• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Burning characteristics of high density foamed GAP/CL-20 propellants

    2022-10-17 03:46:06MnmnLiRuiHuMinghuiXuQionglinWngWeitoYng
    Defence Technology 2022年10期

    Mn-mn Li ,Rui Hu ,Ming-hui Xu ,Qiong-lin Wng ,Wei-to Yng ,b,*

    a Xi&apos;an Modern Chemistry Research Institute,Xi&apos;an,710065,PR China

    b School of Physics,Xi&apos;an Jiaotong University,Xi&apos;an,710049,PR China

    Keywords:Monolithic foamed propellants Two-step foaming process Casting process GAP/CL-20

    ABSTRACT The monolithic foamed propellants with high densities were prepared by casting and two-step foaming processes.Glycidyl azide polymer(GAP)and isocyanate were used as the binder system and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW,CL-20)was employed as the energetic component.The newly designed formulation containing 60 % CL-20 produced a force constant of 1077 J/g and low flame temperature of 2817 K.Two foamed propellants with densities of 1.32 g/cm3 and 1.53 g/cm3 were fabricated by a confined foaming process and examined by closed bomb tests.The results revealed that porosity significantly affects burning performance.A size effect on combustion behaviors was observed for the foamed propellant with 5.56 % porosity,and a double-hump progressive dynamic vivacity curve was obtained.At last,the 30 mm gun test was carried out to demonstrate the interior ballistic performance,and the muzzle velocity increased by 120 m/s at the same maximum chamber pressure when monolithic propellant was added in the charge.

    1.Introduction

    State-of-the-art gun propellants maingrains produce loading densities of roughly 1.1 g/cm.This energy density does not deliver the desired energy for future indirect fire support [1].Similar shortfalls occur in the tomorrow&apos;s gun or artillery systems.Monolithic gun propellants provide an alternative to meet the requirement of high energy density and very high burn rate.The foamed propellants show high burning rates and high loading density due to their bulk configuration and specific inner porous structure.In addition,previous studies have proven that foamed propellants burn by in-depth or volumetric combustion mechanism,and the combustion behaviour can be adjusted by changing the porous structure (pore size or pore density) [2-5].

    Researchers in ICT (Fraunhofer Institute for Chemical Technology)initiated the one-step chemical foaming and reaction injection moulding(RIM)processes to fabricate foamed propellants based on polymer bonded nitramines[6-8].Polyurethane formation and gas generation simultaneously occurred by admixing an isocyanate,a hydroxyl-terminated GAP,and water.The foaming technology and performances of RDX/GAP/polyurethane foam cubes were expounded in previous references,showing good dimensional stability,combustion consistency and low sensitivity[9,10].For RIM technology,the fluidity of slurry is a key parameter and slurries containing up to 70%RDX are very viscous to process.The limited solid content has a negative effect on energy content and oxygen balance of the polymer bonded propellant.Meanwhile,the highest density of the reported foamed propellants was 1.2 g/cm,which need to be improved to cover the shortfall of energy density.

    With the development of high energy compounds,an attractive approach to realize high energy and high energy density is the use of energetic binders and high energy density compounds(HEDC).A typical high energy density compound is 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW,CL-20),which has a greater density (2.04 g/cm),energy and oxygen balance (-11 %)than HMX and RDX [11,12].According to the advantages of CL-20,addition of CL-20 to foamed propellants is expected to increase the force constant,burn rate and oxygen balance without increasing the solid content[13].

    In this paper,a newly designed foamed propellant formulation is composed of the GAP polymer and CL-20.The two-step process is adopted to avoid the instantaneously exothermic reaction that occurred in the one-step foaming process used before.The foamed propellants are fabricated in a monolithic configuration,and their combustion behaviors are studied.At last,the firing of a 30 mm gun setup with monolithic foamed gun propellant is demonstrated.

    2.Experimental

    2.1.Materials

    Table 1 lists the materials used in this study.The foamed propellants were prepared from glycidyl azide polymer (GAP),2,4-toluene diisocyanate (TDI),1,4-butanedio (BDO),mixed catalysts,foaming agent HO and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW,CL-20).Triethanolamine (TEA) is a gel catalyst and cross-linking agent.Ditin butyl dilaurate (T-12) is used as the catalyst to accelerate the generation of gas.The porous structure of foams can be adjusted via changing the ratio between the two catalysts.Finally,the chosen catalyst ratio of TEA to T-12 is 1/0.7 according to our previous study [14].

    Table 1 Details of essential raw materials.

    2.2.Formulation design

    One objective of this study is to develop a propellant formulation with similar or better thermochemistry performance compared with traditional nitrocellulose-based propellants.For internal ballistics,thermochemistry is used to calculate the force constant () and adiabatic flame temperature ().After several casting trials of slurries,the solid content should stay below 70%for good self-leveling performance.Then,the force constant and flame temperature of formulations containing 50 %-65 % CL-20 were calculated by the EMATRIX calculating software and compared with the M30 propellant(a conventional triple base gun propellant)[15].The calculating results are shown in Fig.1.As shown in the figure,the force constant of the GAP/CL-20 based foamed propellant varies from 1008 J/g to 1111 J/g.It can be perceived that the calculated results have reached the expected outcome.The basic formulation containing 60%CL-20 is adopted in this study,and the force constant and flame temperature of the selected formulation are 1077 J/g and 2817 K,respectively.It is noticed that the selected formulation produced a reduction of adiabatic flame temperature by about 200 K compared with M30 (3013 K).Evidences have proven that the wear of gun barrel increases exponentially with temperature and becomes very sensitive to small changes in bore temperature[16,17].According previous studies,the reduced flame temperature in this study may reduce the thermal erosion of gun barrel on the premise of not considering the effects of chemical erosion caused by combustion products.

    Fig.1.Force constant and flame temperature of foamed propellants.

    2.3.Two-step foaming process and sample preparation

    The one-step process is composed of simultaneous reactions of polyurethane formation and gas generation by admixing an organic TDI,a hydroxyl-terminated polyester,and water.This process is highly exothermic and the reaction is too quick to control.Therefore,this study adopts the two-step process [18] as shown in Eqs.(1) and (2).The two-step foaming process moderates the violence of reactions,and thus the slurry can be cast in the mould like composite rocket propellants.

    where R is the GAP chain and Ris the isocyanate residue.

    Based on the above reactions,a confined foaming process was designed and the schematic diagram is presented in Fig.2.Firstly,GAP/TDI prepolymer was prepared according to Formulation 1 and blended with CL-20.Secondly,the 0.1 % foaming agent (HO) and chain extender(BDO)were added in the mixture and stirred.Then,the slurries were cast in the mould and cured for 12 h.At last,the mould was released and the final samples were obtained.

    Fig.2.Confined foaming process of monolithic propellant.

    In the confined foaming process,the slurries were cured and foamed with the constraint of the mould.For the volume in the mould is definite,the density of foams can be controlled by controlling the mass of cast slurries ().According to the chamber structure of a 30 mm laboratory test gun,a monolithic propellant was designed and fabricated (shown in Fig.3).The outer diameter of the monolithic propellant is 44 mm,and an ignition hole with diameter of 6 mm is also designed for better flame propagation.Then,propellants with densities (ρ) of 1.32 g/cmand 1.53 g/cmwere prepared by the confined foaming process.As the theoretical maximum density(TMD)of the propellant composed of 60%CL-20 and 40 % GAP binder is 1.62 g/cm,the expansion ratio (φ) and porosity () can be estimated (shown in Table 2).For the foamed propellants,the porosity is 18.7 % and 5.56 %,respectively.The picture of the prepared monolithic foamed propellant is presented in Fig.3,and a Micro-Computed Tomography(-CT)of YXLON FF20 CT was used to study the inner porous structure.

    Table 2 Density,expansion ratio and porosity of foamed propellants.

    2.4.Mechanical strength analysis

    Compression tests were performed on the foamed propellants using a universal tensile testing machine(REGER RGM-50)at 20C and 10 mm/min.A cylindrical foamed propellant with a diameter of 20 mm and height of 50 mm (shown in Fig.6) was used in the compression test.The stress-strain curve was obtained and discussed.

    Fig.3.Picture of foamed propellant by confined foaming process.

    2.5.Burning characteristics analysis

    Firstly,the monolithic propellants were cut into 8 × 8 × 8 mm cubes,and the cubes were fired in a 100 mL closed bomb to evaluate the apparent burn rate of the propellants.The apparent linear burn rate of propellant formulations was derived using the geometry function and constant volume combustion equation.The loading density for these tests is 0.20 g/cm.

    Secondly,the combustion performance of the monolithic propellants was also tested in a 300 mL closed vessel.The loading densities are 0.22 g/cm(one module,65 g) and 0.25 g/cm(one module,75 g),respectively.Dynamic vivacity () is defined as the derivative of the pressure d/ddivided by the product of the pressuretimes the maximum pressureachieved in the experiment,as illustrated by the following formulation (3).

    All the propellants were ignited using 1.1 g 2# nitrocellulose whose nitrogen content was 12.4%.The pressure history(-curve)was obtained by a pressure gauge and the data acquisition system.Dynamic vivacity () curves were obtained,where=/.

    2.6.30 mm gun test

    To demonstrate the ballistic performance of the monolithic propellants,a 30 mm laboratory test gun was used to fire a 200 g projectile.The chamber volume is 330 cm,and the projectile travel is 2 m.The propellants were fired by 1.1 g black powder filled in a plastic tube,and the black powder was ignited by the electrical match.In this test,the 7-perforated single propellants (containing 93.6-89.4 % nitrocellulose,0.5-1.2 % diphenylamine,1.0-1.5 %centralite II,4.5-6.5 % camphor,0.1-0.4 % graphite and 0.3-1.0 %kalium sulfate) [19] were also used to promote the combustion of the monolithic propellants.For interior pressure recording,gas pressure gauges were located at the muzzle and the breech of the chamber.The skyscreen target was used to measure the muzzle velocity(actually the velocity at 10 m away from the muzzle).

    3.Results and discussion

    3.1.Inner porous structure

    In our previous study,the morphology of pores is mainly affected by the ratio between catalysts.After optimizing the ratio of TEA/T-12 (1/0.7),the foamed propellant exhibits spherical and closed porous structure [14].In this paper,the Micro-Computed Tomography (μ-CT) of YXLON FF20 CT was used to study the porous structure in the monolithic blocks before the study of combustion performance.As shown in Fig.4,the size of pores was also determined by the expansion ratio.When the expansion ratio was 1.23,the propellant expanded sufficiently within the free volume in the mould,resulting in large pores (mean pore size~0.3 mm).When the expansion ratio was 1.06,only confined space was left for the growth of pores,resulting in smaller pores (mean pore size~0.1 mm).

    Fig.4.CT images of monolithic foamed propellant with densities of 1.32 g/cm3 (a) and 1.53 g/cm3 (b).

    Fig.5.Compression curve of foamed cylinder.

    Fig.6.Samples before and after compression test.

    3.2.Compression strength of foamed propellants

    The compression test of the foamed propellants was conducted as poor mechanical strength may affect the combustion behavior of propellants [20].The compression curve of the foamed propellant with a density of 1.53 g/cmis shown in Fig.5.As illustrated,three distinct regimes of compressive behavior can be observed.The first regime is a linear elastic region with stress of 10.26 MPa and strain of 6.14 %.The second regime is the cell collapse region where the stress is about 12.5 MPa with a shallow slope.The third regime is the densification region with a steep slope.The final tested compression strength and the compressibility are 24 MPa and 50%,respectively.In previous studies [21,22],the compression strength and compressibility of LOVA propellant (75%RDX,10 % nitrocellulose,9%cellulose acetate,6%triacetin),triple base propellant(30%nitrocellulose,25%nitroglycerin,40%picrite,2% KSO,1% N,Ndiethyl diphenyl urea,and 2%dibutyl phthalate)were 435 kg/cm(~42.63 MPa),257 kg/cm(~25.19 MPa) and 9.0 %,10.3 %,respectively.Compared with traditional gun propellants,the mechanical strength of the foamed propellants is similar and the compressibility is better.The photos of the foamed propellants before and after compression are shown in Fig.6.As indicated,the cylinder does not crush when the strain is~60 %.

    3.3.Burning characteristics of foamed propellants

    Evidences has proven that the foamed propellants do not burn by the normal surface combustion mechanism,but rather by some complex in-depth combustion mechanism for which no form function exists[23].Instead,apparent burn rates are determined by assuming and applying a traditional form function to the combustion event.Although the mechanism and behavior of convective burning are very complicated and poorly known in some aspects,the apparent burn rate is still used for representing the burn rate of foamed propellants [24].

    Fig.7 and Table 3 present the combustion performances and parameters of the foamed propellants with different densities.Here,the propellant blocks with 8 × 8 × 8 mm cubic geometry were prepared using the slicer and tested by a 100 mL closed vessel.As Fig.7 (a) shows,the burn time increases from 3.42 ms to 14.76 ms as propellant density is increased from 1.32 g/cmto 1.53 g/cm.Meanwhile,the maximum pressure slightly decreases due to heat loss caused by longer burning time.

    Fig.7. p-t (a), u-p (b) and L-B (c) curves of foamed propellants with various densities.

    Table 3 Combustion characteristic points of monolithic propellants with different densities.

    The combustion products could infiltrate through the pores and led to an in-depth combustion or volumetric combustion.Thus,the porosity is a key parameter which determines the penetration depth of combustion gases.As shown in Fig.7 (b),the foamed propellant with 18.70 % porosity possesses a very high apparent burn rate(315 m/s at 150 MPa)and a high pressure exponent of 1.1.Unlike the propellant with high porosity,the foamed propellant with 5.56 % porosity shows a relative low burn rate (30 cm/s at 150 MPa)and moderate change.Meanwhile,the pressure exponent is only 0.58,indicating a weak dependence of burn rate on pressure.

    Consistent with the results shown inandcurves,thecurve also presents different dynamic vivacity changing trends between the two samples.Although both samples has the same geometry and web size,the dynamic vivacity curves presents different characteristics.Propellant with high porosity and pressure exponent presents a progressive combustion behavior,and the propellant with lower porosity and pressure exponent shows degressive combustion.

    3.4.Size effect on convective combustion of foamed propellants

    The monolithic propellants shown in Fig.3 were tested by a large closed vessel.The loading densities for one propellant module were 0.22 g/cmand 0.25 g/cm,respectively.During the examination of combustion behaviors,the size effect on the combustion of the foamed propellants was noticed.

    Fig.8(a)shows the burn time increases from 3.42 ms to 4.27 ms as the web size increases for the foamed propellant with 18.7 %porosity.Nonetheless,the dynamic vivacity curve is very similar to each other.This phenomenon indicates an independence of combustion on the geometry and web size of this foamed propellant.The suggested reason is the combustion gas easily penetrates in the whole foamed propellants with large porosity regardless of web size,forming a volumetric burning where combustion occurs within the whole propellants rather than at the surface or in some depth.Fig.8(b) also exhibites an iconic “semicircular” dynamic vivacity curve of the foamed propellants,which has been repeatedly presented in previous studies [4,6,25].The d/d-curve(shown in Fig.8(c))exhibits a linear increase of d/dwith,which is in accord withcurve.

    Fig.9(a)presents an obvious increase of combustion time from 14.76 ms to 44.86 ms for propellants with 5.56 % porosity.Meanwhile,Fig.9(b) demonstrates a noticeable change in the dynamic vivacity curves.The dynamic vivacity curve of the monolithic propellant shows double humps: a flat hump between 0.1-0.6 and a bulging hump between 0.6-1.0.It reveals that the propellants burns as a 1-perforated propellant does at the initial combustion stage,and then burns as the foamed propellant does during the following step.The d/dt-curve(shown in Fig.9(c))also presents a jump at=0.68,coinciding withvalue incurve.This inflection point reveals a pressure jump at=0.68.It is suspected that the there is a transition from the linear burning mode to the convective burning mode at high pressures (~200 MPa) for the foamed propellant with high density and large size.

    3.5.30 mm gun test

    To demonstrate the ballistic behavior of the foamed propellant with double humps,a 30 mm gun test was carried out.As the burn time of the dense monolithic propellant is too long and it is hard to burn out in the barrel,propellant grains are added in the charge to decrease the burn time[26].As shown in Fig.10,the mixed charge is composed of one monolithic propellant (ρ = 1.53 g/cm,mass =75 g)and one paper bag containing 75 g 7-perforated single base propellants grains with web size is 0.5 mm.In the chamber,the black powder filled in a plastic tube is ignited by the electrical match,and then the black powder ignites the propellant charge.

    Fig.11 shows the pressure-time curves of the interior ballistic cycle.The left line represents the pressure in the chamber,and the right one is the pressure at the muzzle.In Fig.11(a),the velocity of the projectile is about 1163 m/s,and the maximum pressure in the chamber is 185 MPa.A charge containing 150 g 7-perforated single base propellant grains is also fired and presented in Fig.11(b).The muzzle velocity is 1043 m/s and the maximum pressure is 180 MPa[27].The muzzle velocity increases by 120 m/s at the same maximum chamber pressure by replacing 75 g single base propellant grains with the monolithic block.It is supposed that the convective burning of the foamed propellant at high pressures contributes to the increased muzzle velocity.However,more research needs to be done to determine the mechanisms of interior ballistic performance.

    4.Conclusions

    Newly designed GAP/CL-20 propellants were prepared by the two-step foaming process and casting method.The new formulation composed of GAP base polyurethane and CL-20 produced a high force constant and relatively low flame temperature.The reduced flame temperature (~200 K) is beneficial to reduce the thermal erosion of gun barrel.The foamed propellant presented three distinct regimes of compressive behavior,which are different from traditional propellants.Meanwhile,unlike conventional gun propellants,combustion performances of foamed propellants presented an in-depth combustion mode.Foamed propellants with lower porosity gave a double-hump progressive curve.A 30 mm test gun demonstrated a promising interior ballistic behavior.

    Fig.8. p-t (a), L-B (b) and dp/dt-t (c) curves of monolithic propellant with density of 1.32 g/cm3 (loading density is 0.22 g/cm3).

    Fig.9. p-t (a), L-B (b) and dp/dt-B (c) curves of monolithic propellant with density of 1.53 g/cm3 (loading density is 0.25 g/cm3).

    Fig.10.Diagram of 30 mm gun test.

    Fig.11.Pressure-time diagrams in barrel.(a) 150 g single base propellant,(b) 75 g foamed propellant and 75 g single base propellant.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    全区人妻精品视频| 99视频精品全部免费 在线| av在线app专区| 久久精品国产鲁丝片午夜精品| 热99国产精品久久久久久7| 美女内射精品一级片tv| 国产av国产精品国产| 亚洲婷婷狠狠爱综合网| 国产黄色免费在线视频| 黑人巨大精品欧美一区二区蜜桃 | 精品国产国语对白av| 日日爽夜夜爽网站| 午夜激情av网站| 日日啪夜夜爽| 亚洲欧美色中文字幕在线| 久久精品国产亚洲av涩爱| 熟女av电影| 欧美激情 高清一区二区三区| 国产精品99久久久久久久久| 精品人妻一区二区三区麻豆| 亚洲国产毛片av蜜桃av| 99久久人妻综合| 99久久人妻综合| 亚洲国产毛片av蜜桃av| 乱码一卡2卡4卡精品| 新久久久久国产一级毛片| 久久久久久久大尺度免费视频| 国产无遮挡羞羞视频在线观看| 麻豆精品久久久久久蜜桃| 人妻少妇偷人精品九色| 日韩亚洲欧美综合| 亚洲精品国产av成人精品| 久久国产亚洲av麻豆专区| 欧美性感艳星| 国产av国产精品国产| 美女福利国产在线| 日日摸夜夜添夜夜爱| 久久久精品94久久精品| 国产精品三级大全| 亚洲美女视频黄频| 一区二区av电影网| av福利片在线| 久久久久久久久大av| 亚洲精品乱久久久久久| 十分钟在线观看高清视频www| 成人国语在线视频| 久久ye,这里只有精品| 男女高潮啪啪啪动态图| 中国国产av一级| 久久午夜综合久久蜜桃| 人人妻人人添人人爽欧美一区卜| 久久ye,这里只有精品| 天堂8中文在线网| 男女高潮啪啪啪动态图| 亚洲欧洲日产国产| 精品久久久久久久久av| 精品久久蜜臀av无| 日韩伦理黄色片| 国产极品粉嫩免费观看在线 | xxxhd国产人妻xxx| 丰满迷人的少妇在线观看| 色视频在线一区二区三区| 在线观看免费高清a一片| 久久国产亚洲av麻豆专区| 国产免费视频播放在线视频| videossex国产| 国产亚洲精品久久久com| 精品人妻熟女av久视频| 三级国产精品片| 飞空精品影院首页| 久久久精品区二区三区| 一级黄片播放器| 亚洲人与动物交配视频| 国产视频内射| 欧美3d第一页| 三上悠亚av全集在线观看| 三上悠亚av全集在线观看| 亚洲av成人精品一区久久| 精品亚洲乱码少妇综合久久| 国产在线一区二区三区精| 精品人妻一区二区三区麻豆| 精品久久久噜噜| 精品视频人人做人人爽| 秋霞伦理黄片| 91精品三级在线观看| videosex国产| 午夜福利在线观看免费完整高清在| 伊人亚洲综合成人网| av网站免费在线观看视频| 久久99蜜桃精品久久| 九九久久精品国产亚洲av麻豆| 久久人人爽人人爽人人片va| 国产视频首页在线观看| 9色porny在线观看| 青青草视频在线视频观看| 国产免费视频播放在线视频| 一区二区三区免费毛片| 国模一区二区三区四区视频| 国模一区二区三区四区视频| 国产成人aa在线观看| 欧美亚洲日本最大视频资源| 蜜桃久久精品国产亚洲av| 老熟女久久久| 飞空精品影院首页| 人妻 亚洲 视频| 人妻夜夜爽99麻豆av| 视频区图区小说| 黄色毛片三级朝国网站| 女的被弄到高潮叫床怎么办| 老司机亚洲免费影院| 亚洲国产精品成人久久小说| 国产精品久久久久久精品电影小说| 国产精品一二三区在线看| 建设人人有责人人尽责人人享有的| 人妻少妇偷人精品九色| 黄色视频在线播放观看不卡| 免费黄色在线免费观看| 国产精品久久久久久久久免| 老女人水多毛片| 久久av网站| 免费高清在线观看日韩| 视频在线观看一区二区三区| 少妇被粗大猛烈的视频| 亚洲一级一片aⅴ在线观看| 激情五月婷婷亚洲| 欧美日韩视频高清一区二区三区二| 美女内射精品一级片tv| 欧美 亚洲 国产 日韩一| 大片免费播放器 马上看| videossex国产| 日韩 亚洲 欧美在线| 如何舔出高潮| 久久狼人影院| 精品酒店卫生间| 永久网站在线| 久久99精品国语久久久| 九九久久精品国产亚洲av麻豆| 男女边吃奶边做爰视频| 校园人妻丝袜中文字幕| 亚洲欧美清纯卡通| 国产黄色视频一区二区在线观看| 999精品在线视频| 涩涩av久久男人的天堂| 日日摸夜夜添夜夜添av毛片| 免费av不卡在线播放| 天天操日日干夜夜撸| 最黄视频免费看| 9色porny在线观看| 国产片特级美女逼逼视频| 国产精品一二三区在线看| 又黄又爽又刺激的免费视频.| 成年女人在线观看亚洲视频| 久久av网站| 熟女电影av网| 汤姆久久久久久久影院中文字幕| 亚洲一区二区三区欧美精品| av免费观看日本| 日韩中文字幕视频在线看片| av天堂久久9| 国产精品嫩草影院av在线观看| 中文字幕制服av| 91精品一卡2卡3卡4卡| 永久网站在线| 99热国产这里只有精品6| 男女啪啪激烈高潮av片| 亚洲伊人久久精品综合| av一本久久久久| 国产成人a∨麻豆精品| 99热全是精品| 国产免费又黄又爽又色| 国产免费现黄频在线看| 国产在线视频一区二区| 高清黄色对白视频在线免费看| av福利片在线| 97在线视频观看| 91久久精品国产一区二区成人| 美女内射精品一级片tv| 亚洲精品456在线播放app| 国产精品麻豆人妻色哟哟久久| 考比视频在线观看| 成年人免费黄色播放视频| 日韩一本色道免费dvd| 国产成人免费观看mmmm| 成人漫画全彩无遮挡| 国产在视频线精品| 三上悠亚av全集在线观看| 少妇的逼水好多| 最近中文字幕2019免费版| 亚洲精品日韩av片在线观看| 国产视频首页在线观看| 日本欧美国产在线视频| 久久精品久久久久久久性| 在线观看免费视频网站a站| 国产精品.久久久| 国产永久视频网站| 亚洲欧美成人综合另类久久久| 中国国产av一级| 久久久久精品性色| 啦啦啦啦在线视频资源| 欧美精品高潮呻吟av久久| 午夜福利,免费看| 黄片播放在线免费| 91精品伊人久久大香线蕉| 美女视频免费永久观看网站| 午夜免费观看性视频| 人妻夜夜爽99麻豆av| 国产精品久久久久久精品古装| 亚洲少妇的诱惑av| 熟女av电影| 精品酒店卫生间| 91久久精品电影网| 各种免费的搞黄视频| 女性被躁到高潮视频| 日本黄大片高清| 亚洲精品aⅴ在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 18禁在线播放成人免费| 日韩一区二区三区影片| av视频免费观看在线观看| 国产高清不卡午夜福利| 26uuu在线亚洲综合色| 国产日韩一区二区三区精品不卡 | 免费黄色在线免费观看| 又黄又爽又刺激的免费视频.| 成人亚洲欧美一区二区av| 街头女战士在线观看网站| 国产精品免费大片| 精品久久久精品久久久| 久久久久久久国产电影| 欧美+日韩+精品| 免费高清在线观看视频在线观看| 最近最新中文字幕免费大全7| av国产久精品久网站免费入址| 中文字幕免费在线视频6| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产av新网站| 日韩欧美精品免费久久| 丝袜喷水一区| 久久99一区二区三区| 久久久午夜欧美精品| 日韩,欧美,国产一区二区三区| 亚洲成人av在线免费| 边亲边吃奶的免费视频| 久久人人爽人人爽人人片va| 国产亚洲一区二区精品| av专区在线播放| 国产女主播在线喷水免费视频网站| 丰满乱子伦码专区| 18禁动态无遮挡网站| 在线精品无人区一区二区三| 爱豆传媒免费全集在线观看| 欧美丝袜亚洲另类| 欧美最新免费一区二区三区| 蜜臀久久99精品久久宅男| 久久久精品94久久精品| 国产精品国产三级国产专区5o| 人妻一区二区av| 国产一区二区在线观看日韩| 精品国产国语对白av| 午夜影院在线不卡| 欧美精品人与动牲交sv欧美| 国产亚洲最大av| 美女视频免费永久观看网站| 国产成人精品在线电影| 五月玫瑰六月丁香| 久久精品夜色国产| 不卡视频在线观看欧美| 亚洲美女视频黄频| av不卡在线播放| 一区二区日韩欧美中文字幕 | 国产毛片在线视频| 日韩精品有码人妻一区| 午夜福利影视在线免费观看| 在线观看免费视频网站a站| 只有这里有精品99| 久久 成人 亚洲| 少妇精品久久久久久久| 久久久亚洲精品成人影院| 美女xxoo啪啪120秒动态图| 特大巨黑吊av在线直播| 99视频精品全部免费 在线| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久国产精品人妻一区二区| 99re6热这里在线精品视频| 欧美日韩成人在线一区二区| 中文字幕av电影在线播放| 国产亚洲av片在线观看秒播厂| 亚洲av日韩在线播放| 久久午夜综合久久蜜桃| 狠狠精品人妻久久久久久综合| 在线天堂最新版资源| 免费av中文字幕在线| 成人二区视频| 精品99又大又爽又粗少妇毛片| 九九久久精品国产亚洲av麻豆| 一级毛片我不卡| 又黄又爽又刺激的免费视频.| 亚洲精品视频女| 免费观看无遮挡的男女| 天天影视国产精品| 亚洲精品亚洲一区二区| 亚洲,一卡二卡三卡| 亚洲国产毛片av蜜桃av| 婷婷色麻豆天堂久久| 久久97久久精品| 亚洲欧美色中文字幕在线| 亚洲av中文av极速乱| 中文字幕av电影在线播放| 午夜影院在线不卡| 国产黄频视频在线观看| 欧美日韩国产mv在线观看视频| 亚洲丝袜综合中文字幕| 一区在线观看完整版| 国语对白做爰xxxⅹ性视频网站| 午夜视频国产福利| 看非洲黑人一级黄片| 日韩亚洲欧美综合| 日日摸夜夜添夜夜添av毛片| 亚洲综合色惰| 久久精品国产亚洲网站| 老司机影院毛片| 精品一区在线观看国产| 久久久久久久久久久丰满| 亚洲激情五月婷婷啪啪| 国产精品女同一区二区软件| 成年av动漫网址| 天天操日日干夜夜撸| 黄色怎么调成土黄色| 国产永久视频网站| 成人漫画全彩无遮挡| 新久久久久国产一级毛片| 亚洲精品自拍成人| 国产成人a∨麻豆精品| 精品一品国产午夜福利视频| 一区在线观看完整版| 国产亚洲精品久久久com| 国产毛片在线视频| 日韩大片免费观看网站| 少妇熟女欧美另类| 色网站视频免费| 青春草亚洲视频在线观看| 新久久久久国产一级毛片| 最新的欧美精品一区二区| 一区二区三区免费毛片| 赤兔流量卡办理| 菩萨蛮人人尽说江南好唐韦庄| 黄色视频在线播放观看不卡| 伦理电影大哥的女人| 欧美国产精品一级二级三级| 亚洲美女搞黄在线观看| 亚洲精品自拍成人| 午夜91福利影院| 日日摸夜夜添夜夜添av毛片| 中文字幕久久专区| 交换朋友夫妻互换小说| 王馨瑶露胸无遮挡在线观看| 免费黄频网站在线观看国产| 欧美xxⅹ黑人| 国产综合精华液| a级毛色黄片| 免费大片黄手机在线观看| 一本—道久久a久久精品蜜桃钙片| 国产精品99久久99久久久不卡 | 99热这里只有是精品在线观看| 国产欧美亚洲国产| 成人国产av品久久久| 观看av在线不卡| 午夜福利视频精品| 国产色婷婷99| 一区二区三区精品91| 久久韩国三级中文字幕| 午夜影院在线不卡| 成人手机av| 少妇猛男粗大的猛烈进出视频| 日韩视频在线欧美| 国产精品无大码| 日韩免费高清中文字幕av| 国产不卡av网站在线观看| 久久精品久久久久久噜噜老黄| av不卡在线播放| 亚洲国产精品999| 国产成人免费观看mmmm| 少妇人妻精品综合一区二区| 大香蕉久久网| 精品久久久久久久久av| 欧美亚洲日本最大视频资源| 国产又色又爽无遮挡免| 日韩制服骚丝袜av| 亚洲欧美日韩另类电影网站| 80岁老熟妇乱子伦牲交| 高清黄色对白视频在线免费看| 天美传媒精品一区二区| 日韩 亚洲 欧美在线| kizo精华| 桃花免费在线播放| 国产黄色视频一区二区在线观看| 看免费成人av毛片| 在线观看三级黄色| 999精品在线视频| 国产成人精品久久久久久| 亚洲情色 制服丝袜| tube8黄色片| 亚洲精品视频女| 99久久综合免费| 人妻 亚洲 视频| 日本wwww免费看| 亚洲欧美日韩另类电影网站| 精品酒店卫生间| 国产精品三级大全| 国产乱人偷精品视频| 蜜臀久久99精品久久宅男| 亚洲综合精品二区| 欧美激情 高清一区二区三区| 各种免费的搞黄视频| 蜜桃国产av成人99| 永久网站在线| 久久综合国产亚洲精品| 国产亚洲精品第一综合不卡 | 亚洲精品亚洲一区二区| 好男人视频免费观看在线| av黄色大香蕉| 欧美精品一区二区大全| 久久99热这里只频精品6学生| 一级爰片在线观看| 69精品国产乱码久久久| 久久国内精品自在自线图片| 日韩,欧美,国产一区二区三区| 国产亚洲欧美精品永久| 欧美日韩亚洲高清精品| 午夜福利网站1000一区二区三区| 亚洲色图综合在线观看| 亚洲av成人精品一区久久| 91aial.com中文字幕在线观看| 夜夜骑夜夜射夜夜干| 十八禁网站网址无遮挡| 国产一区亚洲一区在线观看| 美女视频免费永久观看网站| 亚洲av日韩在线播放| 亚洲欧美日韩卡通动漫| 久久婷婷青草| 日韩不卡一区二区三区视频在线| a级毛片黄视频| 免费大片黄手机在线观看| 97在线视频观看| 精品人妻一区二区三区麻豆| 一区二区三区精品91| 欧美 亚洲 国产 日韩一| 黄色配什么色好看| 色哟哟·www| 久久久久久人妻| 免费高清在线观看视频在线观看| 好男人视频免费观看在线| 亚洲国产精品999| 中文精品一卡2卡3卡4更新| 欧美日韩亚洲高清精品| 天天躁夜夜躁狠狠久久av| 久久青草综合色| 久热这里只有精品99| 九九久久精品国产亚洲av麻豆| 99热6这里只有精品| 国产精品一区二区在线观看99| 亚洲内射少妇av| videos熟女内射| av免费观看日本| 美女国产高潮福利片在线看| 中文字幕免费在线视频6| 91精品三级在线观看| 国产免费现黄频在线看| 美女福利国产在线| 精品酒店卫生间| av在线播放精品| 久久久久久久久久成人| 2018国产大陆天天弄谢| 另类亚洲欧美激情| 精品久久蜜臀av无| 中文字幕制服av| 2022亚洲国产成人精品| 亚洲av免费高清在线观看| 黄色一级大片看看| 成人漫画全彩无遮挡| 国产亚洲一区二区精品| 成人毛片a级毛片在线播放| 美女cb高潮喷水在线观看| 久久精品人人爽人人爽视色| 18禁在线播放成人免费| 99久久精品一区二区三区| 成人国产av品久久久| 亚洲精品久久久久久婷婷小说| 日本欧美国产在线视频| 久久精品人人爽人人爽视色| 青青草视频在线视频观看| h视频一区二区三区| 七月丁香在线播放| 香蕉精品网在线| 91国产中文字幕| av女优亚洲男人天堂| 国产av码专区亚洲av| 啦啦啦视频在线资源免费观看| 91精品一卡2卡3卡4卡| 亚洲av福利一区| av黄色大香蕉| 最黄视频免费看| 三级国产精品片| 久久热精品热| 久久久久精品性色| 亚洲欧美一区二区三区黑人 | 看免费成人av毛片| 国产日韩一区二区三区精品不卡 | 欧美亚洲 丝袜 人妻 在线| 欧美日韩av久久| 大话2 男鬼变身卡| 精品久久久精品久久久| 大香蕉久久网| 视频中文字幕在线观看| 久热这里只有精品99| 大片电影免费在线观看免费| 日日啪夜夜爽| 亚洲欧美成人综合另类久久久| 亚洲国产欧美日韩在线播放| 亚洲av国产av综合av卡| 国产精品一区www在线观看| 色94色欧美一区二区| 少妇猛男粗大的猛烈进出视频| videosex国产| 久久韩国三级中文字幕| 少妇高潮的动态图| 黄色毛片三级朝国网站| 人妻制服诱惑在线中文字幕| 国产精品女同一区二区软件| 热99久久久久精品小说推荐| 91久久精品国产一区二区三区| 日韩一区二区视频免费看| 一边亲一边摸免费视频| 男人添女人高潮全过程视频| 亚洲av.av天堂| 免费黄网站久久成人精品| 日韩中字成人| 久久精品久久久久久久性| 日产精品乱码卡一卡2卡三| 最近2019中文字幕mv第一页| 欧美精品人与动牲交sv欧美| 在线 av 中文字幕| 精品熟女少妇av免费看| 91精品伊人久久大香线蕉| 久久鲁丝午夜福利片| 综合色丁香网| 欧美日本中文国产一区发布| 免费大片18禁| 人人妻人人爽人人添夜夜欢视频| 久久人人爽av亚洲精品天堂| 高清视频免费观看一区二区| 亚洲av电影在线观看一区二区三区| 成人午夜精彩视频在线观看| 久久人人爽人人爽人人片va| 久久久久久久亚洲中文字幕| 国产精品人妻久久久影院| 黄色欧美视频在线观看| 久久久国产一区二区| 精品一品国产午夜福利视频| 免费久久久久久久精品成人欧美视频 | 久久久a久久爽久久v久久| 亚洲精品色激情综合| 一级爰片在线观看| 国产成人精品婷婷| 国产一区有黄有色的免费视频| 国产一区亚洲一区在线观看| 一级爰片在线观看| 国产欧美另类精品又又久久亚洲欧美| 在线观看人妻少妇| 大片电影免费在线观看免费| 亚洲精品久久成人aⅴ小说 | 午夜激情福利司机影院| 成人手机av| 亚洲图色成人| 2018国产大陆天天弄谢| 国产毛片在线视频| 中文字幕av电影在线播放| 久久女婷五月综合色啪小说| 精品一区二区三区视频在线| 视频在线观看一区二区三区| 亚洲av不卡在线观看| 最近最新中文字幕免费大全7| 欧美一级a爱片免费观看看| av线在线观看网站| 桃花免费在线播放| av视频免费观看在线观看| 久久青草综合色| 欧美日韩综合久久久久久| a 毛片基地| 一区在线观看完整版| 欧美成人午夜免费资源| 亚洲av福利一区| 色5月婷婷丁香| 男男h啪啪无遮挡| 欧美最新免费一区二区三区| 美女国产高潮福利片在线看| 成人黄色视频免费在线看| 精品亚洲成a人片在线观看| 有码 亚洲区| 欧美激情国产日韩精品一区| 精品久久久精品久久久| 亚洲一区二区三区欧美精品| 三上悠亚av全集在线观看| 中文精品一卡2卡3卡4更新| 成人午夜精彩视频在线观看| 中文字幕av电影在线播放| 国产免费福利视频在线观看| 在线免费观看不下载黄p国产| 久久久久精品久久久久真实原创| 欧美一级a爱片免费观看看| 制服人妻中文乱码| 日韩熟女老妇一区二区性免费视频| 美女cb高潮喷水在线观看| 亚洲精品aⅴ在线观看| 一级黄片播放器|