• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Generalized Eigenvector Estimating Algorithm for Hermitian Matrix Pencil

    2022-10-29 03:31:00YingbinGao
    IEEE/CAA Journal of Automatica Sinica 2022年11期

    Yingbin Gao

    Abstract—Generalized eigenvector plays an essential role in the signal processing field. In this paper, we present a novel neural network learning algorithm for estimating the generalized eigenvector of a Hermitian matrix pencil. Differently from some traditional algorithms, which need to select the proper values of learning rates before using, the proposed algorithm does not need a learning rate and is very suitable for real applications. Through analyzing all of the equilibrium points, it is proven that if and only if the weight vector of the neural network is equal to the generalized eigenvector corresponding to the largest generalized eigenvalue of a Hermitian matrix pencil, the proposed algorithm reaches to convergence status. By using the deterministic discretetime (DDT) method, some convergence conditions, which can be satisfied with probability 1, are also obtained to guarantee its convergence. Simulation results show that the proposed algorithm has a fast convergence speed and good numerical stability. The real application demonstrates its effectiveness in tracking the optimal vector of beamforming.

    I. INTRODUCTION

    THE generalized Hermitian eigenvalue problem (GHEP)has been attracting great attention in many fields of signal processing and data analysis, such as adaptive beamforming [1], wireless communications [2], blind source separation[3], data classification [4] and fault diagnosis [5]. Generally,the GHEP is to find a vectorw∈Rn×1and a scalar λ ∈R such that

    whereRy,Rx∈Rn×nare twon×nHermitian and positive definite matrices. The solution vectorwand scalar λ are called the generalized eigenvector and generalized eigenvalue,respectively, of the matrix pencil (Ry,Rx). Traditionally, some numerical algebraic approaches, such as the Jacobi-Davidson and Cholesky factorization, are implemented for the GHEP.However, these approaches are computationally intensive when dealing with higher dimensional input data [6]. Besides,for some scenarios, the sensors can only provide the sampled values of the signals. The matrix pencil is not explicitly given and has to be directly estimated from these sampled values.Hence, it is important to seek a fast and online algorithm for the GHEP adaptively.

    Recently, neural network approaches for the GHEP have attracted great attention [7]–[14]. Serving as an online approach, neural algorithm can avoid the computation of the covariance matrix and is suitable for high dimensional input data [15]–[18]. Based on neural network, a variety of learning algorithms for the GHEP have been proposed. For example,the recurrent neural network (RNN) algorithm [19], Yanget al.algorithm [20], canonical correlation analysis (CCA)algorithm [21], adaptive normalized Quasi-Newton (ANQN)algorithm [22] and generalized eigen-pairs extraction (GEPE)algorithm [23] can be used to estimate the first generalized eigenvector, which is defined by the generalized eigenvector corresponding to the largest generalized eigenvalue of the matrix pencil. Conversely, to compute the generalized eigenvector corresponding to the smallest generalized eigenvalue,which is referred to as the last generalized eigenvector hereafter, Nguyenet al.[24] proposed the generalized power (GP)algorithm and Liet al. [25] proposed the generalized Douglas minor (GDM) component analysis algorithm. Due to the fact that the first generalized eigenvector of the matrix pencil(Ry,Rx)is also the last generalized eigenvector of the matrix pencil (Rx,Ry), the above mentioned algorithms are equivalent in practice. For these algorithms, the convergence performance heavily lies on the learning rate: too small a value will lead to slow convergence and too large a value will lead to oscillation or divergence [21]. Hence, how to select the right learning rate becomes an important issue before using these algorithms.

    Generally, the neural network algorithm is described by its stochastic discrete-time (SDT) system, and it is a difficult task to directly study the SDT system when analyzing the convergence properties of these algorithms. In order to solve this problem, some indirect analysis methods have been proposed,such as the ordinary differential equations (ODE) method[19], the deterministic continuous-time (DCT) method [26]and the deterministic discrete-time (DDT) method [27].Among these methods, the DDT method is the most reasonable analysis approach since it can preserve the discrete-time nature of the original algorithms and provide some conditions to guarantee their convergence [28]. Due to these advantages,the DDT method has been widely used to analyze the neural network algorithms [24], [25], [29]–[33]. Unfortunately, the convergence conditions obtained in the above literatures are all related to the learning rate. For example, for the ANQN algorithm and the GDM algorithm, the learning rate should satisfy μ <2λn/(λ1-λn) and μ <0.2/λ1, respectively. Herein,λ1and λnare the largest and smallest generalized eigenvalues,respectively, of the matrix pencil (Ry,Rx). These convergence conditions are not suitable for real practice. Firstly, the range of learning rate is usually given by 0 <μ ≤1, and the value regions are greatly reduced by these restricted conditions. Secondly, in many cases, the generalized eigenvalues are unknown in advance, so it is difficult to choose the learning rate according to these convergence conditions.

    From the above analysis, the learning rate seems to be very important for both algorithms developing and their convergence analysis. However, is the learning rate an indispensable part for neural network algorithms? In this paper, in order to eliminate the effect of the learning rate, we propose a novel neural network algorithm for the GHEP. Differently from the previous algorithms, the proposed algorithm does not need a learning rate. Hence, the issue to select its value is avoided.Traditionally, during the process of analyzing the convergence properties via the DDT method, some restrictions are added to the learning rate in order to guarantee the establishment of some inequalities, which are necessary for the process of proof. However, since the learning rate has been removed, the analysis process of the proposed algorithm will also be quite different from those of the previous algorithms.Herein, we will try to analyze the proposed algorithm by using the DDT method in another way and derive some convergence conditions.

    The main contributions of this paper are summarized as follows. 1) To estimate the first generalized eigenvector, a novel algorithm is proposed when the matrix pencil is explicitly provided. 2) To prove the convergence result of the proposed algorithm, the fixed stability of the proposed algorithm is analyzed by the Lyapunov function approach. 3) The convergence analysis is accomplished by the DDT method and some convergence conditions are also obtained. 4) An online adaptive algorithm is derived when the generalized eigenvector is needed to be calculated directly from the input signal or data sequences.

    The remainder of this paper is organized as follows. Section II formulates the novel neural network algorithm for the GHEP.Section III investigates the properties of the equilibrium points. Section IV provides the online version of the proposed algorithm. Section V analyzes the convergence property of the proposed algorithm via the DDT method. Section VI presents some numerical simulation results to illustrate the effectiveness of the proposed algorithm. Section VII applies the proposed algorithm to solve the real problem of adaptive beamforming. Section VIII concludes this paper.

    II. PRELIMINARIES AND NOVEL LEARNING ALGORITHM

    A. Notations

    In order to have a better understanding of the symbols used throughout this paper, some essential notations are listed as follows.

    R: The autocorrelation matrix of input signal;

    x,y: The input signals;

    v: The generalized eigenvector;

    I: The identity matrix;

    w: The weight vector of neural network;

    z: The projection length ofwontov;

    λ: The generalized eigenvalue;

    δij: The Kronecker delta function;

    α: Forgetting factor.

    B. Generalized Eigen-Decomposition

    Traditionally, the learning rate is usually added before the square brackets to adjust the step size of the neural network algorithms. However, the learning rate does not appear in (7).Through comparing the structure of the proposed algorithm with those of some existing algorithms, the GDM algorithm for example [25], it seems that the learning rate is changed into the term 1 /[wT(k)Ryw(k)]. However, this equation is actually very different from the learning rate. The value range of the learning rate is 0 <μ ≤1, however, the term 1/[wT(k)Ryw(k)]has much wider value range because of the randomicity of the weight vectorw(k).

    For the proposed algorithm, we are interested in its equilibrium points. Specifically, we consider the following two questions.

    1) Does this algorithm have the ability to converge to the first generalized eigenvector?

    2) Does this algorithm have the unique convergence status?

    The above two questions mainly concern the finial convergence result of the proposed algorithm, and their answers will be given in the next section.

    III. STABILITY OF THE EQUILIBRIUM POINTS

    Before answering the above two questions, let us firstly seek out all the equilibrium points of the proposed algorithm.Denote the following matrix function:

    IV. ONLINE VERSION OF THE PROPOSED ALGORITHM

    Algorithm 1 Online Algorithm k=1 ?Ry(0), ?Rx(0),Qx(0)Initialization: Set and .Update: Repeat the following steps:?Ry(k), ?Rx(k),Qx(k)Step 1. Calculate by using (15)–(17).Step 2. Update by the following equation:w(k)w(k+1)=w(k)+■■■■■■Qx(k)?Ry(k)w(k)wT(k)?Ry(k)w(k)- w(k)wT(k)?Rx(k)w(k)■■■■■■. (18)Step 3. Set .k=k+1

    Although (18) and (7) are two different forms of the proposed algorithm, they are suitable for different cases. The online algorithm (18) is suitable for the scenario where the sensors can only provide the sampled values of the signals rather than the autocorrelation matrices. However, (7) needs that the matrix pencil is explicitly given.

    Next, we discuss the full computational complexity of the online algorithm. For clarity, the computation cost of each term is summarized in Table I. As a result, the online algorithm needs 1 0n2+6nmultiplications per updating, which has the same magnitude as the existing algorithms [24], [25].

    TABLE I COMPUTATIONAL COMPLEXITY

    V. CONVERGENCE CHARACTERISTIC ANALYSIS

    A. Analysis Preliminary

    In this section, we investigate the convergence characteristic of the proposed algorithm via the DDT method. Through adding the condition expectation to (18) and identifying the expected value as the next iteration, the DDT system of the online algorithm is obtained, which is justly equivalent to (7).That is to say, (7) can also be seen as the average version of the online algorithm and can describe the average dynamical behavior of the online algorithm (18).

    Prior to analysis, let us provide some preliminaries. Denote theRx-norm of the weight vector at the time instantkby

    B. Convergence Analysis in Case 1

    C. Convergence Analysis in Case 2

    D. Analysis Conclusions and Remarks

    Through comparing the results of Theorems 2 and 3, it is easy to conclude that the convergence results have no relationship with the two cases. And γ is only used to divide the two cases, and its value is selected in order to complete the proof.So combining the two theorems, the final analysis conclusion is obtained.

    Remark 2:The proposed algorithm is suitable for estimating the first generalized eigenvector of a matrix pencil. To track the generalized subspace spanned by several generalized eigenvectors, the nested orthogonal complement structure method in [24] can be used. When the multiple generalized eigenvectors are needed, the sequential extraction method in [25] can be adopted. Since the two methods are mature technologies and can be easily transplanted into the proposed algorithm, we do not discuss them in this paper, and interesting readers may refer to them for details.

    VI. NUMERICAL SIMULATIONS

    This section provides three simulation experiments to show the performance of the proposed algorithm. The first experiment aims to extract the first generalized eigenvector of a matrix pencil and compares the results with some existing algorithms. The second experiment serves to directly estimate the first generalized eigenvector from two input signals. The third experiment is designed to verify the correctness of the analysis conclusions obtained in Section V.

    A. Contrast Experiment

    In this part, the proposed algorithm, RNN algorithm [19],ANQN algorithm [22] and GEPE algorithm [12] are implemented to estimate the first generalized eigenvector of the matrix pencil (Ry,Rx) composed by the following two6×6 positive definite matrices, which are randomly generated by using the method in [28]

    The DC and norm curves of these algorithms are shown in Figs. 1 and 2, respectively. In Fig. 1, it is obvious that all of the DC curves converge to unit one, which means that these algorithms, including the proposed algorithm, have reached to the direction of the first generalized eigenvector. Among these algorithms, the proposed algorithm has the fastest convergence speed. From Fig. 2, we can see that all the norm curves of these algorithms reach to the convergence status at last.However, the convergence values are not the same. For the proposed algorithm, GDM algorithm and GEPE algorithm, the weight vector norms always increase at the beginning and then reaches a fixed value. Clearly, for the proposed algorithm, the dynamic behavior of the weight vector norm is consistent with the theoretical theory analysis in Section V. For the RNN algorithm and GDM algorithm, the norms gradually decrease to the final value. Due to the existence of normalization operation, the weight vector norms of the GP algorithm and ANQN algorithm are equal to unit one during all the iterations. Except for the GP algorithm and the ANQN algorithm,the weight vector norm of the proposed algorithm converges faster than those of the other three algorithms.

    Fig. 1. Direction cosine curves of these algorithms.

    B. Online Extraction

    In this experiment, the proposed algorithm is used to estimate the first generalized eigenvector directly from the input signals. The results are also compared with those obtained by the RNN algorithm [19], ANQN algorithm [22], GEPE algorithm [12], GP algorithm [24] and GDM algorithm [25]. Consider the following two equations:algorithm and μ=0.005 for the RNN algorithm. Clearly, all the convergence conditions can be satisfied through these settings. Besides, we set λ (0)=100 for the ANQN algorithm. All of these algorithms are tested throughT=100 independent runs.

    Fig. 2. Norm curves of these algorithms.

    Figs. 3 and 4 provide the average DC and SSD curves of these algorithms, respectively. From Fig. 3, we can see that the DC curve of the proposed algorithm converges to unit one after about 1000 iterations, which means that the proposed algorithm can directly extract the first generalized eigenvector from the input signals. When compared with other algorithms, the proposed algorithm shows the fastest convergence speed. In Fig. 4, the simulation results of the last 4000 iterations are shown separately by a small figure. From this figure,we observe that the final SSD value of the proposed algorithm is less than those of other algorithms, which means that the proposed algorithm has the best numerical stability among these algorithms.

    Fig. 3. DC curves for online extraction.

    Fig. 4. SSD curves for online extraction.

    C. Convergence Experiment

    In this experiment, we also use the proposed algorithm to compute the first generalized eigenvector of the matrix pencil composed by (64) and (65). Since the tracking ability has been proven in the above two experiments, we concern other two evaluated functions in this experiment. The first one is the

    Same as the above experiments, the initial weight vector is also randomly generated. Figs. 5 and 6 show the simulation results when the following initial weight vector is adopted.

    Fig. 5. Projection length curves.

    VII. ADAPTIVE BEAMFORMING

    Recently, array signal processing has been widely used in the area of wireless communication systems. In cellular mobile communication, with the increment of the communication channels, it is essential to improve the frequency spectrum reuse technique (FSRT). Adaptive beamforming, which is also called spatial filtering, is an integral part of FSRT and has attracted much more attention [39]–[53]. Through weighted summing the measured signals observed by an array of antennas, the spatial filter can form a directional beam,which ultimately leads to the maximum expected signal and the minimization of noises from the environment and interferences from other subscribers. If the weights in the antennas can be automatically adjusted with the signal environment, it is called adaptive beamforming [54].

    Let us consider the scenario where the impinging signals are narrowband. Fig. 7 provides an example of a uniform linear array, which hasnantenna elements with half-wavelength spacing. The amplitude and phase of the impinging signal in each channel are adjusted by a weighted coefficientwi(k),i=1,2,...,n, and the array output is given by

    Fig. 6. Entries of wˉ.

    and

    Fig. 7. Narrowband beamformer.

    Fig. 8. Beam pattern.

    Fig. 8 shows the simulation results obtained by the proposed algorithm and batch method (i.e., the exact values of the first generalized eigenvector), which are marked with the red line and green line, respectively. From this figure, we can see that the main beamforming has a strong main lobe around the desired signal and the interferences are greatly suppressed.Besides, the results of the proposed algorithm are similar with those of the batch method, which means the proposed algorithm has good performance of tracking the optimal beamforming vector.

    VIII. CONCLUSION

    In this paper, we devoted to eliminating the affection of learning rate for neural network algorithms and proposed a novel algorithm without learning rate, which can be used to estimate the first generalized eigenvector of a matrix pencil.The stability and the convergence characteristic of the proposed algorithm are also analyzed by using the Lyapunov method and the DDT method, respectively. Numerical simulations and real applications were carried out to show the performance of the proposed algorithm. Since the operations in the proposed algorithm are simple matrix addition and multiplications, it is easy for the systolic array implementation.

    As a future research direction, we may focus on how to reduce the computation complexity and develop new fast and stable algorithms without learning rate. Since there are so many algorithms reported in literatures, an interesting idea is to build a general framework, which can remove the learning rates in these algorithms. Besides, improving algorithm’s robustness is also important. We plan to address these issues in the future.

    9热在线视频观看99| 国产亚洲精品一区二区www| 两性夫妻黄色片| 亚洲九九香蕉| 久热爱精品视频在线9| 女人精品久久久久毛片| 日日干狠狠操夜夜爽| 日本 av在线| 欧美 亚洲 国产 日韩一| 国产成人欧美在线观看| 欧美日韩视频精品一区| 日韩大码丰满熟妇| 51午夜福利影视在线观看| 丝袜人妻中文字幕| 亚洲人成电影观看| 99国产精品一区二区蜜桃av| 国产精华一区二区三区| 高清毛片免费观看视频网站 | 成人黄色视频免费在线看| 在线观看午夜福利视频| 最近最新免费中文字幕在线| 最近最新免费中文字幕在线| 18禁裸乳无遮挡免费网站照片 | 色综合欧美亚洲国产小说| 免费人成视频x8x8入口观看| 母亲3免费完整高清在线观看| 日韩av在线大香蕉| 精品福利永久在线观看| 久久久精品欧美日韩精品| 国产免费现黄频在线看| av欧美777| 女人高潮潮喷娇喘18禁视频| 日韩国内少妇激情av| 精品卡一卡二卡四卡免费| 免费观看精品视频网站| 亚洲情色 制服丝袜| 一级毛片精品| 国产乱人伦免费视频| 999久久久国产精品视频| avwww免费| 久久人妻福利社区极品人妻图片| 真人一进一出gif抽搐免费| 精品无人区乱码1区二区| 欧美一级毛片孕妇| 日韩国内少妇激情av| 亚洲成人久久性| 黄片小视频在线播放| 日日干狠狠操夜夜爽| av片东京热男人的天堂| 久久久久久久久中文| 中文亚洲av片在线观看爽| 制服人妻中文乱码| 可以免费在线观看a视频的电影网站| 久久99一区二区三区| 欧美日本中文国产一区发布| 黄片播放在线免费| 久久久精品欧美日韩精品| 欧美日韩中文字幕国产精品一区二区三区 | 我的亚洲天堂| 亚洲va日本ⅴa欧美va伊人久久| 亚洲色图 男人天堂 中文字幕| 最近最新免费中文字幕在线| 亚洲精华国产精华精| 欧美日韩中文字幕国产精品一区二区三区 | 18禁黄网站禁片午夜丰满| 夫妻午夜视频| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品第一综合不卡| 视频区欧美日本亚洲| 成人黄色视频免费在线看| 国产成人欧美在线观看| 色老头精品视频在线观看| 亚洲精品一区av在线观看| 免费高清视频大片| 国产精品偷伦视频观看了| 在线播放国产精品三级| 女同久久另类99精品国产91| 国产91精品成人一区二区三区| 免费搜索国产男女视频| 欧洲精品卡2卡3卡4卡5卡区| 老司机亚洲免费影院| 国产精品av久久久久免费| 久久久久国内视频| 9色porny在线观看| 激情视频va一区二区三区| 久久精品国产清高在天天线| 国产精华一区二区三区| 国产激情欧美一区二区| 亚洲 国产 在线| www.999成人在线观看| 日韩高清综合在线| 精品一区二区三区av网在线观看| 亚洲 欧美 日韩 在线 免费| 老汉色av国产亚洲站长工具| 免费在线观看黄色视频的| 日日夜夜操网爽| 色哟哟哟哟哟哟| 亚洲久久久国产精品| 欧美精品一区二区免费开放| 国产高清国产精品国产三级| 亚洲 欧美 日韩 在线 免费| 久久精品影院6| 青草久久国产| 最近最新中文字幕大全电影3 | 中文字幕色久视频| 水蜜桃什么品种好| 午夜免费观看网址| 久久精品91无色码中文字幕| 成人18禁在线播放| 久热爱精品视频在线9| 男女做爰动态图高潮gif福利片 | 国产色视频综合| 成人18禁高潮啪啪吃奶动态图| 757午夜福利合集在线观看| 伊人久久大香线蕉亚洲五| 日本精品一区二区三区蜜桃| 女警被强在线播放| 国产免费男女视频| 一级a爱片免费观看的视频| 露出奶头的视频| 三级毛片av免费| 久久久久久久久中文| 天天躁夜夜躁狠狠躁躁| 久久精品人人爽人人爽视色| 欧美日韩一级在线毛片| 精品国产乱子伦一区二区三区| 变态另类成人亚洲欧美熟女 | 天天添夜夜摸| 美女 人体艺术 gogo| 亚洲色图综合在线观看| 纯流量卡能插随身wifi吗| 欧美激情 高清一区二区三区| 日韩大码丰满熟妇| 欧美久久黑人一区二区| 精品国产超薄肉色丝袜足j| 久久精品aⅴ一区二区三区四区| 精品国产美女av久久久久小说| 亚洲精华国产精华精| 夜夜夜夜夜久久久久| 91精品国产国语对白视频| 国产亚洲精品一区二区www| 成年版毛片免费区| 精品福利观看| 涩涩av久久男人的天堂| 亚洲自偷自拍图片 自拍| 欧美日韩精品网址| 国产乱人伦免费视频| 天天躁夜夜躁狠狠躁躁| 色哟哟哟哟哟哟| 动漫黄色视频在线观看| 日本欧美视频一区| 久久国产精品男人的天堂亚洲| 两个人免费观看高清视频| 久久久水蜜桃国产精品网| 啪啪无遮挡十八禁网站| 国产精华一区二区三区| 91在线观看av| 国产xxxxx性猛交| 久久亚洲真实| 久久国产精品人妻蜜桃| ponron亚洲| 久久久久久大精品| 精品久久久久久成人av| 久热爱精品视频在线9| 岛国视频午夜一区免费看| 麻豆国产av国片精品| 亚洲精品久久午夜乱码| 亚洲精品国产区一区二| 国产亚洲欧美在线一区二区| av网站在线播放免费| 成年版毛片免费区| 日本精品一区二区三区蜜桃| 久久久国产成人精品二区 | 一个人观看的视频www高清免费观看 | 别揉我奶头~嗯~啊~动态视频| 一级毛片高清免费大全| 人人妻,人人澡人人爽秒播| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久成人av| 在线观看www视频免费| 亚洲精品国产精品久久久不卡| 女警被强在线播放| 亚洲午夜精品一区,二区,三区| avwww免费| a级毛片在线看网站| 亚洲精品国产一区二区精华液| 亚洲国产精品合色在线| 午夜福利,免费看| 18禁裸乳无遮挡免费网站照片 | 高清毛片免费观看视频网站 | 亚洲片人在线观看| 两性夫妻黄色片| 久久青草综合色| 99国产极品粉嫩在线观看| 亚洲欧美一区二区三区黑人| 国产日韩一区二区三区精品不卡| 最好的美女福利视频网| 高清毛片免费观看视频网站 | 久久国产亚洲av麻豆专区| www.自偷自拍.com| 午夜福利在线观看吧| 黄色a级毛片大全视频| 免费在线观看影片大全网站| 大陆偷拍与自拍| 成年人黄色毛片网站| 99香蕉大伊视频| 日日爽夜夜爽网站| 欧美av亚洲av综合av国产av| 丝袜人妻中文字幕| 看黄色毛片网站| 丁香欧美五月| 一区二区三区精品91| 看片在线看免费视频| 丁香欧美五月| 99精品久久久久人妻精品| netflix在线观看网站| 在线观看一区二区三区| 久久香蕉激情| 免费日韩欧美在线观看| 久久天堂一区二区三区四区| 久99久视频精品免费| 人妻久久中文字幕网| 亚洲专区国产一区二区| 国产精品九九99| 午夜老司机福利片| 麻豆成人av在线观看| 久久久久久久午夜电影 | 99热只有精品国产| 免费在线观看亚洲国产| av免费在线观看网站| 欧美黑人欧美精品刺激| 国产极品粉嫩免费观看在线| 亚洲精品一卡2卡三卡4卡5卡| 宅男免费午夜| 老司机午夜十八禁免费视频| 亚洲专区国产一区二区| videosex国产| 欧美成人免费av一区二区三区| 好看av亚洲va欧美ⅴa在| 美女午夜性视频免费| 久久亚洲真实| 欧美乱码精品一区二区三区| 亚洲成av片中文字幕在线观看| 日本vs欧美在线观看视频| 国产精品久久久久成人av| 搡老岳熟女国产| 欧美乱妇无乱码| 久久精品国产综合久久久| 男女做爰动态图高潮gif福利片 | 免费在线观看亚洲国产| 韩国av一区二区三区四区| 啦啦啦免费观看视频1| 麻豆av在线久日| 亚洲精品av麻豆狂野| 美女大奶头视频| tocl精华| 国产精品98久久久久久宅男小说| 欧美乱妇无乱码| 人妻丰满熟妇av一区二区三区| 久久久国产欧美日韩av| 欧美日韩福利视频一区二区| 美女国产高潮福利片在线看| 老汉色av国产亚洲站长工具| 成人18禁在线播放| 女人高潮潮喷娇喘18禁视频| 亚洲av第一区精品v没综合| 亚洲免费av在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产欧美日韩综合在线一区二区| 国产成人av激情在线播放| 国产亚洲精品综合一区在线观看 | 国产三级黄色录像| bbb黄色大片| 精品高清国产在线一区| 三上悠亚av全集在线观看| 欧美日本中文国产一区发布| 成人黄色视频免费在线看| 人人妻人人添人人爽欧美一区卜| 激情视频va一区二区三区| 黄片小视频在线播放| 午夜免费激情av| 精品国产乱子伦一区二区三区| 身体一侧抽搐| 人人妻人人爽人人添夜夜欢视频| 在线观看午夜福利视频| 国内久久婷婷六月综合欲色啪| 欧美日韩精品网址| 女生性感内裤真人,穿戴方法视频| 高清av免费在线| 日本免费一区二区三区高清不卡 | 长腿黑丝高跟| 免费一级毛片在线播放高清视频 | 别揉我奶头~嗯~啊~动态视频| 丰满人妻熟妇乱又伦精品不卡| 日韩大尺度精品在线看网址 | 久久香蕉精品热| 亚洲中文字幕日韩| 日韩欧美一区视频在线观看| 交换朋友夫妻互换小说| 欧洲精品卡2卡3卡4卡5卡区| 岛国在线观看网站| 久久亚洲精品不卡| 日韩人妻精品一区2区三区| 多毛熟女@视频| 一级毛片高清免费大全| 精品国产超薄肉色丝袜足j| 久久亚洲精品不卡| tocl精华| 欧美成人免费av一区二区三区| 日韩免费高清中文字幕av| 亚洲 国产 在线| 国产亚洲欧美在线一区二区| 国产精品美女特级片免费视频播放器 | 99久久国产精品久久久| 激情视频va一区二区三区| 亚洲国产精品一区二区三区在线| 黑人操中国人逼视频| 国产精品免费一区二区三区在线| 午夜成年电影在线免费观看| 欧美在线黄色| 桃色一区二区三区在线观看| 韩国精品一区二区三区| 中文字幕人妻熟女乱码| 国产无遮挡羞羞视频在线观看| 在线看a的网站| 免费在线观看完整版高清| 三级毛片av免费| 黄网站色视频无遮挡免费观看| 亚洲国产精品一区二区三区在线| 美国免费a级毛片| 国产黄a三级三级三级人| 亚洲国产中文字幕在线视频| 嫩草影视91久久| 一级,二级,三级黄色视频| 亚洲精品av麻豆狂野| 午夜免费观看网址| 成人18禁在线播放| 波多野结衣av一区二区av| 香蕉国产在线看| 亚洲色图av天堂| 午夜福利欧美成人| 最近最新中文字幕大全免费视频| av片东京热男人的天堂| 精品国产乱子伦一区二区三区| 精品国产亚洲在线| 久久精品国产清高在天天线| 国产精品久久视频播放| 亚洲成a人片在线一区二区| 亚洲av片天天在线观看| 国产精品综合久久久久久久免费 | 色在线成人网| av超薄肉色丝袜交足视频| 99久久综合精品五月天人人| 亚洲伊人色综图| 一区在线观看完整版| 一级a爱视频在线免费观看| 成人免费观看视频高清| 久久人妻av系列| 国产又色又爽无遮挡免费看| 18禁黄网站禁片午夜丰满| 亚洲五月色婷婷综合| 俄罗斯特黄特色一大片| xxx96com| 欧美午夜高清在线| 亚洲精品国产色婷婷电影| 久久国产精品男人的天堂亚洲| 日韩一卡2卡3卡4卡2021年| 亚洲一区二区三区色噜噜 | 日韩大尺度精品在线看网址 | 亚洲五月天丁香| 91老司机精品| 美女福利国产在线| 最新在线观看一区二区三区| netflix在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 久久中文字幕一级| 国产精品久久电影中文字幕| 夜夜看夜夜爽夜夜摸 | 日韩高清综合在线| 国产精品一区二区精品视频观看| 亚洲aⅴ乱码一区二区在线播放 | tocl精华| 欧美亚洲日本最大视频资源| 真人一进一出gif抽搐免费| 一区二区三区激情视频| 18禁裸乳无遮挡免费网站照片 | 最新美女视频免费是黄的| 一a级毛片在线观看| www国产在线视频色| av中文乱码字幕在线| 热99re8久久精品国产| 老汉色∧v一级毛片| 大香蕉久久成人网| 亚洲中文字幕日韩| 久久九九热精品免费| 亚洲成人免费电影在线观看| 视频在线观看一区二区三区| 国产视频一区二区在线看| 精品福利永久在线观看| 亚洲色图av天堂| 满18在线观看网站| 女性被躁到高潮视频| 天堂中文最新版在线下载| av电影中文网址| 日韩视频一区二区在线观看| netflix在线观看网站| 国产成人精品在线电影| 欧美日韩国产mv在线观看视频| 色综合站精品国产| netflix在线观看网站| 亚洲av电影在线进入| 美女福利国产在线| videosex国产| 亚洲午夜理论影院| 精品国产乱码久久久久久男人| 丝袜美足系列| 国产成人精品在线电影| 91九色精品人成在线观看| 久久精品人人爽人人爽视色| netflix在线观看网站| 嫩草影院精品99| 精品卡一卡二卡四卡免费| 精品久久久久久久毛片微露脸| 色综合婷婷激情| 亚洲av电影在线进入| 热re99久久国产66热| 国产精品九九99| 国产精品野战在线观看 | 在线十欧美十亚洲十日本专区| 日本免费a在线| 美国免费a级毛片| 久久人妻福利社区极品人妻图片| 一本大道久久a久久精品| 久久人妻熟女aⅴ| 久久精品亚洲熟妇少妇任你| 国产亚洲欧美在线一区二区| netflix在线观看网站| 嫩草影院精品99| 国产熟女xx| av在线天堂中文字幕 | 亚洲精品美女久久av网站| 一级毛片女人18水好多| 美女高潮到喷水免费观看| 99国产精品99久久久久| 叶爱在线成人免费视频播放| 在线十欧美十亚洲十日本专区| 亚洲一码二码三码区别大吗| 亚洲色图av天堂| 在线看a的网站| 亚洲午夜精品一区,二区,三区| 免费搜索国产男女视频| 女同久久另类99精品国产91| 如日韩欧美国产精品一区二区三区| 亚洲五月色婷婷综合| 超色免费av| 丰满饥渴人妻一区二区三| 真人一进一出gif抽搐免费| 亚洲三区欧美一区| 国产精品自产拍在线观看55亚洲| 性色av乱码一区二区三区2| 交换朋友夫妻互换小说| 91大片在线观看| 久久久久亚洲av毛片大全| 电影成人av| 久久精品国产综合久久久| 午夜福利,免费看| 国产亚洲欧美精品永久| 免费看a级黄色片| 欧美日韩视频精品一区| 欧美激情久久久久久爽电影 | 国产又爽黄色视频| 在线观看一区二区三区激情| 久久久久九九精品影院| 不卡av一区二区三区| 国产黄a三级三级三级人| 久久午夜综合久久蜜桃| 巨乳人妻的诱惑在线观看| 性少妇av在线| 身体一侧抽搐| cao死你这个sao货| 看免费av毛片| 久久狼人影院| 久久精品国产99精品国产亚洲性色 | 亚洲精品在线美女| 国产成年人精品一区二区 | 99久久久亚洲精品蜜臀av| 宅男免费午夜| 97超级碰碰碰精品色视频在线观看| 一边摸一边做爽爽视频免费| 欧美激情高清一区二区三区| 人人妻人人添人人爽欧美一区卜| 一进一出好大好爽视频| 精品久久久久久电影网| 亚洲成人免费电影在线观看| 久久久久久久精品吃奶| 香蕉久久夜色| 国产精品一区二区三区四区久久 | 超碰97精品在线观看| 久久天躁狠狠躁夜夜2o2o| 日韩免费高清中文字幕av| 国产一区二区在线av高清观看| 国产高清videossex| 国产高清激情床上av| 久久影院123| 欧美激情极品国产一区二区三区| 午夜福利影视在线免费观看| 国产精品 国内视频| 欧美日韩黄片免| 日本wwww免费看| 色在线成人网| 国产av一区在线观看免费| 亚洲精品美女久久久久99蜜臀| 午夜日韩欧美国产| 男女下面插进去视频免费观看| 黑人巨大精品欧美一区二区mp4| 久久精品成人免费网站| 日韩精品中文字幕看吧| 欧美激情极品国产一区二区三区| 十八禁网站免费在线| 十分钟在线观看高清视频www| 国产无遮挡羞羞视频在线观看| 免费人成视频x8x8入口观看| 好看av亚洲va欧美ⅴa在| 色综合站精品国产| 看免费av毛片| 亚洲男人天堂网一区| 国产精品永久免费网站| 亚洲国产看品久久| 成人亚洲精品av一区二区 | 午夜久久久在线观看| 日本精品一区二区三区蜜桃| 久久精品国产综合久久久| 免费人成视频x8x8入口观看| 色哟哟哟哟哟哟| 桃色一区二区三区在线观看| 少妇被粗大的猛进出69影院| 国产精品电影一区二区三区| 男女之事视频高清在线观看| 中文亚洲av片在线观看爽| bbb黄色大片| 美女午夜性视频免费| 久久人人爽av亚洲精品天堂| 国产精品自产拍在线观看55亚洲| 97人妻天天添夜夜摸| 国产av又大| 久久人人精品亚洲av| 黄色丝袜av网址大全| av有码第一页| 色老头精品视频在线观看| 欧美乱妇无乱码| 免费看a级黄色片| 丰满人妻熟妇乱又伦精品不卡| 日韩三级视频一区二区三区| 国产精品乱码一区二三区的特点 | 欧美久久黑人一区二区| 亚洲狠狠婷婷综合久久图片| 97人妻天天添夜夜摸| 国产熟女午夜一区二区三区| 色在线成人网| 丰满迷人的少妇在线观看| 久久久精品欧美日韩精品| 国产精品98久久久久久宅男小说| 操出白浆在线播放| 国产精品香港三级国产av潘金莲| 免费观看精品视频网站| 精品免费久久久久久久清纯| 热re99久久精品国产66热6| 夜夜夜夜夜久久久久| 久久精品国产亚洲av香蕉五月| 黄色怎么调成土黄色| 久久人妻熟女aⅴ| 丰满饥渴人妻一区二区三| 女人精品久久久久毛片| 久久精品国产清高在天天线| 国产亚洲精品综合一区在线观看 | 大型黄色视频在线免费观看| 免费久久久久久久精品成人欧美视频| 日本黄色日本黄色录像| 中文字幕精品免费在线观看视频| 一区二区三区精品91| 欧美日本亚洲视频在线播放| 久久影院123| 俄罗斯特黄特色一大片| 亚洲人成网站在线播放欧美日韩| 性少妇av在线| 宅男免费午夜| 女人爽到高潮嗷嗷叫在线视频| 又大又爽又粗| 最好的美女福利视频网| 国产aⅴ精品一区二区三区波| 久久久久久大精品| 久热爱精品视频在线9| 精品无人区乱码1区二区| 国产精品久久久人人做人人爽| 色综合婷婷激情| 18美女黄网站色大片免费观看| 波多野结衣高清无吗| 高清在线国产一区| 日韩视频一区二区在线观看| 在线观看免费视频日本深夜| 国产精品秋霞免费鲁丝片| 国产精品久久久人人做人人爽| 丝袜美足系列| 一边摸一边抽搐一进一小说| 欧美+亚洲+日韩+国产| 在线播放国产精品三级| 天天添夜夜摸| 天堂俺去俺来也www色官网| 两人在一起打扑克的视频| 欧美激情 高清一区二区三区| 亚洲一区二区三区不卡视频| 两性夫妻黄色片| 啦啦啦免费观看视频1| 中文字幕av电影在线播放| av超薄肉色丝袜交足视频|