• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Contrastive Consensus Graph Learning for Multi-View Clustering

    2022-10-29 03:30:06ShipingWangXincanLinZihanFangShideDuandGuobaoXiao
    IEEE/CAA Journal of Automatica Sinica 2022年11期

    Shiping Wang, Xincan Lin, Zihan Fang, Shide Du, and Guobao Xiao

    Dear Editor,

    This letter proposes a contrastive consensus graph learning model for multi-view clustering. Graphs are usually built to outline the correlation between multi-model objects in clustering task, and multiview graph clustering aims to learn a consensus graph that integrates the spatial property of each view. Nevertheless, most graph-based models merely consider the overall structure from all views but neglect the local spatial consistency between diverse views, resulting in the lack of global spatial consistency in the learned graph. To overcome this issue, a deep convolutional network is built to explore latent local spatial information from raw affinity graphs. Specifically,we employ a consensus graph constraint to preserve the global consistency between the learned graph and raw graphs. Furthermore, a contrastive reconstruction loss is introduced to achieve the samplelevel approximation between reconstructed graphs and raw graphs,which facilitates the network to enhance the consensus graph learning. Experiments on six classical datasets demonstrate that the proposed model outperforms other nine state-of-the-art algorithms.

    Related work: In real-world applications, multimedia data are usually generated from multiple ways and presented in diverse forms,referred as multi-view data. Compared with single-view data, multiview data contains more comprehensive information, which makes multi-view learning be a hot spot. Previous work [1], [2] has been devoted to this field and achieves satisfactory results. As an important branch of multi-view learning, multi-view clustering aims to effectively fuse information and discover the underlying clustering structure shared by diverse views. Since each view has a distinct focus on the same object, multi-view data tends to be complementary and consistent. Therefore, it is critical to integrate multi-view features and fully exploit the consistency and complementarity to obtain shared discriminative representations.

    Plenty of research has attempted to extract shared information from multi-view data to improve clustering performance [3]–[5], among which the graph-based approach is a mainstream issue. Graphs are typically built to represent relationships between different objects,with nodes corresponding to data objects and weighted edges depicting the similarity between data points. Generally, multi-view graph clustering methods can be roughly boiled down to two stages: first learning a consensus graph from all views, then applying post-processing techniques on the learned graph to obtain clustering results [6].Since the quality of the learned graph can directly determine the clustering effect, how to learn a high-quality graph becomes a critical issue [7]. For that, [3] proposes a self-weighted method to explore a Laplacian constrained graph and directly obtain the clustering result without any follow-up processing. Reference [8] designs a regularization term to adaptively learn weights of the views for diversity enrichment and redundancy reduction. Furthermore, to avoid the effect of the predefined graph quality, [9] introduces a disagreement cost function and constrains the rank of the Laplacian matrix of the learned graph. However, these methods merely focus on optimal weight learning for each view and neglect the local spatial consistency between different views, resulting in the lack of spatial integrity.

    Besides, various deep clustering methods are constructed to exploit latent semantic information among data. For instance, [10] proposes a deep canonical correlation analysis framework, which employs two deep neural networks to extract implicit features of each view. To better explore complementary information, [11] presents a semi-nonnegative matrix factorization method for learning hierarchical semantics of multi-view data. Reference [12] integrates the within-view invariance, the between-view consistency, and the nonlinear embedding network to learn a common space for spectral clustering.Recently, [13] proposes an instance-level and cluster-level contrastive learning method for clustering and [14] lifts the instancelevel consistency to the cluster-level consistency for graph learning.Furthermore, [15] learns an informative and consistent representation by maximizing the mutual information between diverse views by introducing contrastive learning. Despite these autoencoder-based models can effectively extract latent information, they solely achieve the element-level reconstructed approximation but lack of samplelevel approximation, which are not conducive to the consensus graph learning.

    Based on the above observations, we propose a multi-view clustering network by utilizing a convolutional autoencoder for learning a consensus graph. The proposed network is illustrated in Fig. 1, which is composed of a graph construction layer and a symmetric convolutional autoencoder. Specifically, we integrate convolutional autoencoder, consensus graph learning, and contrastive reconstruction learning into a unified framework to obtain a common graph with spatial consistency. The main contributions are summarized as:1) Build a convolutional autoencoder to capture the local spatial information from different views and obtain a latent consensus graph;2) A consensus graph loss is proposed to approximate the consensus graph with all raw graphs so as to preserve the global spatial consistency of the learned graph; 3) Introduce a contrastive reconstruction loss to constrain the sample-level consistency, and to enhance the similarity between reconstructed graphs and raw graphs.deconvolution operation, respectively. The architecture of the proposed model is described as follows.

    Fig. 1. A scheme of the proposed model, which consists of a graph construction layer and a convolutional autoencoder network. Given raw data, the proposed model first constructs affinity graphs by a specific graph construction method. Accordingly, the affinity graphs are fed to the convolutional autoencoder to learn a consensus graph by jointly minimizing the autoencoder loss, the consensus graph loss and the contrastive reconstruction loss.

    1) Graph construction layer: The nearest neighbors method is first utilized to generate the adjacency matrices of raw data, then the affinity matrices are constructed by Gaussian kernel function as whereαandβare employed to balance the impact of consensus graph loss and the contrastive reconstruction loss. In the process of minimizing the total loss, the network is steered to learn a consensus graph as summarized in Algorithm 1. Finally, the clustering result is obtained by conducting spectral clustering on the learned graph.

    Algorithm 1 Contrastive Consensus Graph Learning Input: Multi-view data , the number of nearest neighbors k,learning rate , training epochs t, weight parameters α and β.G*Output: Consensus graph .X G X lr 1: Generate adjacency graphs by KNN from , and then construct affinity graphs using (1).2: Initial the network weights by Xavier normalization.epoch=1 →t 3: for do G ?G 4: Calculate feature graphs and by (2) and (3).5: Compute the autoencoder loss by (4).Lc Lae 6: Obtain the contrastive recounstruction loss by (9) and (10).ωi Lz 7: Calculate for each view through (8), then compute the consensus graph loss by (5).L 8: Calculate the total loss by (11).9: Update network parameters by gradient descent method.10: end for G*11: return Ouput of the encoder .

    Experiments:

    1) Datasets: The experiments are conducted on six classical datasets, and a brief description is illustrated as follows. Specifically,ALOI contains 1079 object images with four color features. Hand-Written (HW) are 2000 handwritten digits images with six views.Caltech101-20 is a object recognition dataset with 101 categories,and we select 2386 samples of 20 classes for testing. Youtube consists of 2000 samples including three visual features and three audio features. NUS-WIDE is comprised of 1600 web images of six available features. MNIST10k is a image dataset of 10000 handwritten digits with IsoProjection, linear discriminant analysis (LDA) and neighborhood preserving embedding (NPE) features as three views.

    2) Comparisons and parameter settings: The proposed method is compared with the following nine methods. Best single view (BSV)is adopted to record the best spectral single-view clustering performance of all raw affinity graphs. The rest compared clustering methods are tensorized multi-view subspace representation learning(TMSRL) [16], multi-view clustering via deep matrix factorization(DMF-MVC) [11], deep generalized canonical correlation analysis(DGCCA) [10], multi-veiw spectral clustering network (MvSCN)[12], multiview consensus graph clustering (MCGC) [9], graphbased multi-view clustering (GMC) [7], binary multi-view clustering(BMVC) [17] and consensus graph learning (CGL) [6]. All the parameters involved in compared algorithms are set to the recommended values in their papers. For the proposed model, there are both 3 convolutional and deconvolutional layers and the size of all convolution kernels is 3 ×3, where each layer is followed by a ReLU activation. Strides of horizontal and vertical directions are both1 with one zero-padding layer to obtain feature graphs with the size ofn×n. In the encoder, the number of convolution kernels are [4, 2, 1]in order, while there are [2, 4,V] deconvolution kernels in the decoder. For all datasets, the number of nearest neighborskis chosen as 10 with the bandwidth ε=1, the exponentpof consensus weight is set to -1, and the temperatureτin the contrastive loss is fixed to 1, and we set α=1 and β=1 as default. Moreover, Adam optimizer is utilized to accelerate the minimization of the total loss withlr=0.01. Uniformly, we train 300 epochs on all datasets to obtain consensus graphs. All experiments are conducted for 10 times,then the mean and the standard deviation of the clustering performance are computed as the final results.

    3) Clustering results: The classical metric accuracy (ACC) is adopted to evaluate the clustering performance. The clustering results of all compared algorithms are presented in Table 1, where we can obtain the following observations. Compared with BSV, the proposed model exhibits better performance. Compared with the tensorbased method TMSRL, the proposed model exhibits significant clustering superiority on all datasets. As for deep methods such as DGCCA, our method also gains superior performance on most datasets, which demonstrates the effectiveness of the convolutional autoencoder. Furthermore, compared with graph-based methods, the proposed model still obtains higher accuracy especially on HW and MNIST where the mean accuracy is close to 100%. In summary, the proposed model is capable of learning a well clustered graph and achieving satisfactory clustering results.

    Table 1.The ACC (MEAN±STD%) of Multi-View Clustering Algorithms,Where the Best and Second Best Results are Marked in Red and Blue Respectively, And “-” Denotes the Failed Results.

    4) Ablation study: As shown in Table 2, the ablation study is performed to investigate the influence of the consensus graph loss and the contrastive loss. The results indicate that the proposed model performs poorly with only autoencoder loss. After adding the consensus graph loss, the clustering performance of the proposed model is significantly improved. Further introducing the contrastive reconstruction loss, the proposed model performs best. It can be inferred that the consensus graph constraint can guide the network to effectively explore the discriminative spatial information from diverse views.Simultaneously, with the contrastive reconstruction loss, the samplelevel similarity between the reconstructed graphs and raw graphs can be strengthened, and in turn enhancing the graph learning.

    Table 2.The Ablation Study on ALOI, HW and Youtube w.r.t ACC(Mean±STD%), where the Best Results are in Bold.

    5) Convergence and parameter sensitivity: The objective function values with the number of epochs are illustrated in Fig. 2(a), where MNIST10k is scaled by 10 times to keep all curves in the same inter-

    Fig. 2. Convergence and parameter sensitivity of the proposed method. (a)Curves of objective function values with the number of epochs; (b) Clustering metric ACC on HW with varied α and β.

    Conclusions: This letter proposed a contrastive consensus graph learning model to learn a consensus graph, which adopted a convolutional autoencoder network to efficiently explore the latent spatial association among data. With the constraints of the consensus graph loss, the learned graph was able to maintain global spatial consistency across diverse views. Furthermore, a contrastive reconstruction loss was introduced to achieve sample-level approximations between the reconstructed graphs and the raw graphs, further to enhance the consistency of the learned graph. Experimental results demonstrated the superiority of the proposed model.

    Acknowledgments: This work was supported by the National Natural Science Foundation of China (U21A20472, 62072223), the National Key Research and Development Plan of China (2021YFB 3600503), and the Natural Science Foundation of Fujian Province(2020J01130193, 2020J01131199).

    免费在线观看日本一区| 天堂动漫精品| 亚洲国产欧美在线一区| av欧美777| 在线观看舔阴道视频| 亚洲国产中文字幕在线视频| 巨乳人妻的诱惑在线观看| 一区二区av电影网| 久久久久久久久久久久大奶| 极品教师在线免费播放| 无限看片的www在线观看| 亚洲欧美日韩高清在线视频 | 操出白浆在线播放| 欧美老熟妇乱子伦牲交| 国产亚洲av高清不卡| 欧美中文综合在线视频| 亚洲欧美一区二区三区黑人| 一本一本久久a久久精品综合妖精| 热99国产精品久久久久久7| 国产99久久九九免费精品| 欧美精品av麻豆av| 亚洲专区字幕在线| 亚洲综合色网址| 日本vs欧美在线观看视频| 汤姆久久久久久久影院中文字幕| 在线观看www视频免费| 不卡av一区二区三区| 亚洲国产中文字幕在线视频| 亚洲色图 男人天堂 中文字幕| 久久香蕉激情| 一区在线观看完整版| 中亚洲国语对白在线视频| 久久久久久久久免费视频了| 国产男女超爽视频在线观看| 色视频在线一区二区三区| 精品久久久久久电影网| 首页视频小说图片口味搜索| 亚洲精品粉嫩美女一区| 韩国精品一区二区三区| 午夜福利视频精品| 亚洲欧美日韩高清在线视频 | 91大片在线观看| 国产精品偷伦视频观看了| 十八禁网站免费在线| 男女午夜视频在线观看| 国产精品免费视频内射| 无限看片的www在线观看| 一级片'在线观看视频| 18禁美女被吸乳视频| 欧美日韩中文字幕国产精品一区二区三区 | 欧美午夜高清在线| 少妇精品久久久久久久| 午夜91福利影院| 精品国产国语对白av| 日日摸夜夜添夜夜添小说| 亚洲情色 制服丝袜| 99精品久久久久人妻精品| 男女午夜视频在线观看| 亚洲精品av麻豆狂野| 在线播放国产精品三级| 亚洲国产欧美一区二区综合| 欧美av亚洲av综合av国产av| 精品一区二区三区视频在线观看免费 | 十八禁网站网址无遮挡| h视频一区二区三区| 99国产极品粉嫩在线观看| 又紧又爽又黄一区二区| 国产1区2区3区精品| 国产aⅴ精品一区二区三区波| 大码成人一级视频| 99香蕉大伊视频| 嫁个100分男人电影在线观看| 90打野战视频偷拍视频| avwww免费| 久久精品国产a三级三级三级| 国产视频一区二区在线看| 视频区图区小说| 亚洲精品粉嫩美女一区| 久久亚洲精品不卡| 丁香欧美五月| 91老司机精品| 狂野欧美激情性xxxx| 欧美另类亚洲清纯唯美| 高清在线国产一区| 在线av久久热| 1024视频免费在线观看| 狠狠婷婷综合久久久久久88av| 满18在线观看网站| 1024视频免费在线观看| videosex国产| 国产视频一区二区在线看| 日韩免费高清中文字幕av| 精品久久久精品久久久| 免费av中文字幕在线| 亚洲人成电影免费在线| 国产福利在线免费观看视频| 欧美激情高清一区二区三区| 80岁老熟妇乱子伦牲交| 成人av一区二区三区在线看| 久久国产精品影院| 欧美乱码精品一区二区三区| 久久99热这里只频精品6学生| 在线av久久热| aaaaa片日本免费| tocl精华| 91国产中文字幕| 国产伦人伦偷精品视频| 亚洲熟妇熟女久久| 高清视频免费观看一区二区| 18禁国产床啪视频网站| 国产欧美日韩一区二区三| 久久精品熟女亚洲av麻豆精品| 涩涩av久久男人的天堂| 狠狠精品人妻久久久久久综合| 久久国产亚洲av麻豆专区| 亚洲国产中文字幕在线视频| 69精品国产乱码久久久| 日韩人妻精品一区2区三区| 免费人妻精品一区二区三区视频| 国产一区二区三区在线臀色熟女 | 汤姆久久久久久久影院中文字幕| 亚洲人成电影免费在线| 国产亚洲午夜精品一区二区久久| av又黄又爽大尺度在线免费看| 啪啪无遮挡十八禁网站| 免费人妻精品一区二区三区视频| 亚洲国产av新网站| 老司机午夜福利在线观看视频 | 精品国产一区二区三区久久久樱花| 精品亚洲乱码少妇综合久久| 欧美精品高潮呻吟av久久| 亚洲欧美日韩另类电影网站| 99精品在免费线老司机午夜| 国产精品 国内视频| 91av网站免费观看| 久久九九热精品免费| 国产区一区二久久| 精品一区二区三区四区五区乱码| 制服诱惑二区| 国产一区二区在线观看av| 国产成人免费观看mmmm| 国产97色在线日韩免费| 日本wwww免费看| 久久性视频一级片| 亚洲成国产人片在线观看| 最新在线观看一区二区三区| 最新在线观看一区二区三区| 在线播放国产精品三级| 久久久久精品国产欧美久久久| 国产成人啪精品午夜网站| 亚洲色图综合在线观看| www日本在线高清视频| 亚洲熟女毛片儿| 亚洲自偷自拍图片 自拍| e午夜精品久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| www.精华液| 亚洲精品自拍成人| 亚洲久久久国产精品| 丁香欧美五月| 久久中文看片网| 精品国产乱码久久久久久男人| 欧美日韩成人在线一区二区| 日韩一卡2卡3卡4卡2021年| 久久免费观看电影| 高清毛片免费观看视频网站 | 久久久久久亚洲精品国产蜜桃av| 18在线观看网站| 桃红色精品国产亚洲av| 男人操女人黄网站| 午夜激情久久久久久久| 人人澡人人妻人| 国产97色在线日韩免费| 国产成人免费观看mmmm| 欧美黄色淫秽网站| 两个人看的免费小视频| 大片电影免费在线观看免费| 亚洲国产av影院在线观看| 日韩大片免费观看网站| 国产亚洲欧美精品永久| 一本—道久久a久久精品蜜桃钙片| 国产单亲对白刺激| 成人三级做爰电影| 老司机福利观看| 亚洲avbb在线观看| 老司机午夜福利在线观看视频 | 看免费av毛片| 亚洲中文日韩欧美视频| 天天躁日日躁夜夜躁夜夜| 丁香六月天网| 精品亚洲成a人片在线观看| 美女午夜性视频免费| 宅男免费午夜| 黄色视频不卡| 国产成人精品在线电影| 性色av乱码一区二区三区2| 国产精品 国内视频| 欧美成狂野欧美在线观看| 免费在线观看黄色视频的| 高清毛片免费观看视频网站 | 午夜福利在线观看吧| 国产av精品麻豆| 久久中文字幕人妻熟女| 国产精品 国内视频| av福利片在线| 搡老乐熟女国产| 中文字幕高清在线视频| 两个人看的免费小视频| 亚洲成人手机| 热re99久久国产66热| 一级毛片精品| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久久久精品古装| 曰老女人黄片| 国产亚洲精品一区二区www | 日韩有码中文字幕| 一本—道久久a久久精品蜜桃钙片| a在线观看视频网站| 中文字幕另类日韩欧美亚洲嫩草| av超薄肉色丝袜交足视频| 国产精品秋霞免费鲁丝片| 国产高清国产精品国产三级| 午夜福利影视在线免费观看| 少妇猛男粗大的猛烈进出视频| 午夜91福利影院| 亚洲精品成人av观看孕妇| 不卡av一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产视频一区二区在线看| 中文亚洲av片在线观看爽 | 午夜91福利影院| 999精品在线视频| 丝袜喷水一区| 国产深夜福利视频在线观看| 午夜福利乱码中文字幕| 国产三级黄色录像| 又大又爽又粗| 久久香蕉激情| 两性夫妻黄色片| 日韩有码中文字幕| 国产精品久久电影中文字幕 | 丝袜人妻中文字幕| 十分钟在线观看高清视频www| 亚洲午夜理论影院| 国产欧美日韩一区二区三区在线| 久久精品aⅴ一区二区三区四区| 免费在线观看完整版高清| 狠狠狠狠99中文字幕| 久久精品91无色码中文字幕| 99久久国产精品久久久| 伦理电影免费视频| 丁香六月欧美| 另类精品久久| 91麻豆精品激情在线观看国产 | 人人妻人人澡人人看| 久久精品亚洲av国产电影网| 亚洲伊人久久精品综合| 亚洲精品久久午夜乱码| 亚洲精品一卡2卡三卡4卡5卡| 一本大道久久a久久精品| 免费在线观看日本一区| 欧美大码av| 99国产精品一区二区三区| 亚洲全国av大片| 亚洲国产欧美日韩在线播放| 99久久人妻综合| 亚洲全国av大片| 日韩制服丝袜自拍偷拍| 国产午夜精品久久久久久| 精品一品国产午夜福利视频| 国产精品免费一区二区三区在线 | 精品福利观看| 国产无遮挡羞羞视频在线观看| 丁香欧美五月| 女人久久www免费人成看片| 日韩人妻精品一区2区三区| 99香蕉大伊视频| 窝窝影院91人妻| 少妇粗大呻吟视频| 少妇被粗大的猛进出69影院| 极品教师在线免费播放| 国产色视频综合| 极品人妻少妇av视频| 看免费av毛片| 中文字幕制服av| 1024香蕉在线观看| 一夜夜www| 热99re8久久精品国产| 青青草视频在线视频观看| 一边摸一边做爽爽视频免费| 99re在线观看精品视频| 精品国产乱码久久久久久男人| 69精品国产乱码久久久| 99香蕉大伊视频| 成年女人毛片免费观看观看9 | 又大又爽又粗| 99热国产这里只有精品6| 一本—道久久a久久精品蜜桃钙片| 天堂8中文在线网| 国产亚洲一区二区精品| 国产欧美日韩一区二区三| 最新的欧美精品一区二区| 国产精品 欧美亚洲| 女人爽到高潮嗷嗷叫在线视频| 在线十欧美十亚洲十日本专区| 欧美日韩亚洲高清精品| 考比视频在线观看| 男女床上黄色一级片免费看| 成在线人永久免费视频| 亚洲国产看品久久| 久9热在线精品视频| 午夜精品久久久久久毛片777| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人爽av亚洲精品天堂| 建设人人有责人人尽责人人享有的| 国产xxxxx性猛交| 亚洲熟妇熟女久久| 后天国语完整版免费观看| 一级毛片精品| 天堂俺去俺来也www色官网| 国产精品香港三级国产av潘金莲| av线在线观看网站| 日韩欧美一区二区三区在线观看 | 午夜激情av网站| 亚洲男人天堂网一区| 51午夜福利影视在线观看| av又黄又爽大尺度在线免费看| 亚洲中文日韩欧美视频| 免费看a级黄色片| www.自偷自拍.com| 国产精品av久久久久免费| 国产精品免费大片| 一边摸一边做爽爽视频免费| 久久毛片免费看一区二区三区| 一个人免费在线观看的高清视频| 精品久久久久久电影网| 亚洲va日本ⅴa欧美va伊人久久| 人妻 亚洲 视频| 久久精品91无色码中文字幕| 男女高潮啪啪啪动态图| 91精品国产国语对白视频| 国产日韩欧美视频二区| 黑人巨大精品欧美一区二区蜜桃| 黑丝袜美女国产一区| 国产成人欧美在线观看 | av片东京热男人的天堂| 国产成人精品久久二区二区免费| 午夜91福利影院| 丝瓜视频免费看黄片| 久久av网站| 99国产综合亚洲精品| 视频区图区小说| 真人做人爱边吃奶动态| 欧美成人午夜精品| 久久精品aⅴ一区二区三区四区| 丝袜美腿诱惑在线| 女人精品久久久久毛片| 一级毛片精品| 黑人巨大精品欧美一区二区mp4| 精品亚洲成国产av| 国产精品九九99| 别揉我奶头~嗯~啊~动态视频| 男女高潮啪啪啪动态图| 女性被躁到高潮视频| 一个人免费看片子| 国产精品成人在线| 精品卡一卡二卡四卡免费| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新免费中文字幕在线| 成年女人毛片免费观看观看9 | 啪啪无遮挡十八禁网站| av一本久久久久| 久久久久久久大尺度免费视频| 极品教师在线免费播放| 亚洲国产中文字幕在线视频| 精品少妇一区二区三区视频日本电影| 国产精品麻豆人妻色哟哟久久| 亚洲性夜色夜夜综合| 性少妇av在线| 久久精品国产综合久久久| 日韩制服丝袜自拍偷拍| 十八禁网站免费在线| av网站免费在线观看视频| 成人国语在线视频| 久久午夜综合久久蜜桃| 欧美人与性动交α欧美软件| 国产xxxxx性猛交| 久久久久久久精品吃奶| 男女高潮啪啪啪动态图| 天天躁日日躁夜夜躁夜夜| 日韩 欧美 亚洲 中文字幕| 黄色视频,在线免费观看| 日韩中文字幕视频在线看片| 女同久久另类99精品国产91| 啦啦啦 在线观看视频| 午夜精品久久久久久毛片777| 不卡av一区二区三区| 久久精品国产亚洲av香蕉五月 | 香蕉国产在线看| 国产在视频线精品| 国产日韩欧美在线精品| 国产欧美日韩综合在线一区二区| 国产精品久久久久久精品电影小说| 国产欧美亚洲国产| 午夜激情久久久久久久| 精品国产亚洲在线| 久久国产精品大桥未久av| 色尼玛亚洲综合影院| 好男人电影高清在线观看| 亚洲一码二码三码区别大吗| 久久久精品94久久精品| 妹子高潮喷水视频| 国产精品一区二区在线观看99| 久久午夜亚洲精品久久| 国产精品一区二区在线不卡| 丝瓜视频免费看黄片| 久久99一区二区三区| 国产精品免费大片| 在线观看www视频免费| 国产精品自产拍在线观看55亚洲 | 在线观看免费日韩欧美大片| 美女福利国产在线| 丝袜喷水一区| 18在线观看网站| 国产成人精品久久二区二区免费| 久久精品熟女亚洲av麻豆精品| 国产精品 国内视频| 国产人伦9x9x在线观看| 日韩欧美国产一区二区入口| 亚洲人成电影观看| 亚洲色图综合在线观看| 色在线成人网| 中亚洲国语对白在线视频| 91老司机精品| av在线播放免费不卡| 日韩有码中文字幕| 国产精品免费视频内射| 国产三级黄色录像| 两性夫妻黄色片| 一本大道久久a久久精品| 国产又爽黄色视频| 国产欧美日韩一区二区精品| 成年人午夜在线观看视频| 国产亚洲欧美在线一区二区| 午夜激情久久久久久久| 老熟女久久久| 丝袜人妻中文字幕| 咕卡用的链子| 国产一卡二卡三卡精品| 99久久精品国产亚洲精品| 亚洲精品在线美女| 99国产精品一区二区蜜桃av | 在线播放国产精品三级| 亚洲国产欧美日韩在线播放| 999久久久国产精品视频| www.自偷自拍.com| 免费观看人在逋| 国产精品一区二区在线不卡| 自线自在国产av| 欧美精品人与动牲交sv欧美| 久久99热这里只频精品6学生| 无遮挡黄片免费观看| 国产成人精品无人区| 欧美精品av麻豆av| 精品亚洲乱码少妇综合久久| 最近最新中文字幕大全免费视频| 一本色道久久久久久精品综合| 99国产精品99久久久久| 99re在线观看精品视频| 91av网站免费观看| 91麻豆av在线| 少妇粗大呻吟视频| 亚洲av第一区精品v没综合| 黄色a级毛片大全视频| 涩涩av久久男人的天堂| 麻豆av在线久日| 咕卡用的链子| 欧美黄色片欧美黄色片| 桃花免费在线播放| 黄网站色视频无遮挡免费观看| 色94色欧美一区二区| 久久久久久亚洲精品国产蜜桃av| 欧美乱码精品一区二区三区| 久久精品国产亚洲av香蕉五月 | 母亲3免费完整高清在线观看| 色综合婷婷激情| 午夜福利乱码中文字幕| 女警被强在线播放| www日本在线高清视频| 成年人免费黄色播放视频| 美女扒开内裤让男人捅视频| 搡老岳熟女国产| 日本vs欧美在线观看视频| 一区二区三区激情视频| 性高湖久久久久久久久免费观看| 色尼玛亚洲综合影院| 一个人免费看片子| 免费观看a级毛片全部| 亚洲午夜精品一区,二区,三区| 极品教师在线免费播放| 日日摸夜夜添夜夜添小说| avwww免费| 自拍欧美九色日韩亚洲蝌蚪91| 国产欧美日韩一区二区三区在线| 人成视频在线观看免费观看| 成人永久免费在线观看视频 | 亚洲欧洲精品一区二区精品久久久| 国产又爽黄色视频| 久久这里只有精品19| 悠悠久久av| 欧美亚洲 丝袜 人妻 在线| 欧美性长视频在线观看| 久久久国产精品麻豆| 丰满迷人的少妇在线观看| 欧美精品高潮呻吟av久久| 日本一区二区免费在线视频| 不卡一级毛片| 国产色视频综合| 精品少妇一区二区三区视频日本电影| 成在线人永久免费视频| 精品一区二区三区av网在线观看 | 在线天堂中文资源库| 熟女少妇亚洲综合色aaa.| 男人舔女人的私密视频| 久久性视频一级片| 在线观看免费视频日本深夜| av超薄肉色丝袜交足视频| 精品久久久精品久久久| 亚洲成人国产一区在线观看| 中文字幕色久视频| 极品少妇高潮喷水抽搐| 99热国产这里只有精品6| 国产精品99久久99久久久不卡| 99精国产麻豆久久婷婷| 一级毛片女人18水好多| 男女床上黄色一级片免费看| 搡老乐熟女国产| 久久狼人影院| 国产精品亚洲av一区麻豆| 男女午夜视频在线观看| 夜夜夜夜夜久久久久| 免费看a级黄色片| 极品人妻少妇av视频| 亚洲国产成人一精品久久久| 最新的欧美精品一区二区| 国产精品免费视频内射| 亚洲精华国产精华精| 精品福利观看| 亚洲欧美一区二区三区黑人| 91九色精品人成在线观看| 成人免费观看视频高清| 亚洲中文日韩欧美视频| 久久精品人人爽人人爽视色| 少妇猛男粗大的猛烈进出视频| 啦啦啦 在线观看视频| 啦啦啦中文免费视频观看日本| 人人妻人人爽人人添夜夜欢视频| 制服人妻中文乱码| 亚洲第一青青草原| 制服人妻中文乱码| 国产伦理片在线播放av一区| 黄色a级毛片大全视频| 亚洲精品美女久久久久99蜜臀| 最近最新中文字幕大全电影3 | 精品一区二区三区四区五区乱码| 精品国产超薄肉色丝袜足j| 久9热在线精品视频| 国产高清视频在线播放一区| 别揉我奶头~嗯~啊~动态视频| 每晚都被弄得嗷嗷叫到高潮| 最黄视频免费看| 成人国产一区最新在线观看| bbb黄色大片| 18禁观看日本| 中文字幕人妻熟女乱码| 中文字幕制服av| 操出白浆在线播放| 中文字幕制服av| 久久这里只有精品19| 97在线人人人人妻| 国产成人免费观看mmmm| 少妇精品久久久久久久| 一级片'在线观看视频| 午夜福利乱码中文字幕| 国产精品一区二区在线不卡| 亚洲av美国av| 日本av手机在线免费观看| 精品人妻熟女毛片av久久网站| 脱女人内裤的视频| 亚洲av日韩精品久久久久久密| 色综合婷婷激情| 香蕉丝袜av| 欧美日韩av久久| 18在线观看网站| 美女视频免费永久观看网站| 日韩有码中文字幕| 国产日韩欧美亚洲二区| 精品一区二区三区四区五区乱码| 99国产极品粉嫩在线观看| 操美女的视频在线观看| 亚洲国产看品久久| 91大片在线观看| 国产欧美亚洲国产| 王馨瑶露胸无遮挡在线观看| 肉色欧美久久久久久久蜜桃| 麻豆成人av在线观看| 女警被强在线播放| 国产在线一区二区三区精| 在线av久久热| 国产又色又爽无遮挡免费看| 国产人伦9x9x在线观看| 国产精品 国内视频| 国产一区二区三区视频了| av片东京热男人的天堂| 少妇被粗大的猛进出69影院|