• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Contrastive Consensus Graph Learning for Multi-View Clustering

    2022-10-29 03:30:06ShipingWangXincanLinZihanFangShideDuandGuobaoXiao
    IEEE/CAA Journal of Automatica Sinica 2022年11期

    Shiping Wang, Xincan Lin, Zihan Fang, Shide Du, and Guobao Xiao

    Dear Editor,

    This letter proposes a contrastive consensus graph learning model for multi-view clustering. Graphs are usually built to outline the correlation between multi-model objects in clustering task, and multiview graph clustering aims to learn a consensus graph that integrates the spatial property of each view. Nevertheless, most graph-based models merely consider the overall structure from all views but neglect the local spatial consistency between diverse views, resulting in the lack of global spatial consistency in the learned graph. To overcome this issue, a deep convolutional network is built to explore latent local spatial information from raw affinity graphs. Specifically,we employ a consensus graph constraint to preserve the global consistency between the learned graph and raw graphs. Furthermore, a contrastive reconstruction loss is introduced to achieve the samplelevel approximation between reconstructed graphs and raw graphs,which facilitates the network to enhance the consensus graph learning. Experiments on six classical datasets demonstrate that the proposed model outperforms other nine state-of-the-art algorithms.

    Related work: In real-world applications, multimedia data are usually generated from multiple ways and presented in diverse forms,referred as multi-view data. Compared with single-view data, multiview data contains more comprehensive information, which makes multi-view learning be a hot spot. Previous work [1], [2] has been devoted to this field and achieves satisfactory results. As an important branch of multi-view learning, multi-view clustering aims to effectively fuse information and discover the underlying clustering structure shared by diverse views. Since each view has a distinct focus on the same object, multi-view data tends to be complementary and consistent. Therefore, it is critical to integrate multi-view features and fully exploit the consistency and complementarity to obtain shared discriminative representations.

    Plenty of research has attempted to extract shared information from multi-view data to improve clustering performance [3]–[5], among which the graph-based approach is a mainstream issue. Graphs are typically built to represent relationships between different objects,with nodes corresponding to data objects and weighted edges depicting the similarity between data points. Generally, multi-view graph clustering methods can be roughly boiled down to two stages: first learning a consensus graph from all views, then applying post-processing techniques on the learned graph to obtain clustering results [6].Since the quality of the learned graph can directly determine the clustering effect, how to learn a high-quality graph becomes a critical issue [7]. For that, [3] proposes a self-weighted method to explore a Laplacian constrained graph and directly obtain the clustering result without any follow-up processing. Reference [8] designs a regularization term to adaptively learn weights of the views for diversity enrichment and redundancy reduction. Furthermore, to avoid the effect of the predefined graph quality, [9] introduces a disagreement cost function and constrains the rank of the Laplacian matrix of the learned graph. However, these methods merely focus on optimal weight learning for each view and neglect the local spatial consistency between different views, resulting in the lack of spatial integrity.

    Besides, various deep clustering methods are constructed to exploit latent semantic information among data. For instance, [10] proposes a deep canonical correlation analysis framework, which employs two deep neural networks to extract implicit features of each view. To better explore complementary information, [11] presents a semi-nonnegative matrix factorization method for learning hierarchical semantics of multi-view data. Reference [12] integrates the within-view invariance, the between-view consistency, and the nonlinear embedding network to learn a common space for spectral clustering.Recently, [13] proposes an instance-level and cluster-level contrastive learning method for clustering and [14] lifts the instancelevel consistency to the cluster-level consistency for graph learning.Furthermore, [15] learns an informative and consistent representation by maximizing the mutual information between diverse views by introducing contrastive learning. Despite these autoencoder-based models can effectively extract latent information, they solely achieve the element-level reconstructed approximation but lack of samplelevel approximation, which are not conducive to the consensus graph learning.

    Based on the above observations, we propose a multi-view clustering network by utilizing a convolutional autoencoder for learning a consensus graph. The proposed network is illustrated in Fig. 1, which is composed of a graph construction layer and a symmetric convolutional autoencoder. Specifically, we integrate convolutional autoencoder, consensus graph learning, and contrastive reconstruction learning into a unified framework to obtain a common graph with spatial consistency. The main contributions are summarized as:1) Build a convolutional autoencoder to capture the local spatial information from different views and obtain a latent consensus graph;2) A consensus graph loss is proposed to approximate the consensus graph with all raw graphs so as to preserve the global spatial consistency of the learned graph; 3) Introduce a contrastive reconstruction loss to constrain the sample-level consistency, and to enhance the similarity between reconstructed graphs and raw graphs.deconvolution operation, respectively. The architecture of the proposed model is described as follows.

    Fig. 1. A scheme of the proposed model, which consists of a graph construction layer and a convolutional autoencoder network. Given raw data, the proposed model first constructs affinity graphs by a specific graph construction method. Accordingly, the affinity graphs are fed to the convolutional autoencoder to learn a consensus graph by jointly minimizing the autoencoder loss, the consensus graph loss and the contrastive reconstruction loss.

    1) Graph construction layer: The nearest neighbors method is first utilized to generate the adjacency matrices of raw data, then the affinity matrices are constructed by Gaussian kernel function as whereαandβare employed to balance the impact of consensus graph loss and the contrastive reconstruction loss. In the process of minimizing the total loss, the network is steered to learn a consensus graph as summarized in Algorithm 1. Finally, the clustering result is obtained by conducting spectral clustering on the learned graph.

    Algorithm 1 Contrastive Consensus Graph Learning Input: Multi-view data , the number of nearest neighbors k,learning rate , training epochs t, weight parameters α and β.G*Output: Consensus graph .X G X lr 1: Generate adjacency graphs by KNN from , and then construct affinity graphs using (1).2: Initial the network weights by Xavier normalization.epoch=1 →t 3: for do G ?G 4: Calculate feature graphs and by (2) and (3).5: Compute the autoencoder loss by (4).Lc Lae 6: Obtain the contrastive recounstruction loss by (9) and (10).ωi Lz 7: Calculate for each view through (8), then compute the consensus graph loss by (5).L 8: Calculate the total loss by (11).9: Update network parameters by gradient descent method.10: end for G*11: return Ouput of the encoder .

    Experiments:

    1) Datasets: The experiments are conducted on six classical datasets, and a brief description is illustrated as follows. Specifically,ALOI contains 1079 object images with four color features. Hand-Written (HW) are 2000 handwritten digits images with six views.Caltech101-20 is a object recognition dataset with 101 categories,and we select 2386 samples of 20 classes for testing. Youtube consists of 2000 samples including three visual features and three audio features. NUS-WIDE is comprised of 1600 web images of six available features. MNIST10k is a image dataset of 10000 handwritten digits with IsoProjection, linear discriminant analysis (LDA) and neighborhood preserving embedding (NPE) features as three views.

    2) Comparisons and parameter settings: The proposed method is compared with the following nine methods. Best single view (BSV)is adopted to record the best spectral single-view clustering performance of all raw affinity graphs. The rest compared clustering methods are tensorized multi-view subspace representation learning(TMSRL) [16], multi-view clustering via deep matrix factorization(DMF-MVC) [11], deep generalized canonical correlation analysis(DGCCA) [10], multi-veiw spectral clustering network (MvSCN)[12], multiview consensus graph clustering (MCGC) [9], graphbased multi-view clustering (GMC) [7], binary multi-view clustering(BMVC) [17] and consensus graph learning (CGL) [6]. All the parameters involved in compared algorithms are set to the recommended values in their papers. For the proposed model, there are both 3 convolutional and deconvolutional layers and the size of all convolution kernels is 3 ×3, where each layer is followed by a ReLU activation. Strides of horizontal and vertical directions are both1 with one zero-padding layer to obtain feature graphs with the size ofn×n. In the encoder, the number of convolution kernels are [4, 2, 1]in order, while there are [2, 4,V] deconvolution kernels in the decoder. For all datasets, the number of nearest neighborskis chosen as 10 with the bandwidth ε=1, the exponentpof consensus weight is set to -1, and the temperatureτin the contrastive loss is fixed to 1, and we set α=1 and β=1 as default. Moreover, Adam optimizer is utilized to accelerate the minimization of the total loss withlr=0.01. Uniformly, we train 300 epochs on all datasets to obtain consensus graphs. All experiments are conducted for 10 times,then the mean and the standard deviation of the clustering performance are computed as the final results.

    3) Clustering results: The classical metric accuracy (ACC) is adopted to evaluate the clustering performance. The clustering results of all compared algorithms are presented in Table 1, where we can obtain the following observations. Compared with BSV, the proposed model exhibits better performance. Compared with the tensorbased method TMSRL, the proposed model exhibits significant clustering superiority on all datasets. As for deep methods such as DGCCA, our method also gains superior performance on most datasets, which demonstrates the effectiveness of the convolutional autoencoder. Furthermore, compared with graph-based methods, the proposed model still obtains higher accuracy especially on HW and MNIST where the mean accuracy is close to 100%. In summary, the proposed model is capable of learning a well clustered graph and achieving satisfactory clustering results.

    Table 1.The ACC (MEAN±STD%) of Multi-View Clustering Algorithms,Where the Best and Second Best Results are Marked in Red and Blue Respectively, And “-” Denotes the Failed Results.

    4) Ablation study: As shown in Table 2, the ablation study is performed to investigate the influence of the consensus graph loss and the contrastive loss. The results indicate that the proposed model performs poorly with only autoencoder loss. After adding the consensus graph loss, the clustering performance of the proposed model is significantly improved. Further introducing the contrastive reconstruction loss, the proposed model performs best. It can be inferred that the consensus graph constraint can guide the network to effectively explore the discriminative spatial information from diverse views.Simultaneously, with the contrastive reconstruction loss, the samplelevel similarity between the reconstructed graphs and raw graphs can be strengthened, and in turn enhancing the graph learning.

    Table 2.The Ablation Study on ALOI, HW and Youtube w.r.t ACC(Mean±STD%), where the Best Results are in Bold.

    5) Convergence and parameter sensitivity: The objective function values with the number of epochs are illustrated in Fig. 2(a), where MNIST10k is scaled by 10 times to keep all curves in the same inter-

    Fig. 2. Convergence and parameter sensitivity of the proposed method. (a)Curves of objective function values with the number of epochs; (b) Clustering metric ACC on HW with varied α and β.

    Conclusions: This letter proposed a contrastive consensus graph learning model to learn a consensus graph, which adopted a convolutional autoencoder network to efficiently explore the latent spatial association among data. With the constraints of the consensus graph loss, the learned graph was able to maintain global spatial consistency across diverse views. Furthermore, a contrastive reconstruction loss was introduced to achieve sample-level approximations between the reconstructed graphs and the raw graphs, further to enhance the consistency of the learned graph. Experimental results demonstrated the superiority of the proposed model.

    Acknowledgments: This work was supported by the National Natural Science Foundation of China (U21A20472, 62072223), the National Key Research and Development Plan of China (2021YFB 3600503), and the Natural Science Foundation of Fujian Province(2020J01130193, 2020J01131199).

    国产精品秋霞免费鲁丝片| 内地一区二区视频在线| 国产69精品久久久久777片| 狠狠精品人妻久久久久久综合| 久久精品国产亚洲av天美| 在线观看一区二区三区激情| 国产又色又爽无遮挡免| 久久久a久久爽久久v久久| 老女人水多毛片| 亚洲丝袜综合中文字幕| 亚洲最大成人中文| 久久久久久九九精品二区国产| 欧美日韩视频精品一区| 亚洲精品乱久久久久久| 在线观看美女被高潮喷水网站| 18禁在线无遮挡免费观看视频| 久久久久网色| 亚洲精品一区蜜桃| 久久av网站| 夫妻性生交免费视频一级片| 看免费成人av毛片| 亚洲高清免费不卡视频| 99热6这里只有精品| 中文字幕制服av| 国产一区有黄有色的免费视频| 蜜桃在线观看..| 人人妻人人看人人澡| av黄色大香蕉| 2021少妇久久久久久久久久久| 视频区图区小说| 欧美激情极品国产一区二区三区 | 欧美少妇被猛烈插入视频| 亚洲欧美日韩无卡精品| 成人毛片60女人毛片免费| 成人亚洲欧美一区二区av| 亚洲无线观看免费| 国产免费又黄又爽又色| 久久精品国产亚洲av天美| 国产免费福利视频在线观看| 肉色欧美久久久久久久蜜桃| 一个人看视频在线观看www免费| 少妇精品久久久久久久| 婷婷色av中文字幕| 中文乱码字字幕精品一区二区三区| 观看av在线不卡| 欧美日韩综合久久久久久| 国产欧美亚洲国产| .国产精品久久| 国产一区二区三区综合在线观看 | 亚洲精品国产色婷婷电影| 最新中文字幕久久久久| 午夜福利在线在线| 日本午夜av视频| 亚洲精品久久久久久婷婷小说| 日韩国内少妇激情av| 国产av一区二区精品久久 | 午夜免费观看性视频| 国产亚洲av片在线观看秒播厂| 人妻少妇偷人精品九色| 久久久久久久久久人人人人人人| 一级毛片aaaaaa免费看小| 在线免费十八禁| 国产中年淑女户外野战色| 新久久久久国产一级毛片| 18+在线观看网站| 精品国产一区二区三区久久久樱花 | a级毛色黄片| 国产精品麻豆人妻色哟哟久久| 日韩国内少妇激情av| 中文字幕av成人在线电影| 高清av免费在线| 国产淫片久久久久久久久| 亚洲美女搞黄在线观看| 国产毛片在线视频| 精华霜和精华液先用哪个| 91久久精品国产一区二区三区| 亚洲综合精品二区| 尤物成人国产欧美一区二区三区| 十八禁网站网址无遮挡 | 国产黄频视频在线观看| 噜噜噜噜噜久久久久久91| 国产av国产精品国产| 91精品国产九色| 久久这里有精品视频免费| 九九在线视频观看精品| 麻豆国产97在线/欧美| 国语对白做爰xxxⅹ性视频网站| 超碰97精品在线观看| 精品视频人人做人人爽| 婷婷色麻豆天堂久久| 亚洲国产欧美在线一区| 大香蕉97超碰在线| 国产在线一区二区三区精| 人人妻人人澡人人爽人人夜夜| 深夜a级毛片| 国产精品欧美亚洲77777| 我要看黄色一级片免费的| 婷婷色av中文字幕| 美女脱内裤让男人舔精品视频| 亚洲成人中文字幕在线播放| 一级二级三级毛片免费看| 欧美丝袜亚洲另类| 亚洲人成网站在线观看播放| 男女啪啪激烈高潮av片| 2018国产大陆天天弄谢| 欧美丝袜亚洲另类| 欧美97在线视频| 国产欧美亚洲国产| 亚洲欧洲国产日韩| 国产成人a∨麻豆精品| 干丝袜人妻中文字幕| 青春草视频在线免费观看| 女人久久www免费人成看片| 日韩av不卡免费在线播放| 十分钟在线观看高清视频www | 亚洲av男天堂| 国产黄片视频在线免费观看| 九草在线视频观看| 少妇人妻一区二区三区视频| 国产精品精品国产色婷婷| 国语对白做爰xxxⅹ性视频网站| 欧美日韩国产mv在线观看视频 | 亚洲国产色片| 久久久久性生活片| 国产一区亚洲一区在线观看| 99视频精品全部免费 在线| 亚洲经典国产精华液单| 男女免费视频国产| 免费观看在线日韩| 久久国产精品大桥未久av | 成人午夜精彩视频在线观看| 在线播放无遮挡| 久久鲁丝午夜福利片| 久久女婷五月综合色啪小说| 欧美人与善性xxx| 久久久久国产网址| 日韩人妻高清精品专区| 免费人妻精品一区二区三区视频| 国产 一区精品| 国产伦精品一区二区三区视频9| 爱豆传媒免费全集在线观看| 舔av片在线| 免费大片18禁| 亚洲欧美一区二区三区国产| 在线播放无遮挡| 亚洲精品亚洲一区二区| 丰满迷人的少妇在线观看| 成年人午夜在线观看视频| 观看免费一级毛片| 全区人妻精品视频| 男女国产视频网站| 亚洲精品第二区| 联通29元200g的流量卡| 欧美三级亚洲精品| 日韩大片免费观看网站| 亚洲aⅴ乱码一区二区在线播放| 精品人妻熟女av久视频| 国产精品久久久久久精品古装| 涩涩av久久男人的天堂| 大陆偷拍与自拍| 日韩精品有码人妻一区| 午夜免费鲁丝| 婷婷色av中文字幕| 不卡视频在线观看欧美| 色吧在线观看| 性色avwww在线观看| 亚洲国产精品国产精品| 精品国产一区二区三区久久久樱花 | 99久久精品热视频| 国产精品精品国产色婷婷| 成人无遮挡网站| 久久久久久久国产电影| 三级经典国产精品| 国产精品av视频在线免费观看| 国精品久久久久久国模美| 久久人人爽人人片av| 一个人免费看片子| 亚洲国产高清在线一区二区三| 亚洲国产av新网站| 一区二区三区免费毛片| 国产高清三级在线| 老司机影院毛片| 婷婷色综合大香蕉| 少妇裸体淫交视频免费看高清| 久久精品夜色国产| 国产精品不卡视频一区二区| 亚洲av欧美aⅴ国产| 日韩中文字幕视频在线看片 | 十八禁网站网址无遮挡 | 亚洲第一区二区三区不卡| 少妇丰满av| 少妇猛男粗大的猛烈进出视频| 女的被弄到高潮叫床怎么办| 岛国毛片在线播放| 欧美三级亚洲精品| 久久人人爽人人爽人人片va| 欧美xxxx性猛交bbbb| tube8黄色片| 欧美xxⅹ黑人| 精品午夜福利在线看| 日韩免费高清中文字幕av| 尤物成人国产欧美一区二区三区| 国产免费福利视频在线观看| 色哟哟·www| 五月天丁香电影| 亚洲三级黄色毛片| 国产黄色免费在线视频| 久久影院123| 久久精品夜色国产| 国产淫语在线视频| 日韩一本色道免费dvd| av一本久久久久| 久久久久精品性色| 免费看不卡的av| av在线观看视频网站免费| 深爱激情五月婷婷| 欧美极品一区二区三区四区| av福利片在线观看| 日韩三级伦理在线观看| 国产精品久久久久久精品电影小说 | 国产伦精品一区二区三区四那| 国产永久视频网站| 深爱激情五月婷婷| 亚洲人成网站高清观看| 国产永久视频网站| 亚洲精品久久午夜乱码| 在线亚洲精品国产二区图片欧美 | 中文乱码字字幕精品一区二区三区| 夜夜爽夜夜爽视频| 亚洲欧美精品专区久久| 国产黄片视频在线免费观看| 丝瓜视频免费看黄片| av视频免费观看在线观看| 三级国产精品欧美在线观看| 舔av片在线| 国产一级毛片在线| 国产男女超爽视频在线观看| a级毛片免费高清观看在线播放| 久久久久性生活片| 久久久精品免费免费高清| 性高湖久久久久久久久免费观看| 欧美精品一区二区大全| 街头女战士在线观看网站| 在线观看av片永久免费下载| 在线观看免费日韩欧美大片 | 精品久久久久久久久亚洲| 久久久久视频综合| 舔av片在线| 亚洲精品中文字幕在线视频 | 成人综合一区亚洲| 国产色婷婷99| 日本与韩国留学比较| 国产高清有码在线观看视频| 亚洲精品一区蜜桃| 日本免费在线观看一区| 中文精品一卡2卡3卡4更新| 精品人妻熟女av久视频| 涩涩av久久男人的天堂| 成年美女黄网站色视频大全免费 | 天堂8中文在线网| 日本黄色片子视频| 精品一品国产午夜福利视频| 久久精品人妻少妇| 综合色丁香网| 天天躁日日操中文字幕| 亚洲欧美一区二区三区国产| 十八禁网站网址无遮挡 | 哪个播放器可以免费观看大片| 久久影院123| 亚洲精品中文字幕在线视频 | 我要看日韩黄色一级片| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久精品古装| 少妇的逼水好多| 插逼视频在线观看| 一级毛片电影观看| 久久久久国产精品人妻一区二区| av在线老鸭窝| 日韩一本色道免费dvd| 美女主播在线视频| 国产亚洲最大av| 免费观看的影片在线观看| 久久久久久久国产电影| 在线天堂最新版资源| 高清日韩中文字幕在线| 国产精品一区www在线观看| 免费看不卡的av| 在线观看一区二区三区| 久久国内精品自在自线图片| 欧美激情国产日韩精品一区| 免费不卡的大黄色大毛片视频在线观看| 2018国产大陆天天弄谢| 最后的刺客免费高清国语| 国产精品久久久久久精品古装| 久久这里有精品视频免费| 久久热精品热| 六月丁香七月| 国产成人freesex在线| 亚洲av男天堂| 婷婷色av中文字幕| 国产精品一区二区在线观看99| 亚洲第一区二区三区不卡| 亚洲精品国产色婷婷电影| 丝袜脚勾引网站| 国产成人一区二区在线| 视频区图区小说| 91久久精品国产一区二区成人| 欧美成人a在线观看| 大片免费播放器 马上看| 欧美性感艳星| 国产精品女同一区二区软件| 精品人妻一区二区三区麻豆| 国产永久视频网站| 亚洲综合精品二区| 精品少妇黑人巨大在线播放| 少妇人妻久久综合中文| 久久精品久久精品一区二区三区| 久久精品国产鲁丝片午夜精品| 日本-黄色视频高清免费观看| 多毛熟女@视频| 亚洲国产成人一精品久久久| 制服丝袜香蕉在线| 天天躁日日操中文字幕| 国产欧美日韩精品一区二区| 国产黄色免费在线视频| 国产精品三级大全| 亚洲成人中文字幕在线播放| 色网站视频免费| 蜜臀久久99精品久久宅男| 丰满人妻一区二区三区视频av| 成人影院久久| 亚洲人与动物交配视频| 欧美 日韩 精品 国产| 舔av片在线| 国产 精品1| 亚洲美女搞黄在线观看| 伦精品一区二区三区| 亚洲国产高清在线一区二区三| av一本久久久久| 美女xxoo啪啪120秒动态图| 最近2019中文字幕mv第一页| 国产成人精品一,二区| 日日摸夜夜添夜夜添av毛片| 纵有疾风起免费观看全集完整版| 亚洲欧美成人综合另类久久久| 男女免费视频国产| 插逼视频在线观看| 免费观看a级毛片全部| 亚洲色图综合在线观看| 国产免费一区二区三区四区乱码| 97精品久久久久久久久久精品| 久久久久久人妻| 国产精品国产av在线观看| 日韩欧美 国产精品| 亚洲美女视频黄频| 狂野欧美激情性xxxx在线观看| 51国产日韩欧美| 久热这里只有精品99| 亚洲欧美精品自产自拍| 少妇丰满av| av又黄又爽大尺度在线免费看| 校园人妻丝袜中文字幕| 国产精品久久久久久精品古装| 99热这里只有是精品50| 国产高清不卡午夜福利| 亚洲成色77777| 国产亚洲5aaaaa淫片| 舔av片在线| 色视频www国产| 日韩在线高清观看一区二区三区| 亚洲精品亚洲一区二区| 一本—道久久a久久精品蜜桃钙片| 午夜老司机福利剧场| 久久精品国产亚洲网站| 日韩一区二区视频免费看| 男的添女的下面高潮视频| 国产精品人妻久久久影院| 国模一区二区三区四区视频| 亚洲精品一区蜜桃| av.在线天堂| 亚洲自偷自拍三级| 在现免费观看毛片| av在线老鸭窝| av.在线天堂| av又黄又爽大尺度在线免费看| 国精品久久久久久国模美| a级毛色黄片| 久久毛片免费看一区二区三区| 人妻夜夜爽99麻豆av| 日本vs欧美在线观看视频 | 身体一侧抽搐| 免费播放大片免费观看视频在线观看| 日韩成人av中文字幕在线观看| 99热这里只有是精品在线观看| 18+在线观看网站| 日日撸夜夜添| 一本久久精品| 中文资源天堂在线| 日日撸夜夜添| 亚洲欧美一区二区三区国产| 国产在线视频一区二区| 国产精品一区二区在线观看99| 看非洲黑人一级黄片| 成人影院久久| 国产黄片视频在线免费观看| 亚洲av综合色区一区| 麻豆成人av视频| 日本-黄色视频高清免费观看| 网址你懂的国产日韩在线| 女性生殖器流出的白浆| 久久精品人妻少妇| 亚洲欧洲日产国产| 天堂8中文在线网| 亚洲精品第二区| 国产乱来视频区| 91精品伊人久久大香线蕉| 一级av片app| 久久精品国产亚洲av涩爱| 亚洲欧美成人精品一区二区| 女性生殖器流出的白浆| 色吧在线观看| 精品一区二区三区视频在线| 男人添女人高潮全过程视频| 国产精品一区二区性色av| 亚洲自偷自拍三级| 国产视频内射| 精品亚洲乱码少妇综合久久| 女人久久www免费人成看片| av免费在线看不卡| 亚洲四区av| 日韩一区二区视频免费看| 亚洲av日韩在线播放| 欧美国产精品一级二级三级 | 在线观看免费日韩欧美大片 | 久久韩国三级中文字幕| 日本欧美国产在线视频| 美女高潮的动态| 身体一侧抽搐| 日韩免费高清中文字幕av| 国产黄片美女视频| 国产成人免费无遮挡视频| 国产毛片在线视频| 多毛熟女@视频| 亚洲欧美中文字幕日韩二区| 欧美xxⅹ黑人| 男男h啪啪无遮挡| 国产成人freesex在线| 成人特级av手机在线观看| 久久精品国产a三级三级三级| 亚洲怡红院男人天堂| 成人二区视频| 亚洲欧美日韩无卡精品| 99热这里只有是精品在线观看| 日本黄大片高清| 97精品久久久久久久久久精品| 在线观看av片永久免费下载| 99久久精品国产国产毛片| 一个人看的www免费观看视频| 少妇裸体淫交视频免费看高清| av在线老鸭窝| 国产精品成人在线| 最近2019中文字幕mv第一页| 日本-黄色视频高清免费观看| 天天躁日日操中文字幕| 国产黄片美女视频| 国产av国产精品国产| 91精品国产九色| 日本-黄色视频高清免费观看| 18禁在线无遮挡免费观看视频| 欧美高清成人免费视频www| 久久久久精品久久久久真实原创| 男人狂女人下面高潮的视频| 男女啪啪激烈高潮av片| 亚洲综合精品二区| 欧美日韩综合久久久久久| 六月丁香七月| 五月开心婷婷网| 免费观看性生交大片5| 国产深夜福利视频在线观看| 精品一品国产午夜福利视频| 男女边吃奶边做爰视频| 中文字幕久久专区| 日日撸夜夜添| 极品教师在线视频| 高清视频免费观看一区二区| 一级毛片电影观看| 国产精品熟女久久久久浪| 波野结衣二区三区在线| 18禁裸乳无遮挡动漫免费视频| 久久精品国产亚洲av天美| 婷婷色综合大香蕉| 免费观看的影片在线观看| 天堂俺去俺来也www色官网| 久久久久久久久久久免费av| 精品国产露脸久久av麻豆| 偷拍熟女少妇极品色| kizo精华| 日韩三级伦理在线观看| 久久久久国产精品人妻一区二区| 久久久久久久久久人人人人人人| 寂寞人妻少妇视频99o| 亚洲高清免费不卡视频| 国产白丝娇喘喷水9色精品| 日韩精品有码人妻一区| 久久99热6这里只有精品| 午夜福利网站1000一区二区三区| 国产av一区二区精品久久 | 国产亚洲欧美精品永久| 亚洲人成网站在线播| 最新中文字幕久久久久| 联通29元200g的流量卡| 婷婷色综合大香蕉| 蜜桃亚洲精品一区二区三区| 精品熟女少妇av免费看| 我要看日韩黄色一级片| 国产久久久一区二区三区| 在线看a的网站| av女优亚洲男人天堂| 亚洲av欧美aⅴ国产| 国产成人aa在线观看| 国内少妇人妻偷人精品xxx网站| 99久久精品国产国产毛片| 亚洲国产高清在线一区二区三| 麻豆精品久久久久久蜜桃| 日产精品乱码卡一卡2卡三| 亚洲精品一区蜜桃| 亚洲精品乱久久久久久| 成人综合一区亚洲| 欧美国产精品一级二级三级 | 中文字幕免费在线视频6| 看非洲黑人一级黄片| 日本欧美视频一区| 一级片'在线观看视频| 精品亚洲成a人片在线观看 | av国产久精品久网站免费入址| 女性生殖器流出的白浆| 在线观看美女被高潮喷水网站| 午夜视频国产福利| 国产精品三级大全| a级一级毛片免费在线观看| 91精品伊人久久大香线蕉| 亚洲成人av在线免费| 日韩强制内射视频| 成人亚洲精品一区在线观看 | 少妇精品久久久久久久| 日韩三级伦理在线观看| 一个人看视频在线观看www免费| 亚洲欧美日韩卡通动漫| 在线观看免费视频网站a站| 国产av国产精品国产| 日韩欧美一区视频在线观看 | 99九九线精品视频在线观看视频| 免费黄频网站在线观看国产| 亚洲中文av在线| 18禁动态无遮挡网站| 亚洲激情五月婷婷啪啪| 亚洲va在线va天堂va国产| 免费av不卡在线播放| 中国国产av一级| av专区在线播放| av国产免费在线观看| 国产人妻一区二区三区在| 亚洲成人av在线免费| 亚洲va在线va天堂va国产| 免费看光身美女| 国产老妇伦熟女老妇高清| 午夜日本视频在线| 老女人水多毛片| 国产精品精品国产色婷婷| 亚洲国产日韩一区二区| 精品一区二区三区视频在线| 国产精品国产三级专区第一集| 国产v大片淫在线免费观看| 又大又黄又爽视频免费| 免费看日本二区| 亚洲欧洲国产日韩| 熟女av电影| 黄色怎么调成土黄色| 成人毛片a级毛片在线播放| 日本欧美国产在线视频| 91午夜精品亚洲一区二区三区| 国产视频内射| 亚洲激情五月婷婷啪啪| 91精品国产九色| 欧美国产精品一级二级三级 | 最后的刺客免费高清国语| 亚洲第一区二区三区不卡| 欧美极品一区二区三区四区| 一区二区av电影网| 高清视频免费观看一区二区| 天美传媒精品一区二区| 波野结衣二区三区在线| 97热精品久久久久久| 亚洲熟女精品中文字幕| a 毛片基地| 亚洲国产av新网站| 麻豆精品久久久久久蜜桃| 五月伊人婷婷丁香| 男人狂女人下面高潮的视频| 国内揄拍国产精品人妻在线| 久久国产精品男人的天堂亚洲 | 国产永久视频网站| 精品人妻一区二区三区麻豆| 在线观看免费日韩欧美大片 | 97在线视频观看| 欧美日韩综合久久久久久| 久热久热在线精品观看| 欧美日韩精品成人综合77777| 久久久久久人妻| 久久综合国产亚洲精品| 99re6热这里在线精品视频| 亚洲高清免费不卡视频| av网站免费在线观看视频| 麻豆乱淫一区二区| 日韩伦理黄色片|