• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Contrastive Consensus Graph Learning for Multi-View Clustering

    2022-10-29 03:30:06ShipingWangXincanLinZihanFangShideDuandGuobaoXiao
    IEEE/CAA Journal of Automatica Sinica 2022年11期

    Shiping Wang, Xincan Lin, Zihan Fang, Shide Du, and Guobao Xiao

    Dear Editor,

    This letter proposes a contrastive consensus graph learning model for multi-view clustering. Graphs are usually built to outline the correlation between multi-model objects in clustering task, and multiview graph clustering aims to learn a consensus graph that integrates the spatial property of each view. Nevertheless, most graph-based models merely consider the overall structure from all views but neglect the local spatial consistency between diverse views, resulting in the lack of global spatial consistency in the learned graph. To overcome this issue, a deep convolutional network is built to explore latent local spatial information from raw affinity graphs. Specifically,we employ a consensus graph constraint to preserve the global consistency between the learned graph and raw graphs. Furthermore, a contrastive reconstruction loss is introduced to achieve the samplelevel approximation between reconstructed graphs and raw graphs,which facilitates the network to enhance the consensus graph learning. Experiments on six classical datasets demonstrate that the proposed model outperforms other nine state-of-the-art algorithms.

    Related work: In real-world applications, multimedia data are usually generated from multiple ways and presented in diverse forms,referred as multi-view data. Compared with single-view data, multiview data contains more comprehensive information, which makes multi-view learning be a hot spot. Previous work [1], [2] has been devoted to this field and achieves satisfactory results. As an important branch of multi-view learning, multi-view clustering aims to effectively fuse information and discover the underlying clustering structure shared by diverse views. Since each view has a distinct focus on the same object, multi-view data tends to be complementary and consistent. Therefore, it is critical to integrate multi-view features and fully exploit the consistency and complementarity to obtain shared discriminative representations.

    Plenty of research has attempted to extract shared information from multi-view data to improve clustering performance [3]–[5], among which the graph-based approach is a mainstream issue. Graphs are typically built to represent relationships between different objects,with nodes corresponding to data objects and weighted edges depicting the similarity between data points. Generally, multi-view graph clustering methods can be roughly boiled down to two stages: first learning a consensus graph from all views, then applying post-processing techniques on the learned graph to obtain clustering results [6].Since the quality of the learned graph can directly determine the clustering effect, how to learn a high-quality graph becomes a critical issue [7]. For that, [3] proposes a self-weighted method to explore a Laplacian constrained graph and directly obtain the clustering result without any follow-up processing. Reference [8] designs a regularization term to adaptively learn weights of the views for diversity enrichment and redundancy reduction. Furthermore, to avoid the effect of the predefined graph quality, [9] introduces a disagreement cost function and constrains the rank of the Laplacian matrix of the learned graph. However, these methods merely focus on optimal weight learning for each view and neglect the local spatial consistency between different views, resulting in the lack of spatial integrity.

    Besides, various deep clustering methods are constructed to exploit latent semantic information among data. For instance, [10] proposes a deep canonical correlation analysis framework, which employs two deep neural networks to extract implicit features of each view. To better explore complementary information, [11] presents a semi-nonnegative matrix factorization method for learning hierarchical semantics of multi-view data. Reference [12] integrates the within-view invariance, the between-view consistency, and the nonlinear embedding network to learn a common space for spectral clustering.Recently, [13] proposes an instance-level and cluster-level contrastive learning method for clustering and [14] lifts the instancelevel consistency to the cluster-level consistency for graph learning.Furthermore, [15] learns an informative and consistent representation by maximizing the mutual information between diverse views by introducing contrastive learning. Despite these autoencoder-based models can effectively extract latent information, they solely achieve the element-level reconstructed approximation but lack of samplelevel approximation, which are not conducive to the consensus graph learning.

    Based on the above observations, we propose a multi-view clustering network by utilizing a convolutional autoencoder for learning a consensus graph. The proposed network is illustrated in Fig. 1, which is composed of a graph construction layer and a symmetric convolutional autoencoder. Specifically, we integrate convolutional autoencoder, consensus graph learning, and contrastive reconstruction learning into a unified framework to obtain a common graph with spatial consistency. The main contributions are summarized as:1) Build a convolutional autoencoder to capture the local spatial information from different views and obtain a latent consensus graph;2) A consensus graph loss is proposed to approximate the consensus graph with all raw graphs so as to preserve the global spatial consistency of the learned graph; 3) Introduce a contrastive reconstruction loss to constrain the sample-level consistency, and to enhance the similarity between reconstructed graphs and raw graphs.deconvolution operation, respectively. The architecture of the proposed model is described as follows.

    Fig. 1. A scheme of the proposed model, which consists of a graph construction layer and a convolutional autoencoder network. Given raw data, the proposed model first constructs affinity graphs by a specific graph construction method. Accordingly, the affinity graphs are fed to the convolutional autoencoder to learn a consensus graph by jointly minimizing the autoencoder loss, the consensus graph loss and the contrastive reconstruction loss.

    1) Graph construction layer: The nearest neighbors method is first utilized to generate the adjacency matrices of raw data, then the affinity matrices are constructed by Gaussian kernel function as whereαandβare employed to balance the impact of consensus graph loss and the contrastive reconstruction loss. In the process of minimizing the total loss, the network is steered to learn a consensus graph as summarized in Algorithm 1. Finally, the clustering result is obtained by conducting spectral clustering on the learned graph.

    Algorithm 1 Contrastive Consensus Graph Learning Input: Multi-view data , the number of nearest neighbors k,learning rate , training epochs t, weight parameters α and β.G*Output: Consensus graph .X G X lr 1: Generate adjacency graphs by KNN from , and then construct affinity graphs using (1).2: Initial the network weights by Xavier normalization.epoch=1 →t 3: for do G ?G 4: Calculate feature graphs and by (2) and (3).5: Compute the autoencoder loss by (4).Lc Lae 6: Obtain the contrastive recounstruction loss by (9) and (10).ωi Lz 7: Calculate for each view through (8), then compute the consensus graph loss by (5).L 8: Calculate the total loss by (11).9: Update network parameters by gradient descent method.10: end for G*11: return Ouput of the encoder .

    Experiments:

    1) Datasets: The experiments are conducted on six classical datasets, and a brief description is illustrated as follows. Specifically,ALOI contains 1079 object images with four color features. Hand-Written (HW) are 2000 handwritten digits images with six views.Caltech101-20 is a object recognition dataset with 101 categories,and we select 2386 samples of 20 classes for testing. Youtube consists of 2000 samples including three visual features and three audio features. NUS-WIDE is comprised of 1600 web images of six available features. MNIST10k is a image dataset of 10000 handwritten digits with IsoProjection, linear discriminant analysis (LDA) and neighborhood preserving embedding (NPE) features as three views.

    2) Comparisons and parameter settings: The proposed method is compared with the following nine methods. Best single view (BSV)is adopted to record the best spectral single-view clustering performance of all raw affinity graphs. The rest compared clustering methods are tensorized multi-view subspace representation learning(TMSRL) [16], multi-view clustering via deep matrix factorization(DMF-MVC) [11], deep generalized canonical correlation analysis(DGCCA) [10], multi-veiw spectral clustering network (MvSCN)[12], multiview consensus graph clustering (MCGC) [9], graphbased multi-view clustering (GMC) [7], binary multi-view clustering(BMVC) [17] and consensus graph learning (CGL) [6]. All the parameters involved in compared algorithms are set to the recommended values in their papers. For the proposed model, there are both 3 convolutional and deconvolutional layers and the size of all convolution kernels is 3 ×3, where each layer is followed by a ReLU activation. Strides of horizontal and vertical directions are both1 with one zero-padding layer to obtain feature graphs with the size ofn×n. In the encoder, the number of convolution kernels are [4, 2, 1]in order, while there are [2, 4,V] deconvolution kernels in the decoder. For all datasets, the number of nearest neighborskis chosen as 10 with the bandwidth ε=1, the exponentpof consensus weight is set to -1, and the temperatureτin the contrastive loss is fixed to 1, and we set α=1 and β=1 as default. Moreover, Adam optimizer is utilized to accelerate the minimization of the total loss withlr=0.01. Uniformly, we train 300 epochs on all datasets to obtain consensus graphs. All experiments are conducted for 10 times,then the mean and the standard deviation of the clustering performance are computed as the final results.

    3) Clustering results: The classical metric accuracy (ACC) is adopted to evaluate the clustering performance. The clustering results of all compared algorithms are presented in Table 1, where we can obtain the following observations. Compared with BSV, the proposed model exhibits better performance. Compared with the tensorbased method TMSRL, the proposed model exhibits significant clustering superiority on all datasets. As for deep methods such as DGCCA, our method also gains superior performance on most datasets, which demonstrates the effectiveness of the convolutional autoencoder. Furthermore, compared with graph-based methods, the proposed model still obtains higher accuracy especially on HW and MNIST where the mean accuracy is close to 100%. In summary, the proposed model is capable of learning a well clustered graph and achieving satisfactory clustering results.

    Table 1.The ACC (MEAN±STD%) of Multi-View Clustering Algorithms,Where the Best and Second Best Results are Marked in Red and Blue Respectively, And “-” Denotes the Failed Results.

    4) Ablation study: As shown in Table 2, the ablation study is performed to investigate the influence of the consensus graph loss and the contrastive loss. The results indicate that the proposed model performs poorly with only autoencoder loss. After adding the consensus graph loss, the clustering performance of the proposed model is significantly improved. Further introducing the contrastive reconstruction loss, the proposed model performs best. It can be inferred that the consensus graph constraint can guide the network to effectively explore the discriminative spatial information from diverse views.Simultaneously, with the contrastive reconstruction loss, the samplelevel similarity between the reconstructed graphs and raw graphs can be strengthened, and in turn enhancing the graph learning.

    Table 2.The Ablation Study on ALOI, HW and Youtube w.r.t ACC(Mean±STD%), where the Best Results are in Bold.

    5) Convergence and parameter sensitivity: The objective function values with the number of epochs are illustrated in Fig. 2(a), where MNIST10k is scaled by 10 times to keep all curves in the same inter-

    Fig. 2. Convergence and parameter sensitivity of the proposed method. (a)Curves of objective function values with the number of epochs; (b) Clustering metric ACC on HW with varied α and β.

    Conclusions: This letter proposed a contrastive consensus graph learning model to learn a consensus graph, which adopted a convolutional autoencoder network to efficiently explore the latent spatial association among data. With the constraints of the consensus graph loss, the learned graph was able to maintain global spatial consistency across diverse views. Furthermore, a contrastive reconstruction loss was introduced to achieve sample-level approximations between the reconstructed graphs and the raw graphs, further to enhance the consistency of the learned graph. Experimental results demonstrated the superiority of the proposed model.

    Acknowledgments: This work was supported by the National Natural Science Foundation of China (U21A20472, 62072223), the National Key Research and Development Plan of China (2021YFB 3600503), and the Natural Science Foundation of Fujian Province(2020J01130193, 2020J01131199).

    国产精品免费大片| 高清视频免费观看一区二区| 精品久久久久久电影网| 日韩中文字幕欧美一区二区 | 精品福利永久在线观看| 18禁国产床啪视频网站| 美女中出高潮动态图| 啦啦啦视频在线资源免费观看| 亚洲av男天堂| 中文欧美无线码| 永久免费av网站大全| 99re6热这里在线精品视频| 男女无遮挡免费网站观看| 好男人视频免费观看在线| 各种免费的搞黄视频| 99国产综合亚洲精品| 亚洲欧洲精品一区二区精品久久久 | 精品国产一区二区三区四区第35| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成av片中文字幕在线观看| 久久久久久免费高清国产稀缺| 成人国产av品久久久| 免费观看性生交大片5| 亚洲激情五月婷婷啪啪| 97在线人人人人妻| 毛片一级片免费看久久久久| 日韩制服骚丝袜av| 男人添女人高潮全过程视频| 亚洲精品乱久久久久久| 在线天堂最新版资源| 一边摸一边抽搐一进一出视频| 免费不卡黄色视频| 国产精品av久久久久免费| 一级爰片在线观看| 久久精品久久精品一区二区三区| 桃花免费在线播放| 你懂的网址亚洲精品在线观看| 天天躁夜夜躁狠狠躁躁| 卡戴珊不雅视频在线播放| 天天添夜夜摸| videosex国产| 女人被躁到高潮嗷嗷叫费观| 精品一区在线观看国产| 如日韩欧美国产精品一区二区三区| 19禁男女啪啪无遮挡网站| 悠悠久久av| www日本在线高清视频| 亚洲 欧美一区二区三区| 高清黄色对白视频在线免费看| 亚洲,欧美精品.| 毛片一级片免费看久久久久| 丰满迷人的少妇在线观看| 免费人妻精品一区二区三区视频| 19禁男女啪啪无遮挡网站| 久久婷婷青草| 精品人妻一区二区三区麻豆| 侵犯人妻中文字幕一二三四区| 久久精品久久精品一区二区三区| 国产精品一区二区在线不卡| 丰满乱子伦码专区| 欧美日韩视频精品一区| 精品人妻熟女毛片av久久网站| 一区二区日韩欧美中文字幕| 精品国产一区二区三区四区第35| 天天影视国产精品| 亚洲,欧美,日韩| 成人亚洲欧美一区二区av| 最近中文字幕2019免费版| 老司机影院毛片| 国产成人精品久久久久久| 丝袜美腿诱惑在线| 精品国产乱码久久久久久男人| 久久精品亚洲av国产电影网| 日本猛色少妇xxxxx猛交久久| 精品一区二区三区av网在线观看 | 欧美最新免费一区二区三区| 午夜免费男女啪啪视频观看| 亚洲国产看品久久| 国产精品麻豆人妻色哟哟久久| av在线老鸭窝| 亚洲av在线观看美女高潮| 老司机深夜福利视频在线观看 | 国产在线免费精品| 欧美成人精品欧美一级黄| 国产亚洲一区二区精品| 国产精品99久久99久久久不卡 | 国产在线视频一区二区| 黄片小视频在线播放| 国产一区二区三区综合在线观看| 日韩精品免费视频一区二区三区| 嫩草影视91久久| 女的被弄到高潮叫床怎么办| 超碰97精品在线观看| 人人妻,人人澡人人爽秒播 | 亚洲欧美清纯卡通| 最近中文字幕高清免费大全6| 亚洲欧洲日产国产| 性少妇av在线| 亚洲熟女精品中文字幕| 国产男女超爽视频在线观看| 国产一区二区三区综合在线观看| 免费看不卡的av| 亚洲国产毛片av蜜桃av| 欧美在线黄色| 亚洲少妇的诱惑av| 在线观看人妻少妇| 国产在线一区二区三区精| 免费黄色在线免费观看| 一边摸一边抽搐一进一出视频| 免费在线观看视频国产中文字幕亚洲 | 欧美xxⅹ黑人| 国产一区二区激情短视频 | 色网站视频免费| 久久天堂一区二区三区四区| 超碰成人久久| 国产99久久九九免费精品| 啦啦啦在线观看免费高清www| 亚洲成人av在线免费| 久久毛片免费看一区二区三区| 老司机影院成人| 日日爽夜夜爽网站| 成人国产麻豆网| 制服诱惑二区| 母亲3免费完整高清在线观看| 18禁国产床啪视频网站| 久久人人97超碰香蕉20202| 韩国精品一区二区三区| 9热在线视频观看99| 日韩中文字幕欧美一区二区 | 可以免费在线观看a视频的电影网站 | 最黄视频免费看| 亚洲精品日韩在线中文字幕| 黄色视频不卡| 一级毛片黄色毛片免费观看视频| 丝袜美腿诱惑在线| 精品国产一区二区三区久久久樱花| 国产精品 国内视频| 国产女主播在线喷水免费视频网站| 国产男女超爽视频在线观看| 色网站视频免费| 免费在线观看完整版高清| 另类亚洲欧美激情| 国产成人系列免费观看| 9热在线视频观看99| 日本欧美国产在线视频| 午夜日韩欧美国产| 国产片特级美女逼逼视频| 卡戴珊不雅视频在线播放| 久久韩国三级中文字幕| 王馨瑶露胸无遮挡在线观看| 看免费av毛片| 可以免费在线观看a视频的电影网站 | 交换朋友夫妻互换小说| 18在线观看网站| 国产成人精品久久久久久| 伊人亚洲综合成人网| 大陆偷拍与自拍| 亚洲欧美精品自产自拍| 男女之事视频高清在线观看 | 我的亚洲天堂| 成人黄色视频免费在线看| 国产精品无大码| 久久久久精品久久久久真实原创| 看非洲黑人一级黄片| 一区福利在线观看| 青春草视频在线免费观看| 久久久欧美国产精品| a级片在线免费高清观看视频| 色94色欧美一区二区| 免费女性裸体啪啪无遮挡网站| 男女之事视频高清在线观看 | 久久青草综合色| 国产亚洲午夜精品一区二区久久| 午夜久久久在线观看| 精品第一国产精品| 亚洲欧洲精品一区二区精品久久久 | 色精品久久人妻99蜜桃| 精品视频人人做人人爽| 精品人妻一区二区三区麻豆| 热re99久久精品国产66热6| 国产一级毛片在线| 午夜影院在线不卡| 亚洲成人免费av在线播放| 少妇精品久久久久久久| 91成人精品电影| 女人高潮潮喷娇喘18禁视频| 国产高清不卡午夜福利| 亚洲av中文av极速乱| 精品国产一区二区久久| 免费久久久久久久精品成人欧美视频| 国产精品 欧美亚洲| 最新在线观看一区二区三区 | 在线 av 中文字幕| 精品久久久精品久久久| 大片电影免费在线观看免费| 亚洲精品av麻豆狂野| 欧美精品av麻豆av| 久久精品国产综合久久久| 国产片特级美女逼逼视频| 久久人人爽人人片av| www.自偷自拍.com| 久久国产精品男人的天堂亚洲| 18禁国产床啪视频网站| 香蕉丝袜av| 国产精品久久久久久人妻精品电影 | 精品卡一卡二卡四卡免费| av国产久精品久网站免费入址| 欧美 日韩 精品 国产| 伊人久久大香线蕉亚洲五| 丁香六月天网| 午夜福利免费观看在线| 51午夜福利影视在线观看| 国产男女超爽视频在线观看| 国产福利在线免费观看视频| 久久久久久久久久久久大奶| 十八禁人妻一区二区| 国产精品偷伦视频观看了| 视频区图区小说| 日韩制服骚丝袜av| 国产黄色免费在线视频| av福利片在线| 2018国产大陆天天弄谢| 中国国产av一级| 色视频在线一区二区三区| 亚洲国产欧美网| 欧美亚洲日本最大视频资源| 久久久国产欧美日韩av| 久久精品国产亚洲av涩爱| 亚洲av欧美aⅴ国产| 伊人亚洲综合成人网| 大香蕉久久成人网| 亚洲精品乱久久久久久| 成人漫画全彩无遮挡| 老司机在亚洲福利影院| 伊人久久国产一区二区| www.av在线官网国产| 香蕉丝袜av| 亚洲伊人久久精品综合| 亚洲综合精品二区| 日日啪夜夜爽| 你懂的网址亚洲精品在线观看| 亚洲色图 男人天堂 中文字幕| 欧美日韩一级在线毛片| 欧美日韩亚洲国产一区二区在线观看 | 日本黄色日本黄色录像| 欧美日韩视频精品一区| 国产日韩一区二区三区精品不卡| 国产精品免费视频内射| 一区福利在线观看| 在线看a的网站| 极品人妻少妇av视频| 校园人妻丝袜中文字幕| 秋霞在线观看毛片| 高清在线视频一区二区三区| 无限看片的www在线观看| 在线免费观看不下载黄p国产| 国产深夜福利视频在线观看| 99国产精品免费福利视频| 国产免费福利视频在线观看| 一本色道久久久久久精品综合| 亚洲,一卡二卡三卡| 国产日韩欧美视频二区| 男女午夜视频在线观看| 亚洲国产精品999| 亚洲精品日韩在线中文字幕| 免费久久久久久久精品成人欧美视频| 午夜日韩欧美国产| 亚洲欧美激情在线| 不卡视频在线观看欧美| 久久久亚洲精品成人影院| 美女扒开内裤让男人捅视频| 久久 成人 亚洲| 免费看av在线观看网站| 国产xxxxx性猛交| 一区福利在线观看| 男女免费视频国产| 性少妇av在线| 母亲3免费完整高清在线观看| 色吧在线观看| 大片免费播放器 马上看| 女人被躁到高潮嗷嗷叫费观| 赤兔流量卡办理| 波野结衣二区三区在线| 亚洲精品久久久久久婷婷小说| 日韩大片免费观看网站| 卡戴珊不雅视频在线播放| 日韩中文字幕欧美一区二区 | 午夜久久久在线观看| 在线观看免费高清a一片| 99热全是精品| 亚洲成人免费av在线播放| 欧美日本中文国产一区发布| 一区在线观看完整版| 国产精品欧美亚洲77777| 日韩欧美精品免费久久| 天天躁夜夜躁狠狠躁躁| 99re6热这里在线精品视频| 久久99精品国语久久久| 国产精品欧美亚洲77777| 丰满少妇做爰视频| 999精品在线视频| 91精品三级在线观看| 如日韩欧美国产精品一区二区三区| 男男h啪啪无遮挡| 亚洲精品国产区一区二| 80岁老熟妇乱子伦牲交| 在线观看免费午夜福利视频| 丰满少妇做爰视频| 国产亚洲精品第一综合不卡| 丝袜人妻中文字幕| 国产免费视频播放在线视频| 亚洲精品一区蜜桃| 丝袜美腿诱惑在线| 亚洲欧洲日产国产| 国产成人欧美| 亚洲在久久综合| 操出白浆在线播放| 人妻人人澡人人爽人人| 亚洲精品久久成人aⅴ小说| 伊人亚洲综合成人网| 中国国产av一级| 老司机靠b影院| 久久精品人人爽人人爽视色| 18禁裸乳无遮挡动漫免费视频| 97人妻天天添夜夜摸| 国产又色又爽无遮挡免| 国产黄色免费在线视频| 天堂8中文在线网| 婷婷成人精品国产| 欧美激情极品国产一区二区三区| 久久久久视频综合| 美女国产高潮福利片在线看| 亚洲,欧美,日韩| 香蕉国产在线看| 啦啦啦中文免费视频观看日本| 亚洲欧美日韩另类电影网站| 国产精品国产av在线观看| 亚洲精品,欧美精品| 国产成人a∨麻豆精品| 涩涩av久久男人的天堂| 亚洲一码二码三码区别大吗| 亚洲国产精品一区三区| av线在线观看网站| 成人手机av| 国产精品久久久久成人av| 国产日韩欧美在线精品| 香蕉国产在线看| 欧美日韩国产mv在线观看视频| avwww免费| 久久免费观看电影| av天堂久久9| 久久久久久人妻| 中文字幕人妻丝袜制服| 亚洲国产欧美在线一区| 国产色婷婷99| 夫妻性生交免费视频一级片| 99久久精品国产亚洲精品| 老司机影院成人| 中文字幕人妻丝袜一区二区 | 99久久99久久久精品蜜桃| 精品亚洲成国产av| 成人手机av| 午夜福利影视在线免费观看| 国产野战对白在线观看| 天天躁夜夜躁狠狠久久av| av在线播放精品| 国产色婷婷99| 免费高清在线观看视频在线观看| 精品少妇久久久久久888优播| 国产精品久久久久久精品古装| 九草在线视频观看| 日韩中文字幕视频在线看片| 韩国高清视频一区二区三区| 国产精品.久久久| 日韩精品有码人妻一区| 国产99久久九九免费精品| 久久久久久人妻| 美女脱内裤让男人舔精品视频| 精品久久久久久电影网| 在现免费观看毛片| videos熟女内射| 人人妻人人澡人人爽人人夜夜| 美女扒开内裤让男人捅视频| 在线亚洲精品国产二区图片欧美| 两个人免费观看高清视频| 国产成人精品无人区| 国产一区二区 视频在线| 亚洲精品在线美女| 国产成人精品福利久久| 一级毛片 在线播放| a级毛片黄视频| 久久久欧美国产精品| 69精品国产乱码久久久| 国产在视频线精品| 久久亚洲国产成人精品v| 亚洲精品日韩在线中文字幕| 黑人欧美特级aaaaaa片| 美女视频免费永久观看网站| 女人久久www免费人成看片| 久久精品久久久久久噜噜老黄| 国产片特级美女逼逼视频| 黄片小视频在线播放| 久久久久精品久久久久真实原创| 亚洲成人手机| 亚洲第一av免费看| av在线观看视频网站免费| 亚洲国产最新在线播放| 丁香六月天网| 久久天躁狠狠躁夜夜2o2o | 日韩大片免费观看网站| 老司机深夜福利视频在线观看 | 日本vs欧美在线观看视频| 夜夜骑夜夜射夜夜干| 国产又色又爽无遮挡免| 国产一区二区在线观看av| 丝袜脚勾引网站| 久久精品国产亚洲av涩爱| 一级毛片电影观看| 亚洲国产欧美日韩在线播放| 成人亚洲欧美一区二区av| 精品午夜福利在线看| 久久人人爽人人片av| 大香蕉久久网| 最新在线观看一区二区三区 | 亚洲美女视频黄频| 在线 av 中文字幕| 欧美激情 高清一区二区三区| 久久久久精品久久久久真实原创| 黄色视频在线播放观看不卡| 久久鲁丝午夜福利片| 欧美日韩亚洲国产一区二区在线观看 | 国产黄色免费在线视频| 狂野欧美激情性xxxx| 亚洲自偷自拍图片 自拍| 国产野战对白在线观看| 国产男女超爽视频在线观看| 亚洲一区中文字幕在线| 欧美日韩成人在线一区二区| av网站在线播放免费| 精品国产国语对白av| 久久久久久免费高清国产稀缺| 欧美激情 高清一区二区三区| 日韩一本色道免费dvd| 各种免费的搞黄视频| 欧美日韩国产mv在线观看视频| 亚洲国产毛片av蜜桃av| 你懂的网址亚洲精品在线观看| 欧美精品av麻豆av| 高清在线视频一区二区三区| 亚洲激情五月婷婷啪啪| 一本大道久久a久久精品| 国产在线视频一区二区| 亚洲一级一片aⅴ在线观看| 性色av一级| 在线天堂最新版资源| 久久久久精品国产欧美久久久 | 国产精品国产av在线观看| 国产成人91sexporn| 亚洲三区欧美一区| 美女脱内裤让男人舔精品视频| 男女高潮啪啪啪动态图| 在线亚洲精品国产二区图片欧美| 欧美在线一区亚洲| 热re99久久国产66热| 久热这里只有精品99| 最黄视频免费看| 国产精品一二三区在线看| 高清黄色对白视频在线免费看| 国产1区2区3区精品| 国产xxxxx性猛交| 又大又黄又爽视频免费| 久久精品久久久久久久性| 欧美在线一区亚洲| 高清不卡的av网站| 国产免费又黄又爽又色| 免费在线观看黄色视频的| 亚洲欧美一区二区三区国产| av有码第一页| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 成人毛片60女人毛片免费| 观看美女的网站| 午夜免费观看性视频| 日韩制服骚丝袜av| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜制服| 观看美女的网站| 一区二区三区激情视频| 狠狠婷婷综合久久久久久88av| 亚洲 欧美一区二区三区| 久久精品熟女亚洲av麻豆精品| 一区二区av电影网| 精品少妇一区二区三区视频日本电影 | 亚洲精品第二区| 免费高清在线观看日韩| 黄片播放在线免费| 在线观看一区二区三区激情| 欧美人与性动交α欧美精品济南到| 久久久久网色| 国产有黄有色有爽视频| 天美传媒精品一区二区| 巨乳人妻的诱惑在线观看| 欧美日韩一级在线毛片| 国产精品一二三区在线看| 日韩一本色道免费dvd| av国产久精品久网站免费入址| a级片在线免费高清观看视频| 桃花免费在线播放| 啦啦啦啦在线视频资源| 麻豆av在线久日| 中文乱码字字幕精品一区二区三区| 你懂的网址亚洲精品在线观看| 啦啦啦在线免费观看视频4| 亚洲视频免费观看视频| av网站在线播放免费| 国产日韩欧美在线精品| 一区二区av电影网| 啦啦啦啦在线视频资源| 51午夜福利影视在线观看| 日日摸夜夜添夜夜爱| 久久精品熟女亚洲av麻豆精品| 性少妇av在线| 女人被躁到高潮嗷嗷叫费观| 91国产中文字幕| 99久国产av精品国产电影| 伦理电影大哥的女人| 久久精品久久精品一区二区三区| 国产又色又爽无遮挡免| 美女扒开内裤让男人捅视频| 久久精品国产a三级三级三级| 在线观看免费日韩欧美大片| 丝袜脚勾引网站| 天天添夜夜摸| 日日摸夜夜添夜夜爱| 深夜精品福利| 丰满迷人的少妇在线观看| 亚洲欧美成人精品一区二区| 男女高潮啪啪啪动态图| 久久久欧美国产精品| 成人影院久久| 欧美黄色片欧美黄色片| 久久午夜综合久久蜜桃| 国产精品国产av在线观看| 国产精品免费大片| 久久久欧美国产精品| 久久午夜综合久久蜜桃| 18禁国产床啪视频网站| 日韩成人av中文字幕在线观看| 亚洲中文av在线| 精品卡一卡二卡四卡免费| 老司机影院毛片| av卡一久久| www.av在线官网国产| 国产99久久九九免费精品| 亚洲,欧美,日韩| 日本av手机在线免费观看| 国产av一区二区精品久久| 成人三级做爰电影| 国产亚洲av片在线观看秒播厂| 美女大奶头黄色视频| 午夜福利视频精品| 午夜福利免费观看在线| 久久韩国三级中文字幕| 九草在线视频观看| 我的亚洲天堂| 在线天堂中文资源库| 精品久久久精品久久久| 一级片免费观看大全| 欧美 日韩 精品 国产| 国产极品粉嫩免费观看在线| 亚洲美女搞黄在线观看| 制服诱惑二区| 欧美 日韩 精品 国产| av福利片在线| 日韩制服丝袜自拍偷拍| 99精品久久久久人妻精品| 午夜精品国产一区二区电影| 如日韩欧美国产精品一区二区三区| 另类精品久久| 欧美日韩视频精品一区| 国产精品久久久久久久久免| 亚洲熟女精品中文字幕| 啦啦啦啦在线视频资源| 日本av免费视频播放| 超碰97精品在线观看| 日本午夜av视频| 亚洲国产欧美日韩在线播放| 国产黄频视频在线观看| 亚洲精品国产区一区二| 日韩精品有码人妻一区| 女人被躁到高潮嗷嗷叫费观| 少妇被粗大猛烈的视频| 18禁观看日本| 国产极品粉嫩免费观看在线| 日韩中文字幕欧美一区二区 | 天天影视国产精品| 亚洲国产中文字幕在线视频| 精品人妻在线不人妻| 大片电影免费在线观看免费| 一区二区日韩欧美中文字幕| 中国国产av一级| 国产在线视频一区二区| 午夜日韩欧美国产| 男女之事视频高清在线观看 | 色婷婷av一区二区三区视频| 亚洲成人免费av在线播放| 中文精品一卡2卡3卡4更新| 国产一区有黄有色的免费视频| 一边亲一边摸免费视频| 久久精品aⅴ一区二区三区四区| 国产人伦9x9x在线观看| 人妻一区二区av| 丁香六月欧美| 人体艺术视频欧美日本| 婷婷色综合www|