• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers

    2022-10-26 09:48:14ZhiWeiJia賈志偉LiLi李麗YiYanGuo郭一巖AnBangWang王安幫HongHan韓紅JinChuanZhang張錦川PuLi李璞ShenQiangZhai翟慎強(qiáng)andFengQiLiu劉峰奇
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王安韓紅李麗

    Zhi-Wei Jia(賈志偉) Li Li(李麗) Yi-Yan Guo(郭一巖) An-Bang Wang(王安幫) Hong Han(韓紅)Jin-Chuan Zhang(張錦川) Pu Li(李璞) Shen-Qiang Zhai(翟慎強(qiáng)) and Feng-Qi Liu(劉峰奇)

    1Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education and Shanxi Province,College of Physics and Optoelectronics,Taiyuan University of Technology,Taiyuan 030024,China

    2Key Laboratory of Semiconductor Materials Science,Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    Keywords: periodic oscillations,chaotic oscillations,mutual-coupled quantum cascade lasers

    1. Introduction

    Quantum cascade lasers(QCLs)are very promising midinfrared semiconductor lasers, which have been proven to be powerful and versatile.[1,2]By elaborately designing the structure of the active zone superlattice, the wavelength of QCLs can be tailored to cover the whole mid-infrared region.[3–5]Because of the lower transmission loss and higher scattering tolerance in the mid-infrared atmospheric windows bands(3 μm–5 μm and 8 μm–14 μm)compared to the well-developed nearinfrared bands, QCLs can find applications in diverse fields,such as free space communications,[6–8]laser ranging,[9]remote sensing,[10,11]and optoelectronic countermeasure.[12]

    In the practical use, the stability of QCLs subject to inevitable external optical perturbation is very important,while the dynamic behaviors of QCLs have not been well understood. External optical perturbation can drive near-infrared semiconductor lasers, which are based on inter-band transition, from stable state to various dynamic states, including periodic oscillation,[13,14]chaotic laser state,[15,16]lowfrequency fluctuations,[17–19]regular pulse packages,[20]etc.Unlike inter-band semiconductor lasers, QCLs are based on the inter-subband electron transition,[1]with ultrafast carrier dynamics[21]and theoretically near-zero linewidth enhancement factor(α-factor).[22]As a result,QCLs seem to be more stable to external optical perturbation.[23]However, dynamic states of QCLs are often observed in applications and researches. In 2016, Grillotet al. reported the experimental observation of low-frequency chaotic laser in a distributed feedback (DFB) QCL with external optical feedback.[24]Recently, Wanget al. observed low-frequency oscillations in QCLs with tilted optical feedback.[25,26]There are also some theoretical models, based on rate equations or Maxwell–Bloch equations,demonstrating periodic oscillations,[27]selfpulsations,[28]low-frequency fluctuations,[24]even wide-band chaotic laser in QCLs.[29]But these works are not enough to understand the dynamic behaviors of QCLs. Experimental observation of high-frequency dynamic oscillations is still lacking,apart from the active modulation and self-pulsations. The wide-band chaotic laser predicted by Ref. [29] cannot be observed even the feedback strength is higher than 60% in our experiment.

    The high-frequency periodic oscillation in inter-band semiconductor lasers is always related to the relaxation oscillation dynamic, and the wide-band chaotic laser state is usually resulted from the interaction of the external periodic dynamic and the relaxation oscillation dynamic. But the relaxation oscillation is absent in QCLs because of the ultrafast carrier dynamics.[30]We can deduce that the high-frequency oscillation in QCLs should be related to a high-frequency dynamic,such as optical modes beating.

    In this work, we numerically investigated the dynamic states in mutual-coupled mid-infrared QCLs based on the Lang–Kobayashi equations. The two QCLs had different optical frequencies to bring in optical modes beating dynamic.The external-cavity length between the two QCLs wasL=1.5 m, corresponding to the injection time delayτinj=L/c.When the injection strengthkinjwas as low as 0.1,three types of period-one states with different periods were found,which were injection time delayτinj, 2τinj, and reciprocal of the detuning frequency. The evolution of dynamic states at different frequency detuning Δfwas also studied askinjincreased.Several dynamic states were observed, including period-one,square-wave,quasi-period,pulse-burst and chaos.The physics mechanism of the dynamical evolution was discussed. It can be concluded that: (i) external-cavity dynamic and optical modes beating are the mainly periodic dynamics; (ii) strong injection can stimulate strong optical nonlinear and high-order harmonics dynamics to break the periodic oscillations;(iii)the complex pulse-burst and chaotic states are resulted from the interaction of the external-cavity periodic dynamic and optical modes beating and the stimulation of optical nonlinear.

    2. Theoretical model

    Figure 1 shows the schematic of the two-stage band structure of a typical mid-infrared QCLs active zone and the structure diagram of the mutual-coupled QCLs. As shown in Fig.1(a),each stage of the QCLs active zone is composed of an extraction/injection region and an active region. Electrons from the last stage are injected into the energy level 3 of the active region by the extraction/injection region. Then electrons in the energy level 3 transit to the energy level 2 with the timeτ32, meanwhile, photons are stimulated. Subsequently, electrons in the energy level 2 are scattered to the energy level 1 by longitudinal-optical phonons with the timeτ21. Afterwards electrons in the energy level 1 are extracted and injected into the next stage with the timeτout. Becauseτ21andτoutare shorter thanτ32, population inversion occurs between the energy level 3 and the energy level 2. Though electrons in the energy level 3 also transit to the energy level 1 with the timeτ31, population inversion does not occur between the energy level 3 and the energy level 1 because of the very shortτ21.Based on the band structure,the rate equations describing the number of carriers are as follows:

    Fig.1. (a)Schematic of two-stage band structure of QCLs active zone. (b)Structure diagram of mutual-coupled QCLs.

    whereφrepresents the phase of the optical field,mis the stage number in the active zone,βis the spontaneous emission factor,τspis the spontaneous emission time,kinjis the injection strength, which is defined by the ratio of the injected laser power and the intrinsic laser power,τLis the round-trip time inside the laser cavity,αis the linewidth enhancement factor of QCLs, which is smaller than that in traditional inter-band semiconductor lasers. The coupling phaseθ1,2is

    Table 1. The used parameters for the simulation.

    The rate Eqs.(1)–(5)are numerically solved by using the fourth-order Runge–Kutta method with time lag 0.1 ps. The obtainedS(t) is regarded as the time series of laser intensity.The electric field of laser can be described by

    whereωis the angular frequency of QCL.The Fourier transforms ofS(t)andE(t)are used to describe the power spectra and optical spectra.

    3. Results and discussion

    3.1. Absence of the relaxation oscillation

    Firstly,we solved the rate equations of free-running QCL and studied the response of the QCL by applying the step current, where the current was increased from low-level currentIthto a high-level current. Figure 2(a) shows the QCL responses with the high-level currents of 1.01Ithand 2Ith. As shown, the photon number monotonically increases from the low-level value to the high-level value. There is no relaxation oscillation occurring, which is similar to the existed viewpoint.[30]The response times, which are defined as the time of photon number increasing from 10% to 90%, are respectively 12.18 ps and 11.31 ps when the high-level currents are 1.01Ithand 2Ith. Figure 2(b) plots the response time as a function of the high-level current. As the high-level current increases, the response time decreases. This indicates that a high current can enhance fast dynamics in QCLs. Therefore,we chose the high pump current of 2Ith, with theαequal to 1.7,in the following work.

    Fig.2. (a)QCL response with the high-level current of 1.01Ith and 2Ith. (b)The response time as a function of the high-level current.

    3.2. Three types of period-one states

    Secondly, we solved the rate equations of the mutualcoupled QCLs with fixed injection strengthkinj=0.1 and varying the detuning frequency Δf. The nonlinear dynamic states of the two QCLs are similar, therefore, we only show the results of QCL1in this paper.

    Three types of period-one (P1) states with different periods are found. The time series, power spectra and optical spectra are plotted in Fig. 3. At Δf=0 GHz, as shown in Fig.3(a),sinusoid-like time series with the period of the injection time delayτinjis observed,with a fundamental frequency peak of 0.2 GHz and very low harmonic peaks in the power spectrum. In the optical spectrum,there are a cluster of peaks with the interval of 0.2 GHz. This is different from the P1 state of the inter-band semiconductor lasers,where the fundamental frequency is mainly determined by the relaxation oscillation. At Δf=1 GHz, as shown in Fig. 3(b), the period is equal to twice the injection time delay (2τinj), with a fundamental frequency peak of 0.1 GHz in the power spectrum.In the optical spectrum,the interval of peaks is also 0.1 GHz.At Δf=20 GHz, as shown in Fig. 3(c), the period is about 51.4 ps, the fundamental frequency peak in the power spectrum isfΔ~19.438 GHz,and the interval of peaks in the optical spectrum is alsofΔ.

    In our model, Δf=0 GHz means that QCL1and QCL2are exactly identical. Therefore,the mutual-coupled structure is equivalent to self-injection with a time delay. The P1 state with the period ofτinjcan be identified as the dynamic oscillation from the external-cavity periodic dynamics,which is also observed in the vertical-cavity surface-emitting laser.[32]Actually, there will never be two identical QCLs. The situation at Δf=0 GHz will not be described in following. When Δf/=0 GHz and is small, complete injection locking is easily realized in the mutual-coupled QCLs. Complete injection locking means that the intrinsic resonant mode is suppressed.In this case,the laser mode is decided by the injected field,and one QCL is an optical modulation and feedback component for the other QCL.The P1 state with the period of 2τinjis corresponding to the gradual mode hopping,which is resulted from the external-cavity optical injection. In Fig. 3(b), two peaks with the interval of Δf=1 GHz can also be observed in the optical spectrum,while the peak of 1 GHz cannot be observed in the power spectrum. This indicates that the two modes do not exist simultaneously,which also proves the mode hopping.Due to the existence of a series of external-cavity modes, the time series is sinusoidal-like. When Δfincreases to 20 GHz,injection locking is not complete, i.e., the intrinsic resonant mode will not be suppressed by the optical injection. In this case,the intrinsic resonant mode and the laser mode from optical injection coexist in QCLs. As shown in Fig.3(c3),more than two peaks can be observed, which demonstrates that the relative phase between the two modes is locked by mutual injection. Therefore, the P1 state with the period offΔis induced by optical modes beating. The oscillation frequencyfΔis slightly smaller than Δf,which is the same as that in QCL with unidirectional optical injection.[27]Because the pulling effect in QCLs dominates over the red-shift effect,the injected mode pulls the resonant mode away from its free-running frequency towards the injected one.

    Fig. 3. Three types of period-one states at detuning frequency (a) Δf =0 GHz, (b) Δ f =1 GHz, (c) Δ f =20 GHz, with fixed injection strength kinj =0.1. Column 1 shows time series, column 2 shows power spectra and column 3 shows optical spectra. The insets in(a3)and(b3)show the enlarged view around the peaks. The finj is the optical frequency of the laser mode resulted from optical injection.

    3.3. Influence of injection strength at different detuning frequencies

    Furtherly, we studied the evolution of dynamic states by increasing injection strengthkinjat the Δfof 2 GHz, 7 GHz,14 GHz,20 GHz,and 29 GHz,which corresponded to the five typical evolution routes.

    Figure 4 depicts the time series, power spectra and optical spectra at Δf=2 GHz with differentkinj. Atkinj=0.1,as shown in Fig.4(a), the P1 state is similar to that in Fig.3(b).The time series shows a distorted sinusoidal waveform and hence high-order harmonic peaks arise in the power spectra.The distorted waveform is corresponding to the decreased injection locking when Δfincreases. Atkinj=0.45,as shown in Fig.4(b),the time series is a square wave(SW)with the period of 2τinjand duty cycle of about 40%. In the optical spectrum,the external-cavity modes are weakened,the intrinsic resonant mode and the injected laser mode become obvious. It can be explained by that the stronger injection enhances the stability of laser modes, to some extent, suppressing the externalcavity modes.As a result,the time series transfers into SW.Atkinj=0.58,QCLs exhibit quasi-periodic(QP)oscillation,with the consistent period with that of Figs.4(a)and 4(b). And the wavelength blueshift can be observed in the optical spectrum,with more external-cavity modes. This indicates that strong nonlinear optical action occurs and breaks the injection locking,leading to the QP oscillation.

    Fig.4. Time series,power spectra and optical spectra at Δf =2 GHz for injection strength kinj of(a)0.1,(b)0.45,and(c)0.58.

    Fig.5. Time series,power spectra and optical spectra at Δf =7 GHz for injection strength kinj of(a)0.01,(b)0.13,(c)0.25,and(d)0.35.

    Fig.6. Time series,power spectra and optical spectra at Δf =14 GHz for injection strength kinj of(a)0.01,(b)0.3,(c)0.35,and(d)0.4. The inset in(b2)shows the enlarged view around the peaks.

    Figure 5 shows the time series,power spectra and optical spectra at Δf=7 GHz with differentkinj. Atkinj=0.01, as shown in Fig. 5(a), the P1 state resulted from optical modes beating is observed. The time series has a sinusoidal waveform. There exists a sharp peak atfΔof 6.74 GHz and a small peak at external-cavity frequencyfECof 0.1 GHz in the power spectrum. The optical spectrum is similar to that in Fig.3(c3).Atkinj=0.13, the QCLs exhibit pulse burst (PB) state with stable amplitude and a burst period of 2τinj,and the pulses do not have evident periodicity. The power spectrum seems to indicate chaotic state with external-cavity periodic peaks. So the PB state can be thought as an intermittent chaotic state. In the optical spectrum, a wide envelope peak with a sharp central peak can be observed. The envelope peak and sharp peak correspond to the stable parts and the PB parts, respectively.Askinjincreases,the number of pulses in one burst decreases.Atkinj=0.25,QCLs exhibit SW state with the period of 2τinjand duty cycle of 30%. Atkinj=0.35,QCLs exhibit QP state.The SW and QP states are similar to those at Δf=2 GHz.

    Figure 6 shows the time series,power spectra and optical spectra at Δf=14 GHz with differentkinj. Atkinj=0.01,as shown in Fig. 6(a), the P1 state resulted from optical modes beating with the sinusoidal time series is observed. There are only sharp peaks at integer multiplefΔin the power spectrum.The external-cavity periodic dynamic is completely suppressed. The optical spectrum is similar to that in Fig.3(c3).Atkinj=0.3,both the optical modes beating periodic dynamic and the external-cavity periodic dynamic become evident in the time series and power spectrum. Here we choose a critical periodicity suppression ratio of 20 dB.If the optical modes beating peak is 20 dB higher than the external-cavity periodic peak in the power spectrum,the dynamic state can be thought as P1 state. Otherwise, it is QP state, which is different from the QP state in Figs. 4(c) and 5(d). In the optical spectrum,thefΔis 12.01 GHz. Atkinj=0.35,the QCLs exhibit a weak chaotic state, with evident envelope peaks in the power and optical spectra. ThefΔis 6.82 GHz. Atkinj=0.4, the QCLs exhibit a strong chaotic state,with a wide-band and flat power spectrum and a very wide envelope optical spectrum. In the optical spectrum,only one envelope peak can be observed.

    Figure 7 shows the time series, power spectra and optical spectra at Δf= 20 GHz with differentkinj. Atkinj=0.01, the QCLs exhibit the similar P1 state to that shown in Fig.6(a). The external-cavity periodic dynamic is completely suppressed. Atkinj=0.39, the QCLs exhibit the similar QP state to that shown in Fig.6(b). In the optical spectrum,thefΔis 16.79 GHz. Atkinj=0.55,the QCLs exhibit a chaotic state with a wide-band and flat power spectrum and a very wide envelope optical spectrum.But the chaotic state is different from that in Fig. 6(d). There is a very wide envelope peak around 20 GHz in the power spectrum. In the optical spectrum,there are two envelope peaks with the interval of 20.98 GHz.

    We think that the two chaotic states in the mutual-coupled QCLs have different physical origins. When Δfis small, the pulling effect under strong injection can make the intrinsic resonant mode and injected mode very close, leading to strong interaction of the external-cavity periodic dynamic and optical modes beating. As a result, chaotic oscillation occurs. In the optical spectrum, there is only one wide envelope peak.When Δfis large, the pulling effect will be disabled askinjincreases,because of the strong optical nonlinear. Though the interaction of the external-cavity periodic dynamic and optical modes beating is weakened, the strong optical nonlinear can also break the periodic oscillation, leading to the chaotic oscillation. In the optical spectrum, there are two envelope peaks with the interval of Δf.

    Fig.7. Time series,power spectra and optical spectrum at Δf =20 GHz for injection strength kinj of(a)0.01,(b)0.39,and(c)0.55. The inset in(b2)shows the enlarged view around the peaks.

    Fig.8. Time series,power spectra and optical spectrum at Δf =29 GHz for injection strength kinj of(a)0.1,(b)0.57 and(c)0.59.

    Figure 8 shows the time series,power spectra and optical spectra at Δf=29 GHz with differentkinj. Atkinj=0.1, the QCLs exhibit the P1 state resulted from optical modes beating,with very sharp peaks at integer multiplefΔin the power spectrum. A small peak atfECcan also be observed. Askinjincreases, the peaks at integer multiplefΔare gradually broadened and the peaks at integer multiplefECare gradually heightened. Atkinj=0.57,the peak atfΔ=24.08 GHz is still 24 dB higher than that atfEC=0.1 GHz. The dynamic state is P1 state. Atkinj=0.59,QCLs exhibit QP state with the period of 1/fΔ. In the time range of one period,higher-frequency oscillation can be observed. In the power spectra,apart from the peaks at integer multiples offΔ, there are also some peaks at the frequencies higher than 40 GHz. In the optical spectrum,narrow peaks can be observed.

    3.4. Mapping of dynamic states

    In order to furtherly understand the dynamic behaviors in QCLs, the mapping of dynamic states in the parameter space of Δfandkinjis presented in Fig. 9(a). In the figure, different dynamic states are shown by different colors. The blue zones represent the P1 state. Two P1 zones can be observed:the lower left one is the P1 resulted from the external-cavity periodic dynamic, the lower right one is the P1 resulted from optical modes beating. The light-blue zone represents the SW state. The SW state zone is only observed in the range of detuning frequency lower than 10 GHz, where complete injection locking can be achieved. The green zone represents the QP state. The QP state zone actually consists of three parts: external-cavity QP state zone (examples in Figs. 4(c)and 5(d)), optical modes beating QP state zone (example in Fig. 8(c)), and the bioscillation QP state zone (examples in Figs. 6(b) and 7(b)). The light-green zones represent the PB state. The PB state zones are multiple discrete small zones,which are distributed in the QP state zone,where strong interaction of the external-cavity periodic dynamic and the optical modes beating periodic dynamic occurs. The white zone represents the chaotic(C)state.

    Figure 9(b)shows the chaos bandwidth in the parameter space, which is given by the red dash line box in Fig. 9(a).Two types of chaotic states are given the names of chaos and chaos(Δf),which are distinguished by whether there is a wide envelope peak at Δf. The black dash line is the boundary between chaos and chaos(Δf). In the chaos zone,the bandwidth is always around 14 GHz. In the chaos(Δf) zone, the bandwidth increases gradually with the increase of Δf, showing the way to generate mid-infrared wide-band chaotic laser in mutual-coupled QCLs.

    Fig.9. (a)Mapping of dynamical states in the parameter space of detuning frequency Δ f and injection strength kinj. P1: period-one;SW:square wave;QP:quasi period; PB:pulse burst; C:chaos. The orange dashed line from left to right represents the detuning frequencies of 2 GHz,7 GHz, 14 GHz, 20 GHz,and 29 GHz respectively. (b)Bandwidth of chaotic state in parameter space of Δf and kinj,given by the red dash line box in(a).

    4. Conclusion

    We numerically investigated the dynamic states in mutual-coupled mid-infrared QCLs and discussed the physical mechanism of dynamic states evolution. Three types of P1 states with different periods were found, which wereτinj,2τinj, and reciprocal of the detuning frequency. There was no relaxation oscillation observed. By changing the injection strength and detuning frequency,several other dynamic states were demonstrated, including SW, QP, PB, and chaotic laser.The external-cavity periodic dynamics and optical modes beating are the mainly periodic dynamics. High-order harmonics dynamics and strong optical nonlinear can be stimulated by strong injection. When Δfis small or very large,the interaction of the two periodic dynamics is very weak. Strong injection can drive the P1 state to SW and QP states. When Δfis in the proper range,strong interaction of the two periodic dynamics occurs,leading to PB state and chaotic state. The PB state can be thought as an intermittent chaotic state. Strong injection can make the chaotic state more stable. This work helps to understand the physics mechanism of dynamic behaviors in QCLs and open a new way to mid-infrared wide-band chaotic laser.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2019YFB1803500),the National Natural Science Foundation of China (Grant No. 61805168), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201801D221183 and 20210302123185), International Cooperation of Key Research and Development Program of Shanxi Province (Grant No.201903D421012),Research Project Supported by Shanxi Scholarship Council of China(Grant No.2021-032),Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2019L0133), and Fund for Shanxi“1331 Project”Key Innovative Research Team.

    猜你喜歡
    王安韓紅李麗
    李麗教授簡(jiǎn)介
    Thermal Hall effect and the Wiedemann-Franz law in Chern insulator
    心中的中國(guó)夢(mèng)
    百花(2022年11期)2023-01-30 16:57:55
    元日
    冰凍太陽(yáng)光
    韓紅愛(ài)心慈善基金會(huì)
    曲耶?戲耶?——王安祈《紅樓夢(mèng)》京劇論
    緣何抒情,怎樣寫(xiě)意?——王安祈戲曲研究中傳統(tǒng)與現(xiàn)代的相互表述
    中華戲曲(2018年1期)2018-08-27 10:04:08
    韓紅三錄《絨花》
    做人與處世(2018年8期)2018-06-05 08:27:48
    朋友韓紅
    做人與處世(2016年3期)2016-03-14 07:54:04
    国产高清有码在线观看视频| 男女下面进入的视频免费午夜| 国产伦精品一区二区三区视频9| 久久久午夜欧美精品| 在线天堂最新版资源| 日韩成人伦理影院| 久久久久久人妻| 性色av一级| 天美传媒精品一区二区| 免费观看a级毛片全部| 国产老妇伦熟女老妇高清| 久久精品国产自在天天线| 男女边摸边吃奶| 久久99精品国语久久久| 亚洲国产高清在线一区二区三| 免费观看a级毛片全部| 日韩大片免费观看网站| 色吧在线观看| 看非洲黑人一级黄片| 国产精品无大码| 婷婷色av中文字幕| 成人黄色视频免费在线看| av国产免费在线观看| 亚洲国产高清在线一区二区三| 中文资源天堂在线| 国产亚洲av片在线观看秒播厂| 黄色视频在线播放观看不卡| 午夜老司机福利剧场| 人人妻人人添人人爽欧美一区卜 | 精品亚洲乱码少妇综合久久| 国产黄频视频在线观看| 欧美xxⅹ黑人| 国产亚洲5aaaaa淫片| 欧美精品人与动牲交sv欧美| 天堂中文最新版在线下载| 亚洲欧美一区二区三区黑人 | 晚上一个人看的免费电影| 97精品久久久久久久久久精品| 老熟女久久久| 亚洲久久久国产精品| 肉色欧美久久久久久久蜜桃| av免费观看日本| 亚洲精品aⅴ在线观看| 97热精品久久久久久| 九草在线视频观看| 波野结衣二区三区在线| 伦理电影大哥的女人| 久久鲁丝午夜福利片| 免费人成在线观看视频色| 欧美3d第一页| 色婷婷久久久亚洲欧美| 国产精品偷伦视频观看了| 少妇人妻久久综合中文| 国产精品三级大全| 26uuu在线亚洲综合色| 内地一区二区视频在线| 中文字幕人妻熟人妻熟丝袜美| 欧美变态另类bdsm刘玥| 九九在线视频观看精品| 少妇被粗大猛烈的视频| 色吧在线观看| 少妇裸体淫交视频免费看高清| 99久国产av精品国产电影| 久久精品夜色国产| 亚洲欧美一区二区三区国产| 久久精品国产亚洲网站| 人妻系列 视频| 日本一二三区视频观看| 亚洲精品亚洲一区二区| 一区在线观看完整版| 日本午夜av视频| 免费观看a级毛片全部| 日韩不卡一区二区三区视频在线| 全区人妻精品视频| 亚洲国产高清在线一区二区三| 国内少妇人妻偷人精品xxx网站| 国产黄色免费在线视频| 国产永久视频网站| 天堂俺去俺来也www色官网| 免费久久久久久久精品成人欧美视频 | 美女中出高潮动态图| 久久精品国产a三级三级三级| 国产日韩欧美亚洲二区| 在线播放无遮挡| 网址你懂的国产日韩在线| 美女脱内裤让男人舔精品视频| 午夜福利网站1000一区二区三区| 国产永久视频网站| 夜夜看夜夜爽夜夜摸| 久久久久久久久久人人人人人人| 你懂的网址亚洲精品在线观看| 亚洲国产日韩一区二区| 岛国毛片在线播放| 大陆偷拍与自拍| 成人亚洲精品一区在线观看 | 寂寞人妻少妇视频99o| 亚洲精品日韩在线中文字幕| 99久久中文字幕三级久久日本| 深爱激情五月婷婷| 午夜福利视频精品| 亚洲精品aⅴ在线观看| 日本午夜av视频| 国产成人精品婷婷| 国产精品精品国产色婷婷| 国产综合精华液| 国产精品一区二区在线不卡| 欧美日韩国产mv在线观看视频 | 夫妻性生交免费视频一级片| av播播在线观看一区| 久久人人爽人人爽人人片va| 欧美zozozo另类| 特大巨黑吊av在线直播| 国产精品不卡视频一区二区| 午夜日本视频在线| 国产精品人妻久久久影院| 2018国产大陆天天弄谢| 18禁在线无遮挡免费观看视频| 国产人妻一区二区三区在| 最近的中文字幕免费完整| 搡女人真爽免费视频火全软件| 久久这里有精品视频免费| 国产又色又爽无遮挡免| 国产亚洲av片在线观看秒播厂| 99热这里只有精品一区| tube8黄色片| 最近最新中文字幕大全电影3| 欧美成人午夜免费资源| 国产精品av视频在线免费观看| 一区在线观看完整版| 2018国产大陆天天弄谢| 久久国产亚洲av麻豆专区| 天天躁日日操中文字幕| 亚洲欧美中文字幕日韩二区| 晚上一个人看的免费电影| 国产在线男女| 日韩av在线免费看完整版不卡| 亚洲国产欧美在线一区| 国产精品久久久久久av不卡| 国产精品一二三区在线看| 一级爰片在线观看| 日本黄色日本黄色录像| 国产精品成人在线| 欧美bdsm另类| 嫩草影院新地址| 男人和女人高潮做爰伦理| 18禁动态无遮挡网站| 亚洲av中文字字幕乱码综合| 欧美激情极品国产一区二区三区 | 日本午夜av视频| av免费观看日本| 草草在线视频免费看| 国产精品一区二区在线不卡| 狂野欧美白嫩少妇大欣赏| 国产色爽女视频免费观看| 三级经典国产精品| 街头女战士在线观看网站| 我的女老师完整版在线观看| 91精品国产国语对白视频| 国产精品伦人一区二区| 中文资源天堂在线| 婷婷色麻豆天堂久久| 少妇丰满av| 国产久久久一区二区三区| 在线观看人妻少妇| 亚洲精品乱码久久久v下载方式| 久热这里只有精品99| 国产免费又黄又爽又色| www.av在线官网国产| 日韩精品有码人妻一区| 狂野欧美激情性xxxx在线观看| 亚洲成人手机| 亚洲欧美中文字幕日韩二区| 欧美3d第一页| 纯流量卡能插随身wifi吗| 久久久精品94久久精品| 色综合色国产| 九九在线视频观看精品| 亚洲精品日韩av片在线观看| 亚洲精品国产色婷婷电影| 国产成人精品婷婷| 99视频精品全部免费 在线| 国产精品久久久久久久电影| 五月天丁香电影| 欧美成人精品欧美一级黄| 乱码一卡2卡4卡精品| 青春草视频在线免费观看| 欧美高清成人免费视频www| 亚洲精品一区蜜桃| 激情五月婷婷亚洲| 美女xxoo啪啪120秒动态图| av免费在线看不卡| 91精品伊人久久大香线蕉| 精品亚洲成a人片在线观看 | 在线观看三级黄色| av卡一久久| 中文字幕免费在线视频6| 久久鲁丝午夜福利片| 男人狂女人下面高潮的视频| 欧美成人一区二区免费高清观看| 午夜激情福利司机影院| 日韩视频在线欧美| 国产在线视频一区二区| 在线观看一区二区三区| 日韩欧美精品免费久久| 美女中出高潮动态图| 亚洲精品自拍成人| 天美传媒精品一区二区| 伊人久久国产一区二区| av在线蜜桃| 777米奇影视久久| 久久韩国三级中文字幕| 人妻少妇偷人精品九色| 乱系列少妇在线播放| 干丝袜人妻中文字幕| 18+在线观看网站| 我的老师免费观看完整版| 欧美精品国产亚洲| 日韩亚洲欧美综合| 一级毛片aaaaaa免费看小| 久久99精品国语久久久| 欧美成人a在线观看| 黄色欧美视频在线观看| 国产精品国产三级专区第一集| 成人特级av手机在线观看| 人妻少妇偷人精品九色| 国产色婷婷99| av.在线天堂| 有码 亚洲区| 午夜老司机福利剧场| 女的被弄到高潮叫床怎么办| 成人综合一区亚洲| 免费大片黄手机在线观看| 91久久精品电影网| 亚洲国产欧美人成| av女优亚洲男人天堂| 内地一区二区视频在线| 日本欧美视频一区| 亚洲人成网站高清观看| 麻豆成人av视频| 两个人的视频大全免费| 国产精品av视频在线免费观看| 久久青草综合色| 丰满少妇做爰视频| av在线app专区| av天堂中文字幕网| 精品午夜福利在线看| 99久国产av精品国产电影| 最近最新中文字幕大全电影3| 日韩av不卡免费在线播放| 狂野欧美激情性xxxx在线观看| 国产爽快片一区二区三区| 不卡视频在线观看欧美| 22中文网久久字幕| 国产精品爽爽va在线观看网站| 美女高潮的动态| av福利片在线观看| 国产亚洲午夜精品一区二区久久| 我要看黄色一级片免费的| 久久久久久久久久久丰满| tube8黄色片| 卡戴珊不雅视频在线播放| 一级黄片播放器| 亚洲丝袜综合中文字幕| 边亲边吃奶的免费视频| 亚洲国产欧美人成| 中文乱码字字幕精品一区二区三区| 新久久久久国产一级毛片| h日本视频在线播放| 欧美三级亚洲精品| av在线老鸭窝| av天堂中文字幕网| www.色视频.com| 国产成人a∨麻豆精品| 新久久久久国产一级毛片| 欧美xxⅹ黑人| 视频区图区小说| 久久6这里有精品| 黄色视频在线播放观看不卡| 看免费成人av毛片| 我的女老师完整版在线观看| 国产黄色视频一区二区在线观看| 中国美白少妇内射xxxbb| 国产精品一及| 下体分泌物呈黄色| 国产探花极品一区二区| 久久99蜜桃精品久久| 久久影院123| 深夜a级毛片| 看非洲黑人一级黄片| 欧美成人一区二区免费高清观看| 极品少妇高潮喷水抽搐| 黄色日韩在线| av免费在线看不卡| 男人爽女人下面视频在线观看| 大又大粗又爽又黄少妇毛片口| 我的老师免费观看完整版| 91久久精品国产一区二区三区| 国产黄片视频在线免费观看| 成人国产av品久久久| 18禁裸乳无遮挡动漫免费视频| 亚洲av电影在线观看一区二区三区| 99热6这里只有精品| 国产午夜精品一二区理论片| 亚洲美女黄色视频免费看| 国产精品爽爽va在线观看网站| 内地一区二区视频在线| 三级国产精品欧美在线观看| 91久久精品国产一区二区三区| 亚洲国产色片| 欧美精品国产亚洲| 少妇 在线观看| 国产av一区二区精品久久 | 又大又黄又爽视频免费| 欧美日韩国产mv在线观看视频 | 色哟哟·www| 亚洲欧美日韩另类电影网站 | 成人18禁高潮啪啪吃奶动态图 | 婷婷色综合大香蕉| 亚洲国产色片| 国产精品.久久久| 日韩强制内射视频| 中文在线观看免费www的网站| 欧美日韩视频精品一区| 老司机影院成人| 亚洲精品一二三| 亚洲熟女精品中文字幕| 久久97久久精品| 日日啪夜夜爽| 亚洲国产日韩一区二区| 精品亚洲乱码少妇综合久久| 女人久久www免费人成看片| 日本色播在线视频| 1000部很黄的大片| 啦啦啦在线观看免费高清www| 久久久久精品性色| 夜夜爽夜夜爽视频| 欧美日韩视频精品一区| 青春草亚洲视频在线观看| 欧美3d第一页| 国产精品一区二区三区四区免费观看| 亚洲精品色激情综合| 久久久久精品性色| 国产成人一区二区在线| 精品午夜福利在线看| 国产精品伦人一区二区| av福利片在线观看| 日韩三级伦理在线观看| 男人狂女人下面高潮的视频| 最后的刺客免费高清国语| 高清不卡的av网站| 免费看日本二区| 十八禁网站网址无遮挡 | 欧美xxⅹ黑人| 亚洲欧洲日产国产| 天堂俺去俺来也www色官网| kizo精华| 国内揄拍国产精品人妻在线| av卡一久久| 国产精品麻豆人妻色哟哟久久| freevideosex欧美| 久久久久久久久久成人| 看免费成人av毛片| 最新中文字幕久久久久| 一级黄片播放器| 久久女婷五月综合色啪小说| 色吧在线观看| 欧美xxxx性猛交bbbb| 亚洲无线观看免费| 九九久久精品国产亚洲av麻豆| 2021少妇久久久久久久久久久| 国产精品国产av在线观看| 亚洲三级黄色毛片| 日韩欧美一区视频在线观看 | 亚洲成色77777| 国产精品一及| 乱系列少妇在线播放| 91狼人影院| 精品久久久久久久久亚洲| 毛片一级片免费看久久久久| 中文在线观看免费www的网站| h日本视频在线播放| 少妇的逼好多水| 久久综合国产亚洲精品| 街头女战士在线观看网站| 91久久精品国产一区二区成人| 国产欧美日韩精品一区二区| 日韩制服骚丝袜av| 美女视频免费永久观看网站| 日日啪夜夜撸| 春色校园在线视频观看| 久久女婷五月综合色啪小说| 搡老乐熟女国产| 久热这里只有精品99| 成人国产av品久久久| 国产精品福利在线免费观看| 少妇丰满av| 中文乱码字字幕精品一区二区三区| 国产欧美亚洲国产| 国产精品精品国产色婷婷| 高清在线视频一区二区三区| 国产午夜精品久久久久久一区二区三区| 日本欧美国产在线视频| 免费大片黄手机在线观看| 久久久精品94久久精品| 国产亚洲av片在线观看秒播厂| 哪个播放器可以免费观看大片| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久免费av| 多毛熟女@视频| 久久久久久人妻| 精品亚洲成国产av| 亚洲精华国产精华液的使用体验| 国内揄拍国产精品人妻在线| 欧美成人精品欧美一级黄| 亚洲精品,欧美精品| 久久久久国产精品人妻一区二区| 大话2 男鬼变身卡| 美女cb高潮喷水在线观看| 黄色日韩在线| 国产精品久久久久久av不卡| 高清视频免费观看一区二区| 亚洲内射少妇av| 亚洲国产毛片av蜜桃av| av免费观看日本| 99热6这里只有精品| 三级国产精品欧美在线观看| 成人漫画全彩无遮挡| 成人美女网站在线观看视频| 日韩中字成人| 国产精品久久久久久精品电影小说 | 99热这里只有是精品50| 日日啪夜夜撸| 日本欧美国产在线视频| 久久久久久久久久人人人人人人| 免费观看无遮挡的男女| 国产大屁股一区二区在线视频| 亚洲熟女精品中文字幕| 下体分泌物呈黄色| 男女无遮挡免费网站观看| 久久久欧美国产精品| 国产精品一及| 久久久久久久国产电影| 男女啪啪激烈高潮av片| 亚洲va在线va天堂va国产| 在线精品无人区一区二区三 | 51国产日韩欧美| 国产熟女欧美一区二区| 啦啦啦视频在线资源免费观看| 99热这里只有是精品50| 日韩中字成人| 国产精品蜜桃在线观看| 男女啪啪激烈高潮av片| 99久国产av精品国产电影| 免费看光身美女| 美女xxoo啪啪120秒动态图| 精品久久久噜噜| 久久99热这里只有精品18| 99热这里只有精品一区| 少妇人妻一区二区三区视频| 韩国av在线不卡| 国产永久视频网站| 简卡轻食公司| 在线看a的网站| 观看免费一级毛片| 国产亚洲欧美精品永久| 国产黄色视频一区二区在线观看| 夜夜看夜夜爽夜夜摸| 国产精品欧美亚洲77777| 亚州av有码| 成人二区视频| 午夜福利在线在线| 97热精品久久久久久| 伦理电影大哥的女人| 在线观看美女被高潮喷水网站| 久久婷婷青草| 国产欧美另类精品又又久久亚洲欧美| 亚洲不卡免费看| 日本色播在线视频| 啦啦啦啦在线视频资源| 日韩欧美 国产精品| av不卡在线播放| 午夜福利在线观看免费完整高清在| 丰满少妇做爰视频| 人人妻人人澡人人爽人人夜夜| 国产免费视频播放在线视频| 久久久久久久久久成人| 18禁在线播放成人免费| 赤兔流量卡办理| 免费久久久久久久精品成人欧美视频 | 免费在线观看成人毛片| 九九在线视频观看精品| 久久 成人 亚洲| 国产精品99久久久久久久久| 狂野欧美激情性xxxx在线观看| 成年女人在线观看亚洲视频| 亚洲国产欧美在线一区| av在线老鸭窝| 日韩欧美一区视频在线观看 | 观看免费一级毛片| 在线观看一区二区三区| 亚洲av不卡在线观看| 亚洲欧美精品专区久久| 少妇熟女欧美另类| 91久久精品电影网| 国产在视频线精品| 网址你懂的国产日韩在线| 观看美女的网站| 国产在线视频一区二区| 视频中文字幕在线观看| 伊人久久精品亚洲午夜| 免费大片18禁| 久久av网站| 日本爱情动作片www.在线观看| 亚洲最大成人中文| 久久久久久久精品精品| 国产毛片在线视频| 免费大片18禁| 熟女av电影| 日韩欧美一区视频在线观看 | 在线天堂最新版资源| 嫩草影院入口| 大陆偷拍与自拍| 一本久久精品| 大陆偷拍与自拍| 国产精品久久久久成人av| 三级国产精品欧美在线观看| 国产淫片久久久久久久久| 三级国产精品欧美在线观看| 久久久久网色| 永久免费av网站大全| 国产 精品1| 久久久午夜欧美精品| 韩国高清视频一区二区三区| 丝瓜视频免费看黄片| av在线观看视频网站免费| 天堂俺去俺来也www色官网| av播播在线观看一区| 美女视频免费永久观看网站| 国产精品秋霞免费鲁丝片| 97在线人人人人妻| 精品少妇黑人巨大在线播放| 99久久精品一区二区三区| 又粗又硬又长又爽又黄的视频| 国产色婷婷99| 少妇的逼好多水| 人妻 亚洲 视频| 国产男女内射视频| 99久久精品一区二区三区| 久久久精品94久久精品| 赤兔流量卡办理| 噜噜噜噜噜久久久久久91| 亚洲无线观看免费| av在线播放精品| 黄色日韩在线| 丰满少妇做爰视频| 亚洲第一区二区三区不卡| 老司机影院成人| 国产精品一二三区在线看| 国产成人午夜福利电影在线观看| 欧美少妇被猛烈插入视频| 91狼人影院| 卡戴珊不雅视频在线播放| 成人二区视频| 亚洲熟女精品中文字幕| 欧美成人午夜免费资源| 成人国产av品久久久| 欧美xxxx性猛交bbbb| 国产乱人视频| 欧美日韩国产mv在线观看视频 | av国产精品久久久久影院| 成人免费观看视频高清| 天美传媒精品一区二区| 国产欧美亚洲国产| 女人十人毛片免费观看3o分钟| av天堂中文字幕网| 毛片女人毛片| 我的老师免费观看完整版| 国产片特级美女逼逼视频| 日韩欧美 国产精品| 最近2019中文字幕mv第一页| 只有这里有精品99| 亚洲精品456在线播放app| 五月伊人婷婷丁香| 高清毛片免费看| 哪个播放器可以免费观看大片| 免费黄网站久久成人精品| 爱豆传媒免费全集在线观看| 久久婷婷青草| 亚洲内射少妇av| 亚洲欧美成人精品一区二区| 91在线精品国自产拍蜜月| 国产男女超爽视频在线观看| 国语对白做爰xxxⅹ性视频网站| 免费观看av网站的网址| 国产成人aa在线观看| 久热久热在线精品观看| 日韩av不卡免费在线播放| 久久国内精品自在自线图片| 成人毛片a级毛片在线播放| 国产乱来视频区| 亚洲一区二区三区欧美精品| 色婷婷久久久亚洲欧美| 国产高潮美女av| 一级av片app| 人人妻人人澡人人爽人人夜夜| 91午夜精品亚洲一区二区三区| 久久精品国产亚洲网站| 久久精品国产自在天天线| 丝袜喷水一区| 成人特级av手机在线观看| 看免费成人av毛片| 一区二区三区免费毛片| av网站免费在线观看视频| 国产精品蜜桃在线观看| 国产男人的电影天堂91|