• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exponential-Alpha Safety Criteria of a Class of Dynamic Systems With Barrier Functions

    2022-10-29 03:28:30ZherenZhuYiChaiZhiminYangandChenghongHuang
    IEEE/CAA Journal of Automatica Sinica 2022年11期

    Zheren Zhu, Yi Chai, Zhimin Yang, and Chenghong Huang

    I. INTRODUCTION

    WITH the history which is from the accident cause theory to the accident dynamic evolution model theory [1],safety analysis methods have been used to describe the system accident process in the form of directed graphs such as chains or trees, and analyze the system which stage of an accident is keeping in or calculate the probability of an accident which will occur by using the tools like entropy and probability [1]–[6]. And such safety analysis methods from the aforementioned theories are not directly related to the operational states of the systems [7]–[10]. With the rapid development of information technology and industrial technology, scholars have tried to use the changing of system operating state to analyze or determine the system operational safety [2], [11],[12], which can objectively and directly reflect the dynamic change characteristics of the system safety, especially the safety state changing caused by the changes of the system structures and operational states driven by operation faults and mistaking operations.

    Creating a different route of safety analysis, by borrowing the kernel idea of the Lyapunov functionV(x) and its stability analysis theory, Prajna and his team [13], [14] have designed a new class of functions, called the barrier functionsB(x), and proposed corresponding safety criteria which can be used to judge the safety of systems with the similar steps as the use of the Lyapunov stability criteria. Therefore, their methods turn operational safety analysis problems into computable judgement problems, which converts the analysis whether the system will keep safe or not into the proof whetherB(x)≤0 will hold all the time, beginning from the initial time of the system (supposing the system is safe at the initial moment).

    By the researches of safety criteria based on barrier functions which are the study of the behavior constraints ofB(x),we have realized that it is safe by satisfying the constraint condition, however, it may not be unsafe without satisfying the constraint conditions. Thus, from the initial strong constraint Lf B(x)≤0 [13]–[15] to Lf B(x)≤λB(x) [16], scholars [16]–[19] have been trying to find all of relatively weaker constraints. Moreover, Ames and his partners [20] have great contribution to the integration of safety and stability, especially the applications to the fusion of the safety control and the common control algorithms [21]–[27] such as robust control, adaptive control, and multi-agent control. This article continues to try to be a piece of puzzle to develop and strengthen the safety analysis framework system. The contributions of this article will focus primarily on constraint conditions and construction ofB(x), which are two different but relevant research points.

    In this article, we want to achieve two things.

    The first one is to establish a weaker condition applied to improve a kind of safety criteria based on barrier functions.As known, the weak constraint conditions can be applied to more systems with different running state motion laws, and help to reduce the conditional specificity caused by strong constraint conditions. Hence, using weak constraint conditions to analyze and determine the operational safety of the system improves the economy of system operation and maintenance. On the basis of Lf B(x)≤λB(x) which seems Lf B(x)≤λBα(x), α=1, we try to explore whether the constraint conditions ofB(x) are true when the value of α does not only equal one. And then if it is true, we may form a new set of weak constraint conditions in order to improve the accuracy of using the barrier functionB(x) to determine the system operational safety and reduce the rate of safety misdiagnosis. Inspired bydV/dt≤-KVα(α ∈(0,1)) in the finite-time stability theorem [28], which has a similar structure to the condition of the operational safety criterionLf B(x)≤λBα(x)based on the barrier functions, we first expand the value range of α to ( 0,1], and then try to explore whether there exist successful applications in α ∈R+or not. Therefore, we can name it as exponential-alpha safety criterion. Why do we consider this type of safety criterion is worth our passion for research?Comparing [20] and [28], we find that the difference between Lyapunov exponential stability and finite-time stability is that αin the latter is α ∈(0,1) while in the former is α=1. So, we can confirm the value varying of α may make the behaviors of barrier functions different or changing. If we can generalize the value of α to the entire positive real number field, we can use the exponential-alpha safety criterion whose core condition is Lf B(x)≤λBα(x) to determine the safety for more types of different situations or systems. However, the great challenge is that we must guarantee that the barrier functionBwill always stay in the negative real number field during the process of converging to zero, where it starts with the negative initial value and no behavior of crossing zero will occur,asB∈R, rather thanV>0 orV≥0.

    There are six sections. The introduction is in Section I. Section II describes some important definitions and concepts about the operational safety of the system. In addition, there are some exponential-alpha safety criteria of some dynamic systems and their proofs in Section III. The construction of control barrier function is located in Section IV. And Section V is simulation and analysis. In the end, Section VI concludes the whole article.

    II. SEVERAL OPERATIONAL SAFETY RELATED DEFINITIONS AND THEIR MATHEMATICAL DESCRIPTIONS

    A class of dynamic systems, usually with responding controllers, can be described as following:

    withvandgr-times continuously differentiable,x∈Rmandu∈Rm. Then, we set a feedback control lawu=-π(x(t)),which makes (1) bex˙(t)=v(x(t))-g(x(t))π(x(t)), so that we can always make (2) broadly equivalent to (1)the aforementioned conditions, we call it the safety strictness.

    III. EXPONENTIAL-ALPHA SAFETY CRITERIA

    A. Motivation

    For the operational process of a dynamic system, the dynamic functions and structures of the system may be changed due to the excitation of any risk factor or factors, that the statex(t) of the system (2), which is deviated from the original law and track of motion, becomes the system (3) or other now. However, we cannot know how bad the system is being just by the system dynamic equations. Therefore, we need some criteria or evaluation models to analyze and evaluate the extent of the system safety.

    Proposition 1:The necessary and sufficient condition for determining the safety of the system (2), is that, there exists a functionB(x)∈C1(χ,R), which hasB(x)>0 (?x∈χu) and Λ:={x∈χ|B(x)≤0}≠? , satisfying?t∈[t0,+∞),B(x(t))≤β ≤0.

    Proof:1) To the sufficient, as ?t∈[t0,+∞),B(x(t))≤β ≤0,B(x)>0 (?x∈χu), and Λ:={x∈χ|B(x)≤0}≠?, it has{x(t),t≥t0}∩χu=?. According to the Definition 1, it is true that the system (2) is safe.

    Reference [19] has proposed a good weak condition, however, using its safety criterion, we need to calculate all extreme points of the barrier function for the corresponding system. In fact, for some complex systems, the calculation of extreme points may be a challenge. We may need to find another way which is easier to implement and has similarities.Fortunately, we realized the setting of the safety criterion in[16] may have the ability of the aforementioned. But, the core constraint condition of the safety criterion in [16], which has α=1mentioned in Section I, limits other possible situations of the behaviors varying of the barrier function so that it makes the possibility of conversions between these two methods reduced. Therefore, developed on the basis of the work[16], this article will do the effort to explore the generalization which is expanding the value range of α and relaxing the constraints on the behaviors of the barrier functionB(x) and its derivatives. We name this as exponential-alpha safety criterion.

    B. Barrier Functions and Safety Criteria

    C. Control Barrier Functions

    How to apply the aforementioned exponential-alpha safety criteria to make a dynamic control system be safe all the time?Consider a class of dynamic control systems as (1) withvandgassumed to be locally Lipschitz andr-times continuously differentiable,x∈Rmandu∈U?Rm, whereUis the set of the controller feasible control outputs. It has a set of all states denoted as χ, an unsafe set χuand an initial state set χ0. These sets have the same definitions as ones for the system (2). We want to useufor (1) to helpx(t) not enter into χu. For example, we needuto work when a dynamic system as (2) has a fault at a certain time and thex˙=f(x)+fd(t)=:fˉ(x) cannot keep safe, wherefd(t) is an observable fault function.

    Definition 6:There is a dynamic control system (1) that meets all of its settings in this section with its initial statex0∈χ0. We can call a functionB(x)(B(x)∈C2(χ)) as the control barrier function for the system (1), which has a constant λ ∈R and an α (α >0), satisfying

    IV. CONSTRUCTION OF BARRIER FUNCTION

    How can we use the barrier functionB(x)? The current method about the construction ofB(x) needs to choose a set of standard positive semidefinite polynomials with unknown coefficients, so that it can transform the constructions of barrier functions to the problems of positive semidefinite programming of polynomials based on sum-of-squares (SOS)[13]–[16], [18], which prove the system safety by finding the existence of the barrier functions. The method is similar to the linear stability analysis, which is needed to establish a positive definite symmetric matrixPand a linear inequality for the stability determination, and then prove the system stability by analyzing the existence ofP. In fact, this method subtly transforms tough problems of function construction into search problems, and provides a numerical calculation method for most researchers, which is feasible within the scope of existing computing capabilities. Such a method can reduce the workload of the inference part of proof and calculation process, and can use similar procedures for different practical application examples, where only the system models and corresponding settings need to be modified.

    However, sometimes, we want to be able to find out whether safety is related to some characteristics of a dynamic system through the safety judgment theorems. For example,the stability of a linear systemx˙=Axis related to the distribution of all eigenvalues of the system matrixA. Such the aforementioned construction method may not meet this demand.With the existence of an unsafe state set, which means an unreachable state domain, forB(x), we cannot directly use the construction methods of the Lyapunov functionV(x). In addition, the constraint conditions of the behaviors of barrier functions, which are usually designed in the safety criteria, stipulate that most ofB(x(t)) must satisfy at least first-order continuous differentiable [13], [14], [16], [19]. And with our previous work [19], we found that for the function construction method based on mathematical models, the number of unsafe state subsets, where all subsets are independent of each other and have no intersection, and the range of the unsafe set may affect the structure of the functionB(x) and increase the difficulty of function construction.

    Remark 3:According to the mathematical definitions about convex and simply-connected, a closed and single unsafe set which is simply-connected in this article is a convex set, and the unsafe set which is complex-connected is a non-convex set.

    A. Positive Multi-Hypersphere Method

    From Theorems 3 to 4, the latter is a universal type of the former. So, we name the method similar to the latter one as the positive multi-hypersphere method.

    B. Reverse Multi-Hypersphere Method

    Fig. 1. Case A schematic illustration. (a) s=(s1,s2)T ; (b) s=(s1,s2,s3)T.

    Fig. 2. Case B schematic illustration. (a) s=(s1,s2)T ; (b) s=(s1,s2,s3)T.

    Fig. 3. Case C schematic illustration. (a) One of situations on Ns=2; (b)One of situations on N s=4.

    Fig. 4. Dynamic time-varying of the state x for the system (43).

    Fig. 5. The relationship between x and unsafe set χ u for the system (43).

    Fig. 6. Dynamic changes of B and B˙ for the system (43).

    Fig. 4 shows the change of statex=(x1,x2)Twith timet. In order to clearly show the trajectories of the components, Fig. 4 has independent tracksx1(t) andx2(t). Fig. 5 shows the relative position of the track of statexand the unsafe set χu,where the black curve represents the track of thexand the unsafe set χuis wrapped in the red closed curve. Fig. 6 shows the behaviors of the barrier functionB(x) and its first derivative at timet. By Figs. 4–6, we can find the system finally stops at a certain point since ( 1,0). According to Figs. 4 and 6,x(t) andB(x(t)) are stable from 10 s. It proves that the stop-

    Fig. 7. State x(t) for the system (46).

    As the similar curve settings to Example 1, Fig. 7 shows the change of statex=(x1,x2)Twith timet, Fig. 8 shows the relative position of statexand the unsafe set χu, and Fig. 9 shows the behaviors ofB(x) and its first derivative at timet. By Figs. 7–9, we can find the system finally stop at the point(4,3) which is the boundary of χs. According toχu={x∈R2:‖x-xu‖22<r2}, which is in a circle with point (4, 4) as center and radius 1. So, finally, thexis outside of the unsafe set χu.This is confirmed in Fig. 9, which shows theB(x(t)) andB˙(x(t))eventually converge to zero and the convergence process is approximately smooth. Thus, the state of (46) will never enter into the unsafe set χu. As the functionB(x) is projection from two-dimensional to one-dimensional, the change ofBcaused by the oscillation ofxlooks like a continuous change for the value ofB. It may be the reason thatx1(t) in Fig. 7 andxin Fig. 8 have a period of oscillating changes.

    Fig. 8. The spatial position relationship between x and the unsafe state set χuin the state domain.

    Fig. 9. The behaviors of B and B˙ with x(t).

    Fig. 10. State x(t) for the system (48) with the initial state x 0=(7,4)T.

    Fig. 11. The relationship between x and unsafe set χu with the initial statex0=(7,4)T.

    Fig. 12. The curves of B and B˙ with the initial state x 0=(7,4)T.

    Most settings of curves are similar to Examples 1 and 2. But the set which is wrapped in the red curve shown by Fig. 11 is the set of safe states and the boundary which is the red closed curve also belongs to the safe set Ω. By Figs. 10–12, the system finally stops at the point (4,4) which is the center of Ω.And the stopping is actually keeping dynamically stable,which is proved byBfinally convergence to - 9 andB˙ convergence to zero shown by Fig. 12. By Figs. 10 and 12,x,BandB˙have smooth convergence processes. Thus, the state of (48)can never escape from the safe set Ω into the unsafe set χu.

    Example 4:Consider a dynamic system as

    Fig. 13. The solution state x(t).

    Fig. 14. The relationship between x and unsafe set χu composed of four subsets.

    Fig. 15. Dynamical performances of B and B˙.

    VI. CONCLUSIONS

    We found that most of the researches, such as Prajnaet al.[13], Konget al. [16], etc., even including Ameset al. [20],have focused onB˙⊕F(B) where ⊕ can be “ =” , “ <” , or “ >”,we can say the development history of this series of system safety analysis theories is the process of continuously relaxing safety criteria.

    However, the exponential-alpha safety criteria proposed in this article and other researches are only sufficient criteria. It seems that those satisfying the criteria must be safe, however,the judgments that those dissatisfying safety criteria are unsafe are not completely credible. Therefore, these sufficient criteria derived from the boundedness criteria are more suitable for the operational safety state maintenance control, which can also be called operational safety control, where the barrier functions at this time are named as control barrier function. In the future work, we are going to try to use our exponentialalpha safety criteria to solve some practical system control problems. Of course, just like the Lyapunov stability theory with stability criteria and instability criteria, in order to use these safety criteria to analyze the operational safety of practical dynamic system better, we have to devote our energy,effort and mind into the study of unsafety criteria for dynamic systems.

    And there are other spatial range descriptions of the unsafe sets for dynamic systems besides Cases A–C. Some can use the positive multi-hypersphere method, some can use the reverse multi-hypersphere method, and others may need a new kind of construction methods of the barrier functions. We will continue to improve, simplify and optimize our multi-hypersphere methods, which can make the uses of barrier functions more convenient and faster.

    后天国语完整版免费观看| 国产极品粉嫩免费观看在线| 在线播放国产精品三级| 国产精品一区二区精品视频观看| 国产真人三级小视频在线观看| 国产午夜精品久久久久久| 亚洲精华国产精华精| 亚洲成国产人片在线观看| 国产1区2区3区精品| 国产视频一区二区在线看| 色在线成人网| 51午夜福利影视在线观看| 黄色片一级片一级黄色片| 日韩欧美国产在线观看| 亚洲专区国产一区二区| 国产又爽黄色视频| 欧美性猛交╳xxx乱大交人| 亚洲成人久久爱视频| 怎么达到女性高潮| 欧美日韩黄片免| 亚洲成人国产一区在线观看| 嫁个100分男人电影在线观看| 亚洲avbb在线观看| 国产精品国产高清国产av| 午夜福利18| 嫩草影院精品99| 日本一区二区免费在线视频| 99久久99久久久精品蜜桃| 午夜视频精品福利| 19禁男女啪啪无遮挡网站| 香蕉国产在线看| 观看免费一级毛片| 身体一侧抽搐| 成人免费观看视频高清| 很黄的视频免费| 麻豆一二三区av精品| 亚洲成人久久性| 亚洲男人天堂网一区| 国产成人影院久久av| 黄色丝袜av网址大全| 白带黄色成豆腐渣| 久久精品夜夜夜夜夜久久蜜豆 | 男人舔女人下体高潮全视频| av超薄肉色丝袜交足视频| 午夜福利成人在线免费观看| 久久国产精品影院| 亚洲第一青青草原| 国产av又大| 国产精品一区二区免费欧美| 国产一区二区三区视频了| 欧美黄色片欧美黄色片| 后天国语完整版免费观看| 黄片播放在线免费| 黄色 视频免费看| 日本精品一区二区三区蜜桃| 午夜精品在线福利| 啦啦啦观看免费观看视频高清| 亚洲 欧美 日韩 在线 免费| 黄片小视频在线播放| 亚洲精品久久国产高清桃花| 国产av一区在线观看免费| 一二三四在线观看免费中文在| 国产蜜桃级精品一区二区三区| 亚洲国产欧美一区二区综合| 精品久久久久久久久久免费视频| 亚洲国产高清在线一区二区三 | 可以免费在线观看a视频的电影网站| 国产伦在线观看视频一区| 2021天堂中文幕一二区在线观 | 777久久人妻少妇嫩草av网站| 草草在线视频免费看| 日本 欧美在线| 成人18禁在线播放| 日韩中文字幕欧美一区二区| 18禁国产床啪视频网站| 制服诱惑二区| 精品高清国产在线一区| 亚洲国产毛片av蜜桃av| 亚洲五月天丁香| 在线播放国产精品三级| 亚洲成人久久性| 久久久久久国产a免费观看| 久久久国产成人免费| 日日摸夜夜添夜夜添小说| 日韩免费av在线播放| 视频区欧美日本亚洲| 热99re8久久精品国产| 久久青草综合色| 12—13女人毛片做爰片一| 亚洲精品美女久久av网站| 国产高清视频在线播放一区| 国内毛片毛片毛片毛片毛片| 精品久久久久久成人av| 老熟妇乱子伦视频在线观看| 岛国视频午夜一区免费看| 亚洲色图 男人天堂 中文字幕| 中文字幕久久专区| 神马国产精品三级电影在线观看 | 国产日本99.免费观看| 久久久久免费精品人妻一区二区 | 亚洲人成伊人成综合网2020| 曰老女人黄片| 国产精品二区激情视频| 操出白浆在线播放| 国产成+人综合+亚洲专区| 亚洲国产精品999在线| av视频在线观看入口| 亚洲精品国产一区二区精华液| 国产精品1区2区在线观看.| 美女免费视频网站| 丝袜人妻中文字幕| 可以在线观看毛片的网站| 大型黄色视频在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 高清在线国产一区| 亚洲精品国产区一区二| 国产一区二区三区在线臀色熟女| 国产精品 欧美亚洲| 在线观看免费视频日本深夜| 99在线人妻在线中文字幕| 热99re8久久精品国产| 无限看片的www在线观看| 国内揄拍国产精品人妻在线 | 曰老女人黄片| 黄色视频不卡| 成熟少妇高潮喷水视频| 熟女电影av网| 亚洲精品国产精品久久久不卡| 美女 人体艺术 gogo| 又黄又粗又硬又大视频| 国产蜜桃级精品一区二区三区| 久久性视频一级片| 99国产精品99久久久久| www日本黄色视频网| av超薄肉色丝袜交足视频| 精品久久久久久久久久免费视频| 亚洲国产精品999在线| 中亚洲国语对白在线视频| xxx96com| 无遮挡黄片免费观看| 人人妻人人澡人人看| 一区二区三区精品91| 精品国内亚洲2022精品成人| 巨乳人妻的诱惑在线观看| 亚洲国产欧美一区二区综合| 黄色毛片三级朝国网站| 国产av在哪里看| 满18在线观看网站| 我的亚洲天堂| 亚洲第一av免费看| 桃红色精品国产亚洲av| 9191精品国产免费久久| 欧美在线黄色| 99在线视频只有这里精品首页| 亚洲av中文字字幕乱码综合 | 91麻豆av在线| 12—13女人毛片做爰片一| av在线天堂中文字幕| 国产激情久久老熟女| 妹子高潮喷水视频| 国产精品av久久久久免费| 午夜久久久在线观看| 精品国产亚洲在线| videosex国产| 欧洲精品卡2卡3卡4卡5卡区| 自线自在国产av| 日本a在线网址| 一本精品99久久精品77| 日韩免费av在线播放| 亚洲欧美一区二区三区黑人| 成人一区二区视频在线观看| 久久精品aⅴ一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 国产熟女xx| 婷婷六月久久综合丁香| 99热6这里只有精品| 激情在线观看视频在线高清| 国产一区二区激情短视频| 欧美黄色淫秽网站| 国产一级毛片七仙女欲春2 | 757午夜福利合集在线观看| 国产一卡二卡三卡精品| 欧美丝袜亚洲另类 | 男女那种视频在线观看| 美女国产高潮福利片在线看| 免费电影在线观看免费观看| 日韩一卡2卡3卡4卡2021年| 亚洲av五月六月丁香网| 午夜福利免费观看在线| 亚洲第一电影网av| 国产99白浆流出| 午夜福利免费观看在线| 久久伊人香网站| 99久久久亚洲精品蜜臀av| 国产一区二区三区在线臀色熟女| 两个人看的免费小视频| 在线视频色国产色| 男人操女人黄网站| 国产黄片美女视频| 成人免费观看视频高清| 伊人久久大香线蕉亚洲五| 性色av乱码一区二区三区2| 高清在线国产一区| 成人三级黄色视频| 久9热在线精品视频| 超碰成人久久| АⅤ资源中文在线天堂| 97超级碰碰碰精品色视频在线观看| 人妻丰满熟妇av一区二区三区| 好男人电影高清在线观看| 亚洲一码二码三码区别大吗| 麻豆一二三区av精品| 国产高清视频在线播放一区| 国产精品爽爽va在线观看网站 | 欧美绝顶高潮抽搐喷水| 国产蜜桃级精品一区二区三区| 国产真实乱freesex| 免费人成视频x8x8入口观看| 成人国语在线视频| 每晚都被弄得嗷嗷叫到高潮| 色播亚洲综合网| 亚洲精品av麻豆狂野| 国产成人系列免费观看| 久99久视频精品免费| 白带黄色成豆腐渣| 国产精品精品国产色婷婷| 久久久久精品国产欧美久久久| 精品电影一区二区在线| 在线观看午夜福利视频| 欧美绝顶高潮抽搐喷水| 琪琪午夜伦伦电影理论片6080| 欧美中文综合在线视频| 女人高潮潮喷娇喘18禁视频| 男人操女人黄网站| 国产精品免费视频内射| 极品教师在线免费播放| 国产aⅴ精品一区二区三区波| 久久欧美精品欧美久久欧美| 欧美乱妇无乱码| 欧美绝顶高潮抽搐喷水| 亚洲中文av在线| 校园春色视频在线观看| 日韩欧美国产一区二区入口| 国产欧美日韩一区二区精品| 亚洲专区国产一区二区| 香蕉丝袜av| 我的亚洲天堂| 91麻豆精品激情在线观看国产| 国产日本99.免费观看| 女同久久另类99精品国产91| 欧美zozozo另类| 99国产精品99久久久久| 久久精品影院6| 午夜久久久在线观看| 此物有八面人人有两片| 两性夫妻黄色片| 少妇熟女aⅴ在线视频| 在线天堂中文资源库| www.精华液| 午夜免费成人在线视频| 麻豆国产av国片精品| 国语自产精品视频在线第100页| 成人亚洲精品一区在线观看| 亚洲 欧美一区二区三区| 婷婷六月久久综合丁香| 久久久久国产一级毛片高清牌| 亚洲一区二区三区色噜噜| 国产成人精品久久二区二区91| 99国产精品99久久久久| 他把我摸到了高潮在线观看| 成年女人毛片免费观看观看9| 午夜视频精品福利| 后天国语完整版免费观看| 精品福利观看| 狠狠狠狠99中文字幕| 热re99久久国产66热| 黄片小视频在线播放| 校园春色视频在线观看| 成人三级黄色视频| 成年免费大片在线观看| 97碰自拍视频| 1024手机看黄色片| 亚洲国产高清在线一区二区三 | 窝窝影院91人妻| 草草在线视频免费看| 国产精品亚洲av一区麻豆| 一进一出抽搐gif免费好疼| 免费看十八禁软件| 亚洲欧美精品综合一区二区三区| 91av网站免费观看| 99久久99久久久精品蜜桃| 天堂动漫精品| 久久人妻av系列| 国内揄拍国产精品人妻在线 | 欧美一区二区精品小视频在线| 欧美成人一区二区免费高清观看 | 一级毛片精品| 波多野结衣高清作品| 国产精品久久电影中文字幕| 中文字幕人成人乱码亚洲影| 国产成人欧美在线观看| 村上凉子中文字幕在线| 人人妻人人澡人人看| 精品一区二区三区视频在线观看免费| 久久精品成人免费网站| 欧美 亚洲 国产 日韩一| 琪琪午夜伦伦电影理论片6080| 久久久久久久久免费视频了| 免费电影在线观看免费观看| 亚洲天堂国产精品一区在线| 久热这里只有精品99| 少妇的丰满在线观看| 神马国产精品三级电影在线观看 | 丁香六月欧美| 免费高清视频大片| 国产又黄又爽又无遮挡在线| 亚洲成人国产一区在线观看| 国产aⅴ精品一区二区三区波| 亚洲精品久久成人aⅴ小说| 国产成人欧美在线观看| 久久国产乱子伦精品免费另类| 国产精品美女特级片免费视频播放器 | 一个人观看的视频www高清免费观看 | 午夜福利在线观看吧| 国产亚洲精品一区二区www| 亚洲无线在线观看| 日日摸夜夜添夜夜添小说| 男女床上黄色一级片免费看| 欧美国产日韩亚洲一区| 18禁黄网站禁片免费观看直播| 成年免费大片在线观看| 波多野结衣av一区二区av| 久久久精品国产亚洲av高清涩受| 欧美又色又爽又黄视频| 99热6这里只有精品| 日本免费一区二区三区高清不卡| 在线观看日韩欧美| 国产高清视频在线播放一区| 午夜精品久久久久久毛片777| 国产亚洲精品久久久久久毛片| 一级片免费观看大全| 岛国在线观看网站| 亚洲国产精品成人综合色| 中文资源天堂在线| 国产精品精品国产色婷婷| 色播在线永久视频| 听说在线观看完整版免费高清| 亚洲av中文字字幕乱码综合 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产真人三级小视频在线观看| aaaaa片日本免费| 成人国产一区最新在线观看| 在线观看免费午夜福利视频| 亚洲国产高清在线一区二区三 | 啦啦啦韩国在线观看视频| 最好的美女福利视频网| 99久久国产精品久久久| 久久久久久人人人人人| 亚洲一卡2卡3卡4卡5卡精品中文| 12—13女人毛片做爰片一| 真人一进一出gif抽搐免费| 妹子高潮喷水视频| av福利片在线| 一进一出抽搐gif免费好疼| 麻豆成人午夜福利视频| 成人国产一区最新在线观看| 亚洲成a人片在线一区二区| 波多野结衣高清无吗| 国产极品粉嫩免费观看在线| 国产av在哪里看| 亚洲人成伊人成综合网2020| 色在线成人网| 国产亚洲欧美精品永久| av在线播放免费不卡| 亚洲avbb在线观看| 欧美午夜高清在线| 欧美大码av| 欧美激情 高清一区二区三区| 九色国产91popny在线| 美女高潮喷水抽搐中文字幕| 免费在线观看日本一区| 午夜福利免费观看在线| 国产伦在线观看视频一区| 国内毛片毛片毛片毛片毛片| 女性被躁到高潮视频| 国产成人精品无人区| 岛国在线观看网站| 亚洲精品久久国产高清桃花| 色哟哟哟哟哟哟| 久久午夜亚洲精品久久| 天天躁夜夜躁狠狠躁躁| 亚洲免费av在线视频| 国产亚洲精品第一综合不卡| 成年女人毛片免费观看观看9| 美女免费视频网站| 色尼玛亚洲综合影院| 午夜免费观看网址| 夜夜躁狠狠躁天天躁| 亚洲国产欧洲综合997久久, | 一个人免费在线观看的高清视频| 又黄又粗又硬又大视频| 欧美黑人巨大hd| 在线观看66精品国产| 中国美女看黄片| 侵犯人妻中文字幕一二三四区| 这个男人来自地球电影免费观看| 欧美亚洲日本最大视频资源| 18禁黄网站禁片午夜丰满| 人人妻,人人澡人人爽秒播| 两人在一起打扑克的视频| 午夜福利18| 色av中文字幕| 一进一出好大好爽视频| 一级毛片女人18水好多| 91成年电影在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲三区欧美一区| 欧美人与性动交α欧美精品济南到| 成人av一区二区三区在线看| 99热6这里只有精品| 亚洲自拍偷在线| 精品日产1卡2卡| 国产精品久久久人人做人人爽| 精品第一国产精品| 亚洲中文av在线| 中文资源天堂在线| 亚洲黑人精品在线| 国产99白浆流出| bbb黄色大片| 亚洲真实伦在线观看| 婷婷丁香在线五月| 亚洲成人国产一区在线观看| 丁香六月欧美| 精品免费久久久久久久清纯| 日本成人三级电影网站| 午夜精品久久久久久毛片777| 欧美又色又爽又黄视频| 老司机福利观看| 精品国产美女av久久久久小说| 国产在线精品亚洲第一网站| a级毛片a级免费在线| 熟妇人妻久久中文字幕3abv| 母亲3免费完整高清在线观看| 少妇粗大呻吟视频| 国内精品久久久久久久电影| 巨乳人妻的诱惑在线观看| 在线播放国产精品三级| 国产午夜精品久久久久久| 91在线观看av| 一级片免费观看大全| 精品一区二区三区视频在线观看免费| 日韩有码中文字幕| 欧美av亚洲av综合av国产av| 国产成人啪精品午夜网站| 国产一卡二卡三卡精品| 一区二区三区国产精品乱码| 国产亚洲精品久久久久5区| 亚洲av五月六月丁香网| 男人操女人黄网站| 色在线成人网| 亚洲天堂国产精品一区在线| 国产精品九九99| 国产成人精品久久二区二区免费| 51午夜福利影视在线观看| 亚洲五月色婷婷综合| 99精品久久久久人妻精品| 午夜福利18| www.熟女人妻精品国产| 亚洲精品粉嫩美女一区| 亚洲自偷自拍图片 自拍| 欧美成人一区二区免费高清观看 | 亚洲中文字幕日韩| 99热6这里只有精品| 亚洲国产看品久久| 黄色a级毛片大全视频| 女性生殖器流出的白浆| 亚洲va日本ⅴa欧美va伊人久久| 久久久水蜜桃国产精品网| 九色国产91popny在线| 欧美性猛交黑人性爽| 亚洲国产精品合色在线| 香蕉国产在线看| 国产男靠女视频免费网站| 欧洲精品卡2卡3卡4卡5卡区| 天堂√8在线中文| 香蕉久久夜色| 亚洲精品久久国产高清桃花| 国产爱豆传媒在线观看 | 又黄又粗又硬又大视频| 午夜免费激情av| 神马国产精品三级电影在线观看 | 亚洲专区国产一区二区| 女警被强在线播放| 精品国产一区二区三区四区第35| 制服人妻中文乱码| 免费高清在线观看日韩| 欧美日韩精品网址| 国产真实乱freesex| 国产在线观看jvid| 精品久久久久久久久久免费视频| 亚洲性夜色夜夜综合| 亚洲欧美精品综合一区二区三区| 欧美日韩一级在线毛片| 久久狼人影院| 久久青草综合色| 51午夜福利影视在线观看| 久久精品91蜜桃| 99热6这里只有精品| 一区二区日韩欧美中文字幕| 看免费av毛片| 亚洲一码二码三码区别大吗| 麻豆久久精品国产亚洲av| 国产亚洲欧美98| 少妇被粗大的猛进出69影院| 人人澡人人妻人| 俄罗斯特黄特色一大片| 黄网站色视频无遮挡免费观看| 精品一区二区三区四区五区乱码| 国产主播在线观看一区二区| 日日摸夜夜添夜夜添小说| 亚洲av熟女| 欧美日韩黄片免| www国产在线视频色| 88av欧美| 天天一区二区日本电影三级| 香蕉国产在线看| 国产成人系列免费观看| 精品国产乱子伦一区二区三区| 国产伦人伦偷精品视频| 亚洲色图av天堂| 久久香蕉激情| avwww免费| 可以在线观看毛片的网站| 99国产精品一区二区蜜桃av| 身体一侧抽搐| 色av中文字幕| 国产精品,欧美在线| 久久 成人 亚洲| 夜夜爽天天搞| 此物有八面人人有两片| 亚洲欧洲精品一区二区精品久久久| or卡值多少钱| 久久国产精品影院| e午夜精品久久久久久久| 欧美午夜高清在线| av电影中文网址| 亚洲五月婷婷丁香| 亚洲国产毛片av蜜桃av| 久久青草综合色| 欧美在线一区亚洲| 久久久久久九九精品二区国产 | 国语自产精品视频在线第100页| 一进一出抽搐动态| 久久99热这里只有精品18| 亚洲av成人一区二区三| 久久久久国内视频| 无遮挡黄片免费观看| 我的亚洲天堂| cao死你这个sao货| 男人舔奶头视频| 色尼玛亚洲综合影院| 久久久精品欧美日韩精品| 欧美成人午夜精品| 久久精品国产99精品国产亚洲性色| 88av欧美| 美女国产高潮福利片在线看| 国产国语露脸激情在线看| 美女午夜性视频免费| 国产99久久九九免费精品| 夜夜爽天天搞| 午夜免费成人在线视频| 亚洲在线自拍视频| 久久久久久久精品吃奶| 亚洲av成人不卡在线观看播放网| 久久午夜综合久久蜜桃| 日韩欧美免费精品| 日韩欧美 国产精品| 欧美中文综合在线视频| 成在线人永久免费视频| 不卡一级毛片| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲欧美在线一区二区| 国产精品亚洲一级av第二区| 免费看日本二区| 国产一区二区在线av高清观看| 白带黄色成豆腐渣| 99久久精品国产亚洲精品| 中文字幕人妻丝袜一区二区| 色婷婷久久久亚洲欧美| 18禁黄网站禁片午夜丰满| 18禁国产床啪视频网站| 欧美国产精品va在线观看不卡| 免费在线观看黄色视频的| 香蕉av资源在线| 欧美乱色亚洲激情| 欧美日韩一级在线毛片| 香蕉av资源在线| 亚洲va日本ⅴa欧美va伊人久久| 女警被强在线播放| 亚洲成人国产一区在线观看| 少妇熟女aⅴ在线视频| 国产成人一区二区三区免费视频网站| 亚洲第一青青草原| 亚洲一区中文字幕在线| 热99re8久久精品国产| 久久久久久久久久黄片| 亚洲av五月六月丁香网| 国产亚洲欧美98| 国产黄a三级三级三级人| 又紧又爽又黄一区二区| 精品欧美一区二区三区在线| 午夜福利免费观看在线| 999久久久精品免费观看国产| 精品久久久久久成人av| 久久中文字幕人妻熟女|