• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Receding-Horizon Trajectory Planning for Under-Actuated Autonomous Vehicles Based on Collaborative Neurodynamic Optimization

    2022-10-29 03:30:20JiasenWangJunWangandQingLongHan
    IEEE/CAA Journal of Automatica Sinica 2022年11期

    Jiasen Wang,, Jun Wang,, and Qing-Long Han,

    Abstract—This paper addresses a major issue in planning the trajectories of under-actuated autonomous vehicles based on neurodynamic optimization. A receding-horizon vehicle trajectory planning task is formulated as a sequential global optimization problem with weighted quadratic navigation functions and obstacle avoidance constraints based on given vehicle goal configurations. The feasibility of the formulated optimization problem is guaranteed under derived conditions. The optimization problem is sequentially solved via collaborative neurodynamic optimization in a neurodynamics-driven trajectory planning method/procedure. Simulation results with under-actuated unmanned wheeled vehicles and autonomous surface vehicles are elaborated to substantiate the efficacy of the neurodynamics-driven trajectory planning method.

    I. INTRODUCTION

    AUTONOMOUS vehicles are of critical importance for many applications [1], [2] such as cooperative tracking[3], surveillance [4], search and rescue [5], parcel delivery [6],environment monitoring [7], environment exploration [8], adhoc communication [9], [10], land and marine transport[11]–[13], etc. Typical vehicles include unmanned wheeled vehicles (UWVs) [14]–[16], autonomous surface vehicles(ASVs) [17]–[20], unmanned marine vehicles (UMVs) [21],[22], and autonomous underwater vehicles (AUVs) [23]–[25].Motion planning is a fundamental module for task completion by using autonomous vehicles [26]–[31].

    Under-actuated vehicles refer to vehicles with fewer actuators than their degrees of freedom. Most land and marine vehicles are under-actuated. Trajectory planning for autonomous vehicles is to plan vehicle motion trajectories from their start configurations to goal configurations, after task assignment[26], [27], [32]. Trajectory planning of under-actuated vehicles is difficult due to their highly limited feasible trajectory spaces. In addition, under-actuated vehicles are vulnerable to obstacle collisions because they cannot be controlled to move in every degree of freedom.

    Navigation functions (NFs) are widely used for vehicle navigation planing. For example, differentiable navigation functions are developed for robot navigation [33]. Based on the NFs in [33], an exact method for robot trajectory planning is developed [34]. Extensions of NFs in [33], [34] are available for vehicle trajectory planning [35]–[39]. For example, an NF with heading directions of vehicles is used for trajectory planning of nonholonomic wheeled vehicles, and the closed-loop navigation system is proven to be asymptotically stable [37].Another NF is developed for vehicle trajectory planning in unknown environments [39]. In addition to continuously differentiable NFs, piecewise differentiable NFs are also available for trajectory planning; e.g., [26], [40].

    Besides NF-based approaches, several other approaches are also available; e.g., rule-based methods [4], optimization methods [41]–[44], search methods [45], learning methods[46], information fusion methods [47], [48], and their combinations [43], [48]. For example, a bio-inspired trajectory planning method is proposed for under-actuated vehicles working in maze environments [4]. A Hamilton-Jacobi optimization method is used for the trajectory planning of under-actuated drifters in river environments [41]. Evolutionary optimization and fuzzy control methods are used for the trajectory planning of two cooperative mobile robots [42]. A fine-to-coarse search algorithm is developed for robots trajectory planning in regionalized environments [45]. Recently, an NF based on one-dimensional NFs is used in model predictive control for vehicle trajectory planning in static and dynamic environments [43]. A reinforcement learning trajectory planning method is developed based on neural networks and grid representations [46]. A model predictive control algorithm is proposed for long-distance autonomous underwater vehicle trajectory planning based on the declination and inclination components of the geomagnetic field and convex quadratic programming [44]. A service vehicle is navigated based on a robust kinematic control law and data from multiple sensors[47]. A navigation method is presented in [48] based on a brain-machine interface with electroencephalograph (EEG)signals.

    Receding-horizon trajectory planning is carried out by sequentially solving optimization problems with an NF and collision-avoidance constraints in a forward-moving window(finite-time horizon). Several receding-horizon vehicle trajectory planning methods are developed [27], [40], [43], [44],[49]–[53]. Specifically, receding-horizon trajectory planning methods are proposed for mobile robots based on an utility function and admissible velocity constraints [49], for unicycles based on piecewise differentiable NFs [40], for mobile robots based on randomized optimization [50], for mobile vehicles based on passivity and continuously differentiable NFs [51], for mobile vehicles via sampling-parametrization[52], for unmanned aerial vehicles via sequential convex optimization [27], for high-speed ground vehicles based on optimization of references [53], for autonomous vehicles based on convex optimization [43], and for AUVs based on quadratic programming [44]. In [40], [51], [52], discrete sampling optimization (DSO) is used for approximately solving optimization problems. Because of the approximation nature, the planned trajectories by using DSO may violate velocity or input constraints [40].

    Neurodynamic approaches are also applied for trajectory planning. For example, a competitive neural network for trajectory planning of a nonholonomic mobile robot is developed [54], where the neural network is used to generate robotic trajectory. In addition to neurodynamics-driven trajectory planning, neurodynamic approaches are also applied for model predictive control [55], robust pole assignment [56],velocity estimation [57], command optimization [24], and vehicle task assignments [32], etc.

    Although neurodynamic optimization appears in some applications, it has not yet been used for the receding-horizon planning of under-actuated vehicles. It is interesting and meaningful to analyze global convergences of such a planning approach in the presence of kinetics, kinematics, and collision-avoidance constraints.

    In this paper, a neurodynamics-driven receding-horizon trajectory planning method is presented for under-actuated vehicles. The receding-horizon trajectory planning is formulated as a sequential global optimization problem, and solved by using collaborative neurodynamic optimization. The contributions of the paper are twofold: 1) The receding-horizon trajectory planning of under-actuated vehicles is formulated as a sequential optimization problem with kinetic, kinematic, collision-avoidance constraints. Conditions are derived for ensuring the feasibility of the sequential optimization problem. 2)The formulated problem is solved via collaborative neurodynamic optimization and conditions are derived for the global convergence of the neurodynamics-driven trajectory planning method.

    The differences of the proposed method and existing methods are multifaceted. For example, both kinematics and kinetics are considered herein, whereas kinetics is not considered in[4], [35], [37], [47]. Vehicle kinetics models the dynamic capability of vehicles in motion. Trajectory planning without considering kinetics would often result in the infeasibility of planned trajectories for given vehicles. That is, trajectory planning with both kinetic and kinematic constraints is more practical. A backstepping-based nonsmooth planning and control method in [36] is applicable for navigating unicycle mobile robots with both kinematics and kinetics, it may not be applied to other vehicles such as under-actuated ASVs. In addition, terminal kinematic chattering behaviors [36], [40]are avoided herein via terminal optimization. Moreover, different from the receding-horizon planning approach in [51],no operation with singularity is used herein, and the objective functions are, rather than assumed to be, continuously differentiable. At last, unlike the Lyapunov-based navigation approach in [37] and receding-horizon navigation approach in[50], the neurodynamics-driven method herein is globally convergent rather than locally convergent.

    The rest of the paper is organized as follows. Preliminaries are provided in Section II. The neurodynamics-driven trajectory planning method is described in Section III. Specific paradigms on UWVs and ASVs are discussed in Section IV.Simulation results on UWVs and ASVs are elaborated in Section V. Conclusions are given in Section VI.

    II. PRELIMINARIES

    This section provides necessary background knowledge to facilitate understanding the results in subsequent sections.

    A. Navigation Functions

    B. Collaborative Neurodynamic Optimization

    Consider a general constrained optimization problem

    Collaborative neurodynamic optimization (CNO) proposed in [59] is a hybrid intelligent framework for global optimization by employing multiple neurodynamic models for scatter local search and meta-heuristics (e.g., particle swarm optimization) for initial state updating. CNO is proven to be almost surely convergent to the global optima of global optimization problems [59].

    III. RECEDING-HORIZON TRAJECTORY PLANNING

    A. Problem Formulation

    B. Planning Procedure

    Procedure 1 Trajectory Planning Procedure 1 Set current goal waypoint index , current time instant ,initial state , , ; Set for such that , , is visible at ,, and is visible at for ; Set for such that ; Set values for T,( ), ξ, Q, P, R, ; ; , ,;t <Tp p(t)∈B(ˉpN,rN) ˉpN ??p(t+δT)i=1 t=0 ν(0)=0 η(0)=[p(0)T,ψ(0)]T z(0)=[η(0)T,ν(0)T]T ˉpj j=1,...,N φ(ˉp j)>φ(ˉp j+1) ˉpN =pd ˉp1 p(0)φ(p(0))>φ(ˉp1) ˉpj+1 ˉpj 1 ≤j ≤N-1 r j >0 j=1,...,N B(ˉp j,rj)∩B(ˉpk,rk)=?, ?j ≠k Tc T ≥Tc Tp δT =T-Tc ?τ(s)=0 ?z(s)=z(s|?τ(s),z(0))s ∈[0,δT]2 while but not ( and ) do τ*(s) s ∈[t,t+T]J(t,p,ˉpi)3 Obtain for by solving problem (4) with cost function using CNO;z*(s)=z(s|τ*(s),z(t)) s ∈[t,t+T]4 for ;ˉpi ?p*(t+T) ?p(t+δT)≠ˉpi 5 if and then τ(s)=τ*(s) z(s)=z*(s) s ∈[t,t+Tc]6 , for ;?τ(s)=τ*(s) ?z(s)=z(s|?τ(s),z(t)) s ∈[t,t+T]7 , for ;8 ;9 elseˉpi ??p(t+δT)t=t+Tc 10 if then ?τ(s)= ?τ(s,ˉpi,?z(t+δT),Tc) s ∈(t+δT,t+T]11 for ;12 else ?τ(s)= ?τ(s,ˉpi-1,?z(t+δT),Tc) s ∈(t+δT,t+T]13 for ;14 end ?z(s)=z(s|?τ(s),?z(t+δT)) s ∈(t+δT,t+T]15 for ;τ(s)= ?τ(s) z(s)=?z(s) s ∈[t,t+Tc]16 , for ;t=t+Tc 17 ;18 endˉpi ??p(t+δT) p(t)∈B(ˉpi,ri) 1 ≤i ≤N-1 19 if , , and then i=i+1 20 ;21 end 22 end t <Tp 23 while do τ*(s) s ∈[t,t+T]24 Obtain for by solving problem (5) using CNO;τ(s)=τ*(s) z(s)=z*(s) s ∈[t,t+Tc]25 , for ;26 ;27 end t=t+Tc

    The procedure of the neurodynamics-driven trajectory planning approach is detailed in Procedure 1. Line 1 is to initialize states, waypoints, radii, problem parameters, etc. In particular,iis an index for the current waypoint and initialized as one; i.e., the first waypoint. It ends with valueN; i.e., the goal position. The current timetindicates that the current planning horizon is . Lines 2-21 are steps in a while loop for driving the vehicle from the initial position to the neighborhood of . In Line 2, the while loop runs if the visibility or proximity condition is not verified. In Lines 3 and 4, and for are obtained by using the solution of problem (4). In Lines 6 and 7, the planned control input , planned trajectory , backup control input ,and backup trajectory are updated by using and[t,t+T]p(0)B(pd,rN)pdτ*(s)z*(s)s∈[t,t+T]τ(s)z(s) ?τ(s)?z(s) τ*(s)z*(s)Tcto the next planning horizon. In Lines 11, 13, and 15, the backup control and trajectory are updated by using the auxiliary control to ensure visibility. In Line 16, the planned control and trajectory are updated by using the backup control input and trajectory to ensure visibility. In Line 17,tis increased byTcfor moving to the next planning horizon. In Line 20,iis added by one to switch from waypointito waypointi+1 if the visibility and proximity conditions in Line 19 are verified. Lines 23-26 are steps in a while loop for driving vehicle position inB(pd,rN) to the goal positionpdwhile optimizing vehicle velocities. Specifically, Line 24 is to solve terminal problem (5) to obtain solution τ*(s). Line 25 is to update the planned control input and trajectory. Line 26 is to update timettot+Tc.

    C. Feasibility and Convergence

    quent iterations. Condition 3) requires that the backup velocity is zero at timet+δTfor ensuring safety. Condition 4) is used for ensuring convergence in terms of distance. Condition 5) requires thatTcis lower bounded. Without it, the procedure may not be convergent. Condition 6) requires that there exists an auxiliary control to move the vehicle to the goal waypoint while ensuring visibility. The proof to Lemma 1 is presented as follows.

    IV. SPECIFIC PARADIGMS

    A. Unmanned Wheeled Vehicles

    Consider an UWV with the following kinematic and kinetic equations [14], [55], [63]:

    B. Autonomous Surface Vehicles

    TABLE I PARAMETER SETUPS

    V. SIMULATION RESULTS

    A. Settings

    Five terrains (a)-(e) are used, where terrains (a)-(d) are benchmarks respectively from [40], [51], [26], and [46],whereas terrain (e) is modified from the terrain in [40]. In this case, constraint (4d) uses multiple rectangles and parallelograms to describe obstacle-free spaces.F(p)≤1 may also be used with increased complexity.

    To compute the shortest paths from the initial position to the goal position, the terrains are discretized by using regular grids with an edge length being 0.05 m. Many waypoints along the shortest paths are used. In addition, to ensure waypoints to be far away from obstacles, the obstacles in terrains(a)-(e) are enlarged by 0.25 m, 0.25 m, 0.5 m, 0.5 m, and 0.2 m, respectively. To reduce the number of waypoints, pre-processing is used as follows: Let the goal position be the last waypoint; start from the initial positionAof the vehicle, find a waypointBsuch that the next waypoint ofBbecomes invisible atA; setAtoBand repeat the process until the goal position. By using the processing, preprocessed waypoints and related parameters are listed in Table I.

    B. UWV Trajectory Planning

    Fig. 1. A snapshot of transient neuronal states of neurodynamic model (3)in the UWV trajectory planning.

    Fig. 2. Planned transient inputs to the UWV with two initial states.

    Fig. 3. Planned transient velocities of wheels of the UWV with two initial states.

    Fig. 4. Planned transient positions and orientations of the UWV with two initial states.

    and 4 depict the planned transient states of the UWV. Fig. 3 shows that the planned velocities using NDP are within the bounds, whereas the ones using DSP exceed the bounds. Fig. 5 depicts planned position trajectories and heading directions of UWVs with two initial states operating in terrains (a)-(e)using the NDP. The results in the figures show that the neuronal states are convergent and the neurodynamics-driven trajectory planning method is able to generate collision-free UWV trajectories in the obstacle-laden terrains.

    C. ASV Trajectory Planning

    Fig. 5. Planned position trajectories and heading directions of the UWVs with two initial states operating in terrains (a)–(e) using the NDP.

    Fig. 6. A snapshot of transient neuronal states of neurodynamic model (3)for ASV trajectory planning.

    Fig. 7. Planned transient inputs to the ASV with two initial states.

    Figs. 6-9 show the simulation results of neurodynamicsdriven planning method (NDP) and DSP on ASV trajectory planning with two initial states for operating in terrain (d) of Fig. 10. Specifically, Fig. 6 depicts a snapshot of transient neuronal states of neurodynamic model (3). Fig. 7 depicts the planned transient control inputs to the ASV. It shows that the inputs obtained by using NDP are within the bounds, whereas the ones by DSP exceed the bounds. Figs. 8 and 9 depict the planned transient states of the ASV. Fig. 8 shows that velocities planned by NDP are within the bounds, whereas the ones by DSP exceed the bounds. Fig. 10 depicts the planned ASV trajectories and heading directions with two initial states operating in terrains (a)-(e) by using NDP. The results in the figures show that the neurodynamics are convergent and the neurodynamics-driven trajectory planning method is able to generate collision-free ASV trajectories in the obstacle-laden terrains.

    VI. CONCLUDING REMARKS

    Fig. 8. Planned transient velocities of the ASV with two initial states.

    Fig. 9. Planned transient positions and orientations of the ASV with two initial states.

    A neurodynamics-driven receding-horizon trajectory planning method is presented for navigating under-actuated vehicles. The proposed trajectory planning method is shown to be convergent to collision-free trajectories, under given assumptions and conditions. Simulation results on under-actuated unmanned wheeled and autonomous surface vehicles substantiate the efficacy of the neurodynamics-driven trajectory planning method. Further investigations may aim at developing new neurodynamics-driven vehicle fleet trajectory planning and tracking control methods based on other obstacle avoidance mechanisms such as artificial potential fields and control barrier functions.

    Fig. 10. Planned position trajectories and heading directions of the ASVs with two initial states operating in terrains (a)–(e) by using the NDP.

    精品人妻偷拍中文字幕| 亚洲欧美日韩无卡精品| 中国三级夫妇交换| 在线观看免费高清a一片| 亚洲人与动物交配视频| 国产亚洲av片在线观看秒播厂| 在线精品无人区一区二区三 | 菩萨蛮人人尽说江南好唐韦庄| 深爱激情五月婷婷| 啦啦啦啦在线视频资源| 欧美+日韩+精品| 亚洲精品aⅴ在线观看| 最近最新中文字幕免费大全7| 91久久精品国产一区二区成人| 免费看av在线观看网站| 麻豆成人av视频| 亚洲精品自拍成人| 亚洲国产欧美在线一区| 欧美成人a在线观看| 欧美精品国产亚洲| 欧美日本视频| 欧美+日韩+精品| 精品酒店卫生间| 国产成人精品久久久久久| 亚洲av欧美aⅴ国产| 蜜臀久久99精品久久宅男| 亚洲精品日韩av片在线观看| 日韩大片免费观看网站| 国产精品爽爽va在线观看网站| 男男h啪啪无遮挡| 色播亚洲综合网| 在线观看美女被高潮喷水网站| 久久影院123| 欧美xxxx黑人xx丫x性爽| 午夜福利视频1000在线观看| 久久久久九九精品影院| av国产精品久久久久影院| 欧美国产精品一级二级三级 | 亚洲av免费高清在线观看| 禁无遮挡网站| 高清欧美精品videossex| 国产片特级美女逼逼视频| 91精品国产九色| 国产91av在线免费观看| 秋霞伦理黄片| 欧美最新免费一区二区三区| 亚洲一区二区三区欧美精品 | 男人狂女人下面高潮的视频| 99久久人妻综合| 亚洲三级黄色毛片| 欧美日韩综合久久久久久| 婷婷色综合大香蕉| 国产亚洲最大av| 丝袜美腿在线中文| 99久国产av精品国产电影| 麻豆乱淫一区二区| 老女人水多毛片| 国产一区二区三区综合在线观看 | 亚洲精品国产av成人精品| 欧美成人一区二区免费高清观看| 美女cb高潮喷水在线观看| 美女高潮的动态| 涩涩av久久男人的天堂| 国产日韩欧美亚洲二区| 久久久精品免费免费高清| 国产免费又黄又爽又色| 日韩电影二区| 免费看光身美女| 亚洲第一区二区三区不卡| 日韩欧美 国产精品| 黄片无遮挡物在线观看| 国产精品av视频在线免费观看| 高清日韩中文字幕在线| 一边亲一边摸免费视频| 亚洲av一区综合| 国模一区二区三区四区视频| 在线 av 中文字幕| 成人鲁丝片一二三区免费| av线在线观看网站| 黄色欧美视频在线观看| 夜夜爽夜夜爽视频| 欧美xxⅹ黑人| 亚洲国产欧美人成| 国产中年淑女户外野战色| 久热这里只有精品99| 欧美精品一区二区大全| 成人特级av手机在线观看| 黄色视频在线播放观看不卡| 国产午夜精品一二区理论片| 纵有疾风起免费观看全集完整版| 国产一区二区三区av在线| 国产黄频视频在线观看| 久久精品国产亚洲av天美| 韩国av在线不卡| 免费观看的影片在线观看| 嫩草影院入口| 国产精品女同一区二区软件| 天天躁日日操中文字幕| 五月天丁香电影| 超碰97精品在线观看| 久久久a久久爽久久v久久| 久久亚洲国产成人精品v| 波野结衣二区三区在线| 国产女主播在线喷水免费视频网站| 久久99蜜桃精品久久| 亚洲精品aⅴ在线观看| av免费观看日本| 国产成人91sexporn| 亚洲最大成人av| 黄色视频在线播放观看不卡| 人妻 亚洲 视频| 午夜福利高清视频| 青青草视频在线视频观看| 国产视频内射| 九草在线视频观看| 少妇人妻久久综合中文| 99久国产av精品国产电影| 99久久精品一区二区三区| 久久99精品国语久久久| 一二三四中文在线观看免费高清| 欧美一级a爱片免费观看看| 人妻夜夜爽99麻豆av| 久久99热这里只有精品18| 身体一侧抽搐| 联通29元200g的流量卡| 新久久久久国产一级毛片| 免费av观看视频| 成人免费观看视频高清| 国产高清不卡午夜福利| 永久免费av网站大全| 亚洲精品,欧美精品| 精品午夜福利在线看| 嫩草影院精品99| 天天躁日日操中文字幕| 天堂俺去俺来也www色官网| 香蕉精品网在线| 欧美成人午夜免费资源| 国产一区有黄有色的免费视频| 五月开心婷婷网| 国产精品成人在线| av免费观看日本| 国产伦精品一区二区三区视频9| 国产成年人精品一区二区| 一级片'在线观看视频| 亚洲高清免费不卡视频| 国产精品伦人一区二区| 另类亚洲欧美激情| 亚洲精品aⅴ在线观看| 一本色道久久久久久精品综合| 国产av国产精品国产| 久久久久国产精品人妻一区二区| av在线app专区| 人人妻人人看人人澡| 精品久久久久久久人妻蜜臀av| 伊人久久精品亚洲午夜| 边亲边吃奶的免费视频| 我的女老师完整版在线观看| 久久99热这里只频精品6学生| 久久人人爽人人片av| 男人添女人高潮全过程视频| 肉色欧美久久久久久久蜜桃 | 日本一二三区视频观看| 亚洲av不卡在线观看| 中国美白少妇内射xxxbb| 91久久精品电影网| 各种免费的搞黄视频| 欧美xxxx黑人xx丫x性爽| 晚上一个人看的免费电影| www.av在线官网国产| av免费在线看不卡| 又爽又黄无遮挡网站| 人体艺术视频欧美日本| av一本久久久久| 女的被弄到高潮叫床怎么办| 久久久亚洲精品成人影院| 国产黄片视频在线免费观看| 国产日韩欧美亚洲二区| 亚洲av中文av极速乱| 在线观看免费高清a一片| 精品一区二区三卡| 国产一区二区在线观看日韩| 黄色视频在线播放观看不卡| 美女脱内裤让男人舔精品视频| 久久久久久国产a免费观看| 女的被弄到高潮叫床怎么办| 国产乱人视频| 性色avwww在线观看| 人人妻人人看人人澡| 一区二区av电影网| 成年免费大片在线观看| 插逼视频在线观看| 久久99热这里只频精品6学生| 丝袜喷水一区| av免费观看日本| 男人和女人高潮做爰伦理| 亚洲,欧美,日韩| 一本色道久久久久久精品综合| 日韩一区二区三区影片| 欧美三级亚洲精品| 一区二区三区四区激情视频| 少妇的逼水好多| 国内揄拍国产精品人妻在线| 青春草国产在线视频| 夫妻性生交免费视频一级片| 欧美一区二区亚洲| 国产探花在线观看一区二区| 久久久久久伊人网av| 韩国av在线不卡| 人体艺术视频欧美日本| 国产av国产精品国产| 精品视频人人做人人爽| 精品久久久久久电影网| 免费看av在线观看网站| 国产乱人视频| 婷婷色综合www| 91狼人影院| 一级毛片 在线播放| 亚洲欧美日韩另类电影网站 | 成人毛片a级毛片在线播放| 精品少妇久久久久久888优播| 丝袜喷水一区| 搡女人真爽免费视频火全软件| 亚洲成人久久爱视频| h日本视频在线播放| 久久久久久久午夜电影| 国产免费又黄又爽又色| 美女国产视频在线观看| 国产精品蜜桃在线观看| 国内少妇人妻偷人精品xxx网站| 91精品伊人久久大香线蕉| 精品久久久久久久人妻蜜臀av| 亚洲国产av新网站| 美女高潮的动态| 在线看a的网站| 国精品久久久久久国模美| 久热这里只有精品99| 菩萨蛮人人尽说江南好唐韦庄| 少妇熟女欧美另类| 欧美xxⅹ黑人| 一级毛片我不卡| 一级av片app| 欧美激情久久久久久爽电影| 亚洲最大成人av| tube8黄色片| 97人妻精品一区二区三区麻豆| 色婷婷久久久亚洲欧美| 精品国产一区二区三区久久久樱花 | 亚洲欧美精品自产自拍| 精品久久久久久久末码| 精品少妇黑人巨大在线播放| 国产亚洲最大av| 国产高清三级在线| 菩萨蛮人人尽说江南好唐韦庄| 99热这里只有是精品在线观看| 欧美xxⅹ黑人| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品999| 国产亚洲91精品色在线| 老女人水多毛片| 美女主播在线视频| 青春草国产在线视频| 三级国产精品欧美在线观看| 日韩免费高清中文字幕av| 亚洲在久久综合| 国国产精品蜜臀av免费| 国产免费又黄又爽又色| 各种免费的搞黄视频| 久久久久久久国产电影| 国产一区二区三区av在线| 黄色视频在线播放观看不卡| 国产免费一级a男人的天堂| 久久韩国三级中文字幕| 免费大片黄手机在线观看| 国产男女内射视频| 国产高清三级在线| 高清日韩中文字幕在线| 中文字幕制服av| 国产亚洲5aaaaa淫片| 国内精品宾馆在线| 欧美日韩一区二区视频在线观看视频在线 | 午夜激情福利司机影院| 22中文网久久字幕| 亚洲av免费高清在线观看| 女人久久www免费人成看片| 国产精品精品国产色婷婷| 午夜精品一区二区三区免费看| 最新中文字幕久久久久| 欧美成人精品欧美一级黄| 男人舔奶头视频| 毛片女人毛片| 全区人妻精品视频| 亚洲aⅴ乱码一区二区在线播放| 国产精品不卡视频一区二区| 欧美少妇被猛烈插入视频| 免费黄频网站在线观看国产| 五月伊人婷婷丁香| 国产精品久久久久久久久免| freevideosex欧美| 国产黄色视频一区二区在线观看| 欧美精品一区二区大全| 在线免费十八禁| 伦理电影大哥的女人| 成人漫画全彩无遮挡| 久久这里有精品视频免费| 我的女老师完整版在线观看| 涩涩av久久男人的天堂| 99久久精品热视频| 别揉我奶头 嗯啊视频| 少妇人妻一区二区三区视频| 国产精品久久久久久精品古装| 中文字幕av成人在线电影| 卡戴珊不雅视频在线播放| 精品视频人人做人人爽| 婷婷色综合大香蕉| 亚洲va在线va天堂va国产| 久久精品国产鲁丝片午夜精品| 欧美高清成人免费视频www| 久久久久性生活片| 老师上课跳d突然被开到最大视频| 亚洲精品aⅴ在线观看| 日本猛色少妇xxxxx猛交久久| 美女高潮的动态| 人妻制服诱惑在线中文字幕| 综合色av麻豆| 国产欧美日韩一区二区三区在线 | 99热国产这里只有精品6| 97热精品久久久久久| 一级爰片在线观看| 国产精品福利在线免费观看| 国产精品嫩草影院av在线观看| 尾随美女入室| 最新中文字幕久久久久| 男男h啪啪无遮挡| 丝袜喷水一区| 欧美日韩精品成人综合77777| 最近的中文字幕免费完整| 白带黄色成豆腐渣| 亚洲av免费在线观看| 国产69精品久久久久777片| 老司机影院毛片| 美女xxoo啪啪120秒动态图| 美女主播在线视频| 亚洲高清免费不卡视频| 精品视频人人做人人爽| 97人妻精品一区二区三区麻豆| 午夜福利视频1000在线观看| 亚洲精华国产精华液的使用体验| 亚洲美女视频黄频| 丝袜脚勾引网站| 国产黄片美女视频| 少妇的逼好多水| 欧美高清性xxxxhd video| 欧美精品一区二区大全| 卡戴珊不雅视频在线播放| 美女被艹到高潮喷水动态| 3wmmmm亚洲av在线观看| 久久久久网色| 久久久久久久久久久免费av| 久久久精品94久久精品| 熟妇人妻不卡中文字幕| 亚洲精品日韩在线中文字幕| 成人无遮挡网站| 国产成人一区二区在线| 中文精品一卡2卡3卡4更新| 91精品国产九色| 在线看a的网站| 亚洲av免费高清在线观看| 欧美xxⅹ黑人| 水蜜桃什么品种好| 免费高清在线观看视频在线观看| 婷婷色av中文字幕| av国产免费在线观看| 女的被弄到高潮叫床怎么办| 日本wwww免费看| 国产久久久一区二区三区| 国产精品秋霞免费鲁丝片| 国产在线一区二区三区精| www.色视频.com| 精品人妻一区二区三区麻豆| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 日本猛色少妇xxxxx猛交久久| 秋霞伦理黄片| 99九九线精品视频在线观看视频| 久久久久久久久久成人| 成人漫画全彩无遮挡| 麻豆成人av视频| 嫩草影院新地址| 国产成人freesex在线| 嫩草影院新地址| 欧美激情久久久久久爽电影| 欧美xxxx黑人xx丫x性爽| 人体艺术视频欧美日本| 中文乱码字字幕精品一区二区三区| 亚洲精品aⅴ在线观看| 国产成人aa在线观看| 人妻夜夜爽99麻豆av| 日本av手机在线免费观看| 香蕉精品网在线| 久久久a久久爽久久v久久| 天天躁夜夜躁狠狠久久av| 一区二区三区免费毛片| 小蜜桃在线观看免费完整版高清| 国产免费视频播放在线视频| 国产成人a区在线观看| av国产免费在线观看| 亚洲国产色片| 九草在线视频观看| 91久久精品国产一区二区三区| 精品人妻一区二区三区麻豆| 国产爱豆传媒在线观看| av卡一久久| 国产伦在线观看视频一区| 欧美bdsm另类| 久久精品夜色国产| 国产 精品1| 中文字幕免费在线视频6| 三级经典国产精品| 99九九线精品视频在线观看视频| 亚洲精品乱码久久久v下载方式| 欧美精品一区二区大全| 国模一区二区三区四区视频| 成人免费观看视频高清| 超碰av人人做人人爽久久| 男人添女人高潮全过程视频| 亚洲综合色惰| 午夜激情福利司机影院| 麻豆久久精品国产亚洲av| 亚州av有码| 尤物成人国产欧美一区二区三区| 日本与韩国留学比较| 精品人妻熟女av久视频| 人体艺术视频欧美日本| 亚洲aⅴ乱码一区二区在线播放| 看黄色毛片网站| 国产成人免费观看mmmm| 欧美3d第一页| 成人毛片a级毛片在线播放| 美女cb高潮喷水在线观看| 岛国毛片在线播放| 国产视频首页在线观看| 国产精品麻豆人妻色哟哟久久| 少妇丰满av| 少妇人妻精品综合一区二区| 99视频精品全部免费 在线| 超碰av人人做人人爽久久| 少妇的逼水好多| 中文精品一卡2卡3卡4更新| 又爽又黄a免费视频| 在线观看一区二区三区| 超碰97精品在线观看| 国产黄色免费在线视频| 亚洲人与动物交配视频| 日本-黄色视频高清免费观看| 成人特级av手机在线观看| 久久韩国三级中文字幕| 亚洲美女搞黄在线观看| 噜噜噜噜噜久久久久久91| av在线观看视频网站免费| 亚洲av免费高清在线观看| 白带黄色成豆腐渣| 欧美日韩视频高清一区二区三区二| 中文在线观看免费www的网站| 婷婷色综合大香蕉| 青春草国产在线视频| 国产永久视频网站| 五月天丁香电影| 精品熟女少妇av免费看| 丰满少妇做爰视频| 亚洲av二区三区四区| 嫩草影院精品99| 国产在线男女| 有码 亚洲区| 国产日韩欧美在线精品| 国产成人免费观看mmmm| 欧美成人午夜免费资源| 又大又黄又爽视频免费| 晚上一个人看的免费电影| 亚洲熟女精品中文字幕| 久久精品久久久久久久性| 日韩av在线免费看完整版不卡| 在线 av 中文字幕| av在线蜜桃| 人妻少妇偷人精品九色| 两个人的视频大全免费| 国产亚洲av嫩草精品影院| 我的老师免费观看完整版| 亚洲人与动物交配视频| 亚洲精品亚洲一区二区| 黄色视频在线播放观看不卡| freevideosex欧美| 国产久久久一区二区三区| 国产国拍精品亚洲av在线观看| 国产精品99久久久久久久久| 一级毛片我不卡| 亚洲一区二区三区欧美精品 | 亚洲第一区二区三区不卡| 免费在线观看成人毛片| 日本wwww免费看| 美女被艹到高潮喷水动态| 久久精品久久精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 久久精品国产亚洲av天美| 一级片'在线观看视频| 99re6热这里在线精品视频| 亚洲精品国产av成人精品| 2022亚洲国产成人精品| 伊人久久国产一区二区| 噜噜噜噜噜久久久久久91| 波野结衣二区三区在线| 久久精品夜色国产| 久久99热这里只有精品18| 午夜视频国产福利| 青春草亚洲视频在线观看| 色5月婷婷丁香| 国产黄片视频在线免费观看| 国产成人精品久久久久久| 欧美xxxx性猛交bbbb| 婷婷色麻豆天堂久久| 建设人人有责人人尽责人人享有的 | 国产精品一及| 日本欧美国产在线视频| 久久久久久久久久久免费av| av在线播放精品| 在线精品无人区一区二区三 | 有码 亚洲区| av专区在线播放| 激情五月婷婷亚洲| 免费看不卡的av| 欧美一区二区亚洲| 搞女人的毛片| 久久6这里有精品| 亚洲经典国产精华液单| 精品久久久久久久末码| 国产av码专区亚洲av| 禁无遮挡网站| 在线看a的网站| 国产 精品1| 国产亚洲5aaaaa淫片| 超碰97精品在线观看| 五月伊人婷婷丁香| 成年av动漫网址| 菩萨蛮人人尽说江南好唐韦庄| videos熟女内射| 精品午夜福利在线看| 成人欧美大片| 国产精品爽爽va在线观看网站| 亚洲无线观看免费| 69人妻影院| 国产精品一区二区在线观看99| 一区二区三区免费毛片| 国产熟女欧美一区二区| 亚洲欧美日韩另类电影网站 | 狂野欧美激情性xxxx在线观看| 色网站视频免费| 国产亚洲一区二区精品| 五月玫瑰六月丁香| 国产一区二区三区综合在线观看 | 国产精品人妻久久久久久| 久久午夜福利片| 亚洲精品,欧美精品| 国产一区有黄有色的免费视频| 嫩草影院新地址| 交换朋友夫妻互换小说| 国产91av在线免费观看| av一本久久久久| 人体艺术视频欧美日本| 婷婷色av中文字幕| 国产成人福利小说| av天堂中文字幕网| 国产精品国产三级国产专区5o| 97超视频在线观看视频| 亚洲最大成人中文| 国产 精品1| 免费av毛片视频| kizo精华| 亚洲av免费高清在线观看| 欧美bdsm另类| 人人妻人人看人人澡| 国产在视频线精品| 五月伊人婷婷丁香| 赤兔流量卡办理| 亚洲精品国产av成人精品| 免费观看a级毛片全部| 免费人成在线观看视频色| 18禁在线无遮挡免费观看视频| 日产精品乱码卡一卡2卡三| 亚洲人成网站高清观看| 日日摸夜夜添夜夜爱| 日日啪夜夜撸| 精品久久久噜噜| 天天躁日日操中文字幕| 只有这里有精品99| 亚洲av成人精品一区久久| 丝袜美腿在线中文| 日产精品乱码卡一卡2卡三| 免费少妇av软件| 国产成人a∨麻豆精品| 自拍偷自拍亚洲精品老妇| 国产成人a区在线观看| 一个人观看的视频www高清免费观看| 国产精品国产三级专区第一集| 久久久久久久亚洲中文字幕| 久久6这里有精品| 国产精品国产三级专区第一集| 欧美一级a爱片免费观看看| 嫩草影院入口| 国产真实伦视频高清在线观看| 国产伦精品一区二区三区四那| 日韩免费高清中文字幕av| 国产一区二区在线观看日韩| 18+在线观看网站| 亚洲精品日本国产第一区| 一区二区av电影网| 国产精品99久久久久久久久|