• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exponential-Alpha Safety Criteria of a Class of Dynamic Systems With Barrier Functions

    2022-10-29 03:28:30ZherenZhuYiChaiZhiminYangandChenghongHuang
    IEEE/CAA Journal of Automatica Sinica 2022年11期

    Zheren Zhu, Yi Chai, Zhimin Yang, and Chenghong Huang

    I. INTRODUCTION

    WITH the history which is from the accident cause theory to the accident dynamic evolution model theory [1],safety analysis methods have been used to describe the system accident process in the form of directed graphs such as chains or trees, and analyze the system which stage of an accident is keeping in or calculate the probability of an accident which will occur by using the tools like entropy and probability [1]–[6]. And such safety analysis methods from the aforementioned theories are not directly related to the operational states of the systems [7]–[10]. With the rapid development of information technology and industrial technology, scholars have tried to use the changing of system operating state to analyze or determine the system operational safety [2], [11],[12], which can objectively and directly reflect the dynamic change characteristics of the system safety, especially the safety state changing caused by the changes of the system structures and operational states driven by operation faults and mistaking operations.

    Creating a different route of safety analysis, by borrowing the kernel idea of the Lyapunov functionV(x) and its stability analysis theory, Prajna and his team [13], [14] have designed a new class of functions, called the barrier functionsB(x), and proposed corresponding safety criteria which can be used to judge the safety of systems with the similar steps as the use of the Lyapunov stability criteria. Therefore, their methods turn operational safety analysis problems into computable judgement problems, which converts the analysis whether the system will keep safe or not into the proof whetherB(x)≤0 will hold all the time, beginning from the initial time of the system (supposing the system is safe at the initial moment).

    By the researches of safety criteria based on barrier functions which are the study of the behavior constraints ofB(x),we have realized that it is safe by satisfying the constraint condition, however, it may not be unsafe without satisfying the constraint conditions. Thus, from the initial strong constraint Lf B(x)≤0 [13]–[15] to Lf B(x)≤λB(x) [16], scholars [16]–[19] have been trying to find all of relatively weaker constraints. Moreover, Ames and his partners [20] have great contribution to the integration of safety and stability, especially the applications to the fusion of the safety control and the common control algorithms [21]–[27] such as robust control, adaptive control, and multi-agent control. This article continues to try to be a piece of puzzle to develop and strengthen the safety analysis framework system. The contributions of this article will focus primarily on constraint conditions and construction ofB(x), which are two different but relevant research points.

    In this article, we want to achieve two things.

    The first one is to establish a weaker condition applied to improve a kind of safety criteria based on barrier functions.As known, the weak constraint conditions can be applied to more systems with different running state motion laws, and help to reduce the conditional specificity caused by strong constraint conditions. Hence, using weak constraint conditions to analyze and determine the operational safety of the system improves the economy of system operation and maintenance. On the basis of Lf B(x)≤λB(x) which seems Lf B(x)≤λBα(x), α=1, we try to explore whether the constraint conditions ofB(x) are true when the value of α does not only equal one. And then if it is true, we may form a new set of weak constraint conditions in order to improve the accuracy of using the barrier functionB(x) to determine the system operational safety and reduce the rate of safety misdiagnosis. Inspired bydV/dt≤-KVα(α ∈(0,1)) in the finite-time stability theorem [28], which has a similar structure to the condition of the operational safety criterionLf B(x)≤λBα(x)based on the barrier functions, we first expand the value range of α to ( 0,1], and then try to explore whether there exist successful applications in α ∈R+or not. Therefore, we can name it as exponential-alpha safety criterion. Why do we consider this type of safety criterion is worth our passion for research?Comparing [20] and [28], we find that the difference between Lyapunov exponential stability and finite-time stability is that αin the latter is α ∈(0,1) while in the former is α=1. So, we can confirm the value varying of α may make the behaviors of barrier functions different or changing. If we can generalize the value of α to the entire positive real number field, we can use the exponential-alpha safety criterion whose core condition is Lf B(x)≤λBα(x) to determine the safety for more types of different situations or systems. However, the great challenge is that we must guarantee that the barrier functionBwill always stay in the negative real number field during the process of converging to zero, where it starts with the negative initial value and no behavior of crossing zero will occur,asB∈R, rather thanV>0 orV≥0.

    There are six sections. The introduction is in Section I. Section II describes some important definitions and concepts about the operational safety of the system. In addition, there are some exponential-alpha safety criteria of some dynamic systems and their proofs in Section III. The construction of control barrier function is located in Section IV. And Section V is simulation and analysis. In the end, Section VI concludes the whole article.

    II. SEVERAL OPERATIONAL SAFETY RELATED DEFINITIONS AND THEIR MATHEMATICAL DESCRIPTIONS

    A class of dynamic systems, usually with responding controllers, can be described as following:

    withvandgr-times continuously differentiable,x∈Rmandu∈Rm. Then, we set a feedback control lawu=-π(x(t)),which makes (1) bex˙(t)=v(x(t))-g(x(t))π(x(t)), so that we can always make (2) broadly equivalent to (1)the aforementioned conditions, we call it the safety strictness.

    III. EXPONENTIAL-ALPHA SAFETY CRITERIA

    A. Motivation

    For the operational process of a dynamic system, the dynamic functions and structures of the system may be changed due to the excitation of any risk factor or factors, that the statex(t) of the system (2), which is deviated from the original law and track of motion, becomes the system (3) or other now. However, we cannot know how bad the system is being just by the system dynamic equations. Therefore, we need some criteria or evaluation models to analyze and evaluate the extent of the system safety.

    Proposition 1:The necessary and sufficient condition for determining the safety of the system (2), is that, there exists a functionB(x)∈C1(χ,R), which hasB(x)>0 (?x∈χu) and Λ:={x∈χ|B(x)≤0}≠? , satisfying?t∈[t0,+∞),B(x(t))≤β ≤0.

    Proof:1) To the sufficient, as ?t∈[t0,+∞),B(x(t))≤β ≤0,B(x)>0 (?x∈χu), and Λ:={x∈χ|B(x)≤0}≠?, it has{x(t),t≥t0}∩χu=?. According to the Definition 1, it is true that the system (2) is safe.

    Reference [19] has proposed a good weak condition, however, using its safety criterion, we need to calculate all extreme points of the barrier function for the corresponding system. In fact, for some complex systems, the calculation of extreme points may be a challenge. We may need to find another way which is easier to implement and has similarities.Fortunately, we realized the setting of the safety criterion in[16] may have the ability of the aforementioned. But, the core constraint condition of the safety criterion in [16], which has α=1mentioned in Section I, limits other possible situations of the behaviors varying of the barrier function so that it makes the possibility of conversions between these two methods reduced. Therefore, developed on the basis of the work[16], this article will do the effort to explore the generalization which is expanding the value range of α and relaxing the constraints on the behaviors of the barrier functionB(x) and its derivatives. We name this as exponential-alpha safety criterion.

    B. Barrier Functions and Safety Criteria

    C. Control Barrier Functions

    How to apply the aforementioned exponential-alpha safety criteria to make a dynamic control system be safe all the time?Consider a class of dynamic control systems as (1) withvandgassumed to be locally Lipschitz andr-times continuously differentiable,x∈Rmandu∈U?Rm, whereUis the set of the controller feasible control outputs. It has a set of all states denoted as χ, an unsafe set χuand an initial state set χ0. These sets have the same definitions as ones for the system (2). We want to useufor (1) to helpx(t) not enter into χu. For example, we needuto work when a dynamic system as (2) has a fault at a certain time and thex˙=f(x)+fd(t)=:fˉ(x) cannot keep safe, wherefd(t) is an observable fault function.

    Definition 6:There is a dynamic control system (1) that meets all of its settings in this section with its initial statex0∈χ0. We can call a functionB(x)(B(x)∈C2(χ)) as the control barrier function for the system (1), which has a constant λ ∈R and an α (α >0), satisfying

    IV. CONSTRUCTION OF BARRIER FUNCTION

    How can we use the barrier functionB(x)? The current method about the construction ofB(x) needs to choose a set of standard positive semidefinite polynomials with unknown coefficients, so that it can transform the constructions of barrier functions to the problems of positive semidefinite programming of polynomials based on sum-of-squares (SOS)[13]–[16], [18], which prove the system safety by finding the existence of the barrier functions. The method is similar to the linear stability analysis, which is needed to establish a positive definite symmetric matrixPand a linear inequality for the stability determination, and then prove the system stability by analyzing the existence ofP. In fact, this method subtly transforms tough problems of function construction into search problems, and provides a numerical calculation method for most researchers, which is feasible within the scope of existing computing capabilities. Such a method can reduce the workload of the inference part of proof and calculation process, and can use similar procedures for different practical application examples, where only the system models and corresponding settings need to be modified.

    However, sometimes, we want to be able to find out whether safety is related to some characteristics of a dynamic system through the safety judgment theorems. For example,the stability of a linear systemx˙=Axis related to the distribution of all eigenvalues of the system matrixA. Such the aforementioned construction method may not meet this demand.With the existence of an unsafe state set, which means an unreachable state domain, forB(x), we cannot directly use the construction methods of the Lyapunov functionV(x). In addition, the constraint conditions of the behaviors of barrier functions, which are usually designed in the safety criteria, stipulate that most ofB(x(t)) must satisfy at least first-order continuous differentiable [13], [14], [16], [19]. And with our previous work [19], we found that for the function construction method based on mathematical models, the number of unsafe state subsets, where all subsets are independent of each other and have no intersection, and the range of the unsafe set may affect the structure of the functionB(x) and increase the difficulty of function construction.

    Remark 3:According to the mathematical definitions about convex and simply-connected, a closed and single unsafe set which is simply-connected in this article is a convex set, and the unsafe set which is complex-connected is a non-convex set.

    A. Positive Multi-Hypersphere Method

    From Theorems 3 to 4, the latter is a universal type of the former. So, we name the method similar to the latter one as the positive multi-hypersphere method.

    B. Reverse Multi-Hypersphere Method

    Fig. 1. Case A schematic illustration. (a) s=(s1,s2)T ; (b) s=(s1,s2,s3)T.

    Fig. 2. Case B schematic illustration. (a) s=(s1,s2)T ; (b) s=(s1,s2,s3)T.

    Fig. 3. Case C schematic illustration. (a) One of situations on Ns=2; (b)One of situations on N s=4.

    Fig. 4. Dynamic time-varying of the state x for the system (43).

    Fig. 5. The relationship between x and unsafe set χ u for the system (43).

    Fig. 6. Dynamic changes of B and B˙ for the system (43).

    Fig. 4 shows the change of statex=(x1,x2)Twith timet. In order to clearly show the trajectories of the components, Fig. 4 has independent tracksx1(t) andx2(t). Fig. 5 shows the relative position of the track of statexand the unsafe set χu,where the black curve represents the track of thexand the unsafe set χuis wrapped in the red closed curve. Fig. 6 shows the behaviors of the barrier functionB(x) and its first derivative at timet. By Figs. 4–6, we can find the system finally stops at a certain point since ( 1,0). According to Figs. 4 and 6,x(t) andB(x(t)) are stable from 10 s. It proves that the stop-

    Fig. 7. State x(t) for the system (46).

    As the similar curve settings to Example 1, Fig. 7 shows the change of statex=(x1,x2)Twith timet, Fig. 8 shows the relative position of statexand the unsafe set χu, and Fig. 9 shows the behaviors ofB(x) and its first derivative at timet. By Figs. 7–9, we can find the system finally stop at the point(4,3) which is the boundary of χs. According toχu={x∈R2:‖x-xu‖22<r2}, which is in a circle with point (4, 4) as center and radius 1. So, finally, thexis outside of the unsafe set χu.This is confirmed in Fig. 9, which shows theB(x(t)) andB˙(x(t))eventually converge to zero and the convergence process is approximately smooth. Thus, the state of (46) will never enter into the unsafe set χu. As the functionB(x) is projection from two-dimensional to one-dimensional, the change ofBcaused by the oscillation ofxlooks like a continuous change for the value ofB. It may be the reason thatx1(t) in Fig. 7 andxin Fig. 8 have a period of oscillating changes.

    Fig. 8. The spatial position relationship between x and the unsafe state set χuin the state domain.

    Fig. 9. The behaviors of B and B˙ with x(t).

    Fig. 10. State x(t) for the system (48) with the initial state x 0=(7,4)T.

    Fig. 11. The relationship between x and unsafe set χu with the initial statex0=(7,4)T.

    Fig. 12. The curves of B and B˙ with the initial state x 0=(7,4)T.

    Most settings of curves are similar to Examples 1 and 2. But the set which is wrapped in the red curve shown by Fig. 11 is the set of safe states and the boundary which is the red closed curve also belongs to the safe set Ω. By Figs. 10–12, the system finally stops at the point (4,4) which is the center of Ω.And the stopping is actually keeping dynamically stable,which is proved byBfinally convergence to - 9 andB˙ convergence to zero shown by Fig. 12. By Figs. 10 and 12,x,BandB˙have smooth convergence processes. Thus, the state of (48)can never escape from the safe set Ω into the unsafe set χu.

    Example 4:Consider a dynamic system as

    Fig. 13. The solution state x(t).

    Fig. 14. The relationship between x and unsafe set χu composed of four subsets.

    Fig. 15. Dynamical performances of B and B˙.

    VI. CONCLUSIONS

    We found that most of the researches, such as Prajnaet al.[13], Konget al. [16], etc., even including Ameset al. [20],have focused onB˙⊕F(B) where ⊕ can be “ =” , “ <” , or “ >”,we can say the development history of this series of system safety analysis theories is the process of continuously relaxing safety criteria.

    However, the exponential-alpha safety criteria proposed in this article and other researches are only sufficient criteria. It seems that those satisfying the criteria must be safe, however,the judgments that those dissatisfying safety criteria are unsafe are not completely credible. Therefore, these sufficient criteria derived from the boundedness criteria are more suitable for the operational safety state maintenance control, which can also be called operational safety control, where the barrier functions at this time are named as control barrier function. In the future work, we are going to try to use our exponentialalpha safety criteria to solve some practical system control problems. Of course, just like the Lyapunov stability theory with stability criteria and instability criteria, in order to use these safety criteria to analyze the operational safety of practical dynamic system better, we have to devote our energy,effort and mind into the study of unsafety criteria for dynamic systems.

    And there are other spatial range descriptions of the unsafe sets for dynamic systems besides Cases A–C. Some can use the positive multi-hypersphere method, some can use the reverse multi-hypersphere method, and others may need a new kind of construction methods of the barrier functions. We will continue to improve, simplify and optimize our multi-hypersphere methods, which can make the uses of barrier functions more convenient and faster.

    天美传媒精品一区二区| 热re99久久国产66热| 99九九在线精品视频| 欧美日韩亚洲高清精品| 精品人妻在线不人妻| 叶爱在线成人免费视频播放| 美女国产视频在线观看| 99久久综合免费| 美女视频免费永久观看网站| 国产探花极品一区二区| 欧美人与性动交α欧美精品济南到 | 日韩熟女老妇一区二区性免费视频| 国产女主播在线喷水免费视频网站| 免费播放大片免费观看视频在线观看| 国产亚洲欧美精品永久| 午夜福利一区二区在线看| 制服丝袜香蕉在线| 色94色欧美一区二区| 99国产精品免费福利视频| 午夜福利,免费看| 五月开心婷婷网| 免费大片黄手机在线观看| 久久精品人人爽人人爽视色| 成人亚洲欧美一区二区av| 亚洲成色77777| 在线看a的网站| a级毛片在线看网站| 在线观看免费日韩欧美大片| 哪个播放器可以免费观看大片| 色婷婷av一区二区三区视频| 久久久久久久精品精品| 纯流量卡能插随身wifi吗| 99国产精品免费福利视频| 91国产中文字幕| 成人影院久久| 少妇 在线观看| h视频一区二区三区| 国产福利在线免费观看视频| 激情五月婷婷亚洲| 啦啦啦啦在线视频资源| 欧美日本中文国产一区发布| 国产国语露脸激情在线看| av在线播放精品| 999精品在线视频| 亚洲成av片中文字幕在线观看 | 久久午夜综合久久蜜桃| 亚洲精品第二区| 久久精品aⅴ一区二区三区四区 | 一级毛片我不卡| 国产在线一区二区三区精| 久久久国产精品麻豆| 国产欧美日韩综合在线一区二区| 丰满少妇做爰视频| 国产xxxxx性猛交| 成年美女黄网站色视频大全免费| www.精华液| 丝袜脚勾引网站| 青春草视频在线免费观看| 欧美xxⅹ黑人| 丰满乱子伦码专区| 婷婷成人精品国产| 大香蕉久久网| 亚洲一级一片aⅴ在线观看| 咕卡用的链子| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱码久久久久久男人| 国产成人免费观看mmmm| 一级毛片我不卡| 老女人水多毛片| 香蕉丝袜av| 免费不卡的大黄色大毛片视频在线观看| 国产在视频线精品| 久久久a久久爽久久v久久| 熟女电影av网| 国产男人的电影天堂91| 9热在线视频观看99| 日韩电影二区| 黄片无遮挡物在线观看| 热re99久久国产66热| av线在线观看网站| 寂寞人妻少妇视频99o| 777米奇影视久久| 国产片特级美女逼逼视频| 久久狼人影院| 青草久久国产| xxxhd国产人妻xxx| 涩涩av久久男人的天堂| 午夜日本视频在线| 国精品久久久久久国模美| 999久久久国产精品视频| 久久鲁丝午夜福利片| 婷婷色综合大香蕉| 国产视频首页在线观看| 99热全是精品| 国产精品不卡视频一区二区| 久久精品国产亚洲av高清一级| 亚洲综合色网址| 亚洲一区中文字幕在线| 一区福利在线观看| 午夜日本视频在线| 国产精品久久久久久av不卡| 国产xxxxx性猛交| 电影成人av| av一本久久久久| 最近2019中文字幕mv第一页| 国产亚洲午夜精品一区二区久久| 秋霞在线观看毛片| 国产探花极品一区二区| 少妇的丰满在线观看| a级毛片黄视频| 赤兔流量卡办理| 免费人妻精品一区二区三区视频| 亚洲国产欧美网| 日日啪夜夜爽| 久久免费观看电影| 黄色毛片三级朝国网站| 精品视频人人做人人爽| 少妇被粗大猛烈的视频| 欧美人与性动交α欧美软件| 一区二区日韩欧美中文字幕| 99香蕉大伊视频| av卡一久久| videos熟女内射| 寂寞人妻少妇视频99o| 久久久精品94久久精品| 国产成人欧美| 色94色欧美一区二区| 精品久久蜜臀av无| 超碰97精品在线观看| 国产精品.久久久| 99热网站在线观看| 韩国av在线不卡| 捣出白浆h1v1| 桃花免费在线播放| 国产精品国产三级国产专区5o| 91精品三级在线观看| 视频区图区小说| 又黄又粗又硬又大视频| 国产成人一区二区在线| 亚洲成国产人片在线观看| 9热在线视频观看99| 尾随美女入室| 成人国语在线视频| 精品国产超薄肉色丝袜足j| 日韩欧美一区视频在线观看| 午夜福利在线观看免费完整高清在| 最黄视频免费看| 男女边吃奶边做爰视频| 啦啦啦在线免费观看视频4| 最近2019中文字幕mv第一页| 亚洲精品一区蜜桃| 黄色配什么色好看| 一区二区三区精品91| 国产激情久久老熟女| 一本久久精品| 亚洲国产欧美日韩在线播放| 91成人精品电影| 精品少妇黑人巨大在线播放| 男的添女的下面高潮视频| 可以免费在线观看a视频的电影网站 | 亚洲色图 男人天堂 中文字幕| 欧美精品av麻豆av| 国产 精品1| h视频一区二区三区| 婷婷色麻豆天堂久久| 男女边吃奶边做爰视频| 九九爱精品视频在线观看| 亚洲欧美精品自产自拍| 久久99热这里只频精品6学生| 男女午夜视频在线观看| 国产精品无大码| 好男人视频免费观看在线| 久久狼人影院| 亚洲国产av影院在线观看| av女优亚洲男人天堂| 亚洲精品一二三| 亚洲天堂av无毛| 天美传媒精品一区二区| 中文精品一卡2卡3卡4更新| 在线观看国产h片| 韩国高清视频一区二区三区| 91精品三级在线观看| 大香蕉久久成人网| 中国国产av一级| 性色av一级| 深夜精品福利| 如日韩欧美国产精品一区二区三区| 久久久久久久精品精品| 晚上一个人看的免费电影| 大香蕉久久网| 视频区图区小说| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久久久免| 国产成人午夜福利电影在线观看| 成年美女黄网站色视频大全免费| 免费不卡的大黄色大毛片视频在线观看| 我要看黄色一级片免费的| 免费看av在线观看网站| 久热这里只有精品99| 叶爱在线成人免费视频播放| 一本色道久久久久久精品综合| 亚洲国产最新在线播放| 一区二区三区激情视频| 宅男免费午夜| 两性夫妻黄色片| 夫妻午夜视频| a 毛片基地| 天天躁狠狠躁夜夜躁狠狠躁| 99精国产麻豆久久婷婷| 欧美人与性动交α欧美精品济南到 | 看免费成人av毛片| 亚洲欧美精品自产自拍| 欧美日韩亚洲国产一区二区在线观看 | 搡女人真爽免费视频火全软件| 搡老乐熟女国产| 午夜激情av网站| 丝瓜视频免费看黄片| 90打野战视频偷拍视频| 五月伊人婷婷丁香| 中文字幕最新亚洲高清| 一区二区三区激情视频| kizo精华| av在线观看视频网站免费| 国产精品一区二区在线不卡| 国产在视频线精品| www.自偷自拍.com| 亚洲国产日韩一区二区| 麻豆av在线久日| 日韩中文字幕视频在线看片| 不卡av一区二区三区| 国产日韩欧美亚洲二区| av有码第一页| 国产乱来视频区| 国产又爽黄色视频| 国产成人精品久久二区二区91 | 亚洲一区二区三区欧美精品| √禁漫天堂资源中文www| a 毛片基地| 宅男免费午夜| 国产一区二区三区av在线| 色视频在线一区二区三区| 亚洲欧美色中文字幕在线| 成人黄色视频免费在线看| 亚洲一区中文字幕在线| 久久久国产精品麻豆| 成人影院久久| 精品人妻在线不人妻| 精品一区二区免费观看| a 毛片基地| 涩涩av久久男人的天堂| 9191精品国产免费久久| 美女国产高潮福利片在线看| 久久精品aⅴ一区二区三区四区 | 少妇人妻 视频| 美女福利国产在线| 国产精品麻豆人妻色哟哟久久| 精品国产一区二区三区久久久樱花| 国产97色在线日韩免费| 五月天丁香电影| 午夜福利乱码中文字幕| 日韩一本色道免费dvd| 一级毛片电影观看| 麻豆精品久久久久久蜜桃| 在线天堂中文资源库| 最黄视频免费看| 亚洲成人手机| 少妇精品久久久久久久| 最近最新中文字幕大全免费视频 | 亚洲第一区二区三区不卡| 国产精品人妻久久久影院| 777久久人妻少妇嫩草av网站| 少妇被粗大的猛进出69影院| 国产精品国产三级专区第一集| 午夜免费鲁丝| 久久精品国产鲁丝片午夜精品| 免费观看在线日韩| 男女高潮啪啪啪动态图| 老汉色∧v一级毛片| 老司机影院毛片| 中文精品一卡2卡3卡4更新| 麻豆精品久久久久久蜜桃| 少妇的逼水好多| 极品人妻少妇av视频| 午夜激情av网站| 91精品三级在线观看| 精品久久久久久电影网| 夜夜骑夜夜射夜夜干| 在线观看免费视频网站a站| 中文欧美无线码| 久久午夜福利片| 久久久a久久爽久久v久久| 日韩人妻精品一区2区三区| 欧美日韩视频高清一区二区三区二| 天天躁夜夜躁狠狠躁躁| 午夜福利在线观看免费完整高清在| 男女高潮啪啪啪动态图| 欧美日韩亚洲高清精品| 黄频高清免费视频| 国产高清国产精品国产三级| 亚洲精品国产av蜜桃| 你懂的网址亚洲精品在线观看| 男女边吃奶边做爰视频| 999精品在线视频| 精品国产露脸久久av麻豆| 日韩av免费高清视频| 国产亚洲一区二区精品| 欧美最新免费一区二区三区| 黑人猛操日本美女一级片| 香蕉精品网在线| 叶爱在线成人免费视频播放| 男女边吃奶边做爰视频| 成人二区视频| 欧美日韩一区二区视频在线观看视频在线| 欧美另类一区| 国产精品蜜桃在线观看| 丝袜美腿诱惑在线| 欧美另类一区| 天天躁夜夜躁狠狠躁躁| 成人毛片60女人毛片免费| 人人澡人人妻人| 乱人伦中国视频| 久久99一区二区三区| 午夜免费鲁丝| 欧美精品高潮呻吟av久久| 丝袜人妻中文字幕| 国产免费视频播放在线视频| 女人高潮潮喷娇喘18禁视频| 交换朋友夫妻互换小说| 一区二区三区四区激情视频| 在线观看人妻少妇| 日韩av不卡免费在线播放| 亚洲,一卡二卡三卡| 美女中出高潮动态图| 香蕉国产在线看| 欧美日韩国产mv在线观看视频| 国产xxxxx性猛交| 国产黄频视频在线观看| 欧美日韩国产mv在线观看视频| 久久这里有精品视频免费| 如日韩欧美国产精品一区二区三区| 又黄又粗又硬又大视频| 亚洲第一青青草原| 99久久中文字幕三级久久日本| 国产乱来视频区| 欧美日韩综合久久久久久| 激情五月婷婷亚洲| 韩国精品一区二区三区| 人成视频在线观看免费观看| 黄片播放在线免费| 久久久a久久爽久久v久久| 街头女战士在线观看网站| 又黄又粗又硬又大视频| 国产毛片在线视频| 亚洲伊人久久精品综合| a 毛片基地| 色94色欧美一区二区| 国产精品 欧美亚洲| 18禁观看日本| 亚洲激情五月婷婷啪啪| 王馨瑶露胸无遮挡在线观看| 久久久精品免费免费高清| 最新中文字幕久久久久| 国产 精品1| 女性生殖器流出的白浆| av一本久久久久| 涩涩av久久男人的天堂| 国产精品成人在线| 亚洲综合精品二区| 久久亚洲国产成人精品v| 女人精品久久久久毛片| 久久精品久久久久久久性| 亚洲欧美一区二区三区黑人 | 久久av网站| 中文字幕色久视频| 九草在线视频观看| 熟女少妇亚洲综合色aaa.| 中文字幕亚洲精品专区| 亚洲精品aⅴ在线观看| 一二三四中文在线观看免费高清| 日本欧美视频一区| 26uuu在线亚洲综合色| 最近的中文字幕免费完整| 国产男女超爽视频在线观看| 亚洲av电影在线观看一区二区三区| 免费黄频网站在线观看国产| 免费高清在线观看视频在线观看| 天天躁日日躁夜夜躁夜夜| 深夜精品福利| 亚洲精品久久成人aⅴ小说| 日韩中字成人| 欧美日韩精品网址| 老司机影院毛片| 国产一区二区 视频在线| 在线观看一区二区三区激情| 一区在线观看完整版| 国产黄色视频一区二区在线观看| 久久久久久久久久人人人人人人| 久久久久人妻精品一区果冻| 丝袜喷水一区| 久久精品久久久久久噜噜老黄| 亚洲精品第二区| 狠狠婷婷综合久久久久久88av| xxxhd国产人妻xxx| 赤兔流量卡办理| 成年女人毛片免费观看观看9 | 成年人免费黄色播放视频| 国产精品免费大片| 丁香六月天网| av福利片在线| 日韩一区二区三区影片| 免费观看在线日韩| 男男h啪啪无遮挡| 黄片小视频在线播放| 菩萨蛮人人尽说江南好唐韦庄| 精品国产超薄肉色丝袜足j| 男的添女的下面高潮视频| 91精品伊人久久大香线蕉| 亚洲第一青青草原| 日本猛色少妇xxxxx猛交久久| 涩涩av久久男人的天堂| 欧美bdsm另类| 国产亚洲一区二区精品| 精品福利永久在线观看| 久久精品国产综合久久久| 亚洲久久久国产精品| 国产精品欧美亚洲77777| 亚洲国产毛片av蜜桃av| 精品国产乱码久久久久久小说| 曰老女人黄片| 午夜福利在线免费观看网站| 久久人人爽av亚洲精品天堂| 精品人妻在线不人妻| 亚洲国产欧美在线一区| 亚洲图色成人| 国产熟女午夜一区二区三区| 亚洲欧美日韩另类电影网站| 狠狠婷婷综合久久久久久88av| 少妇猛男粗大的猛烈进出视频| 亚洲男人天堂网一区| 国产精品 欧美亚洲| 亚洲第一av免费看| 亚洲综合色惰| 久久久久久人妻| 成人黄色视频免费在线看| 欧美成人午夜精品| 天天操日日干夜夜撸| 欧美人与性动交α欧美软件| 欧美最新免费一区二区三区| 久久97久久精品| 国产毛片在线视频| 亚洲精品国产色婷婷电影| 国产淫语在线视频| 各种免费的搞黄视频| 日日啪夜夜爽| 国产精品秋霞免费鲁丝片| 欧美亚洲日本最大视频资源| 婷婷色麻豆天堂久久| a 毛片基地| 男女免费视频国产| 精品久久久精品久久久| 亚洲中文av在线| 亚洲情色 制服丝袜| 久久久欧美国产精品| 亚洲精品国产一区二区精华液| 91成人精品电影| 亚洲国产av新网站| 女的被弄到高潮叫床怎么办| 免费人妻精品一区二区三区视频| 欧美精品亚洲一区二区| 最近最新中文字幕大全免费视频 | 少妇被粗大猛烈的视频| 免费看av在线观看网站| 超色免费av| 亚洲精品第二区| 一级片免费观看大全| 国产精品熟女久久久久浪| 欧美成人午夜免费资源| 欧美亚洲 丝袜 人妻 在线| 9热在线视频观看99| 天堂中文最新版在线下载| 亚洲国产最新在线播放| 国产白丝娇喘喷水9色精品| 校园人妻丝袜中文字幕| 免费在线观看完整版高清| 男女高潮啪啪啪动态图| 亚洲国产看品久久| 久久久久国产一级毛片高清牌| 国产日韩欧美亚洲二区| 亚洲av男天堂| 乱人伦中国视频| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产av成人精品| 一个人免费看片子| 一区二区av电影网| 熟妇人妻不卡中文字幕| 久久精品国产自在天天线| 丝瓜视频免费看黄片| 99热网站在线观看| av在线app专区| 亚洲第一av免费看| 中文字幕人妻熟女乱码| 婷婷色av中文字幕| 在线看a的网站| 午夜91福利影院| 国产一区二区激情短视频 | 亚洲成色77777| 国产精品 欧美亚洲| 蜜桃在线观看..| 久久久久久久精品精品| 看免费成人av毛片| 丝袜美足系列| 亚洲国产日韩一区二区| 久久午夜综合久久蜜桃| 欧美变态另类bdsm刘玥| 2018国产大陆天天弄谢| 免费少妇av软件| 免费不卡的大黄色大毛片视频在线观看| 久久精品国产a三级三级三级| 一区二区av电影网| 久久精品国产鲁丝片午夜精品| 亚洲欧洲国产日韩| 国产爽快片一区二区三区| 免费观看a级毛片全部| 999精品在线视频| 男人操女人黄网站| 丝袜在线中文字幕| 欧美bdsm另类| 久久精品国产亚洲av天美| 日本wwww免费看| videos熟女内射| 亚洲av福利一区| 日韩精品免费视频一区二区三区| 色哟哟·www| 热99久久久久精品小说推荐| 欧美精品av麻豆av| 尾随美女入室| 午夜免费鲁丝| 国产一区二区三区综合在线观看| 久久国产亚洲av麻豆专区| 久久精品人人爽人人爽视色| 欧美日韩国产mv在线观看视频| 免费观看av网站的网址| 老司机亚洲免费影院| 一级片免费观看大全| 丰满饥渴人妻一区二区三| 26uuu在线亚洲综合色| 久久精品国产亚洲av天美| 桃花免费在线播放| 精品一区二区三卡| 免费av中文字幕在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 不卡av一区二区三区| 亚洲精品中文字幕在线视频| 国产极品天堂在线| 久热久热在线精品观看| 极品人妻少妇av视频| 精品视频人人做人人爽| 精品一区二区三区四区五区乱码 | 黄频高清免费视频| 水蜜桃什么品种好| 久久精品亚洲av国产电影网| 成人二区视频| 精品国产乱码久久久久久小说| 男女午夜视频在线观看| 夫妻午夜视频| 国产精品二区激情视频| 久久午夜福利片| 欧美xxⅹ黑人| 亚洲精品成人av观看孕妇| 69精品国产乱码久久久| av在线app专区| 国产精品人妻久久久影院| 考比视频在线观看| 青青草视频在线视频观看| 久久国产精品大桥未久av| 亚洲精品日本国产第一区| 免费高清在线观看视频在线观看| 纯流量卡能插随身wifi吗| 各种免费的搞黄视频| 亚洲精华国产精华液的使用体验| 久久青草综合色| 在线天堂最新版资源| 国产黄色视频一区二区在线观看| 成人黄色视频免费在线看| 女人高潮潮喷娇喘18禁视频| 熟女少妇亚洲综合色aaa.| 中文字幕人妻丝袜一区二区 | 日韩 亚洲 欧美在线| 午夜av观看不卡| 亚洲av在线观看美女高潮| 国产精品免费大片| 91精品三级在线观看| videossex国产| 亚洲av欧美aⅴ国产| 另类精品久久| 精品一区二区三区四区五区乱码 | 欧美精品国产亚洲| 久久亚洲国产成人精品v| 国产精品久久久久久av不卡| 国产福利在线免费观看视频| 天堂俺去俺来也www色官网| 亚洲欧洲国产日韩| 精品一区二区三卡| 黑人欧美特级aaaaaa片| 午夜福利在线免费观看网站| 国产 精品1| 美女主播在线视频| 国产成人精品一,二区| 国产视频首页在线观看| 女性生殖器流出的白浆| 国产老妇伦熟女老妇高清| 黄片无遮挡物在线观看| 极品少妇高潮喷水抽搐| 夫妻午夜视频| 大香蕉久久网|