• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exponential-Alpha Safety Criteria of a Class of Dynamic Systems With Barrier Functions

    2022-10-29 03:28:30ZherenZhuYiChaiZhiminYangandChenghongHuang
    IEEE/CAA Journal of Automatica Sinica 2022年11期

    Zheren Zhu, Yi Chai, Zhimin Yang, and Chenghong Huang

    I. INTRODUCTION

    WITH the history which is from the accident cause theory to the accident dynamic evolution model theory [1],safety analysis methods have been used to describe the system accident process in the form of directed graphs such as chains or trees, and analyze the system which stage of an accident is keeping in or calculate the probability of an accident which will occur by using the tools like entropy and probability [1]–[6]. And such safety analysis methods from the aforementioned theories are not directly related to the operational states of the systems [7]–[10]. With the rapid development of information technology and industrial technology, scholars have tried to use the changing of system operating state to analyze or determine the system operational safety [2], [11],[12], which can objectively and directly reflect the dynamic change characteristics of the system safety, especially the safety state changing caused by the changes of the system structures and operational states driven by operation faults and mistaking operations.

    Creating a different route of safety analysis, by borrowing the kernel idea of the Lyapunov functionV(x) and its stability analysis theory, Prajna and his team [13], [14] have designed a new class of functions, called the barrier functionsB(x), and proposed corresponding safety criteria which can be used to judge the safety of systems with the similar steps as the use of the Lyapunov stability criteria. Therefore, their methods turn operational safety analysis problems into computable judgement problems, which converts the analysis whether the system will keep safe or not into the proof whetherB(x)≤0 will hold all the time, beginning from the initial time of the system (supposing the system is safe at the initial moment).

    By the researches of safety criteria based on barrier functions which are the study of the behavior constraints ofB(x),we have realized that it is safe by satisfying the constraint condition, however, it may not be unsafe without satisfying the constraint conditions. Thus, from the initial strong constraint Lf B(x)≤0 [13]–[15] to Lf B(x)≤λB(x) [16], scholars [16]–[19] have been trying to find all of relatively weaker constraints. Moreover, Ames and his partners [20] have great contribution to the integration of safety and stability, especially the applications to the fusion of the safety control and the common control algorithms [21]–[27] such as robust control, adaptive control, and multi-agent control. This article continues to try to be a piece of puzzle to develop and strengthen the safety analysis framework system. The contributions of this article will focus primarily on constraint conditions and construction ofB(x), which are two different but relevant research points.

    In this article, we want to achieve two things.

    The first one is to establish a weaker condition applied to improve a kind of safety criteria based on barrier functions.As known, the weak constraint conditions can be applied to more systems with different running state motion laws, and help to reduce the conditional specificity caused by strong constraint conditions. Hence, using weak constraint conditions to analyze and determine the operational safety of the system improves the economy of system operation and maintenance. On the basis of Lf B(x)≤λB(x) which seems Lf B(x)≤λBα(x), α=1, we try to explore whether the constraint conditions ofB(x) are true when the value of α does not only equal one. And then if it is true, we may form a new set of weak constraint conditions in order to improve the accuracy of using the barrier functionB(x) to determine the system operational safety and reduce the rate of safety misdiagnosis. Inspired bydV/dt≤-KVα(α ∈(0,1)) in the finite-time stability theorem [28], which has a similar structure to the condition of the operational safety criterionLf B(x)≤λBα(x)based on the barrier functions, we first expand the value range of α to ( 0,1], and then try to explore whether there exist successful applications in α ∈R+or not. Therefore, we can name it as exponential-alpha safety criterion. Why do we consider this type of safety criterion is worth our passion for research?Comparing [20] and [28], we find that the difference between Lyapunov exponential stability and finite-time stability is that αin the latter is α ∈(0,1) while in the former is α=1. So, we can confirm the value varying of α may make the behaviors of barrier functions different or changing. If we can generalize the value of α to the entire positive real number field, we can use the exponential-alpha safety criterion whose core condition is Lf B(x)≤λBα(x) to determine the safety for more types of different situations or systems. However, the great challenge is that we must guarantee that the barrier functionBwill always stay in the negative real number field during the process of converging to zero, where it starts with the negative initial value and no behavior of crossing zero will occur,asB∈R, rather thanV>0 orV≥0.

    There are six sections. The introduction is in Section I. Section II describes some important definitions and concepts about the operational safety of the system. In addition, there are some exponential-alpha safety criteria of some dynamic systems and their proofs in Section III. The construction of control barrier function is located in Section IV. And Section V is simulation and analysis. In the end, Section VI concludes the whole article.

    II. SEVERAL OPERATIONAL SAFETY RELATED DEFINITIONS AND THEIR MATHEMATICAL DESCRIPTIONS

    A class of dynamic systems, usually with responding controllers, can be described as following:

    withvandgr-times continuously differentiable,x∈Rmandu∈Rm. Then, we set a feedback control lawu=-π(x(t)),which makes (1) bex˙(t)=v(x(t))-g(x(t))π(x(t)), so that we can always make (2) broadly equivalent to (1)the aforementioned conditions, we call it the safety strictness.

    III. EXPONENTIAL-ALPHA SAFETY CRITERIA

    A. Motivation

    For the operational process of a dynamic system, the dynamic functions and structures of the system may be changed due to the excitation of any risk factor or factors, that the statex(t) of the system (2), which is deviated from the original law and track of motion, becomes the system (3) or other now. However, we cannot know how bad the system is being just by the system dynamic equations. Therefore, we need some criteria or evaluation models to analyze and evaluate the extent of the system safety.

    Proposition 1:The necessary and sufficient condition for determining the safety of the system (2), is that, there exists a functionB(x)∈C1(χ,R), which hasB(x)>0 (?x∈χu) and Λ:={x∈χ|B(x)≤0}≠? , satisfying?t∈[t0,+∞),B(x(t))≤β ≤0.

    Proof:1) To the sufficient, as ?t∈[t0,+∞),B(x(t))≤β ≤0,B(x)>0 (?x∈χu), and Λ:={x∈χ|B(x)≤0}≠?, it has{x(t),t≥t0}∩χu=?. According to the Definition 1, it is true that the system (2) is safe.

    Reference [19] has proposed a good weak condition, however, using its safety criterion, we need to calculate all extreme points of the barrier function for the corresponding system. In fact, for some complex systems, the calculation of extreme points may be a challenge. We may need to find another way which is easier to implement and has similarities.Fortunately, we realized the setting of the safety criterion in[16] may have the ability of the aforementioned. But, the core constraint condition of the safety criterion in [16], which has α=1mentioned in Section I, limits other possible situations of the behaviors varying of the barrier function so that it makes the possibility of conversions between these two methods reduced. Therefore, developed on the basis of the work[16], this article will do the effort to explore the generalization which is expanding the value range of α and relaxing the constraints on the behaviors of the barrier functionB(x) and its derivatives. We name this as exponential-alpha safety criterion.

    B. Barrier Functions and Safety Criteria

    C. Control Barrier Functions

    How to apply the aforementioned exponential-alpha safety criteria to make a dynamic control system be safe all the time?Consider a class of dynamic control systems as (1) withvandgassumed to be locally Lipschitz andr-times continuously differentiable,x∈Rmandu∈U?Rm, whereUis the set of the controller feasible control outputs. It has a set of all states denoted as χ, an unsafe set χuand an initial state set χ0. These sets have the same definitions as ones for the system (2). We want to useufor (1) to helpx(t) not enter into χu. For example, we needuto work when a dynamic system as (2) has a fault at a certain time and thex˙=f(x)+fd(t)=:fˉ(x) cannot keep safe, wherefd(t) is an observable fault function.

    Definition 6:There is a dynamic control system (1) that meets all of its settings in this section with its initial statex0∈χ0. We can call a functionB(x)(B(x)∈C2(χ)) as the control barrier function for the system (1), which has a constant λ ∈R and an α (α >0), satisfying

    IV. CONSTRUCTION OF BARRIER FUNCTION

    How can we use the barrier functionB(x)? The current method about the construction ofB(x) needs to choose a set of standard positive semidefinite polynomials with unknown coefficients, so that it can transform the constructions of barrier functions to the problems of positive semidefinite programming of polynomials based on sum-of-squares (SOS)[13]–[16], [18], which prove the system safety by finding the existence of the barrier functions. The method is similar to the linear stability analysis, which is needed to establish a positive definite symmetric matrixPand a linear inequality for the stability determination, and then prove the system stability by analyzing the existence ofP. In fact, this method subtly transforms tough problems of function construction into search problems, and provides a numerical calculation method for most researchers, which is feasible within the scope of existing computing capabilities. Such a method can reduce the workload of the inference part of proof and calculation process, and can use similar procedures for different practical application examples, where only the system models and corresponding settings need to be modified.

    However, sometimes, we want to be able to find out whether safety is related to some characteristics of a dynamic system through the safety judgment theorems. For example,the stability of a linear systemx˙=Axis related to the distribution of all eigenvalues of the system matrixA. Such the aforementioned construction method may not meet this demand.With the existence of an unsafe state set, which means an unreachable state domain, forB(x), we cannot directly use the construction methods of the Lyapunov functionV(x). In addition, the constraint conditions of the behaviors of barrier functions, which are usually designed in the safety criteria, stipulate that most ofB(x(t)) must satisfy at least first-order continuous differentiable [13], [14], [16], [19]. And with our previous work [19], we found that for the function construction method based on mathematical models, the number of unsafe state subsets, where all subsets are independent of each other and have no intersection, and the range of the unsafe set may affect the structure of the functionB(x) and increase the difficulty of function construction.

    Remark 3:According to the mathematical definitions about convex and simply-connected, a closed and single unsafe set which is simply-connected in this article is a convex set, and the unsafe set which is complex-connected is a non-convex set.

    A. Positive Multi-Hypersphere Method

    From Theorems 3 to 4, the latter is a universal type of the former. So, we name the method similar to the latter one as the positive multi-hypersphere method.

    B. Reverse Multi-Hypersphere Method

    Fig. 1. Case A schematic illustration. (a) s=(s1,s2)T ; (b) s=(s1,s2,s3)T.

    Fig. 2. Case B schematic illustration. (a) s=(s1,s2)T ; (b) s=(s1,s2,s3)T.

    Fig. 3. Case C schematic illustration. (a) One of situations on Ns=2; (b)One of situations on N s=4.

    Fig. 4. Dynamic time-varying of the state x for the system (43).

    Fig. 5. The relationship between x and unsafe set χ u for the system (43).

    Fig. 6. Dynamic changes of B and B˙ for the system (43).

    Fig. 4 shows the change of statex=(x1,x2)Twith timet. In order to clearly show the trajectories of the components, Fig. 4 has independent tracksx1(t) andx2(t). Fig. 5 shows the relative position of the track of statexand the unsafe set χu,where the black curve represents the track of thexand the unsafe set χuis wrapped in the red closed curve. Fig. 6 shows the behaviors of the barrier functionB(x) and its first derivative at timet. By Figs. 4–6, we can find the system finally stops at a certain point since ( 1,0). According to Figs. 4 and 6,x(t) andB(x(t)) are stable from 10 s. It proves that the stop-

    Fig. 7. State x(t) for the system (46).

    As the similar curve settings to Example 1, Fig. 7 shows the change of statex=(x1,x2)Twith timet, Fig. 8 shows the relative position of statexand the unsafe set χu, and Fig. 9 shows the behaviors ofB(x) and its first derivative at timet. By Figs. 7–9, we can find the system finally stop at the point(4,3) which is the boundary of χs. According toχu={x∈R2:‖x-xu‖22<r2}, which is in a circle with point (4, 4) as center and radius 1. So, finally, thexis outside of the unsafe set χu.This is confirmed in Fig. 9, which shows theB(x(t)) andB˙(x(t))eventually converge to zero and the convergence process is approximately smooth. Thus, the state of (46) will never enter into the unsafe set χu. As the functionB(x) is projection from two-dimensional to one-dimensional, the change ofBcaused by the oscillation ofxlooks like a continuous change for the value ofB. It may be the reason thatx1(t) in Fig. 7 andxin Fig. 8 have a period of oscillating changes.

    Fig. 8. The spatial position relationship between x and the unsafe state set χuin the state domain.

    Fig. 9. The behaviors of B and B˙ with x(t).

    Fig. 10. State x(t) for the system (48) with the initial state x 0=(7,4)T.

    Fig. 11. The relationship between x and unsafe set χu with the initial statex0=(7,4)T.

    Fig. 12. The curves of B and B˙ with the initial state x 0=(7,4)T.

    Most settings of curves are similar to Examples 1 and 2. But the set which is wrapped in the red curve shown by Fig. 11 is the set of safe states and the boundary which is the red closed curve also belongs to the safe set Ω. By Figs. 10–12, the system finally stops at the point (4,4) which is the center of Ω.And the stopping is actually keeping dynamically stable,which is proved byBfinally convergence to - 9 andB˙ convergence to zero shown by Fig. 12. By Figs. 10 and 12,x,BandB˙have smooth convergence processes. Thus, the state of (48)can never escape from the safe set Ω into the unsafe set χu.

    Example 4:Consider a dynamic system as

    Fig. 13. The solution state x(t).

    Fig. 14. The relationship between x and unsafe set χu composed of four subsets.

    Fig. 15. Dynamical performances of B and B˙.

    VI. CONCLUSIONS

    We found that most of the researches, such as Prajnaet al.[13], Konget al. [16], etc., even including Ameset al. [20],have focused onB˙⊕F(B) where ⊕ can be “ =” , “ <” , or “ >”,we can say the development history of this series of system safety analysis theories is the process of continuously relaxing safety criteria.

    However, the exponential-alpha safety criteria proposed in this article and other researches are only sufficient criteria. It seems that those satisfying the criteria must be safe, however,the judgments that those dissatisfying safety criteria are unsafe are not completely credible. Therefore, these sufficient criteria derived from the boundedness criteria are more suitable for the operational safety state maintenance control, which can also be called operational safety control, where the barrier functions at this time are named as control barrier function. In the future work, we are going to try to use our exponentialalpha safety criteria to solve some practical system control problems. Of course, just like the Lyapunov stability theory with stability criteria and instability criteria, in order to use these safety criteria to analyze the operational safety of practical dynamic system better, we have to devote our energy,effort and mind into the study of unsafety criteria for dynamic systems.

    And there are other spatial range descriptions of the unsafe sets for dynamic systems besides Cases A–C. Some can use the positive multi-hypersphere method, some can use the reverse multi-hypersphere method, and others may need a new kind of construction methods of the barrier functions. We will continue to improve, simplify and optimize our multi-hypersphere methods, which can make the uses of barrier functions more convenient and faster.

    日本av手机在线免费观看| 国产成人福利小说| 国产有黄有色有爽视频| 人人妻人人澡人人爽人人夜夜| 国产伦理片在线播放av一区| 老师上课跳d突然被开到最大视频| 少妇人妻精品综合一区二区| 午夜老司机福利剧场| 一级二级三级毛片免费看| 男女边吃奶边做爰视频| 亚洲欧美日韩无卡精品| 亚洲av日韩在线播放| 精品酒店卫生间| 日本熟妇午夜| 中文资源天堂在线| 青春草视频在线免费观看| 在线观看人妻少妇| 美女高潮的动态| 三级国产精品片| 最后的刺客免费高清国语| 久久97久久精品| 超碰av人人做人人爽久久| 嫩草影院精品99| 在线观看三级黄色| 我的女老师完整版在线观看| eeuss影院久久| 日本与韩国留学比较| 在线观看av片永久免费下载| 免费av不卡在线播放| 在线播放无遮挡| 亚洲人成网站在线观看播放| 联通29元200g的流量卡| tube8黄色片| 极品少妇高潮喷水抽搐| 午夜激情福利司机影院| 日本欧美国产在线视频| 亚洲四区av| 欧美xxxx黑人xx丫x性爽| 国产精品女同一区二区软件| 精品午夜福利在线看| 亚洲欧美成人综合另类久久久| 国产亚洲5aaaaa淫片| 亚洲av欧美aⅴ国产| 国产有黄有色有爽视频| 99re6热这里在线精品视频| 尾随美女入室| 国产成人午夜福利电影在线观看| 国产在线一区二区三区精| 91精品国产九色| 麻豆成人午夜福利视频| 亚洲婷婷狠狠爱综合网| 卡戴珊不雅视频在线播放| 久久久久久国产a免费观看| 亚洲精品日韩av片在线观看| 亚洲av国产av综合av卡| 国产精品.久久久| 日韩电影二区| 夜夜爽夜夜爽视频| 精品亚洲乱码少妇综合久久| 在线免费观看不下载黄p国产| 国产精品一区www在线观看| 久久久久九九精品影院| 黑人高潮一二区| 熟女电影av网| 99视频精品全部免费 在线| 国内精品美女久久久久久| 亚洲第一区二区三区不卡| 亚洲成人av在线免费| 美女脱内裤让男人舔精品视频| 少妇高潮的动态图| 欧美最新免费一区二区三区| 肉色欧美久久久久久久蜜桃 | 99久久精品热视频| 黄片无遮挡物在线观看| 两个人的视频大全免费| 国产高潮美女av| 一级毛片黄色毛片免费观看视频| 国产精品一区二区三区四区免费观看| 日韩国内少妇激情av| 国产精品一区二区三区四区免费观看| 欧美日韩一区二区视频在线观看视频在线 | 久久久久精品性色| 99热6这里只有精品| 亚洲欧美日韩另类电影网站 | 国产欧美另类精品又又久久亚洲欧美| 亚洲一级一片aⅴ在线观看| 免费播放大片免费观看视频在线观看| 在线观看一区二区三区| 精品国产乱码久久久久久小说| 欧美bdsm另类| 亚洲熟女精品中文字幕| eeuss影院久久| 国产精品无大码| 日韩中字成人| 97人妻精品一区二区三区麻豆| 国产黄色免费在线视频| 国产精品一区二区性色av| 亚洲精品亚洲一区二区| 一区二区三区精品91| 2021天堂中文幕一二区在线观| 国产极品天堂在线| 免费高清在线观看视频在线观看| 亚洲自拍偷在线| 黄片无遮挡物在线观看| av免费观看日本| 亚洲伊人久久精品综合| 又大又黄又爽视频免费| 七月丁香在线播放| 最近最新中文字幕免费大全7| 各种免费的搞黄视频| 日韩大片免费观看网站| 有码 亚洲区| 国产国拍精品亚洲av在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av免费在线观看| 久久精品综合一区二区三区| 狂野欧美激情性xxxx在线观看| 一级片'在线观看视频| 国产一区二区亚洲精品在线观看| 精品午夜福利在线看| 亚洲欧洲日产国产| 亚洲国产欧美在线一区| 一级毛片电影观看| 国国产精品蜜臀av免费| 各种免费的搞黄视频| 有码 亚洲区| 综合色丁香网| 成人无遮挡网站| 久久久久九九精品影院| 国产精品99久久99久久久不卡 | 亚洲天堂av无毛| 深夜a级毛片| 亚洲av.av天堂| 国产亚洲午夜精品一区二区久久 | 国产乱人偷精品视频| 亚洲丝袜综合中文字幕| 秋霞伦理黄片| 国产精品人妻久久久久久| h日本视频在线播放| 欧美日韩一区二区视频在线观看视频在线 | 伦理电影大哥的女人| 亚洲电影在线观看av| 精品人妻偷拍中文字幕| 国产 一区精品| 国产精品久久久久久精品电影| 国产成人精品婷婷| 99九九线精品视频在线观看视频| 69av精品久久久久久| 精品久久久精品久久久| 日本一二三区视频观看| 嘟嘟电影网在线观看| 欧美97在线视频| www.av在线官网国产| 午夜福利网站1000一区二区三区| 神马国产精品三级电影在线观看| 亚洲综合色惰| 国国产精品蜜臀av免费| 国产免费一级a男人的天堂| 午夜福利高清视频| www.色视频.com| 国产精品爽爽va在线观看网站| 久久久久久国产a免费观看| 久久97久久精品| 日本一二三区视频观看| 三级国产精品片| 中文字幕人妻熟人妻熟丝袜美| 国产淫语在线视频| 日韩国内少妇激情av| 国产免费一级a男人的天堂| 亚洲欧洲国产日韩| 国国产精品蜜臀av免费| 六月丁香七月| 在线免费十八禁| 免费看av在线观看网站| 天堂网av新在线| kizo精华| 亚洲经典国产精华液单| 纵有疾风起免费观看全集完整版| 日本色播在线视频| 亚洲精品色激情综合| 日韩强制内射视频| 插阴视频在线观看视频| 韩国av在线不卡| 久久精品国产亚洲av天美| 一级毛片aaaaaa免费看小| 伊人久久精品亚洲午夜| 身体一侧抽搐| 亚洲精品日韩av片在线观看| 搡老乐熟女国产| 亚洲va在线va天堂va国产| 极品教师在线视频| 精品一区二区三卡| 赤兔流量卡办理| 看十八女毛片水多多多| 天天躁夜夜躁狠狠久久av| 亚洲国产av新网站| 在线观看三级黄色| 亚洲aⅴ乱码一区二区在线播放| 日本一二三区视频观看| 一级av片app| 久久精品熟女亚洲av麻豆精品| h日本视频在线播放| 亚洲av.av天堂| 亚洲精品影视一区二区三区av| 欧美高清性xxxxhd video| 不卡视频在线观看欧美| 亚洲av中文av极速乱| 黑人高潮一二区| 亚洲最大成人av| 亚洲精品影视一区二区三区av| 国产精品一二三区在线看| 亚洲欧美成人精品一区二区| 国产熟女欧美一区二区| 亚洲精品成人久久久久久| 国产一区亚洲一区在线观看| 久久影院123| 国产免费一区二区三区四区乱码| 蜜桃亚洲精品一区二区三区| 日韩一区二区视频免费看| 亚洲成色77777| 日韩人妻高清精品专区| 99久久中文字幕三级久久日本| av在线天堂中文字幕| 卡戴珊不雅视频在线播放| 久久国内精品自在自线图片| 国产精品国产三级国产专区5o| 免费人成在线观看视频色| 熟女电影av网| 久久精品久久久久久噜噜老黄| 18禁裸乳无遮挡动漫免费视频 | 国产色婷婷99| 网址你懂的国产日韩在线| 亚洲精品视频女| 亚洲一级一片aⅴ在线观看| 色播亚洲综合网| 蜜桃亚洲精品一区二区三区| 久久久欧美国产精品| 午夜福利高清视频| 日韩大片免费观看网站| 国精品久久久久久国模美| 国产一级毛片在线| 欧美高清成人免费视频www| 成人亚洲欧美一区二区av| 深夜a级毛片| 国产成人福利小说| videossex国产| 在线亚洲精品国产二区图片欧美 | 亚洲在久久综合| 国产乱人视频| 黑人高潮一二区| 插阴视频在线观看视频| 亚洲美女搞黄在线观看| 精品少妇黑人巨大在线播放| 亚洲精品久久久久久婷婷小说| 精品久久国产蜜桃| 五月天丁香电影| 日日啪夜夜爽| 少妇高潮的动态图| 日产精品乱码卡一卡2卡三| 亚洲内射少妇av| 亚洲国产精品成人久久小说| 国产亚洲av片在线观看秒播厂| 亚洲国产精品999| 午夜福利在线观看免费完整高清在| 黄片wwwwww| 校园人妻丝袜中文字幕| 丝袜脚勾引网站| 久久久a久久爽久久v久久| 国产精品.久久久| 亚洲欧美日韩无卡精品| 亚洲精品国产成人久久av| 在线 av 中文字幕| 日本一本二区三区精品| 麻豆成人av视频| 日韩一本色道免费dvd| 国产亚洲91精品色在线| 天天躁日日操中文字幕| 亚洲成人一二三区av| 熟女av电影| 久久99精品国语久久久| 精品一区在线观看国产| 水蜜桃什么品种好| 免费少妇av软件| 国产高清不卡午夜福利| 少妇被粗大猛烈的视频| 久久ye,这里只有精品| 亚洲精品日本国产第一区| 国产一区有黄有色的免费视频| 国产熟女欧美一区二区| 一本色道久久久久久精品综合| 男插女下体视频免费在线播放| 久久久久久久亚洲中文字幕| 免费观看av网站的网址| 大码成人一级视频| 国产老妇伦熟女老妇高清| 免费人成在线观看视频色| 国产免费一级a男人的天堂| xxx大片免费视频| 丝袜脚勾引网站| 精品久久久久久久人妻蜜臀av| 欧美精品人与动牲交sv欧美| 九色成人免费人妻av| 中文乱码字字幕精品一区二区三区| 老女人水多毛片| 国产高清不卡午夜福利| 亚洲av成人精品一二三区| 欧美zozozo另类| 99久久人妻综合| 全区人妻精品视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品日本国产第一区| a级一级毛片免费在线观看| 国产乱人视频| 偷拍熟女少妇极品色| 性色av一级| 日日摸夜夜添夜夜添av毛片| 免费看a级黄色片| 亚洲精品久久午夜乱码| 欧美极品一区二区三区四区| 国产毛片a区久久久久| 欧美日韩精品成人综合77777| 一级二级三级毛片免费看| 国产精品久久久久久精品电影小说 | 亚洲av一区综合| 国产亚洲一区二区精品| 91狼人影院| 欧美日韩视频精品一区| 天美传媒精品一区二区| 免费看av在线观看网站| 欧美人与善性xxx| 五月伊人婷婷丁香| videossex国产| 最近最新中文字幕大全电影3| 永久网站在线| 亚洲国产欧美人成| 国产69精品久久久久777片| 白带黄色成豆腐渣| 亚洲精品色激情综合| 国产精品久久久久久精品电影小说 | 2021少妇久久久久久久久久久| 精品久久久噜噜| 蜜臀久久99精品久久宅男| 免费大片18禁| 中文字幕免费在线视频6| 精品国产一区二区三区久久久樱花 | 亚洲av成人精品一区久久| 男的添女的下面高潮视频| 搡老乐熟女国产| 女的被弄到高潮叫床怎么办| 国产成人精品福利久久| 国产精品国产三级国产av玫瑰| 老司机影院成人| 国产精品不卡视频一区二区| 在线观看一区二区三区| 大香蕉97超碰在线| kizo精华| 最新中文字幕久久久久| 18禁裸乳无遮挡免费网站照片| 大又大粗又爽又黄少妇毛片口| 国产亚洲5aaaaa淫片| 天美传媒精品一区二区| 国产大屁股一区二区在线视频| 亚洲av欧美aⅴ国产| 偷拍熟女少妇极品色| 久久久久久久国产电影| 在线天堂最新版资源| 久久久精品94久久精品| 国产v大片淫在线免费观看| 老司机影院毛片| 国产精品人妻久久久影院| 亚洲欧美日韩另类电影网站 | 婷婷色av中文字幕| www.av在线官网国产| 精品午夜福利在线看| 久久99热6这里只有精品| 三级男女做爰猛烈吃奶摸视频| 久久精品综合一区二区三区| 国产一级毛片在线| 成人亚洲欧美一区二区av| 大片电影免费在线观看免费| 三级国产精品片| 网址你懂的国产日韩在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99热这里只有精品一区| 国产高潮美女av| 精品少妇久久久久久888优播| 老女人水多毛片| 久久热精品热| 亚洲精品久久午夜乱码| 大又大粗又爽又黄少妇毛片口| 3wmmmm亚洲av在线观看| 久久久色成人| 另类亚洲欧美激情| 精华霜和精华液先用哪个| 毛片女人毛片| 日韩国内少妇激情av| 99久久中文字幕三级久久日本| 丝袜脚勾引网站| 伦理电影大哥的女人| 国产男人的电影天堂91| 国产视频内射| .国产精品久久| 一级a做视频免费观看| 成人二区视频| 久久久久久久久久人人人人人人| 99热网站在线观看| 国产片特级美女逼逼视频| 国产伦在线观看视频一区| 免费av毛片视频| 简卡轻食公司| 日韩国内少妇激情av| 高清日韩中文字幕在线| 国产人妻一区二区三区在| 精品少妇黑人巨大在线播放| 中国三级夫妇交换| 色视频www国产| 成年版毛片免费区| 久久人人爽人人爽人人片va| 久久99热6这里只有精品| 亚洲经典国产精华液单| 亚洲内射少妇av| 香蕉精品网在线| 交换朋友夫妻互换小说| 午夜免费鲁丝| 国产色婷婷99| 在线观看一区二区三区| 精品一区二区三区视频在线| 欧美激情国产日韩精品一区| 亚洲国产欧美在线一区| 超碰97精品在线观看| 99视频精品全部免费 在线| 夫妻午夜视频| 晚上一个人看的免费电影| 国产成人精品久久久久久| 日本av手机在线免费观看| 最近最新中文字幕大全电影3| 亚洲欧美日韩无卡精品| 在现免费观看毛片| 亚洲欧美日韩东京热| 一级毛片久久久久久久久女| 日韩成人伦理影院| 一级二级三级毛片免费看| 人人妻人人看人人澡| 色哟哟·www| 欧美潮喷喷水| 亚洲av福利一区| 精品人妻一区二区三区麻豆| 国产伦精品一区二区三区视频9| 又爽又黄无遮挡网站| 久久久午夜欧美精品| 国产淫片久久久久久久久| 国产午夜福利久久久久久| 六月丁香七月| 大香蕉久久网| 亚洲色图综合在线观看| 麻豆成人av视频| 久久ye,这里只有精品| 国产日韩欧美亚洲二区| 一区二区三区精品91| 午夜爱爱视频在线播放| 三级经典国产精品| 男女国产视频网站| 国产高清三级在线| 深夜a级毛片| 乱系列少妇在线播放| 精品酒店卫生间| 久久久精品欧美日韩精品| 亚洲人成网站高清观看| 又大又黄又爽视频免费| 亚洲欧美日韩另类电影网站 | 极品少妇高潮喷水抽搐| 国产一区二区三区av在线| 国产成人一区二区在线| 中文天堂在线官网| 啦啦啦在线观看免费高清www| 少妇熟女欧美另类| 日本免费在线观看一区| 久久6这里有精品| 免费看不卡的av| 亚州av有码| 日本三级黄在线观看| 久久99蜜桃精品久久| 男人和女人高潮做爰伦理| 一个人看视频在线观看www免费| 日韩三级伦理在线观看| 女的被弄到高潮叫床怎么办| 永久免费av网站大全| 亚洲婷婷狠狠爱综合网| 欧美激情国产日韩精品一区| 亚洲内射少妇av| 在线观看人妻少妇| 26uuu在线亚洲综合色| 99热全是精品| 国产成人精品久久久久久| 午夜福利视频精品| 中国美白少妇内射xxxbb| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久成人免费电影| 国产精品伦人一区二区| 亚洲av中文av极速乱| 亚洲av免费高清在线观看| 99视频精品全部免费 在线| 久久精品久久精品一区二区三区| 波多野结衣巨乳人妻| 亚洲国产欧美在线一区| 精品人妻一区二区三区麻豆| 欧美日韩精品成人综合77777| 久久久久性生活片| 交换朋友夫妻互换小说| 男人和女人高潮做爰伦理| 日本免费在线观看一区| 性插视频无遮挡在线免费观看| 亚洲在久久综合| 久久精品综合一区二区三区| 美女被艹到高潮喷水动态| 爱豆传媒免费全集在线观看| 国产久久久一区二区三区| 久久精品久久久久久噜噜老黄| 久久精品久久久久久久性| 22中文网久久字幕| 麻豆成人午夜福利视频| 国产精品久久久久久久电影| 国产av国产精品国产| 欧美激情国产日韩精品一区| 欧美少妇被猛烈插入视频| 国产欧美日韩精品一区二区| 亚洲精品色激情综合| 国产在线一区二区三区精| 欧美bdsm另类| 嘟嘟电影网在线观看| 国产午夜精品久久久久久一区二区三区| 精品人妻熟女av久视频| 亚洲国产高清在线一区二区三| videossex国产| 国产黄片美女视频| 亚洲,一卡二卡三卡| 高清视频免费观看一区二区| 国产成人福利小说| 精品一区二区三卡| 国产一区亚洲一区在线观看| 国产亚洲av片在线观看秒播厂| 亚洲怡红院男人天堂| 特大巨黑吊av在线直播| 亚洲天堂av无毛| 女人被狂操c到高潮| 2021天堂中文幕一二区在线观| 狂野欧美激情性bbbbbb| 欧美精品人与动牲交sv欧美| 下体分泌物呈黄色| 亚洲精品aⅴ在线观看| 国产精品熟女久久久久浪| 一级毛片黄色毛片免费观看视频| av国产久精品久网站免费入址| 夫妻性生交免费视频一级片| 91精品伊人久久大香线蕉| 国产成人精品福利久久| 校园人妻丝袜中文字幕| 亚洲在久久综合| 小蜜桃在线观看免费完整版高清| 日韩大片免费观看网站| 在线观看人妻少妇| 丰满人妻一区二区三区视频av| 又爽又黄a免费视频| av免费在线看不卡| 国产在线一区二区三区精| 久久99热这里只有精品18| 99久久人妻综合| 久久久久久久久大av| 欧美成人午夜免费资源| 免费av毛片视频| 乱码一卡2卡4卡精品| 最近最新中文字幕免费大全7| 国产日韩欧美亚洲二区| 成人国产av品久久久| 国产午夜精品一二区理论片| av一本久久久久| 搞女人的毛片| 色视频在线一区二区三区| 亚洲国产日韩一区二区| 国精品久久久久久国模美| 精品酒店卫生间| 欧美成人a在线观看| 老司机影院毛片| 高清欧美精品videossex| 你懂的网址亚洲精品在线观看| 国产亚洲av嫩草精品影院| 欧美xxⅹ黑人| 国产精品久久久久久精品电影小说 | 狠狠精品人妻久久久久久综合| 少妇丰满av| 精品亚洲乱码少妇综合久久| 国产精品一及| 老女人水多毛片| 欧美精品国产亚洲| 联通29元200g的流量卡| 亚洲精品国产色婷婷电影| kizo精华| 免费观看性生交大片5| 国产欧美亚洲国产| 国产成人a∨麻豆精品| 黄色日韩在线| 美女cb高潮喷水在线观看| 日韩av不卡免费在线播放| 国产中年淑女户外野战色| 日韩欧美精品v在线| 国产欧美日韩一区二区三区在线 | 亚洲内射少妇av| 人妻一区二区av| 亚洲aⅴ乱码一区二区在线播放| 亚洲av二区三区四区| 婷婷色综合www| 日韩av不卡免费在线播放| 三级国产精品片| 最新中文字幕久久久久| 中文在线观看免费www的网站|