• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment

    2022-10-26 09:46:04YaWeiZhang張亞偉GuanHuaRen任冠華XiaoQiangSu蘇曉強(qiáng)TianHuaMeng孟田華andGuoZhongZhao趙國(guó)忠
    Chinese Physics B 2022年10期
    關(guān)鍵詞:趙國(guó)

    Ya-Wei Zhang(張亞偉) Guan-Hua Ren(任冠華) Xiao-Qiang Su(蘇曉強(qiáng))Tian-Hua Meng(孟田華) and Guo-Zhong Zhao(趙國(guó)忠)

    1Institute of History for the Science and Technology,Inner Mongolia Normal University,Hohhot 010022,China

    2School of Yungang Ology,Shanxi Datong University,Datong 037009,China

    3Department of Mathematics and Physics,North China Electric Power University,Baoding 071003,China

    4Institute of Solid State Physics,Shanxi Provincial Key Laboratory of Microstructure Electromagnetic Functional Materials,Shanxi Datong University,Datong 037009,China

    5Department of Physics,Capital Normal University,Beijing 100048,China

    Keywords: THz-TDS,lattice vibrations,solid-state density functional theory(ss-DFT),pararealgar,orpiment

    1. Introduction

    Sulfur-containing pigments are a relatively universal decoration material utilized in Chinese mural paintings,ceramics,oil-decorated paintings of ancient buildings,lacquerware,and other crafts. Among these pigments,pararealgar and orpiment are both arsenic-containing sulfides, which are held together by van der Waals forces but the chemical proportion is slightly different.Pararealgar is composed of distinct As4S4molecules that are covalently bound together,[1]and orpiment consists of arsenic trisulfide with the chemical formula As2S3, which runs parallel to the(010)direction.[2]Owing to the influence of age, self-fading, discoloration, and the external environment,it is difficult for the pigments to be properly preserved.A variety of spectroscopic techniques are utilized to analyze the composition,origins,and craftsmanship of pigments,thus providing a better understanding of artists’ palettes in original works and monitoring degradation of pigments over time.Related measurements were commonly employed by versatile spectroscopic approaches, including x-ray fluorescence spectroscopy (XRF),[3–5]Raman spectroscopy,[6,7]x-ray diffractometer (XRD),[8]Fourier transform infrared spectroscopy(FTIR),[9,10]particle-induced x-ray emission (PIXE),[11]and scanning electron microscopy-energy dispersive x-ray(SEMEDX).[12–14]Although the aforementioned techniques can be sensitive and qualitative, they are time-consuming, invasive,and require sophisticated sample preparation processes carried out by specialists.

    As an emerging technology, terahertz spectroscopy has shown great application prospects for the analysis of cultural relics based on its high penetration, coherence, broadspectrum,and non-ionization characteristics,which is desired for measuring the pigments in cultural relics. In recent years,terahertz technology has been exploited to study the pigments in oil paintings,[15,16]medieval manuscripts,[17]and mural paintings.[18]In addition, this technology has been applied to the fields of biology, chemistry, biomedicine, agriculture,and sensing applications.[19–23]Yanget al.[24]confirmed the implementation of terahertz time-domain spectroscopy(THz-TDS) and THz-imaging techniques for distinguishing seven red mineral pigments and estimating pigments in ancient Chinese artworks. Leeet al.[10]developed an optimal method for terahertz spectroscopic analysis of the vermilion pigment in free-standing and polyethylene-mixed forms with temperature control. Kleist and Korter[25]demonstrated that lowfrequency vibrational spectroscopy can be applied to successful quantitative research of minium and vermilion pigment mixtures. However, the majority of the preceding investigations focused only on the quantitative data of various crystalline pigments, detailed explanations are lacking in the provenance of spectral features. Consequently, the use of advanced computational models is particularly necessary for diagnosing the vibrational spectroscopy of solids, and for elucidating the connections between crystal structure and the intermolecular oscillations that collectively contribute to the terahertz spectra of these materials. Both organic pigments and inorganic pigments have been successfully demonstrated through using this method.[5,26]

    In this work, arsenic-containing sulfides pigments pararealgar(As4S4)and orpiment(As2S3)are investigated by using THz-TDS system in a frequency range of 0.2 THz–2.2 THz,and the corresponding characteristic absorption spectra are obtained. Meanwhile,Raman spectroscopy is also used as a complementary technique. To further understand the relationship between the terahertz characteristic absorption peaks and the lattice vibrational modes of pararealgar and orpiment,the quantum mechanical simulations are performed based on solid-state density functional theory (ss-DFT). This approach will definitely enhance the terahertz spectral database of arsenic-containing sulfide pigments for intrinsic identification and guided restoration of historical artifact.

    2. Materials and methods

    Two arsenic-containing sulfides pigments pararealgar and orpiment were purchased from J & K Industrial Inc. (China)and utilized directly without further purification. Polytetrafluoroethylene(PTFE)was acquired from Aladdin Industrial Inc.(China), and the utilization of PTFE powder meant that the measurements were taken in the optimum absorption range because PTFE has a relatively constant refractive index and low loss in a low-frequency terahertz region.[27]Pararealgar and orpiment were mixed with PTFE at a mass ratio of 1:3, respectively, and ground lightly into fine particles with a pestle and mortar. Under the pressure of 2.0 MPa,the powder samples were pressed into a tablet with a diameter of 13 mm and a thickness of about 1.3 mm.As shown in Fig.1,the transmitted signals of the samples were measured by a fiber-optic THz-TDS system with an effective bandwidth of 0.2 THz–2.2 THz and a spectral resolution of 2.5 GHz. The sample chamber was purged with dry air to prevent the disturbance from atmospheric water vapor during the experiments. Each spectrum was averaged over 100 scans to improve the signal-to-noise ratio(>103:1),and the air was used as the reference signal.The absorption coefficientα(ω) could be extracted through the ratio between the spectra of the sample and the reference,the detailed formula is as follows:[28–31]wherecis the speed of light,ωis the wave frequency,n(ω)is refractive index,A(ω)andφ(ω)are the amplitude ratio and phase difference between the reference and sample, respectively,anddis the sample thickness.

    Fig.1. Illustration of experimental setup,with enlarged frame showing the photos of two samples.

    The Raman signals were sampled by confocal Raman microscope(Renishaw,InVia,UK)and the surface ingredients of the pigments were qualitatively determined point-by-point by the scanning method under a 50×objective lens using the pinhole confocal method.The excitation wavelength was 532 nm,and the spectral resolution was 0.81 cm-1. The corresponding grating specification was 1800 lines L/mm, and the spectral scanning range was 100 cm-1–3200 cm-1.

    Quantum chemical calculations based on the ss-DFT were conducted to analyze the observed terahertz spectra. The calculation package was performed by using the Cambridge Sequential Total Energy Package (CASTEP),[32]and the results were obtained within the generalized gradient approximation (GGA) with the help of Perdew–Burke–Ernzerhof(PBE) correlation function.[33]Tkatchenko–Scheffler (TS)dispersion correction and norm-conserving pseudopotential were used for CASTEP.

    3. Results and discussion

    The measured terahertz absorption spectra of the two pigments are presented in Fig.2. The blue curve in Fig.2(a)represents the measured terahertz absorption spectra of pararealgar with two distinct peaks at 1.33 THz and 1.48 THz, and broad absorption bandwith is around 1.83 THz. The orange curve in Fig.2(b)depicts the terahertz spectrum of orpiment,which contains two distinct absorption peaks at 1.59 THz and 1.98 THz. There is a shoulder peak in the region of 1.8 THz–1.9 THz which can be identified by the shape of the peak. The two samples have different spectrum characteristics, indicating that the material ingredients that generate terahertz resonances are different. From the Raman spectroscopy indicated in Fig.3 it follows that the characteristic peaks of pararealgar located at 135, 188, 234, 274, 312, 345, and 362 cm-1are consistent with the reported Raman database of chemical formula As4S4,[34]while the distinct peaks of orpiment located at 139, 158, 206, 295, 314, 357, and 385 cm-1correspond to the chemical formula As2S3described in the literature.[35]These results demonstrate that the terahertz responses of two pigments mainly derive from the major component of As4S4and As2S3,respectively.

    Fig.2. THz absorption spectrum of(a)pararealgar and(b)orpiment.

    The terahertz absorption peaks are intrinsically attributed to the lattice vibrations of constituent elements. To gain an insight into these measured terahertz responses,quantum chemical calculations based on ss-DFT are performed by using the CASTEP program. The initial parameters used for the calculation are based on previously reported crystal structures.[2,36]Although pararealgar(As4S4)and orpiment(As2S3)both belong to space groupP21/cand the corresponding space lattice is monoclinic, their lattice parameters are different markedly.Specifically, the crystallographic unit cell diagram of As4S4and As2S3are shown in Fig. 4, respectively. [As4S4:a=9.930,b=9.657,c=8.510,β=97.3°,[36]As2S3:a=4.256,b=9.577,c=12.191,β=109.76°.[2]It can be seen that the two crystals have completely different unit cell crystallizations. In a unit cell of the As4S4crystal, there are four As4S4molecules.One arsenic(As)atom connects two arsenic atoms and one sulfur(S)atom,and another connects three sulfur atoms,while the remaining other two connect one arsenic atom and two sulfur atoms. In comparison, the atoms in the As2S3crystal exhibit chain-like connections and layered structures. Meanwhile, the horizontal layers are perpendicular to the figure plane and corrugated in the shape of trapezium.

    Fig.3. Raman spectrum of(a)pararealgar and(b)orpiment.

    Fig.4. Unit cell diagrams of(a)As4S4 and(b)As2S3 crystals,with yellow balls representing sulfur atoms,and purple balls denoting arsenic atoms.

    The calculated results are shown as the green dotted lines in Figs. 5 and 6. For pararealgar (As4S4), there are two distinctive vibration modes at 1.18 THz and 1.37 THz as shown in Fig.5(a),corresponding to the measured peaks at 1.33 THz and 1.48 THz. The slight deviations arise mainly from the temperature effect.[37]To be specific, the temperature difference will result in the frequency shift and split of the characteristic peaks, which have been considered as the consequence of multiple mechanisms, including the anharmonicity of vibrational potential,[38]the temperature-dependent change of the volume,[39]and the interaction of weak intermolecular bonding forces such as hydrogen bonds and van der Waals forces.[40]In this work, the simulations are performed at 0 K while the experiments are completed at room temperature,thus leading to the deviations. Actually, the measured results are also restricted by humidity and purity of crystal. Theoretically,the pararealgar should also contain three vibrational modes at 1.72 THz, 1.87 THz, and 2.02 THz. As discussed above,these three vibrational modes may arise from the splitting of the 1.83 THz absorption peak due to temperature effects or the frequency shift of the high-frequency absorption peak beyond the measurement range. The specific reasons need further studying. In order to obtain the vivid and graphic interpretation,the five vibrational modes of pararealgar are revealed in Figs.5(b)–5(f),in which the green arrows represent the vibration directions and intensities of the atoms.The vibrational modes intrinsically derive from the collective oscillation of all the As4S4molecules and the orientations are illustrated with blue arrows for clarity, respectively. It can be seen that the movements of unit cell rotate along the particular axis at 1.18 THz,1.37 THz,1.72 THz,and 2.02 THz,while the tendency is translational along thebaxis at 1.87 THz. It is worth noting that the vibration planes of the two modes at 1.72 THz and 2.02 THz are comparable, but the specific vibrating directions of internal As4S4molecules are different, which are illustrated in Figs.5(d)and 5(f). This effect definitely verifies that there is an interaction force(van der Waals force)between the adjacent molecules,[41]resulting in the integral resonances contributing to the diverse absorptions at those characteristic frequencies.

    Fig. 5. Calculated spectra and vibrational modes of pararealgar, with yellow balls representing sulfur (S) atoms, and purple balls denoting arsenic(As)atoms.

    The vibration style of orpiment(As2S3)is drastically different from that of pararealgar as shown in Fig. 6. Since the crystal framework of orpiment does not contain independent molecule units, its lattice vibrational formalization does not show a collective behavior of movement but a local torsion of the chain-like architecture. There are three vibrational modes for crystal As2S3at 1.45 THz,1.79 THz,and 1.88 THz,which are generally consistent with the experimental results. Specifically,the vibrational mode at 1.45 THz arises mainly from the oscillations of sulfur atoms and part of arsenic atoms parallel with the crystallographicbcplane. Conversely,the vibrational mode at 1.79 THz is caused mostly by two atoms vibrating perpendicular to the crystallographicbcplane. The movement at 1.88 THz is similar to that at 1.45 THz,but the contribution of arsenic atoms increases. Compared with collective resonances of unit in pararealgar,the layered vibrations depend on chain-like connection of atoms in orpiment,leading to higher resonant frequencies.

    Fig. 6. Calculated spectra and vibrational modes of orpiment, with yellow balls representing sulfur (S) atoms, and purple balls denoting arsenic (As)atoms.

    Owing to distinct crystal lattices and molecular structures constructed with the same elements arsenic and sulfur for pararealgar and orpiment,the apparently different spectral features are observed within the terahertz range of 0.2 THz–2.2 THz. The peak positions and intensities for pararealgar are attributed predominantly to the collective oscillation of all molecules in one unit cell, while atoms linked by chain-like shape in orpiment yield the torsional motions parallel or perpendicular to the crystallographicbcplane that dominates a unique absorption pattern of spectral assignments. From an analytical perspective, the latter has a higher vibrational frequency than the former.

    4. Conclusions

    In this work,the transmissive THz-TDS,ss-DFT,and Raman spectroscopy made a fine combination of measurement and analysis for characteristics of pararealgar(As4S4)and orpiment(As2S3). According to the THz-TDS data in the region of 0.2 THz–2.2 THz,evident absorption peaks are observed in two arsenic-containing sulfide pigments explicitly, which are further identified with Raman spectroscopy.These distinct and characteristic absorption spectra are definitely assigned with rigorous ss-DFT calculations of the crystalline pigments, revealing the essence of lattice vibration at different frequencies.The chemical identity, crystalline structure, and interactions from adjacent molecules collectively contribute to the characteristic vibrational spectra of these pigments. The described method will greatly deepen the understanding of the origin for terahertz spectra of arsenic-containing sulfides pigments, and can be extended to the study of a variety of other artwork pigments.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61805129 and 11874245),the National Key Research and Development Program of China (Grant No. 2021YFB3200100), and the Yungang Special Fund of Shanxi Datong University, China (Grant No.2020YGZX005).

    猜你喜歡
    趙國(guó)
    把你戴在胸前
    心聲歌刊(2022年2期)2022-06-06 05:14:26
    《迎新春》系列
    希望在肩上
    7.拆臺(tái)
    我一直在趙國(guó)
    師與書·趙國(guó)華
    江蘇教育(2017年45期)2017-07-05 11:31:34
    古法奇觀
    “沒(méi)看見(jiàn)”
    Stability of Composite Braking Produced by Retarder and Braking System
    生存智慧
    心理與健康(2005年3期)2005-04-29 13:24:58
    91精品国产九色| 国产成人免费观看mmmm| av国产精品久久久久影院| 日本一二三区视频观看| 97在线人人人人妻| 国产毛片a区久久久久| 一区二区三区精品91| 久久久久久久午夜电影| 国产美女午夜福利| 波多野结衣巨乳人妻| 夜夜看夜夜爽夜夜摸| 国内揄拍国产精品人妻在线| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美亚洲二区| 欧美三级亚洲精品| 亚洲av福利一区| 亚洲va在线va天堂va国产| 狠狠精品人妻久久久久久综合| 中文资源天堂在线| 国产精品福利在线免费观看| 成人漫画全彩无遮挡| 亚洲人与动物交配视频| 亚洲国产精品999| 久久热精品热| 久久ye,这里只有精品| 国产精品99久久99久久久不卡 | 日韩精品有码人妻一区| 18禁在线无遮挡免费观看视频| 国产v大片淫在线免费观看| 中国美白少妇内射xxxbb| 亚洲精品自拍成人| 久久ye,这里只有精品| 97精品久久久久久久久久精品| 亚洲三级黄色毛片| 国产女主播在线喷水免费视频网站| 爱豆传媒免费全集在线观看| 男人爽女人下面视频在线观看| 老师上课跳d突然被开到最大视频| 国产精品一区二区在线观看99| 26uuu在线亚洲综合色| 视频中文字幕在线观看| 午夜精品国产一区二区电影 | 丰满乱子伦码专区| 亚洲欧美一区二区三区国产| 日韩在线高清观看一区二区三区| 亚洲熟女精品中文字幕| 国产高清有码在线观看视频| 国产精品蜜桃在线观看| 亚洲经典国产精华液单| 18禁裸乳无遮挡动漫免费视频 | 天天躁夜夜躁狠狠久久av| 午夜激情久久久久久久| 久久久久国产精品人妻一区二区| 伦精品一区二区三区| 亚洲精品,欧美精品| 欧美性感艳星| 亚洲精品国产av蜜桃| 国产成人精品福利久久| 九九久久精品国产亚洲av麻豆| 欧美zozozo另类| 性色av一级| 国产成人一区二区在线| av国产免费在线观看| 最近中文字幕高清免费大全6| 成人鲁丝片一二三区免费| 国产伦在线观看视频一区| 自拍偷自拍亚洲精品老妇| 欧美性感艳星| 丝瓜视频免费看黄片| 亚洲经典国产精华液单| 我的女老师完整版在线观看| 国产在视频线精品| 午夜免费观看性视频| 日韩一本色道免费dvd| 国国产精品蜜臀av免费| 蜜桃亚洲精品一区二区三区| 在线a可以看的网站| 国产成人免费观看mmmm| 国产黄色视频一区二区在线观看| 一个人看视频在线观看www免费| 久久国产乱子免费精品| 黄色怎么调成土黄色| 韩国av在线不卡| 国产欧美日韩精品一区二区| 日韩欧美精品v在线| 午夜免费鲁丝| 乱码一卡2卡4卡精品| av.在线天堂| xxx大片免费视频| 久久久久网色| 人妻一区二区av| 少妇人妻一区二区三区视频| 国模一区二区三区四区视频| 精品人妻一区二区三区麻豆| 午夜福利网站1000一区二区三区| 久久综合国产亚洲精品| 成年av动漫网址| 欧美最新免费一区二区三区| 精品久久久久久久久av| 超碰97精品在线观看| 人妻制服诱惑在线中文字幕| 日本wwww免费看| 久久久久九九精品影院| 日韩一区二区视频免费看| 亚洲精品亚洲一区二区| 卡戴珊不雅视频在线播放| 伊人久久国产一区二区| 免费观看在线日韩| 国产国拍精品亚洲av在线观看| 人妻少妇偷人精品九色| 伊人久久精品亚洲午夜| 97超视频在线观看视频| 久久久久性生活片| 国产男女超爽视频在线观看| 一级毛片电影观看| 丝瓜视频免费看黄片| 在线天堂最新版资源| 一级片'在线观看视频| 国产黄色视频一区二区在线观看| 成人免费观看视频高清| 国产成人福利小说| 熟妇人妻不卡中文字幕| 亚洲国产日韩一区二区| 蜜臀久久99精品久久宅男| 国内揄拍国产精品人妻在线| 免费不卡的大黄色大毛片视频在线观看| 听说在线观看完整版免费高清| 好男人在线观看高清免费视频| 成人鲁丝片一二三区免费| 免费少妇av软件| www.av在线官网国产| 亚洲欧美一区二区三区黑人 | 老司机影院成人| 免费黄网站久久成人精品| 亚洲无线观看免费| 欧美xxⅹ黑人| 免费电影在线观看免费观看| 一个人观看的视频www高清免费观看| 少妇 在线观看| 小蜜桃在线观看免费完整版高清| 国产真实伦视频高清在线观看| 男男h啪啪无遮挡| 国产色爽女视频免费观看| 国产乱人视频| 一个人观看的视频www高清免费观看| 国产色爽女视频免费观看| 在线观看av片永久免费下载| 青青草视频在线视频观看| 国产爽快片一区二区三区| av.在线天堂| 亚洲精品国产成人久久av| 国产精品蜜桃在线观看| 肉色欧美久久久久久久蜜桃 | www.av在线官网国产| 最近最新中文字幕免费大全7| 国产人妻一区二区三区在| 人妻一区二区av| 久久99热这里只有精品18| 在现免费观看毛片| www.av在线官网国产| 爱豆传媒免费全集在线观看| 国产精品伦人一区二区| 国产免费福利视频在线观看| 国产精品爽爽va在线观看网站| 午夜精品国产一区二区电影 | 国产成人a∨麻豆精品| 夜夜爽夜夜爽视频| av免费观看日本| 午夜老司机福利剧场| 久热这里只有精品99| av免费观看日本| 高清欧美精品videossex| 看黄色毛片网站| 男女下面进入的视频免费午夜| 国产亚洲精品久久久com| 亚洲精华国产精华液的使用体验| 97超视频在线观看视频| 欧美日韩亚洲高清精品| 亚洲av日韩在线播放| 欧美性猛交╳xxx乱大交人| 别揉我奶头 嗯啊视频| 成人毛片60女人毛片免费| 一级毛片久久久久久久久女| 免费少妇av软件| 91aial.com中文字幕在线观看| 久久午夜福利片| 亚洲丝袜综合中文字幕| 久久99热这里只有精品18| 国产成人aa在线观看| 国产精品一区二区三区四区免费观看| 久久精品综合一区二区三区| 国产乱人偷精品视频| 亚洲精品亚洲一区二区| 99久久精品国产国产毛片| 欧美老熟妇乱子伦牲交| 久久人人爽人人爽人人片va| 亚洲美女搞黄在线观看| 国产精品国产三级专区第一集| 在线观看免费高清a一片| 午夜精品一区二区三区免费看| 国产黄频视频在线观看| 男人爽女人下面视频在线观看| 日韩,欧美,国产一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 在线亚洲精品国产二区图片欧美 | 欧美 日韩 精品 国产| 欧美xxⅹ黑人| 美女内射精品一级片tv| 搞女人的毛片| 国产成人免费观看mmmm| 久久精品久久久久久久性| 一级毛片黄色毛片免费观看视频| 丝袜美腿在线中文| 日韩成人伦理影院| 国产一区亚洲一区在线观看| 高清毛片免费看| 亚洲av中文av极速乱| 亚洲精品影视一区二区三区av| 欧美潮喷喷水| 免费不卡的大黄色大毛片视频在线观看| 性色av一级| 永久网站在线| 国产精品久久久久久久电影| 精品少妇久久久久久888优播| 国产成人a区在线观看| 国产精品成人在线| 毛片女人毛片| 免费看光身美女| 国产黄a三级三级三级人| 中文字幕制服av| 纵有疾风起免费观看全集完整版| 午夜老司机福利剧场| 中国美白少妇内射xxxbb| 亚州av有码| 亚洲精品456在线播放app| 久久久久久久久久人人人人人人| 校园人妻丝袜中文字幕| 国产又色又爽无遮挡免| 欧美精品国产亚洲| 午夜精品国产一区二区电影 | 一本一本综合久久| 99精国产麻豆久久婷婷| 女人十人毛片免费观看3o分钟| 欧美潮喷喷水| 国产成年人精品一区二区| 亚洲精品中文字幕在线视频 | a级一级毛片免费在线观看| 国产精品av视频在线免费观看| 秋霞在线观看毛片| 亚洲欧美一区二区三区黑人 | 色视频在线一区二区三区| 中文字幕久久专区| 日韩大片免费观看网站| 亚洲精品乱码久久久v下载方式| 日日啪夜夜撸| 国产精品熟女久久久久浪| 看免费成人av毛片| 99九九线精品视频在线观看视频| 美女被艹到高潮喷水动态| 久久久成人免费电影| 欧美3d第一页| 男人舔奶头视频| 最近手机中文字幕大全| 国产男女超爽视频在线观看| 少妇裸体淫交视频免费看高清| 成人综合一区亚洲| 少妇人妻久久综合中文| 国产91av在线免费观看| 美女主播在线视频| 亚洲成人一二三区av| 两个人的视频大全免费| 国产亚洲精品久久久com| 成年版毛片免费区| 国产高清有码在线观看视频| 人人妻人人看人人澡| 亚洲一级一片aⅴ在线观看| 亚洲成人一二三区av| 久久久久国产网址| 又粗又硬又长又爽又黄的视频| 免费看av在线观看网站| 国产av码专区亚洲av| 激情 狠狠 欧美| 黄色欧美视频在线观看| 高清日韩中文字幕在线| 极品少妇高潮喷水抽搐| 亚洲怡红院男人天堂| 免费看av在线观看网站| 国产精品福利在线免费观看| a级毛色黄片| 1000部很黄的大片| 中文乱码字字幕精品一区二区三区| 久久久久久久久久久免费av| 一二三四中文在线观看免费高清| 日本熟妇午夜| av在线天堂中文字幕| 中文字幕久久专区| 久久人人爽人人爽人人片va| 国产色婷婷99| xxx大片免费视频| 涩涩av久久男人的天堂| 美女国产视频在线观看| av黄色大香蕉| 日韩伦理黄色片| 久久精品国产亚洲网站| 蜜臀久久99精品久久宅男| 午夜爱爱视频在线播放| 交换朋友夫妻互换小说| 丝袜脚勾引网站| 日本免费在线观看一区| 最后的刺客免费高清国语| 亚洲最大成人中文| 啦啦啦中文免费视频观看日本| 国产精品人妻久久久久久| 国产黄a三级三级三级人| 免费黄频网站在线观看国产| 一本色道久久久久久精品综合| 亚洲国产精品国产精品| 国产精品秋霞免费鲁丝片| 久热久热在线精品观看| 免费观看a级毛片全部| 韩国av在线不卡| 久久久亚洲精品成人影院| 99久国产av精品国产电影| 欧美日韩综合久久久久久| 91久久精品国产一区二区成人| 欧美+日韩+精品| 欧美另类一区| 午夜免费男女啪啪视频观看| 成人特级av手机在线观看| 欧美一级a爱片免费观看看| 久久久久久久久大av| 精品99又大又爽又粗少妇毛片| av播播在线观看一区| 一级黄片播放器| 国产高潮美女av| 一本一本综合久久| 边亲边吃奶的免费视频| 亚洲成人久久爱视频| 大话2 男鬼变身卡| 丝袜脚勾引网站| 1000部很黄的大片| 最近手机中文字幕大全| 高清视频免费观看一区二区| 亚洲av免费在线观看| 色婷婷久久久亚洲欧美| 成人午夜精彩视频在线观看| 3wmmmm亚洲av在线观看| 一本一本综合久久| 欧美人与善性xxx| 久久久国产一区二区| av在线老鸭窝| 久久久国产一区二区| 欧美97在线视频| 在线观看三级黄色| 久久精品熟女亚洲av麻豆精品| 亚州av有码| tube8黄色片| 亚洲精品乱久久久久久| 国产一区有黄有色的免费视频| 99久久中文字幕三级久久日本| 欧美成人精品欧美一级黄| 免费观看av网站的网址| 成人国产av品久久久| 伊人久久精品亚洲午夜| 日产精品乱码卡一卡2卡三| 在线免费十八禁| 精品国产一区二区三区久久久樱花 | 建设人人有责人人尽责人人享有的 | 欧美成人a在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲成人精品中文字幕电影| 国产免费一区二区三区四区乱码| 99久久精品一区二区三区| 视频区图区小说| 丝袜脚勾引网站| 岛国毛片在线播放| 777米奇影视久久| 久久久久久久大尺度免费视频| 欧美日韩亚洲高清精品| 夜夜看夜夜爽夜夜摸| 超碰av人人做人人爽久久| 涩涩av久久男人的天堂| 自拍偷自拍亚洲精品老妇| 一区二区三区乱码不卡18| 亚洲丝袜综合中文字幕| 美女国产视频在线观看| 国产成人精品一,二区| 国产成人免费观看mmmm| 欧美97在线视频| 男女边吃奶边做爰视频| 97超碰精品成人国产| 欧美一区二区亚洲| 99久久九九国产精品国产免费| 六月丁香七月| 欧美xxⅹ黑人| 51国产日韩欧美| 神马国产精品三级电影在线观看| 干丝袜人妻中文字幕| 美女主播在线视频| av黄色大香蕉| 少妇的逼好多水| 国产午夜精品一二区理论片| 国产高清国产精品国产三级 | 中文欧美无线码| 热re99久久精品国产66热6| 亚洲熟女精品中文字幕| 直男gayav资源| 色吧在线观看| 亚洲丝袜综合中文字幕| 久久综合国产亚洲精品| 亚洲色图av天堂| 丰满少妇做爰视频| 两个人的视频大全免费| 99热这里只有是精品在线观看| 国产一区二区三区av在线| 欧美极品一区二区三区四区| 国产成人免费观看mmmm| 美女被艹到高潮喷水动态| 搡老乐熟女国产| 特级一级黄色大片| 天天躁日日操中文字幕| 日本黄大片高清| 久久久久精品性色| 亚洲精品自拍成人| 国产精品蜜桃在线观看| 色吧在线观看| 亚洲人成网站在线观看播放| 久久人人爽av亚洲精品天堂 | 日本wwww免费看| 男女那种视频在线观看| 夫妻午夜视频| 伊人久久精品亚洲午夜| 性色avwww在线观看| 麻豆久久精品国产亚洲av| 亚洲人与动物交配视频| 日本午夜av视频| 国产在线一区二区三区精| 亚洲一级一片aⅴ在线观看| 亚洲丝袜综合中文字幕| 日韩成人av中文字幕在线观看| 女人久久www免费人成看片| 午夜老司机福利剧场| 1000部很黄的大片| 麻豆精品久久久久久蜜桃| 国产 一区精品| 亚洲不卡免费看| 国产成年人精品一区二区| 日本-黄色视频高清免费观看| 久久国内精品自在自线图片| 午夜日本视频在线| 特大巨黑吊av在线直播| 成人国产av品久久久| 欧美另类一区| 亚洲最大成人中文| 美女cb高潮喷水在线观看| 国产爱豆传媒在线观看| 美女视频免费永久观看网站| 成人国产av品久久久| 在线观看美女被高潮喷水网站| 色综合色国产| 热99国产精品久久久久久7| 男女啪啪激烈高潮av片| 成人亚洲精品av一区二区| 久久久久久伊人网av| 亚洲丝袜综合中文字幕| 久久99热这里只频精品6学生| 久久久久久久久久人人人人人人| 国产精品99久久99久久久不卡 | 成人综合一区亚洲| 一级毛片久久久久久久久女| 国产老妇女一区| 国产精品99久久99久久久不卡 | 免费人成在线观看视频色| 偷拍熟女少妇极品色| 三级经典国产精品| 国产老妇伦熟女老妇高清| 自拍偷自拍亚洲精品老妇| 亚洲不卡免费看| 一级片'在线观看视频| 国产成人一区二区在线| 能在线免费看毛片的网站| 国产永久视频网站| 18禁动态无遮挡网站| 丰满人妻一区二区三区视频av| 少妇的逼水好多| 亚洲,一卡二卡三卡| 日本-黄色视频高清免费观看| 少妇熟女欧美另类| 成人国产麻豆网| 国产探花在线观看一区二区| 在线观看美女被高潮喷水网站| 大陆偷拍与自拍| 狂野欧美激情性bbbbbb| 日韩伦理黄色片| 日韩视频在线欧美| 午夜免费鲁丝| 欧美xxⅹ黑人| 一级av片app| 97超视频在线观看视频| 亚洲性久久影院| 最后的刺客免费高清国语| 男的添女的下面高潮视频| 热re99久久精品国产66热6| 日日撸夜夜添| 成人午夜精彩视频在线观看| 狂野欧美激情性xxxx在线观看| 小蜜桃在线观看免费完整版高清| 69av精品久久久久久| 亚洲欧美精品自产自拍| 亚洲欧美中文字幕日韩二区| 寂寞人妻少妇视频99o| 亚洲人与动物交配视频| 草草在线视频免费看| 国产欧美日韩精品一区二区| 亚洲国产精品成人综合色| 1000部很黄的大片| 亚洲国产成人一精品久久久| 日韩av免费高清视频| 日本熟妇午夜| 国产片特级美女逼逼视频| 欧美亚洲 丝袜 人妻 在线| 97在线人人人人妻| 欧美性猛交╳xxx乱大交人| 99视频精品全部免费 在线| 久久人人爽人人片av| 亚洲国产精品专区欧美| kizo精华| 亚洲综合精品二区| 国产午夜精品久久久久久一区二区三区| 涩涩av久久男人的天堂| 偷拍熟女少妇极品色| 夜夜看夜夜爽夜夜摸| 欧美丝袜亚洲另类| 亚洲精品乱久久久久久| 精品少妇黑人巨大在线播放| 中文乱码字字幕精品一区二区三区| 亚洲成人中文字幕在线播放| 天堂网av新在线| 观看美女的网站| 身体一侧抽搐| 狠狠精品人妻久久久久久综合| 一边亲一边摸免费视频| 成人免费观看视频高清| 国产中年淑女户外野战色| 菩萨蛮人人尽说江南好唐韦庄| 免费看不卡的av| 插阴视频在线观看视频| 久久99精品国语久久久| 亚洲人成网站高清观看| av在线播放精品| 国内少妇人妻偷人精品xxx网站| 欧美高清性xxxxhd video| 色哟哟·www| 成年版毛片免费区| 一级黄片播放器| 丰满人妻一区二区三区视频av| 欧美激情国产日韩精品一区| 亚洲精品日本国产第一区| 亚洲天堂av无毛| 欧美潮喷喷水| 王馨瑶露胸无遮挡在线观看| 自拍偷自拍亚洲精品老妇| 在线观看一区二区三区激情| 校园人妻丝袜中文字幕| 亚洲av欧美aⅴ国产| 别揉我奶头 嗯啊视频| 久久影院123| av.在线天堂| 国产精品蜜桃在线观看| 久久精品综合一区二区三区| 最近中文字幕2019免费版| 干丝袜人妻中文字幕| 大片电影免费在线观看免费| 网址你懂的国产日韩在线| 最近的中文字幕免费完整| 亚洲综合色惰| 99re6热这里在线精品视频| 麻豆成人午夜福利视频| 国产精品秋霞免费鲁丝片| 国产黄色视频一区二区在线观看| 99热网站在线观看| 精品少妇黑人巨大在线播放| 黄色视频在线播放观看不卡| 国产精品秋霞免费鲁丝片| 亚洲无线观看免费| 国产片特级美女逼逼视频| 国产精品秋霞免费鲁丝片| 色5月婷婷丁香| 亚洲国产色片| 久久99热这里只有精品18| 高清视频免费观看一区二区| 在线免费十八禁| 久久久久久久久大av| 免费看光身美女| 最近的中文字幕免费完整| 丰满人妻一区二区三区视频av| 亚洲国产日韩一区二区| 亚洲欧美日韩另类电影网站 | 欧美性感艳星| 两个人的视频大全免费| 伊人久久国产一区二区| 黄色怎么调成土黄色| 久久久亚洲精品成人影院| tube8黄色片| 久久韩国三级中文字幕| 汤姆久久久久久久影院中文字幕| 国产免费又黄又爽又色| 王馨瑶露胸无遮挡在线观看| 成人黄色视频免费在线看| 美女被艹到高潮喷水动态| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久久亚洲| 国产成人午夜福利电影在线观看| 热99国产精品久久久久久7| 草草在线视频免费看|