女人的毛片| 色哟哟哟哟哟哟| 黄色视频,在线免费观看| 啦啦啦啦在线视频资源| 在线国产一区二区在线| 欧美区成人在线视频| 寂寞人妻少妇视频99o| 人人妻,人人澡人人爽秒播| 97超视频在线观看视频| 搡老妇女老女人老熟妇| 成人综合一区亚洲| 国产三级中文精品| 久久精品国产清高在天天线| 在线观看一区二区三区| a级毛片a级免费在线| 午夜免费激情av| 国产精品久久久久久久久免| 国产免费一级a男人的天堂| 一级毛片久久久久久久久女| 亚洲天堂国产精品一区在线| 亚洲精品日韩av片在线观看| 一进一出抽搐动态| 精品福利观看| 我要看日韩黄色一级片| 欧美一级a爱片免费观看看| 亚洲美女黄片视频| 麻豆国产av国片精品| 伊人久久精品亚洲午夜| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av五月六月丁香网| 又粗又爽又猛毛片免费看| 欧美bdsm另类| 国产黄色小视频在线观看| 久久精品国产99精品国产亚洲性色| 午夜a级毛片| 香蕉av资源在线| 精品久久久久久久久亚洲| 寂寞人妻少妇视频99o| 香蕉av资源在线| 一个人观看的视频www高清免费观看| 日本撒尿小便嘘嘘汇集6| 成人亚洲精品av一区二区| 成人特级黄色片久久久久久久| 国产精品三级大全| 一级av片app| 国产毛片a区久久久久| 国产私拍福利视频在线观看| 国产精品嫩草影院av在线观看| 国产精品野战在线观看| av在线亚洲专区| 3wmmmm亚洲av在线观看| 丰满人妻一区二区三区视频av| 亚洲va在线va天堂va国产| 可以在线观看毛片的网站| 永久网站在线| 国产成人福利小说| 欧美成人精品欧美一级黄| 亚洲专区国产一区二区| 国产av不卡久久| 国产亚洲欧美98| 网址你懂的国产日韩在线| 久久久久久伊人网av| av女优亚洲男人天堂| 亚洲丝袜综合中文字幕| 亚洲成人久久性| 久久精品国产清高在天天线| 国产成人a∨麻豆精品| 免费看日本二区| 国产成人一区二区在线| 在线a可以看的网站| 不卡一级毛片| 人妻夜夜爽99麻豆av| 亚洲自拍偷在线| eeuss影院久久| 久久午夜福利片| 国产精品久久电影中文字幕| 丰满乱子伦码专区| 国产欧美日韩一区二区精品| 午夜日韩欧美国产| 久久人人精品亚洲av| 亚洲五月天丁香| 日韩欧美在线乱码| www.色视频.com| 一边摸一边抽搐一进一小说| 中出人妻视频一区二区| 欧美激情久久久久久爽电影| 我的女老师完整版在线观看| 日韩亚洲欧美综合| 国产av麻豆久久久久久久| 一进一出抽搐gif免费好疼| 日本精品一区二区三区蜜桃| 人妻少妇偷人精品九色| 一个人看视频在线观看www免费| 日韩制服骚丝袜av| а√天堂www在线а√下载| 国产 一区 欧美 日韩| 欧美一区二区精品小视频在线| 天美传媒精品一区二区| 国产成人a区在线观看| 久久精品91蜜桃| 国产高清视频在线观看网站| 久久九九热精品免费| 中文字幕人妻熟人妻熟丝袜美| 看免费成人av毛片| 最新中文字幕久久久久| 国产成人影院久久av| 国产在线精品亚洲第一网站| 国产精品一区二区性色av| 床上黄色一级片| 国产精品一区www在线观看| 搡老熟女国产l中国老女人| 日韩欧美精品v在线| 99riav亚洲国产免费| 看黄色毛片网站| 久久久久久久久大av| 亚洲成人久久爱视频| 大香蕉久久网| 天堂√8在线中文| 成年免费大片在线观看| 在线观看免费视频日本深夜| 亚州av有码| 最近在线观看免费完整版| 国产三级中文精品| www.色视频.com| 国产精品美女特级片免费视频播放器| 国产伦在线观看视频一区| 成人特级黄色片久久久久久久| 亚洲国产精品久久男人天堂| 欧美不卡视频在线免费观看| 国产伦精品一区二区三区视频9| 69av精品久久久久久| 久久久久久久久久久丰满| av.在线天堂| 亚洲av第一区精品v没综合| 午夜精品一区二区三区免费看| 亚洲乱码一区二区免费版| 亚洲五月天丁香| 久久人妻av系列| 人妻夜夜爽99麻豆av| 一级毛片久久久久久久久女| 免费看日本二区| 日本熟妇午夜| 最好的美女福利视频网| 最近中文字幕高清免费大全6| 亚洲不卡免费看| 精品一区二区三区视频在线观看免费| 综合色av麻豆| 成年av动漫网址| 亚洲欧美精品自产自拍| 亚洲国产欧美人成| 少妇人妻精品综合一区二区 | 中文字幕av在线有码专区| 人妻夜夜爽99麻豆av| 国产av不卡久久| 久久人人爽人人片av| 国产单亲对白刺激| 亚洲久久久久久中文字幕| 女同久久另类99精品国产91| 97人妻精品一区二区三区麻豆| av福利片在线观看| 99久久精品热视频| 最近2019中文字幕mv第一页| 搡老熟女国产l中国老女人| 久久中文看片网| 中出人妻视频一区二区| 欧美三级亚洲精品| 色哟哟·www| 亚洲av电影不卡..在线观看| 寂寞人妻少妇视频99o| 激情 狠狠 欧美| 一进一出抽搐动态| 一个人看的www免费观看视频| 亚洲性夜色夜夜综合| 国产色爽女视频免费观看| 少妇丰满av| 在线免费观看不下载黄p国产| 99视频精品全部免费 在线| 久久综合国产亚洲精品| 99久久精品一区二区三区| 婷婷六月久久综合丁香| 亚洲国产精品成人久久小说 | 亚洲国产精品久久男人天堂| 色在线成人网| 国产精品嫩草影院av在线观看| 免费av不卡在线播放| 日韩成人av中文字幕在线观看 | 国产一区二区亚洲精品在线观看| 校园春色视频在线观看| 又粗又爽又猛毛片免费看| 午夜老司机福利剧场| 国产亚洲精品综合一区在线观看| 99久久精品热视频| 少妇熟女欧美另类| 欧美激情国产日韩精品一区| 免费不卡的大黄色大毛片视频在线观看 | 欧美最黄视频在线播放免费| 亚洲自拍偷在线| 国产亚洲av嫩草精品影院| 天天一区二区日本电影三级| 色综合站精品国产| 一级av片app| 99视频精品全部免费 在线| 免费大片18禁| 精品一区二区三区av网在线观看| 婷婷精品国产亚洲av| 国产一级毛片七仙女欲春2| 国产精品日韩av在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品电影一区二区三区| 又黄又爽又免费观看的视频| 九色成人免费人妻av| 成年av动漫网址| 身体一侧抽搐| 淫秽高清视频在线观看| 99久久精品国产国产毛片| 成人永久免费在线观看视频| 国产私拍福利视频在线观看| 简卡轻食公司| 在线国产一区二区在线| 国产不卡一卡二| 精品人妻熟女av久视频| 国产高清不卡午夜福利| av视频在线观看入口| 国产精品电影一区二区三区| 一区福利在线观看| 国产精品一区www在线观看| 亚洲精品一卡2卡三卡4卡5卡| 俄罗斯特黄特色一大片| 国内精品久久久久精免费| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久久久免| 国产av在哪里看| 一级黄片播放器| 色哟哟哟哟哟哟| 国产亚洲精品久久久com| 亚洲人成网站在线播放欧美日韩| 毛片一级片免费看久久久久| 日韩精品中文字幕看吧| av在线天堂中文字幕| 亚洲三级黄色毛片| 九九久久精品国产亚洲av麻豆| 99热6这里只有精品| 欧美日韩一区二区视频在线观看视频在线 | 国产69精品久久久久777片| 在线观看免费视频日本深夜| 亚洲av第一区精品v没综合| 免费观看精品视频网站| 日韩成人伦理影院| 免费av观看视频| 热99在线观看视频| 国产成人影院久久av| 国产精品不卡视频一区二区| 一区福利在线观看| 午夜激情欧美在线| 亚洲av二区三区四区| 亚洲精品国产成人久久av| 亚洲av成人精品一区久久| 热99在线观看视频| 热99re8久久精品国产| av天堂中文字幕网| 99热只有精品国产| 人妻久久中文字幕网| 神马国产精品三级电影在线观看| 午夜老司机福利剧场| 婷婷亚洲欧美| 免费无遮挡裸体视频| 成人av一区二区三区在线看| 午夜免费激情av| 色综合色国产| 亚洲av一区综合| 亚洲丝袜综合中文字幕| 久久久久久久久大av| 久久草成人影院| 国产一区二区在线观看日韩| 男人狂女人下面高潮的视频| 久久人人精品亚洲av| 久久久国产成人精品二区| 日本五十路高清| 国产精品一二三区在线看| 国产av在哪里看| 97超级碰碰碰精品色视频在线观看| 22中文网久久字幕| 俺也久久电影网| 国产精品亚洲一级av第二区| 免费观看人在逋| 97超碰精品成人国产| 国产精品爽爽va在线观看网站| 真人做人爱边吃奶动态| 亚洲熟妇中文字幕五十中出| 国产久久久一区二区三区| 人人妻,人人澡人人爽秒播| 日韩 亚洲 欧美在线| 日韩欧美 国产精品| 国产亚洲av嫩草精品影院| 一个人看的www免费观看视频| 六月丁香七月| .国产精品久久| 少妇猛男粗大的猛烈进出视频 | 18禁在线无遮挡免费观看视频 | a级一级毛片免费在线观看| 国产精品人妻久久久影院| 中文在线观看免费www的网站| 少妇丰满av| 成年av动漫网址| 黄片wwwwww| 亚洲av电影不卡..在线观看| 婷婷色综合大香蕉| 晚上一个人看的免费电影| 少妇丰满av| 欧美高清性xxxxhd video| 男女下面进入的视频免费午夜| 国产精品久久电影中文字幕| 天堂√8在线中文| 国产成人一区二区在线| 性色avwww在线观看| 老熟妇仑乱视频hdxx| 麻豆av噜噜一区二区三区| 亚洲国产精品sss在线观看| 国产69精品久久久久777片| 小蜜桃在线观看免费完整版高清| 日本黄色视频三级网站网址| 成人午夜高清在线视频| 久久久久国产网址| 一区二区三区四区激情视频 | 国产伦精品一区二区三区四那| www.色视频.com| 亚洲欧美精品综合久久99| 精品人妻视频免费看| 日韩 亚洲 欧美在线| 91久久精品电影网| 亚洲国产色片| 精华霜和精华液先用哪个| 国产在线精品亚洲第一网站| 超碰av人人做人人爽久久| 亚洲av二区三区四区| 成人性生交大片免费视频hd| 少妇被粗大猛烈的视频| 青春草视频在线免费观看| 天美传媒精品一区二区| 国产一级毛片七仙女欲春2| 日本黄色片子视频| 在线免费观看的www视频| 日韩成人伦理影院| 俺也久久电影网| av天堂在线播放| 尤物成人国产欧美一区二区三区| 淫秽高清视频在线观看| 在线a可以看的网站| 非洲黑人性xxxx精品又粗又长| 男人舔女人下体高潮全视频| 国产精品电影一区二区三区| 69av精品久久久久久| 91久久精品电影网| 成年av动漫网址| 女生性感内裤真人,穿戴方法视频| 成人高潮视频无遮挡免费网站| 在现免费观看毛片| 婷婷色综合大香蕉| 国产精品电影一区二区三区| 丝袜美腿在线中文| 女同久久另类99精品国产91| 久久天躁狠狠躁夜夜2o2o| 熟女电影av网| 国产成人影院久久av| 久久精品91蜜桃| 亚洲国产色片| 男人舔奶头视频| 欧美丝袜亚洲另类| 嫩草影视91久久| 久久人人爽人人片av| 国产午夜精品久久久久久一区二区三区 | 国产人妻一区二区三区在| 欧美一区二区精品小视频在线| 一进一出抽搐动态| 五月伊人婷婷丁香| 免费观看精品视频网站| 欧美在线一区亚洲| 91午夜精品亚洲一区二区三区| 日本三级黄在线观看| 色综合站精品国产| 日本成人三级电影网站| 国产69精品久久久久777片| 亚洲av免费在线观看| 不卡视频在线观看欧美| 亚洲国产精品成人久久小说 | 99久久无色码亚洲精品果冻| 97碰自拍视频| 一本精品99久久精品77| 免费大片18禁| av在线蜜桃| 国产91av在线免费观看| 亚洲国产欧美人成| 亚洲成人av在线免费| 麻豆乱淫一区二区| 亚洲av免费在线观看| 欧美绝顶高潮抽搐喷水| 在现免费观看毛片| avwww免费| 日韩欧美在线乱码| 中国美女看黄片| 免费在线观看影片大全网站| 少妇熟女欧美另类| 久久精品久久久久久噜噜老黄 | 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线| 别揉我奶头~嗯~啊~动态视频| ponron亚洲| 在线免费十八禁| 在线a可以看的网站| 日韩欧美免费精品| 亚洲欧美成人精品一区二区| 亚洲七黄色美女视频| 在线观看免费视频日本深夜| 成人性生交大片免费视频hd| 亚洲自拍偷在线| 色尼玛亚洲综合影院| 哪里可以看免费的av片| 国产成人一区二区在线| 久久天躁狠狠躁夜夜2o2o| 亚洲成人久久性| 啦啦啦啦在线视频资源| 国产精品久久久久久精品电影| 国内精品久久久久精免费| av在线天堂中文字幕| 亚洲经典国产精华液单| 欧美色视频一区免费| 午夜福利在线在线| 九九爱精品视频在线观看| 国产精品国产三级国产av玫瑰| 啦啦啦观看免费观看视频高清| 成人漫画全彩无遮挡| 国产精品一区二区三区四区免费观看 | 高清毛片免费看| 日本精品一区二区三区蜜桃| 亚洲欧美成人精品一区二区| 少妇猛男粗大的猛烈进出视频 | 波多野结衣巨乳人妻| 一区二区三区免费毛片| 一进一出抽搐gif免费好疼| 欧美中文日本在线观看视频| 波多野结衣高清作品| 网址你懂的国产日韩在线| 久久99热6这里只有精品|