• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exponential-Alpha Safety Criteria of a Class of Dynamic Systems With Barrier Functions

    2022-10-29 03:28:30ZherenZhuYiChaiZhiminYangandChenghongHuang
    IEEE/CAA Journal of Automatica Sinica 2022年11期

    Zheren Zhu, Yi Chai, Zhimin Yang, and Chenghong Huang

    I. INTRODUCTION

    WITH the history which is from the accident cause theory to the accident dynamic evolution model theory [1],safety analysis methods have been used to describe the system accident process in the form of directed graphs such as chains or trees, and analyze the system which stage of an accident is keeping in or calculate the probability of an accident which will occur by using the tools like entropy and probability [1]–[6]. And such safety analysis methods from the aforementioned theories are not directly related to the operational states of the systems [7]–[10]. With the rapid development of information technology and industrial technology, scholars have tried to use the changing of system operating state to analyze or determine the system operational safety [2], [11],[12], which can objectively and directly reflect the dynamic change characteristics of the system safety, especially the safety state changing caused by the changes of the system structures and operational states driven by operation faults and mistaking operations.

    Creating a different route of safety analysis, by borrowing the kernel idea of the Lyapunov functionV(x) and its stability analysis theory, Prajna and his team [13], [14] have designed a new class of functions, called the barrier functionsB(x), and proposed corresponding safety criteria which can be used to judge the safety of systems with the similar steps as the use of the Lyapunov stability criteria. Therefore, their methods turn operational safety analysis problems into computable judgement problems, which converts the analysis whether the system will keep safe or not into the proof whetherB(x)≤0 will hold all the time, beginning from the initial time of the system (supposing the system is safe at the initial moment).

    By the researches of safety criteria based on barrier functions which are the study of the behavior constraints ofB(x),we have realized that it is safe by satisfying the constraint condition, however, it may not be unsafe without satisfying the constraint conditions. Thus, from the initial strong constraint Lf B(x)≤0 [13]–[15] to Lf B(x)≤λB(x) [16], scholars [16]–[19] have been trying to find all of relatively weaker constraints. Moreover, Ames and his partners [20] have great contribution to the integration of safety and stability, especially the applications to the fusion of the safety control and the common control algorithms [21]–[27] such as robust control, adaptive control, and multi-agent control. This article continues to try to be a piece of puzzle to develop and strengthen the safety analysis framework system. The contributions of this article will focus primarily on constraint conditions and construction ofB(x), which are two different but relevant research points.

    In this article, we want to achieve two things.

    The first one is to establish a weaker condition applied to improve a kind of safety criteria based on barrier functions.As known, the weak constraint conditions can be applied to more systems with different running state motion laws, and help to reduce the conditional specificity caused by strong constraint conditions. Hence, using weak constraint conditions to analyze and determine the operational safety of the system improves the economy of system operation and maintenance. On the basis of Lf B(x)≤λB(x) which seems Lf B(x)≤λBα(x), α=1, we try to explore whether the constraint conditions ofB(x) are true when the value of α does not only equal one. And then if it is true, we may form a new set of weak constraint conditions in order to improve the accuracy of using the barrier functionB(x) to determine the system operational safety and reduce the rate of safety misdiagnosis. Inspired bydV/dt≤-KVα(α ∈(0,1)) in the finite-time stability theorem [28], which has a similar structure to the condition of the operational safety criterionLf B(x)≤λBα(x)based on the barrier functions, we first expand the value range of α to ( 0,1], and then try to explore whether there exist successful applications in α ∈R+or not. Therefore, we can name it as exponential-alpha safety criterion. Why do we consider this type of safety criterion is worth our passion for research?Comparing [20] and [28], we find that the difference between Lyapunov exponential stability and finite-time stability is that αin the latter is α ∈(0,1) while in the former is α=1. So, we can confirm the value varying of α may make the behaviors of barrier functions different or changing. If we can generalize the value of α to the entire positive real number field, we can use the exponential-alpha safety criterion whose core condition is Lf B(x)≤λBα(x) to determine the safety for more types of different situations or systems. However, the great challenge is that we must guarantee that the barrier functionBwill always stay in the negative real number field during the process of converging to zero, where it starts with the negative initial value and no behavior of crossing zero will occur,asB∈R, rather thanV>0 orV≥0.

    There are six sections. The introduction is in Section I. Section II describes some important definitions and concepts about the operational safety of the system. In addition, there are some exponential-alpha safety criteria of some dynamic systems and their proofs in Section III. The construction of control barrier function is located in Section IV. And Section V is simulation and analysis. In the end, Section VI concludes the whole article.

    II. SEVERAL OPERATIONAL SAFETY RELATED DEFINITIONS AND THEIR MATHEMATICAL DESCRIPTIONS

    A class of dynamic systems, usually with responding controllers, can be described as following:

    withvandgr-times continuously differentiable,x∈Rmandu∈Rm. Then, we set a feedback control lawu=-π(x(t)),which makes (1) bex˙(t)=v(x(t))-g(x(t))π(x(t)), so that we can always make (2) broadly equivalent to (1)the aforementioned conditions, we call it the safety strictness.

    III. EXPONENTIAL-ALPHA SAFETY CRITERIA

    A. Motivation

    For the operational process of a dynamic system, the dynamic functions and structures of the system may be changed due to the excitation of any risk factor or factors, that the statex(t) of the system (2), which is deviated from the original law and track of motion, becomes the system (3) or other now. However, we cannot know how bad the system is being just by the system dynamic equations. Therefore, we need some criteria or evaluation models to analyze and evaluate the extent of the system safety.

    Proposition 1:The necessary and sufficient condition for determining the safety of the system (2), is that, there exists a functionB(x)∈C1(χ,R), which hasB(x)>0 (?x∈χu) and Λ:={x∈χ|B(x)≤0}≠? , satisfying?t∈[t0,+∞),B(x(t))≤β ≤0.

    Proof:1) To the sufficient, as ?t∈[t0,+∞),B(x(t))≤β ≤0,B(x)>0 (?x∈χu), and Λ:={x∈χ|B(x)≤0}≠?, it has{x(t),t≥t0}∩χu=?. According to the Definition 1, it is true that the system (2) is safe.

    Reference [19] has proposed a good weak condition, however, using its safety criterion, we need to calculate all extreme points of the barrier function for the corresponding system. In fact, for some complex systems, the calculation of extreme points may be a challenge. We may need to find another way which is easier to implement and has similarities.Fortunately, we realized the setting of the safety criterion in[16] may have the ability of the aforementioned. But, the core constraint condition of the safety criterion in [16], which has α=1mentioned in Section I, limits other possible situations of the behaviors varying of the barrier function so that it makes the possibility of conversions between these two methods reduced. Therefore, developed on the basis of the work[16], this article will do the effort to explore the generalization which is expanding the value range of α and relaxing the constraints on the behaviors of the barrier functionB(x) and its derivatives. We name this as exponential-alpha safety criterion.

    B. Barrier Functions and Safety Criteria

    C. Control Barrier Functions

    How to apply the aforementioned exponential-alpha safety criteria to make a dynamic control system be safe all the time?Consider a class of dynamic control systems as (1) withvandgassumed to be locally Lipschitz andr-times continuously differentiable,x∈Rmandu∈U?Rm, whereUis the set of the controller feasible control outputs. It has a set of all states denoted as χ, an unsafe set χuand an initial state set χ0. These sets have the same definitions as ones for the system (2). We want to useufor (1) to helpx(t) not enter into χu. For example, we needuto work when a dynamic system as (2) has a fault at a certain time and thex˙=f(x)+fd(t)=:fˉ(x) cannot keep safe, wherefd(t) is an observable fault function.

    Definition 6:There is a dynamic control system (1) that meets all of its settings in this section with its initial statex0∈χ0. We can call a functionB(x)(B(x)∈C2(χ)) as the control barrier function for the system (1), which has a constant λ ∈R and an α (α >0), satisfying

    IV. CONSTRUCTION OF BARRIER FUNCTION

    How can we use the barrier functionB(x)? The current method about the construction ofB(x) needs to choose a set of standard positive semidefinite polynomials with unknown coefficients, so that it can transform the constructions of barrier functions to the problems of positive semidefinite programming of polynomials based on sum-of-squares (SOS)[13]–[16], [18], which prove the system safety by finding the existence of the barrier functions. The method is similar to the linear stability analysis, which is needed to establish a positive definite symmetric matrixPand a linear inequality for the stability determination, and then prove the system stability by analyzing the existence ofP. In fact, this method subtly transforms tough problems of function construction into search problems, and provides a numerical calculation method for most researchers, which is feasible within the scope of existing computing capabilities. Such a method can reduce the workload of the inference part of proof and calculation process, and can use similar procedures for different practical application examples, where only the system models and corresponding settings need to be modified.

    However, sometimes, we want to be able to find out whether safety is related to some characteristics of a dynamic system through the safety judgment theorems. For example,the stability of a linear systemx˙=Axis related to the distribution of all eigenvalues of the system matrixA. Such the aforementioned construction method may not meet this demand.With the existence of an unsafe state set, which means an unreachable state domain, forB(x), we cannot directly use the construction methods of the Lyapunov functionV(x). In addition, the constraint conditions of the behaviors of barrier functions, which are usually designed in the safety criteria, stipulate that most ofB(x(t)) must satisfy at least first-order continuous differentiable [13], [14], [16], [19]. And with our previous work [19], we found that for the function construction method based on mathematical models, the number of unsafe state subsets, where all subsets are independent of each other and have no intersection, and the range of the unsafe set may affect the structure of the functionB(x) and increase the difficulty of function construction.

    Remark 3:According to the mathematical definitions about convex and simply-connected, a closed and single unsafe set which is simply-connected in this article is a convex set, and the unsafe set which is complex-connected is a non-convex set.

    A. Positive Multi-Hypersphere Method

    From Theorems 3 to 4, the latter is a universal type of the former. So, we name the method similar to the latter one as the positive multi-hypersphere method.

    B. Reverse Multi-Hypersphere Method

    Fig. 1. Case A schematic illustration. (a) s=(s1,s2)T ; (b) s=(s1,s2,s3)T.

    Fig. 2. Case B schematic illustration. (a) s=(s1,s2)T ; (b) s=(s1,s2,s3)T.

    Fig. 3. Case C schematic illustration. (a) One of situations on Ns=2; (b)One of situations on N s=4.

    Fig. 4. Dynamic time-varying of the state x for the system (43).

    Fig. 5. The relationship between x and unsafe set χ u for the system (43).

    Fig. 6. Dynamic changes of B and B˙ for the system (43).

    Fig. 4 shows the change of statex=(x1,x2)Twith timet. In order to clearly show the trajectories of the components, Fig. 4 has independent tracksx1(t) andx2(t). Fig. 5 shows the relative position of the track of statexand the unsafe set χu,where the black curve represents the track of thexand the unsafe set χuis wrapped in the red closed curve. Fig. 6 shows the behaviors of the barrier functionB(x) and its first derivative at timet. By Figs. 4–6, we can find the system finally stops at a certain point since ( 1,0). According to Figs. 4 and 6,x(t) andB(x(t)) are stable from 10 s. It proves that the stop-

    Fig. 7. State x(t) for the system (46).

    As the similar curve settings to Example 1, Fig. 7 shows the change of statex=(x1,x2)Twith timet, Fig. 8 shows the relative position of statexand the unsafe set χu, and Fig. 9 shows the behaviors ofB(x) and its first derivative at timet. By Figs. 7–9, we can find the system finally stop at the point(4,3) which is the boundary of χs. According toχu={x∈R2:‖x-xu‖22<r2}, which is in a circle with point (4, 4) as center and radius 1. So, finally, thexis outside of the unsafe set χu.This is confirmed in Fig. 9, which shows theB(x(t)) andB˙(x(t))eventually converge to zero and the convergence process is approximately smooth. Thus, the state of (46) will never enter into the unsafe set χu. As the functionB(x) is projection from two-dimensional to one-dimensional, the change ofBcaused by the oscillation ofxlooks like a continuous change for the value ofB. It may be the reason thatx1(t) in Fig. 7 andxin Fig. 8 have a period of oscillating changes.

    Fig. 8. The spatial position relationship between x and the unsafe state set χuin the state domain.

    Fig. 9. The behaviors of B and B˙ with x(t).

    Fig. 10. State x(t) for the system (48) with the initial state x 0=(7,4)T.

    Fig. 11. The relationship between x and unsafe set χu with the initial statex0=(7,4)T.

    Fig. 12. The curves of B and B˙ with the initial state x 0=(7,4)T.

    Most settings of curves are similar to Examples 1 and 2. But the set which is wrapped in the red curve shown by Fig. 11 is the set of safe states and the boundary which is the red closed curve also belongs to the safe set Ω. By Figs. 10–12, the system finally stops at the point (4,4) which is the center of Ω.And the stopping is actually keeping dynamically stable,which is proved byBfinally convergence to - 9 andB˙ convergence to zero shown by Fig. 12. By Figs. 10 and 12,x,BandB˙have smooth convergence processes. Thus, the state of (48)can never escape from the safe set Ω into the unsafe set χu.

    Example 4:Consider a dynamic system as

    Fig. 13. The solution state x(t).

    Fig. 14. The relationship between x and unsafe set χu composed of four subsets.

    Fig. 15. Dynamical performances of B and B˙.

    VI. CONCLUSIONS

    We found that most of the researches, such as Prajnaet al.[13], Konget al. [16], etc., even including Ameset al. [20],have focused onB˙⊕F(B) where ⊕ can be “ =” , “ <” , or “ >”,we can say the development history of this series of system safety analysis theories is the process of continuously relaxing safety criteria.

    However, the exponential-alpha safety criteria proposed in this article and other researches are only sufficient criteria. It seems that those satisfying the criteria must be safe, however,the judgments that those dissatisfying safety criteria are unsafe are not completely credible. Therefore, these sufficient criteria derived from the boundedness criteria are more suitable for the operational safety state maintenance control, which can also be called operational safety control, where the barrier functions at this time are named as control barrier function. In the future work, we are going to try to use our exponentialalpha safety criteria to solve some practical system control problems. Of course, just like the Lyapunov stability theory with stability criteria and instability criteria, in order to use these safety criteria to analyze the operational safety of practical dynamic system better, we have to devote our energy,effort and mind into the study of unsafety criteria for dynamic systems.

    And there are other spatial range descriptions of the unsafe sets for dynamic systems besides Cases A–C. Some can use the positive multi-hypersphere method, some can use the reverse multi-hypersphere method, and others may need a new kind of construction methods of the barrier functions. We will continue to improve, simplify and optimize our multi-hypersphere methods, which can make the uses of barrier functions more convenient and faster.

    亚洲中文字幕日韩| 久久精品亚洲精品国产色婷小说| 在线观看舔阴道视频| 在线观看免费视频日本深夜| av欧美777| 国产亚洲精品久久久久5区| 波多野结衣一区麻豆| 国产精品 欧美亚洲| av电影中文网址| 免费在线观看影片大全网站| 国产一区二区在线av高清观看| 青草久久国产| 欧美国产日韩亚洲一区| 一边摸一边做爽爽视频免费| 两个人免费观看高清视频| 一夜夜www| 国产亚洲欧美98| 亚洲国产欧美网| 午夜精品国产一区二区电影| 亚洲熟妇中文字幕五十中出| 久久性视频一级片| 9色porny在线观看| 久久久久久免费高清国产稀缺| 免费av毛片视频| 一个人观看的视频www高清免费观看 | 男女之事视频高清在线观看| 色av中文字幕| 国产精品一区二区精品视频观看| 一进一出好大好爽视频| 亚洲成av人片免费观看| 亚洲欧美日韩高清在线视频| 欧美一区二区精品小视频在线| 免费高清视频大片| 可以在线观看的亚洲视频| 啦啦啦观看免费观看视频高清 | 久久久精品国产亚洲av高清涩受| 看片在线看免费视频| 丝袜在线中文字幕| 久久久水蜜桃国产精品网| 亚洲成av人片免费观看| 麻豆一二三区av精品| 悠悠久久av| 亚洲第一青青草原| 亚洲aⅴ乱码一区二区在线播放 | 一区二区三区精品91| 欧美国产日韩亚洲一区| 国产一级毛片七仙女欲春2 | 久久午夜亚洲精品久久| 丁香六月欧美| 欧美日本亚洲视频在线播放| 国产精品久久久久久精品电影 | 国产精品免费视频内射| 久热爱精品视频在线9| 精品福利观看| 亚洲人成网站在线播放欧美日韩| 国产精品,欧美在线| 亚洲国产欧美日韩在线播放| 亚洲伊人色综图| av天堂在线播放| 99精品欧美一区二区三区四区| 给我免费播放毛片高清在线观看| 国产精品一区二区免费欧美| 999精品在线视频| 免费高清视频大片| aaaaa片日本免费| 丝袜美足系列| 啦啦啦免费观看视频1| 大型av网站在线播放| 亚洲国产中文字幕在线视频| 日本黄色视频三级网站网址| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲第一电影网av| 亚洲精品在线美女| 欧美日本中文国产一区发布| 亚洲九九香蕉| 亚洲性夜色夜夜综合| 亚洲国产精品久久男人天堂| 日日夜夜操网爽| 精品国产国语对白av| 91精品国产国语对白视频| 亚洲精品国产色婷婷电影| 在线国产一区二区在线| 成人国产综合亚洲| 成年版毛片免费区| 中文字幕精品免费在线观看视频| 正在播放国产对白刺激| 人人澡人人妻人| 丰满人妻熟妇乱又伦精品不卡| 中文字幕人妻熟女乱码| 国产国语露脸激情在线看| aaaaa片日本免费| 精品日产1卡2卡| 国产99久久九九免费精品| 亚洲成人免费电影在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 欧美一级毛片孕妇| 一区二区三区激情视频| 欧美黄色片欧美黄色片| 免费在线观看亚洲国产| 曰老女人黄片| 在线永久观看黄色视频| 久99久视频精品免费| 精品久久久久久久人妻蜜臀av | 国产精品自产拍在线观看55亚洲| 国产精品自产拍在线观看55亚洲| 午夜老司机福利片| 无限看片的www在线观看| 国产xxxxx性猛交| 一个人观看的视频www高清免费观看 | 一级a爱视频在线免费观看| 国产欧美日韩一区二区三| 国产亚洲av嫩草精品影院| 免费在线观看日本一区| 亚洲国产毛片av蜜桃av| 一区二区三区精品91| 成人欧美大片| 国产av在哪里看| 搡老妇女老女人老熟妇| 精品久久久久久成人av| 一进一出抽搐gif免费好疼| 视频区欧美日本亚洲| 亚洲一区高清亚洲精品| 亚洲欧美激情在线| 精品久久久久久久毛片微露脸| 欧美中文日本在线观看视频| 成人特级黄色片久久久久久久| 欧美日本中文国产一区发布| 人妻久久中文字幕网| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看完整版高清| 久久香蕉激情| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲精品不卡| 国产麻豆成人av免费视频| 国产精品亚洲美女久久久| 男女下面进入的视频免费午夜 | 精品国产一区二区久久| 一区二区三区国产精品乱码| 亚洲av五月六月丁香网| 999久久久国产精品视频| 韩国精品一区二区三区| 精品久久久久久,| 一进一出好大好爽视频| 黑丝袜美女国产一区| 如日韩欧美国产精品一区二区三区| 欧美黄色淫秽网站| 亚洲va日本ⅴa欧美va伊人久久| 日本 av在线| 午夜福利免费观看在线| 极品教师在线免费播放| 久久香蕉激情| 亚洲一区二区三区不卡视频| 亚洲男人天堂网一区| 国产国语露脸激情在线看| 不卡av一区二区三区| 在线永久观看黄色视频| av片东京热男人的天堂| 日本黄色视频三级网站网址| 免费看十八禁软件| 午夜免费鲁丝| 91成人精品电影| 亚洲精华国产精华精| 啦啦啦韩国在线观看视频| 欧美日本亚洲视频在线播放| 欧美乱妇无乱码| 国产成人精品久久二区二区免费| 久久天堂一区二区三区四区| 性欧美人与动物交配| av免费在线观看网站| 黄色女人牲交| 大陆偷拍与自拍| 色精品久久人妻99蜜桃| x7x7x7水蜜桃| 午夜两性在线视频| 免费观看人在逋| 国产人伦9x9x在线观看| 此物有八面人人有两片| 嫁个100分男人电影在线观看| 真人做人爱边吃奶动态| 男女做爰动态图高潮gif福利片 | 亚洲 欧美 日韩 在线 免费| 高清黄色对白视频在线免费看| 最新美女视频免费是黄的| 国产精品影院久久| 国产精华一区二区三区| 美国免费a级毛片| 少妇被粗大的猛进出69影院| 国产亚洲欧美98| 欧美成人午夜精品| 黄频高清免费视频| 国产精品电影一区二区三区| 日本免费一区二区三区高清不卡 | 久久久久精品国产欧美久久久| 国产在线精品亚洲第一网站| 欧美国产精品va在线观看不卡| 国产蜜桃级精品一区二区三区| 69精品国产乱码久久久| 一本大道久久a久久精品| 欧美激情 高清一区二区三区| 极品人妻少妇av视频| 亚洲欧美精品综合一区二区三区| 久久久国产精品麻豆| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久免费高清国产稀缺| 日韩欧美免费精品| 成人欧美大片| 精品乱码久久久久久99久播| 日本一区二区免费在线视频| 在线国产一区二区在线| 精品人妻1区二区| 亚洲av日韩精品久久久久久密| 两性夫妻黄色片| 看片在线看免费视频| 精品人妻1区二区| 香蕉丝袜av| 精品一区二区三区四区五区乱码| 丁香六月欧美| 免费在线观看影片大全网站| 国产精品爽爽va在线观看网站 | 亚洲情色 制服丝袜| 涩涩av久久男人的天堂| 久久人妻熟女aⅴ| 欧美色欧美亚洲另类二区 | 琪琪午夜伦伦电影理论片6080| 久久精品国产亚洲av高清一级| 久久午夜综合久久蜜桃| 999精品在线视频| 91精品三级在线观看| 欧美人与性动交α欧美精品济南到| 看免费av毛片| 在线视频色国产色| 亚洲黑人精品在线| 亚洲av电影不卡..在线观看| 亚洲 国产 在线| 亚洲精华国产精华精| 热re99久久国产66热| 男女做爰动态图高潮gif福利片 | 人人澡人人妻人| 身体一侧抽搐| 免费看十八禁软件| 美女国产高潮福利片在线看| 嫩草影院精品99| 亚洲天堂国产精品一区在线| 亚洲自拍偷在线| 给我免费播放毛片高清在线观看| 9热在线视频观看99| 久久久久久大精品| 久久久久久久久免费视频了| 国产精品久久久人人做人人爽| 很黄的视频免费| 亚洲 欧美 日韩 在线 免费| 亚洲人成77777在线视频| 久久久精品国产亚洲av高清涩受| 精品国产国语对白av| 国产一区在线观看成人免费| 老司机午夜十八禁免费视频| 精品电影一区二区在线| 国产色视频综合| 天天一区二区日本电影三级 | 好看av亚洲va欧美ⅴa在| 人人妻人人爽人人添夜夜欢视频| 色尼玛亚洲综合影院| 人人妻人人澡欧美一区二区 | 最好的美女福利视频网| 国产欧美日韩综合在线一区二区| 麻豆久久精品国产亚洲av| 一个人观看的视频www高清免费观看 | 91字幕亚洲| 久久久久国内视频| 97人妻天天添夜夜摸| or卡值多少钱| 丁香六月欧美| 99在线人妻在线中文字幕| 亚洲第一电影网av| 久久亚洲精品不卡| 午夜福利成人在线免费观看| 成人三级黄色视频| 很黄的视频免费| 老汉色∧v一级毛片| 一个人观看的视频www高清免费观看 | 在线视频色国产色| 国产97色在线日韩免费| 成人国产一区最新在线观看| 99香蕉大伊视频| 亚洲精品一卡2卡三卡4卡5卡| 91av网站免费观看| 国产日韩一区二区三区精品不卡| 一区二区三区高清视频在线| 亚洲熟妇熟女久久| 亚洲精品国产色婷婷电影| 美女大奶头视频| 国产麻豆成人av免费视频| 精品国产亚洲在线| 麻豆av在线久日| 欧美性长视频在线观看| 欧美日韩亚洲综合一区二区三区_| 窝窝影院91人妻| 精品人妻在线不人妻| 女警被强在线播放| 女性被躁到高潮视频| 国产一区二区激情短视频| 日韩欧美国产在线观看| 在线观看免费视频网站a站| 国产精品亚洲av一区麻豆| 免费一级毛片在线播放高清视频 | 精品高清国产在线一区| 国产亚洲欧美在线一区二区| 啦啦啦观看免费观看视频高清 | 精品卡一卡二卡四卡免费| 91精品三级在线观看| 午夜久久久久精精品| 男女下面进入的视频免费午夜 | 久久人妻av系列| 精品人妻在线不人妻| 精品欧美一区二区三区在线| 亚洲第一av免费看| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩无卡精品| 可以免费在线观看a视频的电影网站| 亚洲av成人不卡在线观看播放网| 免费在线观看黄色视频的| 亚洲国产高清在线一区二区三 | 女警被强在线播放| 成人国产一区最新在线观看| 人人妻人人澡人人看| 欧美日韩黄片免| 视频在线观看一区二区三区| 国产精品99久久99久久久不卡| 欧美成人性av电影在线观看| 国产精品电影一区二区三区| av天堂在线播放| 日本a在线网址| 日韩欧美国产在线观看| 国产一卡二卡三卡精品| 制服人妻中文乱码| 亚洲成人精品中文字幕电影| cao死你这个sao货| 久久久久久久久免费视频了| 精品电影一区二区在线| 91成年电影在线观看| 中文字幕久久专区| 亚洲成av片中文字幕在线观看| 国产aⅴ精品一区二区三区波| 亚洲精品久久成人aⅴ小说| 成熟少妇高潮喷水视频| 美女午夜性视频免费| 中文字幕色久视频| 国产不卡一卡二| 少妇的丰满在线观看| 亚洲自拍偷在线| 国产97色在线日韩免费| 丁香欧美五月| 欧美日韩亚洲国产一区二区在线观看| 欧美黑人精品巨大| 黄色丝袜av网址大全| 午夜福利一区二区在线看| 国产亚洲欧美精品永久| 男人舔女人下体高潮全视频| 法律面前人人平等表现在哪些方面| 国产又色又爽无遮挡免费看| 日本三级黄在线观看| 精品国产一区二区三区四区第35| 精品久久久久久成人av| 精品国产美女av久久久久小说| 午夜成年电影在线免费观看| 黄色女人牲交| 9色porny在线观看| 国产黄a三级三级三级人| 啦啦啦观看免费观看视频高清 | 成人永久免费在线观看视频| 亚洲av第一区精品v没综合| 无限看片的www在线观看| 日本免费a在线| 一本大道久久a久久精品| 少妇裸体淫交视频免费看高清 | 91麻豆av在线| 久久精品国产亚洲av香蕉五月| 欧美日韩亚洲国产一区二区在线观看| 久热这里只有精品99| 亚洲国产精品久久男人天堂| 欧美老熟妇乱子伦牲交| 欧美久久黑人一区二区| 亚洲av成人av| 久久 成人 亚洲| 色综合亚洲欧美另类图片| 精品欧美一区二区三区在线| 亚洲中文字幕日韩| 黄色视频,在线免费观看| 怎么达到女性高潮| 久久精品人人爽人人爽视色| 欧美日本视频| 中文字幕人妻丝袜一区二区| 亚洲免费av在线视频| 午夜两性在线视频| 黄色视频,在线免费观看| 我的亚洲天堂| 久久久久久国产a免费观看| 男男h啪啪无遮挡| 免费高清在线观看日韩| 久久精品亚洲熟妇少妇任你| 亚洲五月天丁香| 国产精品亚洲一级av第二区| 成年人黄色毛片网站| 99久久久亚洲精品蜜臀av| 一进一出抽搐动态| 日韩成人在线观看一区二区三区| 亚洲国产中文字幕在线视频| 精品乱码久久久久久99久播| 国产精品野战在线观看| 99国产综合亚洲精品| 久久精品亚洲熟妇少妇任你| 1024视频免费在线观看| 麻豆久久精品国产亚洲av| 免费在线观看黄色视频的| 黑人巨大精品欧美一区二区蜜桃| 少妇的丰满在线观看| av在线播放免费不卡| www.熟女人妻精品国产| 免费高清视频大片| 在线观看舔阴道视频| 久久精品国产亚洲av高清一级| 国产乱人伦免费视频| 一本久久中文字幕| 999久久久国产精品视频| 极品人妻少妇av视频| 欧美av亚洲av综合av国产av| 国产激情久久老熟女| 少妇被粗大的猛进出69影院| 一级毛片女人18水好多| 天天添夜夜摸| www日本在线高清视频| av网站免费在线观看视频| 在线观看66精品国产| 久久性视频一级片| 波多野结衣高清无吗| 最新在线观看一区二区三区| av在线播放免费不卡| 午夜久久久在线观看| 久久国产乱子伦精品免费另类| 国产成人系列免费观看| 国产成人av激情在线播放| 免费无遮挡裸体视频| 丝袜人妻中文字幕| 99久久久亚洲精品蜜臀av| 老司机午夜十八禁免费视频| 午夜影院日韩av| 亚洲精品国产一区二区精华液| 丰满的人妻完整版| 国产99久久九九免费精品| 亚洲性夜色夜夜综合| 色老头精品视频在线观看| 久久久久九九精品影院| www.自偷自拍.com| 欧美成人免费av一区二区三区| 久久精品国产亚洲av香蕉五月| 黄色a级毛片大全视频| 淫秽高清视频在线观看| 欧美日韩瑟瑟在线播放| 国产色视频综合| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美精品永久| 日本精品一区二区三区蜜桃| 99久久99久久久精品蜜桃| 欧美成人性av电影在线观看| 在线观看www视频免费| 操出白浆在线播放| 99re在线观看精品视频| xxx96com| 久久中文字幕人妻熟女| 亚洲一区中文字幕在线| 青草久久国产| 欧美日本亚洲视频在线播放| 黄色丝袜av网址大全| 亚洲精品粉嫩美女一区| 在线十欧美十亚洲十日本专区| 日韩大码丰满熟妇| 91字幕亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 他把我摸到了高潮在线观看| 波多野结衣巨乳人妻| 高清黄色对白视频在线免费看| 亚洲熟女毛片儿| 美女 人体艺术 gogo| 亚洲第一av免费看| 黄色a级毛片大全视频| 黄色视频,在线免费观看| 午夜激情av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 久久欧美精品欧美久久欧美| 国产av一区在线观看免费| 精品久久国产蜜桃| 国产毛片a区久久久久| 日本欧美国产在线视频| 无遮挡黄片免费观看| 午夜久久久久精精品| a级毛片免费高清观看在线播放| 亚洲最大成人中文| 亚洲欧美日韩高清专用| 97人妻精品一区二区三区麻豆| 日韩欧美国产在线观看| or卡值多少钱| 在线a可以看的网站| 欧美xxxx性猛交bbbb| 男人舔女人下体高潮全视频| 成人一区二区视频在线观看| 69人妻影院| 999久久久精品免费观看国产| 久久99热6这里只有精品| 国产精品久久久久久精品电影| 成人精品一区二区免费| 亚洲精品影视一区二区三区av| 老熟妇仑乱视频hdxx| 如何舔出高潮| 国产亚洲91精品色在线| 看免费成人av毛片| 国产欧美日韩一区二区精品| 精华霜和精华液先用哪个| 久久久精品大字幕| 最近中文字幕高清免费大全6 | 久久人人爽人人爽人人片va| 亚洲最大成人中文| 麻豆成人午夜福利视频| 一a级毛片在线观看| 成人一区二区视频在线观看| 欧美激情在线99| 99久久久亚洲精品蜜臀av| 婷婷丁香在线五月| 精品乱码久久久久久99久播| 成人永久免费在线观看视频| 久久九九热精品免费| 国产真实伦视频高清在线观看 | 美女xxoo啪啪120秒动态图| 长腿黑丝高跟| 亚洲国产精品合色在线| 人妻少妇偷人精品九色| 日韩中字成人| 国产伦精品一区二区三区四那| 免费人成视频x8x8入口观看| 中文字幕av成人在线电影| 国产久久久一区二区三区| 成人特级av手机在线观看| 国产精品1区2区在线观看.| 能在线免费观看的黄片| avwww免费| 波多野结衣巨乳人妻| videossex国产| av在线观看视频网站免费| 老女人水多毛片| 制服丝袜大香蕉在线| 身体一侧抽搐| 亚洲av电影不卡..在线观看| 国国产精品蜜臀av免费| 又紧又爽又黄一区二区| 最新在线观看一区二区三区| 五月玫瑰六月丁香| 欧美精品啪啪一区二区三区| 久99久视频精品免费| 九九久久精品国产亚洲av麻豆| 午夜免费男女啪啪视频观看 | 十八禁国产超污无遮挡网站| 国产黄色小视频在线观看| 我的老师免费观看完整版| 欧美极品一区二区三区四区| 丰满乱子伦码专区| 在线天堂最新版资源| 男人狂女人下面高潮的视频| 99在线人妻在线中文字幕| 国产白丝娇喘喷水9色精品| 非洲黑人性xxxx精品又粗又长| 精品一区二区免费观看| 亚洲性久久影院| 好男人在线观看高清免费视频| 久久精品久久久久久噜噜老黄 | 色播亚洲综合网| 欧美又色又爽又黄视频| 国产 一区 欧美 日韩| 精品免费久久久久久久清纯| 国内少妇人妻偷人精品xxx网站| 色尼玛亚洲综合影院| 美女xxoo啪啪120秒动态图| 亚洲一区二区三区色噜噜| 成人亚洲精品av一区二区| 九九热线精品视视频播放| 全区人妻精品视频| 婷婷丁香在线五月| 成人特级av手机在线观看| 国产精品久久久久久久电影| 91精品国产九色| 色综合站精品国产| 欧美区成人在线视频| 久久草成人影院| 久久久久久国产a免费观看| 九九在线视频观看精品| 99久国产av精品| 成人特级av手机在线观看| 国产精品久久久久久久电影| 女的被弄到高潮叫床怎么办 | 少妇高潮的动态图| 欧美xxxx性猛交bbbb| 日韩欧美三级三区| 成人高潮视频无遮挡免费网站| 人妻少妇偷人精品九色| 国产精品一及| 黄色配什么色好看| 午夜激情福利司机影院| 精品午夜福利在线看| 黄色日韩在线| 成年免费大片在线观看| 99在线人妻在线中文字幕| 麻豆成人av在线观看| 性欧美人与动物交配| 琪琪午夜伦伦电影理论片6080| 国产精品久久久久久久电影| 一卡2卡三卡四卡精品乱码亚洲| 听说在线观看完整版免费高清|