• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced phase transition in transition metal trifluorides

    2022-10-26 09:47:10PengLiu劉鵬MeilingXu徐美玲JianLv呂健PengyueGao高朋越ChengxiHuang黃呈熙YinweiLi李印威JianyunWang王建云YanchaoWang王彥超andMiZhou周密
    Chinese Physics B 2022年10期
    關(guān)鍵詞:周密劉鵬美玲

    Peng Liu(劉鵬) Meiling Xu(徐美玲) Jian Lv(呂健) Pengyue Gao(高朋越) Chengxi Huang(黃呈熙)Yinwei Li(李印威) Jianyun Wang(王建云) Yanchao Wang(王彥超) and Mi Zhou(周密)

    1State Key Laboratory of Superhard Materials&International Center for Computational Method and Software,College of Physics,Jilin University,Changchun 130012,China

    2Laboratory of Quantum Functional Materials Design and Application,School of Physics and Electronic Engineering,Jiangsu Normal University,Xuzhou 221116,China

    3MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing,Nanjing University of Science and Technology,Nanjing 210094,China

    Keywords: high-pressure structure transition,crystal structure prediction,high-pressure x-ray diffraction experiments,transition metal

    1. Introduction

    Transition metal trifluorides,a class of materials with the chemical formulaMF3(M=Sc, Ti, V,Cr, Mn, and so forth)have attracted considerable attentions owing to their versatile applications in negative thermal expansion materials,[1–4]batteries,[5–7]and hydrogen storage materials.[8–12]More importantly, they have been demonstrated to be ideal materials to study the Jahn–Teller and spin–orbit coupling effects.[13,14]Under ambient conditions,MF3usually adopts a simple perovskite-like structure with a completely vacant A site,[15–19]in which the metal atom is surrounded by a tilted octahedron of corner-shared fluorine atoms. Moreover, the tilting angle of the octahedron decreases with increasing temperature, causing a high-temperature phase transition to the cubic ReO3-type structure.[17,20]It is essential to note that the physical and chemical properties ofMF3are generally associated with structural parameters, such as polyhedral volume and octahedral tilt.[21–28]Therefore, investigating the structural changes inMF3will provide new insights for designing functional materials.

    It is well known that pressure is a key thermodynamic variable that modifies the crystal structure and effectively controls material properties. For example, high-pressure experiments have led to the discovery of novel materials with unique properties (e.g., high-temperature superconductors such as H3S,[29,30]LaH10,[31,32]and C–S–H[33]). The high pressure thus offers exciting opportunities for discovering new materials that do not exist under ambient conditions.[34–40]Highpressure does not necessitate the destruction of theMF6octahedron inMF3systems. In practice, the pressure-induced structural evolution is only the cooperative tilting of theMF6octahedra,[41–43]which can be summarized as follows: (i) an elongation of theMF6octahedra along thecaxis leads to a small octahedral strain, (ii) theMF6octahedral strain disappears, and(iii)MF6octahedral elongation occurs along theaaxis.

    In this work,we adopted a combination of first-principle calculations and experiments to explore the high-pressure phase of TiF3. Our results suggest that TiF3transforms from the rhombohedral (R–3c) phase to an orthorhombic (Pnma)phase at high pressure,accompanied by the destruction of the TiF6octahedra and formation of TiF8square antiprismatic units. The high-pressurePnmaphase of TiF3is confirmed by the laser-heated diamond-anvil-cell experiment and shows semiconducting character with a band gap of 2.65 eV.We further confirmed that the pressure-induced transition fromR–3ctoPnmaphase is a general trend in transition metal trifluorides,such as ScF3,VF3,CrF3,and MnF3.

    2. Methods

    Ab initiocalculations The search for TiF3structures(1–4 formula units) was performed at pressures of 20 GPa and 50 GPa via an unbiased swarm intelligence based method,Crystal structure AnaLYsis by Particle Swarm Optimization(CALYPSO),[44–46]which is designed to search for the most stable or metastable structures of given compounds.[47–57]Our first-principle calculations were based on density functional theory,[58]as implemented in the VASP package.[59]The core electrons were treated by the projector-augmented wave approximation,[60]and the exchange–correlation functional was given by the generalized gradient approximation parameterized by Perdew, Burke, and Ernzerhof.[61]The planewave cutoff energy was set to 800 eV, and Monkhorst–Packkmeshes with a spacing of 2π×0.03 ?A-1were chosen for Brillouin zone sampling to ensure that all the energy calculations converged well to~1 meV/atom. The Heyd–Scuseria–Ernzerhof(HSE)hybrid functional[62]was employed to accurately evaluate the electronic properties.The dynamic stability of the predicted structure was verified by phonon dispersion analysis using the direct supercell method,as implemented in the PHONOPY code.[63]

    Experimental procedures TiF3was obtained from Alfa Aesar and verified by powder x-ray diffraction (XRD).[16]TiF3powder, together with a ruby ball, was loaded into a symmetric diamond-anvil-cell (DAC) with a culet size of 320 μm with no pressure transmitting medium, and the pressure was determined by ruby fluorescence.[64]The sample was first compressed to 20 GPa and then heated to approximately 2000 K using a laser heating system with a diode-pumped CW ytterbium fiber laser(central wavelength of 1080 nm and maximum power of 100 W).Synchrotron XRD patterns were recorded at beamline BL10XU of Spring-8 (Japan) with a wavelength of 0.414 ?A,and the refinement was fitted using the GSAS software[65]and EXPGUI interface.[66]In situelectrical conductivity measurements, under high pressure and low temperature, were conducted in a DAC equipped with a van der Pauw-type microcircuit.[67]

    3. Results and discussion

    TiF3usually adopts a VF3-type structure with a space group ofR–3cat ambient pressure,[16,68]in which Ti is surrounded by a tilted octahedron of corner-shared fluorine atoms. The tilting angle of the octahedra decreases with an increase in temperature,leading to a phase transformation from rhombohedral to cubic at 370 K.[20]The cubic structure with thePm-3mspace group is isostructural in ReO3, consisting of the TiF6octahedra without tilt fluctuations. To determine the high-pressure structure of TiF3, we performed extensive structural searches at pressures of 20 GPa and 50 GPa. In our structural searches, all the experimental structures of the TiF3,R–3c,andPm-3mphases were successfully reproduced using the CALYPSO method, validating the reliability of our structure-searching method. In addition to the known experimental structures, an orthorhombic structure with the space group ofPnmawas successfully observed at 20 GPa.

    Enthalpy as a function of pressure for thePnmaphase relative to theR-3cphase is shown in Fig. 1(a). It is apparent that the ambient-pressure phase ofR–3ctransforms to thePnmaphase at 12 GPa, where the F atoms are in square antiprismatic coordination of the Ti atoms (Fig. 1(b)), which is isostructural to YF3at ambient pressure.[69]It is generally accepted that high-pressure phases of lighter elements or compounds in the periodic table are expected to be identical to the ambient structures of the corresponding heavier elements or compounds.[70]At 20 GPa,the largest and average Ti–F bond lengths in thePnmaphase are 2.12 ?A and 2.05 ?A,respectively,while all the bond lengths of Ti–F are equal to 1.93 ?A in theR–3cphase. Furthermore, the coordination number of Ti increases from 6 to 8,weakening individual Ti–F bonds and inducing longer Ti–F bond lengths.Interestingly,compared with theR–3cphase of TiF3,in which the A-cation site of the perovskite structure is unoccupied,the newly found high-pressurePnmaphase of TiF3can be considered a variant perovskite structure with a completely vacant B site. Thus,under certain circumstances,increasing the pressure has demonstrated to be an efficient strategy to tune the vacant coordination sites of cations in perovskites.

    We calculated the phonon dispersions of the predictedPnmaphase of TiF3at 20 GPa (Fig. 1(c)) and observed no imaginary frequencies, indicating that the predicted structure is dynamically stable. Our systematic assessment of energetic and dynamic stabilities suggests that thePnmaphase of TiF3could be realized experimentally. To verify our theoretical predictions,we performed high-pressure measurements on TiF3. The synchrotron XRD pattern of TiF3was obtained at 20 GPa after laser heating to approximately 2000 K,with Rietveld fitting as shown in Fig.1(d). The obtained peaks agree well with the predicted orthorhombicPnmastructure. The refined lattice parameters of the orthorhombicPnmastructure area=5.14 ?A,b=6.25 ?A, andc=4.38 ?A, which are in excellent agreement with our theoretical results.

    After the successful synthesis of thePnmaphase in TiF3,we investigated its bonding characteristics and electronic properties. To determine the nature of the bonding,we examined the electron localization function. A less localized charge distribution is observed in the Ti–F bonds(Fig.2(a)),indicating a significant degree of ionicity between the F anions and Ti cations. Furthermore, from Bader charge analysis,[71]the charge values on Ti and F were calculated at 20 GPa. There is a charge transfer of 1.89efrom Ti to F,comparable to that of typical ionic compounds of NaCl.[72]Moreover,the electronic band structure calculations at the HSE hybrid functional level demonstrated that thePnmaphase of TiF3is a semiconductor with a band gap of 2.65 eV(Fig.2(b)). To verify the electrical characteristics of the newly foundPnmaTiF3,anin situhigh pressure electrical conductivity measurement was conducted,based on the van der Pauw-type microcircuit technique.[73]As shown in Fig.2(c),the electrical resistance monotonically increases with decreasing temperature,confirming the semiconductor characteristics ofPnmaTiF3.

    Fig.1. (a)Enthalpy vs. pressure curves for Pnma phase of TiF3 relative to the R–3c phase. (b)Crystal structure of the Pnma phase formed by TiF8 square antiprismatic units. The Pnma structure contains 16 atoms/cell,wherein Ti atoms occupy the 4c(0.13,0.75,0.47)positions and the F atoms occupy the 8d (0.17, 0.06, 0.65) and 4c (0.03, 0.25, 0.13) positions. At 20 GPa, the optimized structural parameters are a=5.30 ?A, b=6.24 ?A,and c=4.40 ?A.(c)Phonon dispersion relations of the Pnma phase at 20 GPa. Here,the fractional coordinates of high-symmetry k points are given as follows:Γ(0,0,0),X(1/2,0,0),Y(0,1/2,0),Z(0,0,1/2),R(1/2,1/2,1/2),S(1/2,1/2,0),T(0,1/2,1/2),U(1/2,0,1/2). (d)Measured powder x-ray diffraction(XRD)pattern of TiF3 at 20 GPa with Le Bail method(XRD 2D image is given on the top).Vertical ticks correspond to Bragg peaks of the Pnma structure(pink). The refined lattice parameters of the orthorhombic Pnma structure from the XRD data are a=5.14 ?A,b=6.25 ?A,and c=4.38 ?A.The x-ray wavelength is 0.414 ?A.

    Fig. 2. (a) Calculated ELF of the Pnma phase on the (0 1 0) plane at 20 GPa, in which the bond lengths (in units of ?A) of the Ti–F bonds are shown. (b) Band structures of the Pnma structures at 20 GPa. The red and green colors denote the spin-up and spin-down bands, respectively.The energy of the topmost valence band state is set to 0 eV.Here,the high-symmetry k points are the same as those in Fig.1(c). (c)Experimental resistance–temperature curve of TiF3 at 20 GPa.

    Considering that theR–3cphase is a prototype structure of transition metal trifluorides under ambient conditions and the discovery of the high-pressure phase ofPnmain TiF3,we deliberated whether this pressure-induced phase transition is a common phenomenon in transition metal trifluorides. Thus,the neighboring metal elements Sc, V, Cr, and Mn were chosen. The enthalpies of thePmnaphase as a function of pressure with respect to theR-3cphase for ScF3, VF3, CrF3, and MnF3were calculated and shown in Fig. 3. The phase transition fromR–3ctoPnmais a general trend in those metal trifluorides,and the corresponding pressures are calculated to be 5 GPa,33 GPa,112 GPa,and 40 GPa for ScF3,VF3,CrF3,and MnF3,respectively. Therefore,the predictedPnmaphase could be a prototype structure widely adopted by transition metal trifluorides at high pressure.

    Fig. 3. Calculated enthalpies of Pmna phase as functions of pressure with respect to R–3c phase for ScF3(a),VF3(b),MnF3(c),and CrF3(d)systems.

    4. Conclusion

    In summary, by combining structure-searching methods with first-principle calculations, a pressure-inducedR-3ctoPnmaphase transition was predicted in TiF3, which was further confirmed by high-pressure experimental synthesis.The first-principle calculations and electrical measurements demonstrated that the high-pressurePnmaphase of TiF3exhibits semiconducting characteristics. Further,since theR–3cphase of TiF3is a prototype structure for transition metal trifluorides at ambient pressure, it was shown that the pressureinduced phase transition fromR-3ctoPnmais a general trend in transition metal trifluorides.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12034009, 91961204, and 11974134). Part of the calculation was performed in the high-performance computing center of Jilin University and the School of Physics and Electronic Engineering of Jiangsu Normal University.

    猜你喜歡
    周密劉鵬美玲
    Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
    《公園創(chuàng)意拼貼》
    照應(yīng)周密,行文流暢
    美玲:我的幸福是與萌貨親密接觸
    金色年華(2017年10期)2017-06-21 09:46:49
    趙美玲
    Cyclic strength of sand under a nonstandard elliptical rotation stress path induced by wave loading*
    春天的早晨
    夏天的風(fēng)秋天的霧
    梅花綻放 滿園春香
    午夜久久久在线观看| 在线天堂最新版资源| 亚洲激情五月婷婷啪啪| 国产亚洲最大av| 一级毛片我不卡| 亚洲国产欧美日韩在线播放| 国产探花极品一区二区| 只有这里有精品99| 久久ye,这里只有精品| 亚洲国产色片| 午夜免费观看性视频| 天堂中文最新版在线下载| 26uuu在线亚洲综合色| 久久综合国产亚洲精品| 久久精品久久久久久久性| av视频免费观看在线观看| 成年美女黄网站色视频大全免费| 久久这里只有精品19| 久久午夜综合久久蜜桃| 中文字幕av电影在线播放| 久久综合国产亚洲精品| 亚洲国产精品一区二区三区在线| 天堂中文最新版在线下载| 蜜臀久久99精品久久宅男| 亚洲精品视频女| 街头女战士在线观看网站| 超色免费av| 久久精品国产亚洲av涩爱| 少妇高潮的动态图| 男女免费视频国产| 久久免费观看电影| 边亲边吃奶的免费视频| 午夜福利在线观看免费完整高清在| 大话2 男鬼变身卡| 大话2 男鬼变身卡| 亚洲精品乱码久久久久久按摩| 一级,二级,三级黄色视频| 一区二区三区精品91| 99香蕉大伊视频| 菩萨蛮人人尽说江南好唐韦庄| 久久久久视频综合| 国产精品三级大全| 亚洲国产精品一区三区| 黑人猛操日本美女一级片| 搡老乐熟女国产| 高清av免费在线| 少妇高潮的动态图| 亚洲精品乱码久久久久久按摩| 久久久久久伊人网av| 国产精品一区二区在线不卡| 老司机影院成人| 老熟女久久久| 久久久欧美国产精品| 老司机影院毛片| 日产精品乱码卡一卡2卡三| 精品午夜福利在线看| 久久99热这里只频精品6学生| 综合色丁香网| 国产成人av激情在线播放| 国产成人免费观看mmmm| 国产精品 国内视频| 亚洲av中文av极速乱| 99热国产这里只有精品6| 一本—道久久a久久精品蜜桃钙片| 日韩av免费高清视频| 黑人欧美特级aaaaaa片| 大片免费播放器 马上看| 免费黄色在线免费观看| 婷婷色av中文字幕| 99久久人妻综合| 久久精品熟女亚洲av麻豆精品| 久久久欧美国产精品| 91午夜精品亚洲一区二区三区| 夫妻午夜视频| 女人被躁到高潮嗷嗷叫费观| 午夜福利乱码中文字幕| 亚洲,欧美,日韩| 亚洲欧美一区二区三区黑人 | 高清欧美精品videossex| 热99国产精品久久久久久7| av线在线观看网站| 国产精品蜜桃在线观看| 亚洲av男天堂| 又大又黄又爽视频免费| 久久青草综合色| 女人被躁到高潮嗷嗷叫费观| 免费观看av网站的网址| 多毛熟女@视频| 国产黄色视频一区二区在线观看| 精品人妻熟女毛片av久久网站| av免费观看日本| 在线观看免费高清a一片| 国产深夜福利视频在线观看| 亚洲av欧美aⅴ国产| 丰满乱子伦码专区| 国产成人欧美| 你懂的网址亚洲精品在线观看| 国产麻豆69| 一级毛片我不卡| 巨乳人妻的诱惑在线观看| 男的添女的下面高潮视频| 久久久精品94久久精品| 丰满饥渴人妻一区二区三| 亚洲性久久影院| 日韩伦理黄色片| 9191精品国产免费久久| 久久这里有精品视频免费| 国产极品天堂在线| 亚洲婷婷狠狠爱综合网| 91成人精品电影| 午夜福利在线观看免费完整高清在| 亚洲内射少妇av| 久久久久精品性色| 亚洲国产日韩一区二区| 人人妻人人澡人人看| 午夜激情久久久久久久| 久久99热6这里只有精品| 国产亚洲av片在线观看秒播厂| 欧美日本中文国产一区发布| 五月玫瑰六月丁香| 99热这里只有是精品在线观看| 欧美人与善性xxx| 久久久久精品久久久久真实原创| av在线播放精品| 亚洲情色 制服丝袜| 欧美人与善性xxx| 亚洲中文av在线| 插逼视频在线观看| 最黄视频免费看| 最近最新中文字幕免费大全7| 一级毛片电影观看| 在线观看国产h片| 久久午夜福利片| 久久人人爽人人片av| 国产一区有黄有色的免费视频| 日韩熟女老妇一区二区性免费视频| 亚洲国产av新网站| 中文乱码字字幕精品一区二区三区| 伊人久久国产一区二区| 天堂8中文在线网| 国产精品人妻久久久影院| 一本久久精品| 久久久久久人妻| kizo精华| 国产成人午夜福利电影在线观看| 中文字幕制服av| 国产精品嫩草影院av在线观看| 三上悠亚av全集在线观看| 伦精品一区二区三区| 午夜av观看不卡| 精品少妇久久久久久888优播| 97人妻天天添夜夜摸| 精品国产一区二区三区四区第35| 国产免费现黄频在线看| 最新中文字幕久久久久| 久久人人爽人人爽人人片va| 久久国产亚洲av麻豆专区| 国产精品久久久久久久久免| 欧美97在线视频| 精品国产露脸久久av麻豆| 亚洲国产av影院在线观看| 国语对白做爰xxxⅹ性视频网站| 99久久人妻综合| 成年人免费黄色播放视频| 大香蕉久久成人网| 亚洲av福利一区| 亚洲,一卡二卡三卡| 纯流量卡能插随身wifi吗| 看免费成人av毛片| 美女国产视频在线观看| 亚洲成人手机| 性色av一级| 久热这里只有精品99| 大话2 男鬼变身卡| 高清av免费在线| 女性被躁到高潮视频| 亚洲国产精品国产精品| 亚洲在久久综合| 中文欧美无线码| 男女高潮啪啪啪动态图| 亚洲四区av| 飞空精品影院首页| 国产色爽女视频免费观看| 深夜精品福利| 永久网站在线| 亚洲色图 男人天堂 中文字幕 | av国产精品久久久久影院| 午夜激情av网站| 午夜福利乱码中文字幕| 久久99蜜桃精品久久| 国产免费一区二区三区四区乱码| 久久狼人影院| 国产麻豆69| 最近2019中文字幕mv第一页| 美女脱内裤让男人舔精品视频| 精品一区在线观看国产| 精品亚洲成国产av| 国产精品成人在线| 国产片特级美女逼逼视频| 国产一区二区三区综合在线观看 | 久久久国产欧美日韩av| 深夜精品福利| 如何舔出高潮| 色5月婷婷丁香| 永久免费av网站大全| 亚洲一级一片aⅴ在线观看| 99热这里只有是精品在线观看| 大陆偷拍与自拍| 精品一区在线观看国产| 精品亚洲成国产av| 国产国语露脸激情在线看| 丝袜脚勾引网站| 黄色一级大片看看| 男女边吃奶边做爰视频| 久久久国产欧美日韩av| 又大又黄又爽视频免费| 啦啦啦啦在线视频资源| 永久免费av网站大全| 国产1区2区3区精品| 成年女人在线观看亚洲视频| 久久精品久久久久久噜噜老黄| a 毛片基地| 国产精品.久久久| 有码 亚洲区| 中文字幕免费在线视频6| 天天操日日干夜夜撸| 久久韩国三级中文字幕| 亚洲在久久综合| 777米奇影视久久| 黄色 视频免费看| 国产女主播在线喷水免费视频网站| 中文字幕av电影在线播放| 又黄又爽又刺激的免费视频.| 人成视频在线观看免费观看| 亚洲欧洲日产国产| 老司机亚洲免费影院| 久热这里只有精品99| 亚洲国产av新网站| 欧美日韩亚洲高清精品| 国产精品成人在线| 侵犯人妻中文字幕一二三四区| 黑丝袜美女国产一区| 丰满迷人的少妇在线观看| 一个人免费看片子| 日韩不卡一区二区三区视频在线| 国产成人aa在线观看| 久久av网站| 久久鲁丝午夜福利片| kizo精华| 亚洲精品,欧美精品| 国产综合精华液| 午夜激情av网站| 国产又爽黄色视频| 女人久久www免费人成看片| 亚洲国产av影院在线观看| 丰满少妇做爰视频| 国产日韩欧美在线精品| 22中文网久久字幕| 午夜免费鲁丝| 18禁国产床啪视频网站| 男女高潮啪啪啪动态图| 精品亚洲成a人片在线观看| 男人操女人黄网站| 人妻系列 视频| 免费观看在线日韩| 欧美日韩国产mv在线观看视频| 欧美激情国产日韩精品一区| av天堂久久9| 夜夜爽夜夜爽视频| 十分钟在线观看高清视频www| 国产成人欧美| 亚洲精品视频女| 又黄又粗又硬又大视频| 精品国产露脸久久av麻豆| 91在线精品国自产拍蜜月| 午夜免费男女啪啪视频观看| 2018国产大陆天天弄谢| 国产色爽女视频免费观看| 99热国产这里只有精品6| 三级国产精品片| 亚洲国产精品一区二区三区在线| 春色校园在线视频观看| 国产熟女欧美一区二区| 亚洲高清免费不卡视频| 国产免费现黄频在线看| 在线观看免费高清a一片| 午夜福利,免费看| 免费久久久久久久精品成人欧美视频 | 久久久久久久精品精品| 秋霞伦理黄片| 有码 亚洲区| av在线老鸭窝| 最近最新中文字幕免费大全7| 亚洲精品国产av蜜桃| 大香蕉久久成人网| 99热这里只有是精品在线观看| 欧美精品一区二区大全| 色婷婷久久久亚洲欧美| 在线看a的网站| 国产免费一区二区三区四区乱码| 90打野战视频偷拍视频| 久久国产亚洲av麻豆专区| 欧美+日韩+精品| www.熟女人妻精品国产 | 亚洲国产精品一区三区| 18+在线观看网站| 啦啦啦在线观看免费高清www| 国产一区二区三区综合在线观看 | 在线精品无人区一区二区三| 青春草亚洲视频在线观看| 日本欧美视频一区| 少妇的丰满在线观看| 国产在线一区二区三区精| 国产一区二区在线观看日韩| 欧美3d第一页| 成人黄色视频免费在线看| 青春草国产在线视频| 成人毛片a级毛片在线播放| 国语对白做爰xxxⅹ性视频网站| 成人免费观看视频高清| 久久久精品94久久精品| 亚洲图色成人| 欧美成人午夜免费资源| 赤兔流量卡办理| av免费观看日本| 国精品久久久久久国模美| 亚洲少妇的诱惑av| 男女边摸边吃奶| 男男h啪啪无遮挡| 亚洲第一av免费看| 欧美日韩视频精品一区| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线观看99| av国产精品久久久久影院| 亚洲,欧美,日韩| 狂野欧美激情性xxxx在线观看| h视频一区二区三区| 一本色道久久久久久精品综合| av线在线观看网站| 美女国产视频在线观看| 老女人水多毛片| 美女国产视频在线观看| av在线老鸭窝| 欧美精品国产亚洲| 久久狼人影院| www.熟女人妻精品国产 | 亚洲精品色激情综合| 国产日韩欧美亚洲二区| 黑人高潮一二区| 乱码一卡2卡4卡精品| 亚洲国产精品专区欧美| 97在线人人人人妻| 各种免费的搞黄视频| av在线老鸭窝| 高清av免费在线| 国产淫语在线视频| av一本久久久久| 国产午夜精品一二区理论片| 丰满迷人的少妇在线观看| 宅男免费午夜| 国产成人av激情在线播放| 亚洲,欧美,日韩| 人人妻人人添人人爽欧美一区卜| 捣出白浆h1v1| 美女福利国产在线| 欧美日韩综合久久久久久| 成人无遮挡网站| 大陆偷拍与自拍| 美国免费a级毛片| 国产高清不卡午夜福利| 我要看黄色一级片免费的| 国产av码专区亚洲av| 午夜91福利影院| 成人亚洲欧美一区二区av| 丰满少妇做爰视频| 制服丝袜香蕉在线| 国产成人aa在线观看| 亚洲精品自拍成人| 性色av一级| 亚洲色图 男人天堂 中文字幕 | 日韩av在线免费看完整版不卡| 51国产日韩欧美| 亚洲精品视频女| 人妻系列 视频| 国产精品成人在线| 狠狠精品人妻久久久久久综合| 欧美人与性动交α欧美精品济南到 | 免费日韩欧美在线观看| 天天操日日干夜夜撸| 午夜激情av网站| 视频在线观看一区二区三区| 国产精品一二三区在线看| 超色免费av| 超碰97精品在线观看| 日本色播在线视频| 久久人人97超碰香蕉20202| 亚洲国产av影院在线观看| 高清在线视频一区二区三区| 爱豆传媒免费全集在线观看| 久久狼人影院| 青春草亚洲视频在线观看| 欧美精品高潮呻吟av久久| 成人毛片60女人毛片免费| 视频在线观看一区二区三区| 丝袜美足系列| 久久婷婷青草| 精品国产一区二区久久| 国产精品久久久久久精品古装| 久久久久久久久久久免费av| 免费大片18禁| 午夜福利视频在线观看免费| 看非洲黑人一级黄片| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲精品一区二区精品久久久 | 视频区图区小说| 高清不卡的av网站| 午夜福利,免费看| 最新中文字幕久久久久| 亚洲高清免费不卡视频| 人人妻人人爽人人添夜夜欢视频| 各种免费的搞黄视频| 美女国产高潮福利片在线看| kizo精华| 有码 亚洲区| 91成人精品电影| 日韩精品有码人妻一区| 国产成人欧美| 成人手机av| a 毛片基地| 看十八女毛片水多多多| 在线观看国产h片| 精品一品国产午夜福利视频| 亚洲国产av影院在线观看| 欧美xxxx性猛交bbbb| 五月开心婷婷网| 久久ye,这里只有精品| 新久久久久国产一级毛片| 2022亚洲国产成人精品| 中文字幕精品免费在线观看视频 | 久久久精品94久久精品| 国产成人精品一,二区| 99热国产这里只有精品6| 成人二区视频| 寂寞人妻少妇视频99o| 国产片特级美女逼逼视频| freevideosex欧美| 女的被弄到高潮叫床怎么办| www.色视频.com| 成人综合一区亚洲| 中文字幕最新亚洲高清| 少妇高潮的动态图| 99久久精品国产国产毛片| 国产永久视频网站| 免费看av在线观看网站| 亚洲国产av影院在线观看| 免费少妇av软件| 欧美国产精品一级二级三级| 日本黄色日本黄色录像| av电影中文网址| 国产永久视频网站| 如何舔出高潮| 各种免费的搞黄视频| 考比视频在线观看| 日日爽夜夜爽网站| 亚洲第一区二区三区不卡| 午夜激情av网站| 如日韩欧美国产精品一区二区三区| 中文字幕制服av| 亚洲成国产人片在线观看| 成人午夜精彩视频在线观看| 精品少妇久久久久久888优播| 亚洲人成77777在线视频| 国产老妇伦熟女老妇高清| 亚洲精品日韩在线中文字幕| 18禁观看日本| 一级片'在线观看视频| 欧美老熟妇乱子伦牲交| 99久久综合免费| 午夜福利网站1000一区二区三区| 超碰97精品在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产看品久久| 青春草亚洲视频在线观看| 性高湖久久久久久久久免费观看| videossex国产| 插逼视频在线观看| 美国免费a级毛片| 日韩成人av中文字幕在线观看| 亚洲美女搞黄在线观看| 日本午夜av视频| 蜜桃国产av成人99| 国产黄色免费在线视频| 97精品久久久久久久久久精品| 日本黄大片高清| 午夜老司机福利剧场| 亚洲av免费高清在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲精品久久久com| 国产黄色免费在线视频| 久久精品国产亚洲av天美| 少妇的逼好多水| 精品少妇黑人巨大在线播放| 高清欧美精品videossex| 日产精品乱码卡一卡2卡三| 黑人巨大精品欧美一区二区蜜桃 | 少妇精品久久久久久久| 搡老乐熟女国产| 90打野战视频偷拍视频| 午夜激情av网站| av福利片在线| 国产淫语在线视频| 国产av国产精品国产| 亚洲欧美精品自产自拍| 成人二区视频| xxx大片免费视频| 亚洲久久久国产精品| 亚洲欧美清纯卡通| 久久99蜜桃精品久久| 涩涩av久久男人的天堂| 国产精品一区二区在线不卡| 大陆偷拍与自拍| 一级黄片播放器| 亚洲国产av新网站| 两个人免费观看高清视频| 天美传媒精品一区二区| 亚洲国产精品一区二区三区在线| 999精品在线视频| 国产一区亚洲一区在线观看| 久久精品国产亚洲av涩爱| 2021少妇久久久久久久久久久| 汤姆久久久久久久影院中文字幕| av在线app专区| 中文字幕最新亚洲高清| 国产av精品麻豆| 国产日韩欧美视频二区| 99久久中文字幕三级久久日本| a级片在线免费高清观看视频| 精品国产国语对白av| 1024视频免费在线观看| 高清在线视频一区二区三区| 中国国产av一级| 精品酒店卫生间| 黄色视频在线播放观看不卡| 搡女人真爽免费视频火全软件| 一区二区日韩欧美中文字幕 | 18禁国产床啪视频网站| 午夜福利影视在线免费观看| av在线观看视频网站免费| videos熟女内射| 国产精品女同一区二区软件| 在线天堂最新版资源| 热re99久久精品国产66热6| 久久久久视频综合| 日韩,欧美,国产一区二区三区| 中文乱码字字幕精品一区二区三区| 婷婷色综合大香蕉| 成年女人在线观看亚洲视频| 国产成人a∨麻豆精品| 亚洲精品自拍成人| 国产亚洲精品第一综合不卡 | 亚洲av电影在线进入| 侵犯人妻中文字幕一二三四区| 国产成人91sexporn| 欧美激情 高清一区二区三区| 好男人视频免费观看在线| 永久网站在线| 99热全是精品| 视频区图区小说| 18+在线观看网站| 日韩免费高清中文字幕av| 国产精品一国产av| 在线观看免费视频网站a站| 美女内射精品一级片tv| 久久99精品国语久久久| 国产日韩欧美在线精品| 国产1区2区3区精品| 婷婷色麻豆天堂久久| 国产日韩欧美亚洲二区| 午夜免费鲁丝| 22中文网久久字幕| 涩涩av久久男人的天堂| 校园人妻丝袜中文字幕| 日韩人妻精品一区2区三区| 十八禁高潮呻吟视频| 成人漫画全彩无遮挡| 在线看a的网站| 国产深夜福利视频在线观看| 丰满迷人的少妇在线观看| 亚洲av日韩在线播放| 黑人巨大精品欧美一区二区蜜桃 | 大陆偷拍与自拍| 亚洲成人一二三区av| 色哟哟·www| 九九在线视频观看精品| 国产无遮挡羞羞视频在线观看| 高清av免费在线| 久久久久久久久久人人人人人人| 妹子高潮喷水视频| 午夜激情久久久久久久| 老司机影院毛片| 免费看av在线观看网站| 色哟哟·www| 香蕉丝袜av| 亚洲国产欧美日韩在线播放| 丰满乱子伦码专区| 日本-黄色视频高清免费观看| 天天躁夜夜躁狠狠躁躁| 欧美性感艳星| 精品福利永久在线观看| 亚洲伊人色综图| 校园人妻丝袜中文字幕| 亚洲激情五月婷婷啪啪| 午夜影院在线不卡| 大片免费播放器 马上看|