• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    負(fù)電子親和半導(dǎo)體的二次電子發(fā)射

    2022-09-26 08:42:12劉亦凡謝愛(ài)根董洪杰
    空間電子技術(shù) 2022年4期
    關(guān)鍵詞:二次電子信息工程工程學(xué)院

    劉亦凡,謝愛(ài)根,董洪杰

    (南京信息工程大學(xué) 物理與光電工程學(xué)院 ,南京 210044)

    0 Introduction

    A negative electron affinity (NEA) semiconductor means that the vacuum level of the semiconductor exists below conduction band minimum at the surface, which is a very rare property. Under NEA, internal secondary electrons in the conduction band can easily emit from the surface as there is no barrier at the semiconductor surface[1].The secondary electron yield(SEY)δof NEA semiconductors such as Si and GaAs in general far exceed those of positive electron affinity emitters because NEA semiconductors have much larger mean escape depth of secondary electron 1/α[2]. Thus, NEA semiconductors are outstanding secondary electron emitters and are applied in current amplifiers, vacuum tube applications, electronic information technology,etc[1, 3-4]. Therefore, NEA semiconductor is a very important topic[5-8].

    Due to different bulk properties such as dopant type and doping concentration and surface terminations such as the type of adsorbate, the extent of the adsorbate coverage and the presence of coad-sorbed molecules, some NEA semiconductors such as NEA diamond[4]and GaAs[9]exhibit very high, but widely varying,δand maximum SEYδm. Thus, bulk properties and surface terminations of a given NEA semiconductor decideδandδm. According to the expressions ofδm[10-11]and the fact that theδof given emitter and incident energy of primary electronEpois proportional to itsδm, it is known that theBand 1/αof a given kind of semiconductor almost decide the values ofδat givenEpoandδm,Bis the probability that an internal secondary electron escapes into vacuum upon reaching the surface of emitter. Thus, from the fact that sample preparations decide bulk properties and surface terminations of a given NEA semiconductor[4], it is known that sample preparations of a given NEA semiconductor decide theδat givenEpo,δm,Band 1/α. TheBis inaccessible to measurement, and it is very difficult to measure 1/α. Therefore, from the fact that theBand 1/αof a given kind of semiconductor almost decide the value ofδmand theδat givenEpo, it concludes that the theoretical researches ofBand 1/αare necessary and help to research quantitative influences of different sample preparations on parameters of SEE such asδat givenEpo,δm,Band 1/α. Hence, from the relationships amongδm,δ,Band 1/αand quantitative influences of different sample preparations on parameters of SEE obtained by the theoretical researches ofBand 1/α, we can change the sample preparations and produce desirable NEA emitter such as NEA diamond.In other words, the theoretical researches ofBand 1/αhelp to produce desirable NEA emitters such as NEA diamond and GaAs those exhibit very high, but widely varying,δandδmbecause of different sample preparations.

    According to the characteristics of SEE from NEA semiconductors with 0.8keV≤Epomax≤5keV,R, existing universal formulas forδof NEA semiconductors[12]and experimental data[4,13-14], special formulas forδat 0.5Epomax≤Epo≤10Epomaxof NEA diamond and GaN with 2keV≤Epomax≤5keV andδat 0.8keV≤Epo≤3keV of NEA diamond and GaN with 0.8keV≤Epomax≤2keV were deduced and experimentally proved, respectively; whereRis primary range,Epomaxis theEpoat whichδreachesδm.The formula forBof NEA semiconductors with 0.8keV≤Epomax≤5keV deduced in this study could be used to calculateB, and the method presented here of calculating the 1/αof NEA semiconductors with 0.8keV≤Epomax≤5keV is correct. Thus, according to the fact that the theoretical researches ofBand 1/αhelp to research quantitative influences of different sample preparations on parameters of SEE and produce the desirable NEA emitters, it concludes that this study’s research onBand 1/αhelp to research quantitative influences of different sample preparations on SEE from NEA semiconductors and produce desirable NEA emitters such as NEA diamond.

    HighδNEA diamond is very valuable for electron multiplication in devices such as crossed-field amplifiers and electron multipliers[4].Thus, NEA diamond is an important topic[8, 15-18]. Therefore, this study focuses on NEA diamond. Of course, the method presented here of researchingδ,Band 1/αof NEA diamond and GaN can be used to researchδ,Band 1/αof NEA semiconductor with 0.8keV≤Epomax≤5keV.

    1 Universal formulas for R and secondary electron yield

    1.1 Primary range

    According to theR-Eporelationship deduced from the power potential law, the relation amongR, the energy exponentQandEpois expressed as[19]: whereQis a constant in the sameEporange[19], andAdepends on the atomic weightAα, material densityρa(bǔ)nd atomic numberZin the sameEporange[19]. When primary electrons at 0.8keV≤Epo≤2keV enter a secondary electron emitter,theRat 0.8keV≤Epo≤2keV can be expressed as[19]

    (1)

    When primary electrons at 2keV≤Epo≤10keV enter a secondary electron emitter, theRat 2keV≤Epo≤10keV can be expressed in terms ofρ,Z,Aα,Epo[19]

    (2)

    When primary electrons at 10keV≤Epo≤100keV enter a secondary electron emitter, theRat 10keV≤Epo≤100keV can be expressed in terms ofρ,Z,Aα,Epo[19]

    (3)

    1.2 Universal formula for δ

    The universal formula forδat 0.1keV≤Epo≤10keV of NEA semiconductors can be expressed as[12]:

    (4)

    whereεis the average energy required to produce an internal secondary electron in a semiconductor,αis the absorption coefficient,R0.1-10keVisRat 0.1keV≤Epo≤10keV, the factorK(Epo,ρ,Z) of given NEA semiconductor andEpois approximately equal to a constant and less than 1,ris the high energy back-scattering coefficient which is nearly independent ofEpoand can be approximately expressed by[20]

    r=-0.0254+0.016Z-1.86×10-4Z2+8.3×10-7Z3

    (5)

    The universal formula forδat 10keV≤Ep≤100keV of NEA semiconductors can be expressed as[12]:

    (6)

    2 SEE from NEA GaN with Epomax=3.0keV

    The ratio ofREpomaxin the NEA semiconductors to the corresponding 1/αcan be expressed as[12]:

    (7)

    wherenisαconstant forαgiven NEA semiconductor,REpomaxisRatEpomax.

    Seen from Fig.1, it is known that theEpomaxof NEA GaN withEpomax=3.0keV is 3.0keV[13].R3.0 keVcalculated with Eq.(2) and parameters of GaN[13, 21](ρ=6.1g/cm3,Aα=42,Z=19,Epo=3.0keV) is equal to 1001.972 ?. Therefore, from Eq.(7), the (1/α) of NEA GaN withEpomax=3.0keV can be expressed as:

    Fig.1 Comparison between experimental δ of NEA GaN[13] with Epomax=3.0keV and corresponding calculated ones

    (8)

    Therof GaN calculated with Eq.(5) andZ=19 is equal to 0.206. As seen from Fig. 1, it is known that theEpomaxof NEA GaN withEpomax=3.0keV is in the range of 2keV≤Epomax≤5keV. According to characteristics of SEE, the course of deducing Eq.(10) of former study[12]and the conclusion thatK(Epo,ρ,Z) decreases with increasingEpoin the range ofEpo≥100 eV[12], we assumed thatK(Epo,ρ,Z)of the NEA semiconductors with 2keV≤Epomax≤5keV decreases slowly with increasingEpoin the range of 0.5Epomax≤Epo≤10Epomax, and thatK(Epo,ρ,Z) at 0.5Epomax≤Epo≤10Epomaxof the NEA semiconductors with 2keV≤Epomax≤5keV can be approximately looked on as a constantK(Epo,ρ,Z)C2-5[12]. Thus, from the assumption thatK(Epo,ρ,Z) at 0.5Epomax≤Epo≤10Epomaxof the NEA semiconductors with 2keV≤Epomax≤5keV can be approximately looked on as a constantK(Epo,ρ,Z)C2-5,we take theK(Epo,ρ,Z=19) at 0.5Epomax≤Epo≤10Epomaxof the NEA GaN withEpomax=3.0keV to be a constantK(Epo,ρ,Z=19)C3; and the ratio ofBtoεis independent ofEpo[22-24]. Therefore, from parameters of NEA GaN[13,21](ρ=6.1g/cm3,Aα=42,Z=19,r=0.206,Epomax=3.0keV), the assumption thatK(Epo,ρ,Z=19) at 0.5Epmax≤Epo≤10Epomaxof the NEA GaN withEpomax=3.0keV equalsK(Epo,ρ,Z=19)C3and Eqs.(2), (4) and (8), theδat 2keV≤Epo≤10keV of the NEA GaN withEpomax=3.0keV can be expressed as follows:

    (9)

    Eq.(9), the result thatnof Eq.(9) approximately equals 2.2649 is obtained. Therefore, the (1/α) of NEA GaN withEpomax=3.0keV calculated with Eq.(8) andn=2.2649 is equal to 442.39 ?. Based on the relation between experimentalδ3.0 keVof the NEA GaN withEpomax=3.0keV equaling 51[13]and theδ3.0 keVcalculated with Eq.(9),Epo=3.0keV andn=2.2649 equaling 1.3024×103[BK(Epo,ρ,Z=19)C3]/ε, [BK(Epo,ρ,Z=19)C3]/εequaling 3.916×10-2is obtained; according to the relation between the experimentalδ5.0 keVof the NEA GaN withEpomax=3.0keV equaling 49[13]and theδ5.0 keVcalculated with Eq.(9),Epo=5.0keV andn=2.2649 equaling 1.2×103[BK(Epo,ρ,Z=19)C3]/ε, [BK(Epo,ρ,Z=19)C3]/εequaling 4.083×10-2is obtained; on the basis of the relation between the experimentalδ7.0 keVof the NEA GaN withEpomax=3.0keV equaling 45[13]and the calculatedδ7.0 keVcalculated with Eq.(9),Epo=7.0keV andn=2.2649 equaling 1.097561×103[BK(Epo,ρ,Z=19)C3]/ε, [BK(Epo,ρ,Z=19)C3]/εequaling 4.1×10-2is obtained. Thus, the average value of [BK(Epo,ρ,Z=19)C3]/εequaling 4.033×10-2is obtained.

    From the assumption thatK(Epo,ρ,Z=19) at 0.5Epomax≤Epo≤10Epomaxof NEA GaN equalsK(Epo,ρ,Z=19)C3, parameters[13, 21](ρ=6.1g/cm3,Aα=42,Z=19, 1/α= 442.39 ?,r=0.206,K(Epo,ρ,Z=19)C3(B/ε)=4.033×10-2,Epomax=3.0keV) and Eqs.(3) and (6), theδat 10keV≤Epo≤30keV of NEA GaN withEpomax=3.0keV can be expressed as:

    (10)

    According to the parameters of NEA GaN withEpomax=3.0keV[13](n=2.2649,K(Epo,ρ,Z=19)C3(B/ε) =4.033×10-2) and Eq.(9), theδat 2keV≤Epo≤10keV of NEA GaN withEpomax=3.0keV can be expressed as:

    (11)

    From the assumption thatK(Epo,ρ,Z=19) at 0.5Epomax≤Epo≤10Epomaxof NEA GaN equalsK(Epo,ρ,Z=19)C3, parameters[13, 21](ρ=6.1g/cm3,Aα=42,Z=19, 1/α= 442.39 ?,r=0.206,K(Epo,ρ,Z=19)C3(B/ε)=4.033×10-2,Epomax=3.0keV) and Eqs.(1) and (4), theδat 1.5keV≤Epo≤2keV of NEA GaN withEpomax=3.0keV can be expressed as:

    (12)

    3 SEE from NEA diamond with Epomax=2.75keV

    Seen from Fig. 2, it is known that theEpomaxof NEA diamond withEpomax=2.75keV is 2.75keV[4].R2.75 keVcalculated with Eq.(2) and parameters of diamond[4, 21](ρ=3.52g/cm3,Aα=12,Z=6,Epo=2.75keV) is equal to 1137.68 ?. Therefore, from Eq.(7), the (1/α) of NEA diamond withEpomax=2.75 keV can be expressed as:

    Fig.2 Comparison between experimental δ of NEA diamond with Epomax=2.75keV and diamond with Epomax=1.72keV[4] and corresponding calculated ones

    (13)

    The 2rof diamond calculated with Eq.(5) andZ=6 is equal to 0.128. Seen from Fig. 2, it is known that theEpomaxof NEA diamond withEpomax=2.75keV[4]is in the range of 2keV≤Epomax≤5keV. Thus, from the assumption thatK(Epo,ρ,Z) at 0.5Epomax≤Epo≤10Epomaxof the NEA semiconductors with 2keV≤Epomax≤5keV can be approximately looked on as a constantK(Epo,ρ,Z)C2-5, we take theK(Epo,ρ,Z=6) at 0.5Epomax≤Epo≤10Epomaxof the NEA diamond withEpomax=2.75keV to be a constantK(Epo,ρ,Z=6)C2.75; and the ratio ofBtoεis independent ofEpo[22-24].Therefore, from parameters of NEA diamond withEpomax=2.75keV[4, 21](ρ=3.52g/cm3,Aα=12,Z=6, 2r=0.128,Epomax=2.75keV), the assumption thatK(Epo,ρ,Z=6) at 0.5Epomax≤Epo≤10Epomaxof the NEA diamond withEpomax=2.75keV equalsK(Epo,ρ,Z=6)C2.75and Eqs.(2), (4) and (13), theδat 2.0keV≤Epo≤10keV of the NEA diamond withEpomax=2.75keV can be expressed as follows:

    (14)

    Theδat 2.5keV≤Epo≤10keV of the NEA diamond withEpomax=2.75keV reachesδmatEpo=2.75keV. Thus, from Eq.(14), the result that thenof Eq.(14) approximately equals 2.0043 is obtained. Therefore, the 1/αof NEA diamond withEpomax=2.75keV calculated with Eq.(13) andn=2.0043 is equal to 567.62 ?. Based on the relation between the experimentalδ2.75 keVof the NEA diamond withEpomax=2.75keV equaling 18.5[4]and theδ2.75 keVcalculated with Eq.(14),Epo=2.75keV andn=2.0043 equaling 1.219357×103[BK(Epo,ρ,Z=6)C2.75]/ε, [BK(Epo,ρ,Z=6)C2.75]/εequaling 1.517×10-2is obtained; on the basis of the relation between the experimentalδ2 keVof the NEA diamond withEpomax=2.75keV equaling 16[4]and theδ2 keVcalculated with Eq.(14),Epo=2keV andn=2.0043 equaling 1.16588268×103[BK(Epo,ρ,Z=6)C2.75]/ε, [BK(Epo,ρ,Z=6)C2.75]/εequaling 1.372×10-2is obtained;according to the relation between the experimentalδ2.85 keVof the NEA diamond withEpomax=2.75keV equaling 18.2[4]and theδ2.85 keVcalculated with Eq.(14),Epo=2.85keV andn=2.0043 equaling 1.219×103[BK(Epo,ρ,Z=6)C2.75]/ε, [BK(Epo,ρ,Z=6)C2.75]/εequaling 1.493×10-2is obtained; according to the relation between the experimentalδ2.2 keVof the NEA diamond withEpomax=2.75keV equaling 17.1[4]and theδ2.2 keVcalculated with Eq.(14),Epo=2.2keV andn=2.0043 equaling 1.1926579×103[BK(Epo,ρ,Z=6)C2.75]/ε, [BK(Epo,ρ,Z=6)C2.75]/εequaling 1.434×10-2is obtained. Thus, the average value of [BK(Epo,ρ,Z=6)C2.75]/εequaling 1.45×10-2is obtained.

    According to the parameters of NEA diamond withEpomax=2.75keV (n=2.0043, [BK(Epo,ρ,Z=6)C2.75]/ε=1.45×10-2) and Eq.(14), theδat 2keV≤Epo≤10keV of NEA diamond withEpomax=2.75keV can be expressed as:

    (15)

    From the assumption thatK(Epo,ρ,Z=6) at 0.5Epomax≤Epo≤10Epomaxof NEA diamond withEpomax=2.75keV equalsK(Epo,ρ,Z=6)C2.75, parameters[4, 21](ρ=3.52g/cm3,Aα=12,Z=6, 1/α=567.62 ?, 2r=0.128), [BK(Epo,ρ,Z=6)C2.75]/ε=1.45×10-2,Epomax=2.75keV and Eqs.(1) and (4), theδat 1.375keV≤Epo≤2keV of NEA diamond withEpomax=2.75keV can be expressed as:

    (16)

    4 SEE from NEA diamond with Epomax=2.64keV

    Seen from Fig. 3, it is known that theEpomaxof NEA diamond withEpomax=2.64keV is 2.64keV[4].R2.64 keVcalculated with Eq.(2) and parameters of diamond[4, 21](ρ=3.52g/cm3,Aα=12,Z=6,Epo=2.64keV) is equal to 1070.1 ?. Therefore, from Eq.(7), the (1/α) of NEA diamond withEpomax=2.64keV can be expressed as:

    (17)

    Seen from Fig. 3, it is known that theEpomaxof NEA diamond withEpomax=2.64keV is in the range of 2keV≤Epomax≤5keV. Thus, from the assumption thatK(Epo,ρ,Z) at 0.5Epomax≤Epo≤10Epomaxof the NEA semiconductors with 2keV≤Epomax≤5keV can be approximately looked on as a constantK(Epo,ρ,Z)C2-5, we take theK(Epo,ρ,Z=6) at 0.5Epomax≤Epo≤10Epomaxof the NEA diamond withEpomax=2.64keV to be a constantK(Epo,ρ,Z=6)C2.64; and the ratio ofBtoεis independent ofEpo[22-24]. Therefore, from parameters of NEA diamond withEpomax=2.64keV[4, 21](ρ=3.52g/cm3,Aα=12,Z=6, 2r=0.128,Epomax=2.64keV), the assumption thatK(Epo,ρ,Z=6) at 0.5Epomax≤Epo≤10Epomaxof the NEA diamond withEpomax=2.64keV equalsK(Epo,ρ,Z=6)C2.64and Eqs.(2), (4) and (17), theδat 2.0keV≤Epo≤10keV of the NEA diamond withEpomax=2.64keV can be expressed as follows:

    Fig.3 Comparison between experimental δ of NEA diamond with Epomax=2.64keV and diamond with Epomax=2.3keV[4] and corresponding calculated ones

    (18)

    Theδat 2keV≤Epo≤10keV of the NEA diamond withEpomax=2.64keV reachesδmatEpo=2.64keV. Thus, from Eq.(18), the result that thenof Eq.(18) approximately equals 1.9994 is obtained. Therefore, the (1/α) of NEA diamond withEpomax=2.64keV calculated with Eq.(17) andn=1.9994 is equal to 535.21 ?. Based on the relation between the experimentalδ2.64 keVof the NEA diamond withEpomax=2.64keV equaling 24.7[4]and theδ2.64 keVcalculated with Eq.(18),Epo=2.64keV andn=1.9994 equaling 1.1711×103[BK(Epo,ρ,Z=6)C2.64]/ε, [BK(Epo,ρ,Z=6)C2.64]/εequaling 2.109×10-2is obtained;on the basis of the relation between the experimentalδ2.9 keVof the NEA diamond withEpomax=2.64keV equaling 23[4]and theδ2.9 keVcalculated with Eq.(18),Epo=2.9keV andn=1.9994 equaling 1.166656×103[BK(Epo,ρ,Z=6)C2.64]/ε, [BK(Epo,ρ,Z=6)C2.64]/εequaling 1.9716×10-2is obtained;according to the relation between the experimentalδ2.5 keVof the NEA diamond withEpomax=2.64keV equaling 24[4]and theδ2.5 keVcalculated with Eq.(18),Epo=2.5keV andn=1.9994 equaling 1.1695385×103[BK(Epo,ρ,Z=6)C2.64]/ε, [BK(Epo,ρ,Z=6)C2.64]/εequaling 2.052 1×10-2is obtained; according to the relation between the experimentalδ2.2 keVof the NEA diamond withEpomax=2.64keV equaling 22.5[4]and theδ2.2 keVcalculated with Eq.(18),Epo=2.2keV andn=1.9994 equaling 1.15383×103[BK(Epo,ρ,Z=6)C2.64]/ε, [BK(Epo,ρ,Z=6)C2.64]/εequaling 1.495×10-2is obtained;on the basis of the relation between the experimentalδ2.1 keVof the NEA diamond withEpomax=2.64keV equaling 21.4[4]and theδ2.1 keVcalculated with Eq.(18),Epo=2.1keV andn=1.9994 equaling 1.144×103[BK(Epo,ρ,Z=6)C2.64]/ε, [BK(Epo,ρ,Z=6)C2.64]/εequaling 1.87×10-2is obtained. Thus, the average value of [BK(Epo,ρ,Z=6)C2.64]/εequaling 1.991×10-2is obtained.

    According to the parameters of NEA diamond withEpomax=2.64keV (n=1.9994, [BK(Epo,ρ,Z=6)C2.64]/ε=1.991×10-2) and Eq.(18), theδat 2keV≤Epo≤10keV of NEA diamond withEpomax=2.64keV can be expressed as:

    (19)

    From the assumption thatK(Epo,ρ,Z=6) at 0.5Epomax≤Epo≤10Epomaxof NEA diamond withEpomax=2.64keV equalsK(Epo,ρ,Z=6)C2.64, parameters[4, 21](ρ=3.52g/cm3,Aα=12,Z=6, 1/α=535.21 ?, 2r=0.128), [BK(Epo,ρ,Z=6)C2.64]/ε=1.991×10-2,Epomax=2.64keV and Eqs.(1) and (4), theδat 1.32keV≤Epo≤2keV of NEA diamond withEpomax=2.64keV can be expressed as:

    (20)

    5 SEE from NEA diamond with Epomax=2.3keV

    Seen from Fig. 3, it is known that theEpomaxof NEA diamond withEpomax=2.3keV is 2.3keV[4].R2.3 keVcalculated with Eq.(2) and parameters of diamond[4, 21](ρ=3.52g/cm3,Aα=12,Z=6,Epo=2.3keV) is equal to 870.18 ?. Therefore, from Eq.(7), the (1/α) of NEA diamond withEpomax=2.3 keV can be expressed as:

    (21)

    Seen from Fig. 3, it is known that theEpomaxof NEA diamond withEpomax=2.3keV is in the range of 2keV≤Epomax≤5keV. Thus, from the assumption thatK(Epo,ρ,Z) at 0.5Epomax≤Epo≤10Epomaxof the NEA semiconductors with 2keV≤Epomax≤5keV can be approximately looked on as a constantK(Epo,ρ,Z)C2-5, we take theK(Epo,ρ,Z=6) at 0.5Epomax≤Epo≤10Epomaxof the NEA diamond withEpomax=2.3keV to be a constantK(Epo,ρ,Z=6)C2.3; and the ratio ofBtoεis independent ofEpo[22-24]. Therefore, from parameters of NEA diamond withEpomax=2.3keV[4, 21](ρ=3.52g/cm3,Aα=12,Z=6, 2r=0.128,Epomax=2.3keV), the assumption thatK(Epo,ρ,Z=6) at 0.5Epomax≤Epo≤10Epomaxof the NEA diamond withEpomax=2.3keV equalsK(Epo,ρ,Z=6)C2.3and Eqs.(2), (4) and (21), theδat 2.0keV≤Epo≤10keV of the NEA diamond withEpomax=2.3keV can be expressed as follows:

    (22)

    Theδat 2keV≤Epo≤10keV of the NEA diamond withEpomax=2.3keV reachesδmatEpo=2.3keV. Thus, from Eq.(22), the result that thenof Eq.(22) approximately equals 1.9849 is obtained. Therefore, the (1/α) of NEA diamond withEpomax=2.3keV calculated with Eq.(21) andn=1.9849 is equal to 438.4 ?. Based on the relation between the experimentalδ2.3 keVof the NEA diamond withEpomax=2.3keV equaling 30[4]and theδ2.3 keVcalculated with Eq.(22),Epo=2.3keV andn=1.9849 equaling 1.02146×103[BK(Epo,ρ,Z=6)C2.3]/ε, [BK(Epo,ρ,Z=6)C2.3]/εequaling 2.937×10-2is obtained; on the basis of relation between the experimentalδ2.2 keVof the NEA diamond withEpomax=2.3keV equaling 29.9[4]and theδ2.2 keVcalculated with Eq.(22),Epo=2.2keV andn=1.9849 equaling 1.0205×103[BK(Epo,ρ,Z=6)C2.3]/ε, [BK(Epo,ρ,Z=6)C2.3]/εequaling 2.93×10-2is obtained; on the basis of the relation between the experimentalδ2.1 keVof the NEA diamond withEpomax=2.3keV equaling 29.8[4]and theδ2.1 keVcalculated with Eq.(22),Epo=2.1keV andn=1.9849 equaling 1.017619×103[BK(Epo,ρ,Z=6)C2.3]/ε, [BK(Epo,ρ,Z=6)C2.3]/εequaling 2.928×10-2is obtained. Thus, the average value of [BK(Epo,ρ,Z=6)C2.3]/εequaling 2.93×10-2is obtained.

    According to the parameters of NEA diamond withEpomax=2.3keV (n=1.9849, [BK(Epo,ρ,Z=6)C2.3]/ε=2.93×10-2) and Eq.(22), theδat 2keV≤Epo≤10keV of NEA diamond withEpomax=2.3keV can be expressed as:

    (23)

    From the assumption thatK(Epo,ρ,Z=6) at 0.5Epomax≤Epo≤10Epomaxof NEA diamond withEpomax=2.3keV equalsK(Epo,ρ,Z=6)C2.3, parameters[4, 21](ρ=3.52g/cm3,Aα=12,Z=6, 1/α=438.4 ?, 2r=0.128), [BK(Epo,ρ,Z=6)C2.3]/ε=2.93×10-2,Epomax=2.3keV) and Eqs.(1) and (4), theδat 1.15keV≤Epo≤2keV of NEA diamond withEpomax=2.3keV can be expressed as:

    (24)

    6 SEE from NEA GaN with Epomax=1.0keV

    Seen from Fig.4, it is known that theEpomaxof NEA GaN withEpomax=1.0keV is 1.0keV[14].R1.0 keVcalculated with Eq.(1) and parameters of GaN[14, 21](ρ=6.1g/cm3,Aα=42,Z=19,Epo=1.0keV) is equal to 213.3343 ?. Therefore, from Eq.(7), the (1/α) of NEA GaN withEpomax=1.0keV can be expressed as:

    Fig. 4 Comparison between experimental δ of NEA diamond with Epomax=0.85keV[4] and GaN with Epomax=1.0keV[14] and corresponding calculated ones

    (25)

    Seen from Fig. 4, it is known that theEpomaxof NEA GaN withEpomax=1.0keV is in the range of 0.8keV≤Epomax≤2keV. According to the conclusion thatK(Epo,ρ,Z)decreases with increasingEpoin the range ofEpo≥100eV, we assumed thatK(Epo,ρ,Z)of the NEA semiconductors with 0.8keV≤Epomax≤2keV decreases slowly with increasingEpoin the range of 0.8keV≤Epo≤3keV, and thatK(Epo,ρ,Z) at 0.8keV≤Epo≤3keV of the NEA semiconductors with 0.8keV≤Epomax≤2keV can be approximately looked on as a constantK(Epo,ρ,Z)C0.8-2. Thus, from the assumption thatK(Epo,ρ,Z) at 0.8keV≤Epo≤3keV of the NEA semiconductors with 0.8keV≤Epomax≤2keV can be approximately looked on as a constantK(Epo,ρ,Z)C0.8-2, we take theK(Epo,ρ,Z=19) at 0.8keV≤Epo≤3keV of the NEA GaN withEpomax=1.0keV to be a constantK(Epo,ρ,Z=19)C1; and the ratio ofBtoεis independent ofEpo[22-24]. Therefore, from parameters of NEA GaN[14, 21](ρ=6.1g/cm3,Aα=42,Z=19,r=0.206,Epomax=1.0keV), the assumption thatK(Epo,ρ,Z=19) at 0.8keV≤Epo≤3 keV of the NEA GaN withEpomax=1.0keV equalsK(Epo,ρ,Z=19)C1and Eqs.(1), (4) and (25), theδat 0.8keV≤Epo≤2keV of the NEA GaN withEpomax=1.0keV can be expressed as follows:

    (26)

    Theδat 0.8keV≤Epo≤2keV of the NEA GaN reaches itsδmatEpo=1.0keV. Thus, from Eq.(26), the result thatnof Eq.(26) approximately equals 2.4766 is obtained. Therefore, the (1/α) of NEA GaN withEpomax=1.0keV calculated with Eq.(25) andn=2.4766 is equal to 86.14 ?. Based on the relation between experimentalδ1.0 keVof the NEA GaN withEpomax=1.0keV equaling 6.1[14]and theδ1.0 keVcalculated with Eq.(26),Epo=1.0keV andn=2.4766 equaling 3.7946×102[BK(Epo,ρ,Z=19)C1]/ε, [BK(Epo,ρ,Z=19)C1]/εequaling 1.6076×10-2is obtained; according to the relation between the experimentalδ0.8 keVof the NEA GaN withEpomax=1.0keV equaling 6.0[14]and theδ0.8 keVcalculated with Eq.(26),Epo=0.8keV andn=2.4766 equaling 3.731×102[BK(Epo,ρ,Z=19)C1]/ε, [BK(Epo,ρ,Z=19)C1]/εequaling 1.6082×10-2is obtained; on the basis of the relation between the experimentalδ1.5 keVof the NEA GaN withEpomax=1.0keV equaling 5.95[14]and the calculatedδ1.5 keVcalculated with Eq.(26),Epo=1.5keV andn=2.4766 equaling 3.6242×102[BK(Epo,ρ,Z=19)C1]/ε, [BK(Epo,ρ,Z=19)C1]/εequaling 1.6417×10-2is obtained; according to the relation between the experimentalδ1.75 keVof the NEA GaN withEpomax=1.0keV equaling 5.69[14]and theδ1.75 keVcalculated with Eq.(26),Epo=1.75keV andn=2.4766 equaling 3.50256×102[BK(Epo,ρ,Z=19)C1]/ε, [BK(Epo,ρ,Z=19)C1]/εequaling 1.6245×10-2is obtained. Thus, the average value of [BK(Epo,ρ,Z=19)C1]/εequaling 1.62×10-2is obtained.

    According to the parameters of NEA GaN withEpomax=1.0keV (n=2.4766,K(Epo,ρ,Z=19)C1(B/ε) =1.62×10-2) and Eq.(26), theδat 0.8keV≤Epo≤2keV of NEA GaN withEpomax=1.0keV can be expressed as:

    (27)

    From the assumption thatK(Epo,ρ,Z=19) at 0.8keV≤Epo≤3keV of NEA GaN equalsK(Epo,ρ,Z=19)C1, parameters[14, 21](ρ=6.1g/cm3,Aα=42,Z=19, 1/α= 86.14 ?,r=0.206,K(Epo,ρ,Z=19)C1(B/ε)=1.62×10-2,Epomax=1.0keV) and Eqs.(2) and (4), theδat 2keV≤Epo≤3keV of NEA GaN withEpomax=1.0keV can be expressed as:

    (28)

    7 SEE from NEA GaN with Epomax=1.25keV

    Seen from Fig. 5, it is known that theEpomaxof NEA GaN withEpomax=1.25keV is 1.25keV[14].R1.25 keVcalculated with Eq.(1) and parameters of GaN[14, 21](ρ=6.1g/cm3,Aα=42,Z=19,Epo=1.25keV) is equal to 287.2614 ?. Therefore, from Eq.(7), the (1/α) of NEA GaN withEpomax=1.25keV can be expressed as:

    (29)

    Seen from Fig. 5, it is known that theEpomaxof NEA GaN withEpomax=1.25keV is in the range of 0.8keV≤Epomax≤2keV.Thus, from the assumption thatK(Epo,ρ,Z) at 0.8keV≤Epo≤3keV of the NEA semiconductors with 0.8keV≤Epomax≤2keV can be approximately looked on as a constantK(Epo,ρ,Z)C0.8-2, we take theK(Epo,ρ,Z=19) at 0.8keV≤Epo≤3keV of the NEA GaN withEpomax=1.25keV to be a constantK(Epo,ρ,Z=19)C1.25; and the ratio ofBtoεis independent ofEpo[22-24]. Therefore, from parameters of NEA GaN[14, 21](ρ=6.1g/cm3,Aα=42,Z=19,r=0.206,Epomax=1.25keV), the assumption thatK(Epo,ρ,Z=19) at 0.8keV≤Epo≤3 keV of the NEA GaN withEpomax=1.25keV equalsK(Epo,ρ,Z=19)C1.25and Eqs.(1), (4) and (29), theδat 0.8keV≤Epo≤2keV of the NEA GaN withEpomax=1.25keV can be expressed as follows:

    Fig. 5 Comparison between experimental δ of NEA diamond with Epomax=1.1keV[4] and GaN with Epomax=1.25keV[14] and corresponding calculated ones

    (30)

    Theδat 0.8keV≤Epo≤2keV of the NEA GaN reaches itsδmatEpo=1.25keV. Thus, from Eq.(30), the result thatnof Eq.(30) approximately equals 2.5205 is obtained. Therefore, the (1/α) of NEA GaN withEpomax=1.25keV calculated with Eq.(29) andn=2.5205 is equal to 113.97 ?. Based on the relation between experimentalδ1.25 keVof the NEA GaN withEpomax=1.25keV equaling 7.0[14]and theδ1.25 keVcalculated with Eq.(30),Epo=1.25keV andn=2.5205 equaling 4.7154×102[BK(Epo,ρ,Z=19)C1.25]/ε, [BK(Epo,ρ,Z=19)C1.25]/εequaling 1.4845×10-2is obtained; according to the relation between the experimentalδ0.8 keVof the NEA GaN withEpomax=1.25keV equaling 6.3[14]and theδ0.8 keVcalculated with Eq.(30),Epo=0.8keV andn=2.5205 equaling 4.40734×102[BK(Epo,ρ,Z=19)C1.25]/ε, [BK(Epo,ρ,Z=19)C1.25]/εequaling 1.4294×10-2is obtained; on the basis of the relation between the experimentalδ1 keVof the NEA GaN withEpomax=1.25keV equaling 6.9[14]and the calculatedδ1 keVcalculated with Eq.(30),Epo=1keV andn=2.5205 equaling 4.637765×102[BK(Epo,ρ,Z=19)C1.25]/ε, [BK(Epo,ρ,Z=19)C1.25]/εequaling 1.487 8×10-2is obtained; according to the relation between the experimentalδ1.75 keVof the NEA GaN withEpomax=1.25keV equaling 6.65[14]and theδ1.75 keVcalculated with Eq.(30),Epo=1.75keV andn=2.5205 equaling 4.5692×102[BK(Epo,ρ,Z=19)C1.25]/ε, [BK(Epo,ρ,Z=19)C1.25]/εequaling 1. 4554×10-2is obtained. Thus, the average value of [BK(Epo,ρ,Z=19)C1.25]/εequaling1.4643×10-2is obtained.

    According to the parameters of NEA GaN withEpomax=1.25keV (n=2.5205,K(Epo,ρ,Z=19)C1.25(B/ε)=1.4643×10-2) and Eq.(30), theδat 0.8keV≤Epo≤2keV of NEA GaN withEpomax=1.25keV can be expressed as:

    (31)

    From the assumption thatK(Epo,ρ,Z=19) at 0.8keV≤Epo≤3keV of NEA GaN equalsK(Epo,ρ,Z=19)C1.25, parameters[14, 21](ρ=6.1g/cm3,Aα=42,Z=19, 1/α= 113.97 ?,r=0.206,K(Epo,ρ,Z=19)C1.25(B/ε)=1.4643×10-2,Epomax=1.25keV) and Eqs.(2) and (4), theδat 2keV≤Epo≤3keV of NEA GaN withEpomax=1.25keV can be expressed as:

    (32)

    8 SEE from NEA diamond with Epomax=0.85keV

    Seen from Fig. 4, it is known that theEpomaxof NEA diamond withEpomax=0.85keV is 0.85keV[4].R0.85 keVcalculated with Eq.(1) and parameters of diamond[4, 21](ρ=3.52g/cm3,Aα=12,Z=6,Epo=0.85keV) is equal to 208.4663 ?. Therefore, from Eq.(7), the (1/α) of NEA diamond withEpomax=0.85keV can be expressed as:

    (33)

    Seen from Fig. 4, it is known that theEpomaxof NEA diamond withEpomax=0.85keV is in the range of 0.8keV≤Epomax≤2keV.Thus, from the assumption thatK(Epo,ρ,Z) at 0.8keV≤Epo≤3keV of the NEA semiconductors with 0.8keV≤Epomax≤2keV can be approximately looked on as a constantK(Epo,ρ,Z)C0.8-2.5, we take theK(Epo,ρ,Z=6) at 0.8keV≤Epo≤3keV of the NEA diamond withEpomax=0.85keV to be a constantK(Epo,ρ,Z=6)C0.85; and the ratio ofBtoεis independent ofEpo[22-24]. Therefore, from parameters of NEA diamond[4, 21](ρ=3.52g/cm3,Aα=12,Z=6,r=0.064,Epomax=0.85keV), the assumption thatK(Epo,ρ,Z=6) at 0.8keV≤Epo≤3keV of the NEA diamond withEpomax=0.85keV equalsK(Epo,ρ,Z=6)C0.85and Eqs.(1), (4) and (33), theδat 0.8keV≤Epo≤2keV of the NEA diamond withEpomax=0.85keV can be expressed as follows:

    (34)

    Theδat 0.8keV≤Epo≤2keV of the NEA diamond reaches itsδmatEpo=0.85keV. Thus, from Eq.(34), the result thatnof Eq.(34) approximately equals 2.3719 is obtained. Therefore, the (1/α) of NEA diamond withEpomax=0.85keV calculated with Eq.(33) andn=2.3719 is equal to 87.89 ?. Based on the relation between experimentalδ0.85 keVof the NEA diamond withEpomax=0.85keV equaling 4.667[4]and theδ0.85 keVcalculated with Eq.(34),Epo=0.85keV andn=2.3719 equaling 3.27081×102[BK(Epo,ρ,Z=6)C0.85]/ε, [BK(Epo,ρ,Z=6)C0.85]/εequaling 1.42686×10-2is obtained; according to the relation between the experimentalδ1.8 keVof the NEA diamond withEpomax=0.85keV equaling 4.05[4]and theδ1.8 keVcalculated with Eq.(34),Epo=1.8keV andn=2.3719 equaling 2.831786 4×102[BK(Epo,ρ,Z=6)C0.85]/ε, [BK(Epo,ρ,Z=6)C0.85]/εequaling 1.43×10-2is obtained; on the basis of the relation between the experimentalδ1 keVof the NEA diamond withEpomax=0.85keV equaling 4.6[4]and the calculatedδ1 keVcalculated with Eq.(34),Epo=1keV andn=2.3719 equaling 3.2421825×102[BK(Epo,ρ,Z=6)C0.85]/ε, [BK(Epo,ρ,Z=6)C0.85]/εequaling 1.4188×10-2is obtained; according to the relation between the experimentalδ1.5 keVof the NEA diamond withEpomax=0.85keV equaling 4.35[4]and theδ1.5 keVcalculated with Eq.(34),Epo=1.5keV andn=2.3719 equaling 2.9853632×102[BK(Epo,ρ,Z=6)C0.85]/ε, [BK(Epo,ρ,Z=6)C0.85]/εequaling 1. 457×10-2is obtained. Thus, the average value of [BK(Epo,ρ,Z=6)C0.85]/εequaling1. 43×10-2is obtained.

    According to the parameters of NEA diamond withEpomax=0.85keV (n=2.3719,K(Epo,ρ,Z=6)C0.85(B/ε) =1. 43×10-2) and Eq.(34), theδat 0.8keV≤Epo≤2keV of NEA diamond withEpomax=0.85keV can be expressed as:

    (35)

    From the assumption thatK(Epo,ρ,Z=6) at 0.8keV≤Epo≤3keV of NEA diamond equalsK(Epo,ρ,Z=6)C0.85, parameters[4, 21](ρ=3.52g/cm3,Aα=12,Z=6, 1/α= 87.89 ?,r=0. 064,K(Epo,ρ,Z=6)C0.85(B/ε)=1.43×10-2,Epomax=0.85keV) and Eqs.(2) and (4), theδat 2keV≤Epo≤3keV of NEA diamond withEpomax=0.85keV can be expressed as:

    (36)

    9 SEE from NEA diamond with Epomax=1.1keV

    Seen from Fig. 5, it is known that theEpomaxof NEA diamond withEpomax=1.1keV is 1.1keV[4].R1.1keV calculated with Eq.(1) and parameters of diamond[4, 21](ρ=3.52g/cm3,Aα=12,Z=6,Epo=1.1keV) is equal to 293.9866 ?. Therefore, from Eq.(7), the (1/α) of NEA diamond withEpomax=1.1keV can be expressed as:

    (37)

    Seen from Fig. 5, it is known that theEpomaxof NEA diamond withEpomax=1.1keV is in the range of 0.8keV≤Epomax≤2keV.Thus, from the assumption thatK(Epo,ρ,Z) at 0.8keV≤Epo≤3keV of the NEA semiconductors with 0.8keV≤Epomax≤2keV can be approximately looked on as a constantK(Epo,ρ,Z)C0.8-2, we take theK(Epo,ρ,Z=6) at 0.8keV≤Epo≤3keV of the NEA diamond withEpomax=1.1keV to be a constantK(Epo,ρ,Z=6)C1.1; and the ratio ofBtoεis independent ofEpo[22-24]. Therefore, from parameters of NEA diamond[4, 21](ρ=3.52g/cm3,Aα=12,Z=6,r=0.064,Epomax=1.1keV), the assumption thatK(Epo,ρ,Z=6) at 0.8keV≤Epo≤3 keV of the NEA diamond withEpomax=1.1keV equalsK(Epo,ρ,Z=6)C1.1and Eqs.(1), (4) and (37), theδat 0.8keV≤Epo≤2keV of the NEA diamond withEpomax=1.1keV can be expressed as follows:

    (38)

    Theδat 0.8keV≤Epo≤2keV of the NEA diamond reaches itsδmatEpo=1.1keV. Thus, from Eq.(38), the result thatnof Eq.(38) approximately equals 2.3849 is obtained. Therefore, the (1/α) of NEA diamond withEpomax=1.1keV calculated with Eq.(37) andn=2.3849 is equal to 123.27 ?. Based onthe relation between experimentalδ1.1 keVof the NEA diamond withEpomax=1.1keV equaling 10[4]and theδ1.1 keVcalculated with Eq.(38),Epo=1.1keV andn=2.3849 equaling 4.225143×102[BK(Epo,ρ,Z=6)C1.1]/ε, [BK(Epo,ρ,Z=6)C1.1]/εequaling 2.36678×10-2is obtained; according to the relation between the experimentalδ1.9 keVof the NEA diamond withEpomax=1.1keV equaling 9[4]and theδ1.9 keVcalculated with Eq.(38),Epo=1.9keV andn=2.3849 equaling 3.8833×102[BK(Epo,ρ,Z=6)C1.1]/ε, [BK(Epo,ρ,Z=6)C1.1]/εequaling 2.314×10-2is obtained; on the basis of the relation between the experimentalδ0.8 keVof the NEA diamond withEpomax=1.1 keV equaling 9.8[4]and theδ0.8 keVcalculated with Eq.(38),Epo=0.8keV andn=2.3849 equaling 4.07572×102[BK(Epo,ρ,Z=6)C1.1]/ε, [BK(Epo,ρ,Z=6)C1.1]/εequaling 2.404×10-2is obtained; according to the relation between the experimentalδ1.5 keVof the NEA diamond withEpomax=1.1keV equaling 9.8[4]and theδ1.5 keVcalculated with Eq.(38),Epo=1.5keV andn=2.3849 equaling 4.0994766×102[BK(Epo,ρ,Z=6)C1.1]/ε, [BK(Epo,ρ,Z=6)C1.1]/εequaling 2.39×10-2is obtained. Thus, the average value of [BK(Epo,ρ,Z=6)C1.1]/εequaling 2.3687×10-2is obtained.

    According to the parameters of NEA diamond withEpomax=1.1keV (n=2.3849,K(Epo,ρ,Z=6)C1.1(B/ε) =2.3687×10-2) and Eq.(38), theδat 0.8keV≤Epo≤2keV of NEA diamond withEpomax=1.1keV can be expressed as:

    (39)

    From the assumption thatK(Epo,ρ,Z=6) at 0.8keV≤Epo≤3keV of NEA diamond equalsK(Epo,ρ,Z=6)C1.1, parameters[4, 21](ρ=3.52g/cm3,Aα=12,Z=6, 1/α= 123.27 ?,r=0. 064,K(Epo,ρ,Z=6)C1.1(B/ε)=2.3687×10-2,Epomax=1.1keV) and Eqs.(2) and (4), theδat 2keV≤Epo≤3keV of NEA diamond withEpomax=1.1keV can be expressed as:

    (40)

    10 SEE from NEA diamond with Epomax=1.72keV

    Seen from Fig. 2, it is known that theEpomaxof NEA diamond withEpomax=1.72keV is 1.72keV[4].R1.72 keVcalculated with Eq.(1) and parameters of diamond[4, 21](ρ=3.52g/cm3,Aα=12,Z=6,Epo=1.72keV) is equal to 533.548 ?. Therefore, from Eq.(7), the (1/α) of NEA diamond withEpomax=1.72keV can be expressed as:

    (41)

    Seen from Fig. 2, it is known that theEpomaxof NEA diamond withEpomax=1.72keV is in the e range of 0.8keV≤Epomax≤2keV.Thus, from the assumption thatK(Epo,ρ,Z) at 0.8keV≤Epo≤3keV of the NEA semiconductors with 0.8keV≤Epomax≤2keV can be approximately looked on as a constantK(Epo,ρ,Z)C0.8-2, we take theK(Epo,ρ,Z=6) at 0.8keV≤Epo≤3keV of the NEA diamond withEpomax=1.72keV to be a constantK(Epo,ρ,Z=6)C1.72; and the ratio ofBtoεis independent ofEpo[22-24]. Therefore, from parameters of NEA diamond[4, 21](ρ=3.52g/cm3,Aα=12,Z=6,r=0.064,Epomax=1.72keV), the assumption thatK(Epo,ρ,Z=6) at 0.8keV≤Epo≤3 keV of the NEA diamond withEpomax=1.72keV equalsK(Epo,ρ,Z=6)C1.72and Eqs.(1), (4) and (41), theδat 0.8keV≤Epo≤2keV of the NEA diamond withEpomax=1.72keV can be expressed as follows:

    (42)

    Theδat 0.8keV≤Epo≤2keV of the NEA diamond reaches itsδmatEpo=1.72keV. Thus, from Eq.(42), the result thatnof Eq.(42) approximately equals 2.4195 is obtained. Therefore, the (1/α) of NEA diamond withEpomax=1.72keV calculated with Eq.(41) andn=2.4195 is equal to 220.52 ?. Based onthe relation between experimentalδ1.72 keVof the NEA diamond withEpomax=1.72keV equaling 20[4]and theδ1.72 keVcalculated with Eq.(42),Epo=1.72keV andn=2.4195 equaling 6.57654×102[BK(Epo,ρ,Z=6)C1.72]/ε, [BK(Epo,ρ,Z=6)C1.72]/εequaling 3.04×10-2is obtained; according to the relation between the experimentalδ1.9 keVof the NEA diamond withEpomax=1.72keV equaling 19.9[4]and theδ1.9 keVcalculated with Eq.(42),Epo=1.9keV andn=2.4195 equaling 6.555147×102[BK(Epo,ρ,Z=6)C1.72]/ε, [BK(Epo,ρ,Z=6)C1.72]/εequaling 3.036×10-2is obtained; on the basis of the relation between the experimentalδ0.9 keVof the NEA diamond withEpomax=1.72keV equaling 16[4]and theδ0.9 keVcalculated with Eq.(42),Epo=0.9keV andn=2.4195 equaling 5.68106×102[BK(Epo,ρ,Z=6)C1.72]/ε, [BK(Epo,ρ,Z=6)C1.72]/εequaling 2.816×10-2is obtained; according to the relation between the experimentalδ1.3 keVof the NEA diamond withEpomax=1.72keV equaling 18.1[4]and theδ1.3 keVcalculated with Eq.(42),Epo=1.3keV andn=2.4195 equaling 6.3985×102[BK(Epo,ρ,Z=6)C1.72]/ε, [BK(Epo,ρ,Z=6)C1.72]/εequaling 2.829×10-2is obtained. Thus, the average value of [BK(Epo,ρ,Z=6)C1.72]/εequaling 2.93×10-2is obtained.

    According to the parameters of NEA diamond withEpomax=1.72keV (n=2.4195,K(Epo,ρ,Z=6)C1.72(B/ε) =2.93×10-2) and Eq.(42), theδat 0.8keV≤Epo≤2keV of NEA diamond withEpomax=1.72keV can be expressed as:

    (43)

    From the assumption thatK(Epo,ρ,Z=6) at 0.8keV≤Epo≤3keV of NEA diamond equalsK(Epo,ρ,Z=6)C1.72, parameters[4, 21](ρ=3.52g/cm3,Aα=12,Z=6, 1/α= 220.52 ?,r=0. 064,K(Epo,ρ,Z=6)C1.72(B/ε)=2.93×10-2,Epomax=1.72keV) and Eqs.(2) and (4), theδat 2keV≤Epo≤3keV of NEA diamond withEpomax=1.72keV can be expressed as:

    (44)

    11 Formula for B

    Theδat 10keV of NEA semiconductors can be expressed as[12]:

    (45)

    wherexis the distance from the position to the surface of semiconductor, andEpxis primary energy at a givenx.

    Based on Eq.(3), the average energy loss of primary electron per unit path length dEpx/dxat 10keV can be expressed as:

    (46)

    For NEA semiconductors with 0.8keV≤Epomax≤2keV, theRat 10keV is much larger than the maximum escape depth of secondary electronsT, andTis approximately equal to 5/α[25]. For example, from Section.8, it is known that 1/αof NEA diamond withEpomax=0.85keV equals 87.89 ?, and thatTof NEA diamond withEpomax=0.85keV is 439.45 ?. TheRat 10 keV in NEA diamond withEpomax=0.85 keV calculated with Eq.(3) and parameters of diamond[21](ρ=3.52g/cm3,Aα=12,Z=6,Epo=10keV) is equal to 9718.79 ?. Thus, most of primary energy is dissipated outsideT, and the primary energy changes little insideT. Then, from Eq.(46), the dEpx/dxat 10keV insideTof NEA semiconductors with 0.8keV≤Epomax≤2keV can be approximately written as:

    (47)

    TheRat 10keV is much larger than 5/αof NEA semiconductors with 0.8keV≤Epomax≤2keV, the internal secondary electrons excited outside 5/αcan not be emitted into vacuum[25]. Thus, the definite integral [0,R] of Eq.(45) can be replaced with [0, 5/α] when primary electron at 10keV enter NEA semiconductors with 0.8keV≤Epomax≤2keV. Soδat 10keV of NEA semiconductors with 0.8keV≤Epomax≤2keV can be obtained by combining Eqs.(45) and (47):

    (48)

    Based on the fact that theRat 10keV is much larger than corresponding 1/αand Eqs.(3) and (6), theδat 10keV of NEA semiconductors with 0.8keV≤Epomax≤2keV can be approximately written as:

    (49)

    From Sections 2-10, [BK(Epo,ρ,Z)]/εat 0.5Epomax≤Epo≤10Epomaxof NEA semiconductors with 2keV≤Epomax≤5keV and that at 0.8keV≤Epo≤3keV of NEA semiconductors with 0.8keV≤Epomax≤5keV can be expressed as follows:

    (50)

    From Sections 2-10, CNEA(Epomax,ρ,Z) of a given NEA semiconductor with 0.8keV≤Epomax≤5keV is a constant.

    According to the assumption thatK(Epo,ρ,Z) at 0.5Epomax≤Epo≤10Epomaxof the NEA semiconductors with 2keV≤Epomax≤5keV can be approximately looked on as a constantK(Epo,ρ,Z)C2-5, it can be concluded that thatK(Epo,ρ,Z)of the NEA semiconductors decreases extremely slowly with increasingEpoin the range of 2keV≤Epo≤20keV. According to the fact that Eq.(48) equals Eq.(49), it is known that the [BK(Epo,ρ,Z)]/εatEpo=10keV of NEA semiconductors with 0.8keV≤Epomax≤2keV equals 0.6. Thus, from assumption thatK(Epo,ρ,Z) at 0.8keV≤Epo≤3keV of NEA semiconductors with 0.8keV≤Epomax≤2 keV approximately equals constant and conclusion thatK(Epo,ρ,Z)at 2keV≤Epo≤20keV decreases extremely slowly with increasingEpo, it can be concluded that the [BK(Epo,ρ,Z)]/εat 0.8keV≤Epo≤3keV of NEA semiconductors with 0.8keV≤Epomax≤2keV approximately equal 0.6. Therefore, from Eq.(50) and the conclusion that the [BK(Epo,ρ,Z)]/εat 0.5Epomax≤Epo≤10Epomaxof the NEA semiconductors with 2keV≤Epomax≤5keV also equals 0.6[12], [BK(Epo,ρ,Z)]/εat 0.5Epomax≤Epo≤10Epomaxof NEA semiconductors with 2keV≤Epomax≤5keV and that at 0.8keV≤Epo≤3keV of NEA semiconductors with 0.8keV≤Epomax≤5keV can be expressed as follows:

    B=1.6667εCNEA(Epomax,ρ,Z)

    (51)

    Whereεcan be expressed as[26]:

    (52)

    whereEgandχare the width of forbidden band and the efficient electron affinity, respectively. Theχof NEA semiconductors can considered as 0, and theεof NEA diamond calculated withχ=0,Eg=5.47eV[27]and Eq.(52) is shown in Table.1, theεof NEA GaN calculated withχ=0,Eg=3.2eV[11]and Eq.(52) is also shown in Table.1.

    The formula forδof NEA semiconductors which is used by some authors to analyzeBof NEA semiconductors is written as[22]:

    (53)

    Tab.1 Parameters of NEA diamond and GaN with 0.8keV≤Epomax≤5keV

    12 Results and discussion

    Theδof NEA GaN and three diamond with 2keV≤Epomax≤5keV calculated with correspondingEpoand Eqs.(10), (11), (12), (15), (16), (19), (20), (23) and (24) are shown in Figs.1-3[4, 13]. Seen from Figs. 1 and 3[4, 13], it is known that the calculatedδof NEA GaN withEpomax=3.0keV and diamond withEpomax=2.3keV agree very well with corresponding experimental ones[4, 13].Seen from Figs. 2 and 3[4], as a whole, it is known that the calculatedδof NEA diamond withEpomax=2.75keV and diamond withEpomax=2.64keV agree with corresponding experimental ones[4]. But there are some differences between some calculatedδof NEA diamond withEpomax=2.75keV and diamond withEpomax=2.64keV and corresponding experimental ones. We assume that four factors may lead to this result. First, primary electron impingement modified the surface termination and thus altered theδduring the course of measuringδ. The larger primary current was used during the measurement of theδof NEA diamond withEpomax=2.75keV and diamond withEpomax=2.64keV[4]. Second, there are larger experimental errors in the experimentalδof NEA diamond withEpomax=2.75keV and diamond withEpomax=2.64keV. Third, from the course of deducing Eqs.(15), (26), (19), (20), (23) and (24), it is known that the larger experimental errors in theEpoandδof the NEA diamond which are used to calculate [BK(Epo,ρ,Z=23)C]/εcan lead to some difference between realδand calculated ones.Fourth, there is an approximation thatK(Epo,ρ,Z=23) at 0.5Epomax≤Epo≤10Epomaxof NEA diamond with 2keV≤Epomax≤5keV ≈K(Epo,ρ,Z=23)C2-5made in the course of deducing the Eqs.(15), (26), (19), (20), (23) and (24).Thus, it can be concluded that Eqs.(10), (11) and (12) can be used to calculate theδat 1.5keV≤Epo≤30keV of NEA GaN withEpomax=3.0keV, and that (15), (16), (19), (20), (23) and (24) can be approximately used to calculate theδat 0.5Epomax≤Epo≤3keV of corresponding NEA diamond. Therefore, the method of deducing the formulas forδat 0.5Epomax≤Epo≤10Epomaxof NEA semiconductors with 2keV≤Epomax≤5keV, which has been proved to be correct in our former study[12], has been further proved to be correct.

    There is only one assumption thatK(Epo,ρ,Z) at 0.5Epomax≤Epo≤10Epomaxof the NEA semiconductors with 2keV≤Epomax≤5keV ≈K(Epo,ρ,Z)C2-5made in the course of deducing Eqs.(10), (11), (12), (15), (16), (19), (20), (23) and (24). So the assumption thatK(Epo,ρ,Z) at 0.5Epomax≤Epo≤10Epomaxof the NEA semiconductors with 2keV≤Epomax≤5keV ≈K(Epo,ρ,Z)C2-5, which has been proved to be correct in our former study[12], has been further proved to be correct.

    Theδat 0.8keV≤Epo≤3keV of two NEA GaN and three NEA diamond with 0.8keV≤Epomax≤2keV calculated with correspondingEpoand Eqs.(27), (28), (31), (32), (35), (36), (39), (40), (43) and (44) are shown in Figs. 2, 4 and 5[4, 14]. Seen from Figs. 2, 4 and 5[4, 14], as a whole, it is known that the calculatedδof the two NEA GaN and three NEA diamond with 0.8keV≤Epomax≤2keV agree well with corresponding experimental ones[4, 14]. But there are some differences between the experimentalδat 2.45keV≤Epo≤2.9keV of the NEA diamond withEpomax=1.72keV[4]and corresponding calculated ones. According to the shape ofδand the fact that experimentalδof the NEA diamond withEpomax=1.72keV reachesδmat 1.72keV, theδat 2.45keV≤Epo≤2.9keV of the NEA diamond withEpomax=1.72keV should decrease with increasingEpo. But the experimentalδat 2.45keV≤Epo≤2.9keV of the NEA diamond withEpomax=1.72keV increase with increasingEpo. So we assume two factors may mainly lead to this result. First, there are larger experimental errors inδat 2.45keV≤Epo≤2.9keV of the NEA diamond withEpomax=1.72keV. Second, primary electron impingement modified the surface termination and thus altered theδat 2450eV≤Epo≤2.9keV during the course of measuringδof the NEA diamond withEpomax=1.72keV. Thus, it can be concluded that Eqs.(27), (28), (31), (32), (35), (36), (39), (40), (43) and (44) can be used to calculate theδat 0.8keV≤Epo≤3keV of corresponding NEA semiconductors with 0.8keV≤Epomax≤2keV, and that the method of deducing the formulas forδat 0.8keV≤Epo≤3keV of NEA semiconductors with 0.8keV≤Epomax≤2keV is correct.

    There is only one assumption thatK(Epo,ρ,Z) at 0.8keV≤Epo≤3keV of the NEA semiconductors with 0.8keV≤Epomax≤2keV≈K(Epo,ρ,Z)C0.8-2made in the course of deducing Eqs.(27), (28), (31), (32), (35), (36), (39), (40), (43) and (44). Thus, the assumption thatK(Epo,ρ,Z) at 0.8keV≤Epo≤3keV of the NEA semiconductors with 0.8keV≤Epomax≤2keV can be approximately looked on asK(Epo,ρ,Z)C0.8-2is correct. Therefore, from the fact that the assumption thatK(Epo,ρ,Z) at 0.5Epomax≤Epo≤10Epomaxof the NEA semiconductors with 2keV≤Epomax≤5keV approximately equalK(Epo,ρ,Z)C2-5, it can be concluded that Eq.(51) deduced from some existed formulas and the two assumptions is correct. TheBof NEA diamond and GaN with 0.8keV≤Epomax≤5keV calculated with Eq.(51), corresponding CNEA(Epomax,ρ,Z) andεshown in Table.1 are still shown in Table.1.

    Up to now, none have deduced formulas forBof NEA emitters. Some authors obtained theBof NEA semiconductorsby fitting Eq.(53) to the experimental data[13, 28], and theBof NEA GaN withEpomax=3.0keV and that of NEA GaP withEpomax=5.0keV obtained by the authors are 0.36 and 0.33, respectively. TheBof NEA GaN withEpomax=3.0keV calculated with parameters shown in Table.1 and Eq.(51) is 0.5418, and theBof NEA GaP withEpomax=5.0keV calculated with parameters (ε=6.3552eV,CNEA(Epomax,ρ,Z)=6.44×10-2) shown in Table.1of our former study[12]and Eq.(51) is 0.68226. Seen from comparison between theBof NEA GaN withEpomax=3.0keV and NEA GaP withEpomax=5.0keV obtained by the authors[13, 28]and correspondingBcalculated by us, it is known that theBcalculated by us are about 1.6667 times of correspondingBobtained by the authors[13, 28]. Seen from Eqs.(4), (6) and (51) and the courses of deducing Eqs.(4), (6) and (51), it is known that the important factor that dEpx/dxincreases with increasingx[12]or parameterK(Epo,ρ,Z) was taken into account in the course of deducing Eqs.(4), (6) and (51), and that this important factor was not taken into account in the course of deducing Eq.(53)[13, 22, 28]. According to the physical mechanism of SEE, the parameterK(Epo,ρ,Z) must be taken into account in the course of deducing formula forδ[12, 23, 29-31]. From the courses of deducing Eqs.(4), (6) and (51) and calculatingBwith Eq.(51), it is known that theBof NEA GaN withEpomax=3.0keV and NEA GaPwithEpomax=5.0keV calculated by us approximately equal correspondingBobtained by the authors if parameterK(Epo,ρ,Z) is not taken into account or taken to be 1. Thus, from above analysis, it concludes that theBof NEA semiconductors calculated with Eq.(51) deduced from Eqs.(4), (6) and some existed formulas are more reasonable than theBobtained by the authors by fitting Eq.(53) to the experimental data, and that Eq.(51) can be used to calculate theBof NEA semiconductors with 0.8keV≤Epomax≤5keV.

    Up to now, none of formulas for 1/αof NEA semiconductors was deduced, and the 1/αof NEA semiconductors were not measured experimentally. The expression ofRis important for authors to obtain the 1/αof NEA semiconductors by fitting Eq.(53) to the experimental data. For example, when some authors obtained 1/αof NEA GaN withEpomax=3.0keV by using the expression ofR[R=0.01(Epo)2(μm),Epoin keV] and fitting Eq.(53) to the experimental data, the obtained 1/αof NEA GaN withEpomax=3keV is 300 ?[13]; when some authors obtained 1/αof NEA GaN withEpomax=3.0keV by using the expression ofR[R=0.027(Epo)2(μm),Epoin keV] and fitting Eq.(53) to the experimental data, the obtained 1/αof NEA GaN withEpomax=3.0keV is 820 ?[13].Finally, the authors assumed that the 1/αof NEA GaN withEpomax=3.0keV was estimated to be between 300 and 800 ?[13]. The expression ofRis also important for us to obtain the 1/αof NEA semiconductors with 0.8keV≤Epomax≤5keV. A problem arises, are Eqs.(1),(2) and (3) suitable to diamond and GaN According to the total stopping powers calculated with ESTAR program[32]and Eqs.(1),(2) and (3), we found that Eqs.(1),(2) and (3) are suitable to diamond, GaN, GaP, GaAs, etc. For example, based on Eq.(3), the dEpx/dxat 10keV≤Epo≤100keV can be expressed as Eq.(47), and the dEpx/dxin diamond at 20keV calculated with Eq.(47) and corresponding parameters is equal to 0.3915 eV/?; the total stopping power (i.e.,dEpx/dx) in diamond at 20keV calculated with ESTAR program is equal to 11.69MeV·cm2/g,ρof diamond is equal to 3.52g/cm3. Thus, the dEpx/dxin diamond at 20keV calculated with ESTAR program is equal to (11.69MeV·cm2/g) (3.52g/cm3), that is, the dEpx/dxin diamond at 20keV calculated with ESTAR program is equal to 0.4115eV/?.Therefore,the dEpx/dxin diamond at 20keV calculated with Eq.(47) approximately equals that calculated with ESTAR program. We found that dEpx/dxin diamond at 10keV≤Epo≤100keV calculated with Eq.(47) approximately equal corresponding those calculated with ESTAR program by similar method. Hence, it can be concluded that Eq.(3) is suitable to diamond. Therefore, from the fact that Eqs.(1),(2) and (3) are suitable to diamond, GaN, GaP, GaAs, etc, it can be concluded that the method presented here of calculating the 1/αof NEA semiconductors with 0.8keV≤Epomax≤5keV is correct, and that the 1/αof NEA semiconductors with 0.8keV≤Epomax≤5keV are correct.

    Electron beam impingement can modify the surface termination of NEA diamond and thus alter theδ,Band 1/αof NEA diamond[4]. The NEA diamond withEpomax=1.1keV is boron (B)-doped and hydrogen (H) terminated NEA diamond[4]; the NEA diamond withEpomax=2.64keV is B-doped and H terminated NEA diamond after 880s of electron beam impingement atJ=4.9×10-4A/cm2[4]. In other words, the NEA diamond withEpomax=2.64keV studied in this study is the NEA diamond withEpomax=1.1keV studied in this study after 880s of electron beam impingement atJ=4.9×10-4A/cm2[4]. The NEA diamond withEpomax=2.75keV is the NEA diamond withEpomax=2.64keV after further electron beam impingement[4]. Considering theBand 1/αof NEA diamond shown in Table.1, it is known that the 1/αof NEA diamond withEpomax=2.75keV is larger than that of NEA diamond withEpomax=2.64keV which is also larger than that of NEA diamond withEpomax=1.1keV, and that theBof NEA diamond withEpomax=2.75keV is less than that of NEA diamond withEpomax=2.64keV which is also less than that of NEA diamond withEpomax=1.1keV. Thus, according to the relationships among the NEA diamond withEpomax=2.75keV, NEA diamond withEpomax=2.64keV and NEA diamond withEpomax=1.1keV, it can be concluded that the electron beam impingement can increases the 1/αof B-doped and H terminated NEA diamond by modifying the surface termination, and that the electron beam impingement can decreases theBof B-doped and H terminated NEA diamond by modifying the surface termination. If we have more experimentalδmandEpomaxand the information of sample preparations of NEA emitters, we can obtain more quantitative influences of sample preparations onBand 1/αof NEA semiconductors by above method. Thus, from the fact that sample preparations of a given NEA semiconductor decide theδat givenEpo,δm,Band 1/αand the fact that theBand 1/αof a given kind of semiconductor almost decide the value ofδmand theδat givenEpo, it concludes that the theoretical research ofBand 1/αhelp to research quantitative influences of sample preparation on SEE from NEA semiconductors with 0.8keV≤Epomax≤5keV and produce desirable NEA emitters such as NEA diamond.

    13 Conclusions

    According to the characteristics of SEE from NEA semiconductors with 0.8keV≤Epomax≤5keV,R, existing universal formulas forδof NEA semiconductors[12]and experimental data[4, 13, 14], special formulas forδat 0.5Epomax≤Epo≤10Epomaxof NEA diamond and GaN with 2keV≤Epomax≤5keV andδat 0.8keV≤Epo≤3keV of NEA diamond and GaN with 0.8keV≤Epomax≤2keV were deduced and experimentally proved, respectively.There is only one assumption thatK(Epo,ρ,Z) at 0.8keV≤Epo≤3keV of NEA semiconductors with 0.8keV≤Epomax≤2keV≈K(Epo,ρ,Z)C0.8-2made in the course of deducing Eqs.(27), (28), (31), (32), (35), (36), (39), (40), (43) and (44). Thus, the assumption thatK(Epo,ρ,Z) at 0.8keV≤Epo≤3keV of NEA semiconductors with 0.8keV≤Epomax≤2keV can be approximately looked on asK(Epo,ρ,Z)C0.8-2is correct. Therefore, from the fact that the assumption thatK(Epo,ρ,Z) at 0.5Epomax≤Epo≤10Epomaxof the NEA semiconductors with 2keV≤Epomax≤5keV approximately equalK(Epo,ρ,Z)C2-5, it can be concluded that Eq.(51) forBof NEA semiconductors with 0.8keV≤Epomax≤5keV deduced from some existed formulas and the two assumptions is correct.

    According to the fact that Eqs.(1)-(3) are suitable to diamond, GaN, GaP, GaAs, the courses of calculating 1/αin Sections 2-10 and the comparison between the 1/αcalculated in Sections 2-10 and the 1/αdetermined by other authors[13], it can be concluded that the method presented here of calculating the 1/αof NEA semiconductors with 0.8keV≤Epomax≤5keV is correct, and that the obtained 1/αof NEA diamond and GaN with 0.8keV≤Epomax≤5keV are correct. From the conclusion that the theoretical research ofBand 1/αin this study are correct, the relationships amongδm,δ,Band 1/αand the fact that sample preparations of a given NEA emitter decide theBand 1/α, it concludes that the theoretical research ofBand 1/αin this study help to research quantitative influences of different sample preparations on SEE from NEA semiconductors and produce desirable NEA emitters such as NEA diamond.

    猜你喜歡
    二次電子信息工程工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    江蘇高速公路信息工程有限公司
    福建工程學(xué)院
    信息工程技術(shù)的應(yīng)用與發(fā)展
    二次電子倍增對(duì)射頻平板腔建場(chǎng)過(guò)程的影響?
    計(jì)算機(jī)網(wǎng)絡(luò)在電子信息工程中的應(yīng)用
    材料二次電子產(chǎn)額對(duì)腔體雙邊二次電子倍增的影響?
    福建工程學(xué)院
    不同帶電情況下介質(zhì)材料二次電子發(fā)射特性研究
    伊人久久精品亚洲午夜| 淫秽高清视频在线观看| 男女视频在线观看网站免费| 韩国高清视频一区二区三区| 免费av观看视频| 成人毛片a级毛片在线播放| 又大又黄又爽视频免费| 国产精品久久视频播放| 最近最新中文字幕大全电影3| 白带黄色成豆腐渣| av国产免费在线观看| 日韩强制内射视频| 秋霞在线观看毛片| 久久亚洲国产成人精品v| 午夜福利高清视频| 国产亚洲最大av| 国产人妻一区二区三区在| 国产色爽女视频免费观看| 成人亚洲精品一区在线观看 | 中文字幕免费在线视频6| 欧美日本视频| 欧美日韩在线观看h| 国产视频首页在线观看| 日本黄色片子视频| 国产一区二区三区综合在线观看 | 午夜福利网站1000一区二区三区| 亚洲av成人av| 能在线免费观看的黄片| 久久久精品免费免费高清| 天堂中文最新版在线下载 | av一本久久久久| 国产精品一区www在线观看| 亚洲在线观看片| 欧美日韩一区二区视频在线观看视频在线 | 欧美潮喷喷水| 91午夜精品亚洲一区二区三区| 777米奇影视久久| 最后的刺客免费高清国语| 午夜精品国产一区二区电影 | 欧美三级亚洲精品| 一级片'在线观看视频| 亚洲四区av| 观看免费一级毛片| 午夜福利高清视频| 激情 狠狠 欧美| 午夜激情欧美在线| 80岁老熟妇乱子伦牲交| 免费高清在线观看视频在线观看| 校园人妻丝袜中文字幕| 99热这里只有精品一区| 黄色日韩在线| 亚洲av福利一区| 国产精品熟女久久久久浪| 精品久久久久久久久久久久久| .国产精品久久| 亚洲成人中文字幕在线播放| 久久97久久精品| 99久国产av精品| 天天一区二区日本电影三级| 亚洲美女视频黄频| 禁无遮挡网站| 久久这里有精品视频免费| 久久久久久九九精品二区国产| 久久久国产一区二区| 国产淫片久久久久久久久| 免费观看精品视频网站| 国产黄色免费在线视频| 中国国产av一级| 麻豆乱淫一区二区| 不卡视频在线观看欧美| 99久久精品热视频| 亚洲va在线va天堂va国产| 韩国高清视频一区二区三区| 黄色配什么色好看| 国产成人免费观看mmmm| 老司机影院成人| 国产日韩欧美在线精品| 精品国产露脸久久av麻豆 | 中文字幕免费在线视频6| 国产精品.久久久| 少妇丰满av| 在线观看免费高清a一片| 如何舔出高潮| 亚洲在久久综合| 蜜臀久久99精品久久宅男| 成人漫画全彩无遮挡| 欧美丝袜亚洲另类| 九草在线视频观看| 免费不卡的大黄色大毛片视频在线观看 | 欧美高清成人免费视频www| 国产亚洲5aaaaa淫片| 亚洲国产欧美人成| 久久精品久久久久久久性| 欧美激情国产日韩精品一区| 99久久中文字幕三级久久日本| 国产精品熟女久久久久浪| 欧美潮喷喷水| 亚洲熟女精品中文字幕| 性色avwww在线观看| 一级爰片在线观看| 国产av在哪里看| 午夜亚洲福利在线播放| 尤物成人国产欧美一区二区三区| 国产永久视频网站| 国产高清有码在线观看视频| 日日啪夜夜爽| 亚洲精品乱码久久久久久按摩| 一级二级三级毛片免费看| 国产精品蜜桃在线观看| 白带黄色成豆腐渣| 国产成人福利小说| 欧美成人精品欧美一级黄| 一个人看的www免费观看视频| 日日撸夜夜添| 免费在线观看成人毛片| 亚洲色图av天堂| 免费av毛片视频| 大香蕉97超碰在线| 亚洲精华国产精华液的使用体验| 日韩制服骚丝袜av| 简卡轻食公司| 成人高潮视频无遮挡免费网站| 精品国产三级普通话版| 五月天丁香电影| 欧美变态另类bdsm刘玥| 又大又黄又爽视频免费| 五月天丁香电影| 免费av观看视频| 免费观看a级毛片全部| av卡一久久| 免费黄频网站在线观看国产| 久久99蜜桃精品久久| 女人十人毛片免费观看3o分钟| 国产在线一区二区三区精| 日本免费在线观看一区| 免费看美女性在线毛片视频| 国产高清三级在线| av播播在线观看一区| 欧美日韩视频高清一区二区三区二| 九九爱精品视频在线观看| 亚洲国产高清在线一区二区三| 国产亚洲午夜精品一区二区久久 | 国产精品99久久久久久久久| 亚洲一级一片aⅴ在线观看| 亚洲国产精品成人久久小说| 国内精品一区二区在线观看| 高清av免费在线| 人妻系列 视频| 亚洲最大成人中文| 777米奇影视久久| a级毛色黄片| 国产黄片美女视频| or卡值多少钱| 直男gayav资源| 国内精品美女久久久久久| 国产精品爽爽va在线观看网站| 美女高潮的动态| 三级经典国产精品| 久久久久久国产a免费观看| 天堂俺去俺来也www色官网 | 精品久久久久久久久av| 免费黄网站久久成人精品| 国产精品久久久久久久电影| 听说在线观看完整版免费高清| 嘟嘟电影网在线观看| 看十八女毛片水多多多| 国产一区二区亚洲精品在线观看| 男人狂女人下面高潮的视频| 午夜福利网站1000一区二区三区| 青青草视频在线视频观看| 日本三级黄在线观看| 国产高潮美女av| 久久综合国产亚洲精品| 九九爱精品视频在线观看| 两个人的视频大全免费| 嫩草影院新地址| 中文字幕人妻熟人妻熟丝袜美| 精品人妻偷拍中文字幕| 观看美女的网站| 中文字幕人妻熟人妻熟丝袜美| ponron亚洲| 18禁在线播放成人免费| 极品少妇高潮喷水抽搐| 久久久亚洲精品成人影院| 啦啦啦中文免费视频观看日本| 国产色爽女视频免费观看| 日产精品乱码卡一卡2卡三| 天天躁日日操中文字幕| 亚洲丝袜综合中文字幕| 亚洲美女视频黄频| 免费看av在线观看网站| 亚洲精品aⅴ在线观看| 久久99热这里只频精品6学生| 99热这里只有是精品50| 亚洲欧美精品专区久久| 亚洲精品日本国产第一区| 久久久久久久久久成人| 有码 亚洲区| 亚洲久久久久久中文字幕| 中文天堂在线官网| 欧美日韩国产mv在线观看视频 | 国产高清三级在线| 美女大奶头视频| 国产精品嫩草影院av在线观看| 国产成人一区二区在线| 2018国产大陆天天弄谢| 国产在线一区二区三区精| 日韩av不卡免费在线播放| 久久韩国三级中文字幕| 国产伦理片在线播放av一区| 久久久国产一区二区| 中文字幕制服av| 大陆偷拍与自拍| 嫩草影院精品99| 日日啪夜夜爽| 亚洲精品成人久久久久久| 午夜福利视频1000在线观看| 精品酒店卫生间| 在线观看一区二区三区| 久久精品国产亚洲网站| 麻豆久久精品国产亚洲av| 69人妻影院| 成年女人在线观看亚洲视频 | av国产久精品久网站免费入址| 国产激情偷乱视频一区二区| 亚洲伊人久久精品综合| 一级av片app| 国产精品一区二区性色av| 一区二区三区四区激情视频| 尾随美女入室| 久久久久久国产a免费观看| 亚洲不卡免费看| 亚洲精品亚洲一区二区| 日本一二三区视频观看| 国产精品一区二区在线观看99 | 联通29元200g的流量卡| 国产一区二区在线观看日韩| 日本黄色片子视频| 亚洲精品日韩在线中文字幕| 亚洲国产色片| 免费观看在线日韩| 性插视频无遮挡在线免费观看| a级一级毛片免费在线观看| 热99在线观看视频| 欧美 日韩 精品 国产| 国产永久视频网站| 久久久久网色| av.在线天堂| 嫩草影院新地址| 美女被艹到高潮喷水动态| 草草在线视频免费看| a级毛色黄片| 日本黄大片高清| 午夜福利视频精品| 国产探花极品一区二区| 综合色av麻豆| 国产淫语在线视频| 亚洲自偷自拍三级| 亚洲天堂国产精品一区在线| 日韩不卡一区二区三区视频在线| 国产一级毛片在线| 亚洲真实伦在线观看| 国产精品熟女久久久久浪| 伦理电影大哥的女人| 国产视频首页在线观看| 久久久精品免费免费高清| 国产精品一及| 久久久久久久久久久丰满| 久久99蜜桃精品久久| av女优亚洲男人天堂| 人人妻人人澡人人爽人人夜夜 | 赤兔流量卡办理| 亚洲综合色惰| 久久久久久久久久久丰满| 少妇人妻一区二区三区视频| 午夜爱爱视频在线播放| 成人毛片60女人毛片免费| 大片免费播放器 马上看| 伦精品一区二区三区| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av天美| 自拍偷自拍亚洲精品老妇| 亚洲欧美中文字幕日韩二区| 亚洲第一区二区三区不卡| 一个人观看的视频www高清免费观看| 97超碰精品成人国产| 又粗又硬又长又爽又黄的视频| 亚洲久久久久久中文字幕| 亚洲乱码一区二区免费版| av女优亚洲男人天堂| 在线天堂最新版资源| 日日摸夜夜添夜夜爱| 亚洲精华国产精华液的使用体验| 男女国产视频网站| 亚洲av中文字字幕乱码综合| 日韩av免费高清视频| 天堂影院成人在线观看| 久久99热这里只有精品18| 女人被狂操c到高潮| 亚洲激情五月婷婷啪啪| 国产麻豆成人av免费视频| 亚洲欧美一区二区三区黑人 | 免费看a级黄色片| 在线免费十八禁| 精品国产露脸久久av麻豆 | 特级一级黄色大片| 亚洲av一区综合| 小蜜桃在线观看免费完整版高清| 男女国产视频网站| 18+在线观看网站| 2018国产大陆天天弄谢| 国产探花在线观看一区二区| 九色成人免费人妻av| 久久久a久久爽久久v久久| 久久99热这里只有精品18| 成人亚洲精品av一区二区| 国产真实伦视频高清在线观看| 非洲黑人性xxxx精品又粗又长| 永久网站在线| 欧美日韩国产mv在线观看视频 | 一个人看视频在线观看www免费| 久久久久久国产a免费观看| 国产色婷婷99| 欧美精品国产亚洲| 午夜精品一区二区三区免费看| www.色视频.com| 成人亚洲精品av一区二区| 深夜a级毛片| 免费在线观看成人毛片| 只有这里有精品99| 女人被狂操c到高潮| 国产av在哪里看| 午夜激情福利司机影院| 亚洲精品亚洲一区二区| 国产乱来视频区| 男女啪啪激烈高潮av片| 国产精品久久久久久精品电影小说 | 亚洲精品一区蜜桃| 精品国产三级普通话版| 欧美成人午夜免费资源| 婷婷六月久久综合丁香| 丝瓜视频免费看黄片| 3wmmmm亚洲av在线观看| 特大巨黑吊av在线直播| 国产一区二区在线观看日韩| 欧美成人午夜免费资源| 99热网站在线观看| 最近最新中文字幕大全电影3| 亚洲av男天堂| 中文在线观看免费www的网站| 日韩制服骚丝袜av| 最近最新中文字幕大全电影3| 久久久久久伊人网av| 欧美成人午夜免费资源| 久久久久久久久大av| 直男gayav资源| 精品久久久久久电影网| 天堂影院成人在线观看| 国产精品人妻久久久影院| 久久久a久久爽久久v久久| 亚洲一级一片aⅴ在线观看| 中文在线观看免费www的网站| 久久久久久久久大av| 极品少妇高潮喷水抽搐| 五月玫瑰六月丁香| 欧美潮喷喷水| 久久久精品欧美日韩精品| 免费av观看视频| 我要看日韩黄色一级片| 亚洲无线观看免费| 最近中文字幕高清免费大全6| 不卡视频在线观看欧美| 毛片一级片免费看久久久久| 老司机影院毛片| av国产久精品久网站免费入址| 三级男女做爰猛烈吃奶摸视频| 亚洲国产最新在线播放| 国产老妇女一区| 丰满少妇做爰视频| 精品熟女少妇av免费看| 国产片特级美女逼逼视频| 永久免费av网站大全| 久久久久精品性色| 蜜臀久久99精品久久宅男| 天堂俺去俺来也www色官网 | 99热这里只有是精品在线观看| 日本与韩国留学比较| 超碰97精品在线观看| 亚洲精品成人久久久久久| 亚洲国产成人一精品久久久| 亚洲综合色惰| 国产探花在线观看一区二区| 亚洲在线观看片| 午夜激情久久久久久久| 成人午夜精彩视频在线观看| 久久久精品欧美日韩精品| 国产伦理片在线播放av一区| 两个人视频免费观看高清| 国产成人精品福利久久| 日韩欧美精品免费久久| 永久免费av网站大全| 熟女人妻精品中文字幕| 亚洲欧美精品专区久久| 熟妇人妻不卡中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 少妇被粗大猛烈的视频| 又爽又黄a免费视频| 免费不卡的大黄色大毛片视频在线观看 | 26uuu在线亚洲综合色| 国产91av在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 18+在线观看网站| 深爱激情五月婷婷| 国内精品一区二区在线观看| 一区二区三区乱码不卡18| 天堂中文最新版在线下载 | 午夜福利成人在线免费观看| 日日撸夜夜添| 亚洲丝袜综合中文字幕| 青青草视频在线视频观看| 国内精品一区二区在线观看| 一级毛片我不卡| 日本-黄色视频高清免费观看| 久久久色成人| 亚洲精品自拍成人| 一级av片app| 亚洲av成人精品一二三区| 老女人水多毛片| xxx大片免费视频| 午夜视频国产福利| 久久99热这里只频精品6学生| 白带黄色成豆腐渣| 99久国产av精品国产电影| 22中文网久久字幕| 欧美丝袜亚洲另类| 久久久久精品久久久久真实原创| 国产一区有黄有色的免费视频 | 免费黄频网站在线观看国产| 国产精品日韩av在线免费观看| 亚洲精华国产精华液的使用体验| 69av精品久久久久久| 九九在线视频观看精品| 亚洲欧美中文字幕日韩二区| 亚洲自拍偷在线| 亚洲美女搞黄在线观看| 亚洲国产欧美在线一区| 中国美白少妇内射xxxbb| 69av精品久久久久久| 国产av码专区亚洲av| 好男人在线观看高清免费视频| freevideosex欧美| 熟妇人妻不卡中文字幕| 午夜激情久久久久久久| 国产伦在线观看视频一区| 日日摸夜夜添夜夜爱| 97热精品久久久久久| 国产一区二区三区综合在线观看 | 精品午夜福利在线看| 国产日韩欧美在线精品| av在线天堂中文字幕| 看免费成人av毛片| 免费观看的影片在线观看| 国内少妇人妻偷人精品xxx网站| 欧美丝袜亚洲另类| 亚洲伊人久久精品综合| a级一级毛片免费在线观看| 亚洲av一区综合| 免费av不卡在线播放| 成年人午夜在线观看视频 | 水蜜桃什么品种好| 欧美日韩精品成人综合77777| 亚洲天堂国产精品一区在线| 亚洲精品国产成人久久av| 免费大片黄手机在线观看| 性色avwww在线观看| 久久热精品热| 亚洲人成网站在线播| 亚洲av免费在线观看| 中文字幕av在线有码专区| 日本av手机在线免费观看| 国产男女超爽视频在线观看| 日韩 亚洲 欧美在线| 黄片wwwwww| 免费黄频网站在线观看国产| 中国国产av一级| 亚洲成色77777| 久久久久精品性色| eeuss影院久久| 一级爰片在线观看| 欧美日韩视频高清一区二区三区二| 在线a可以看的网站| 男人爽女人下面视频在线观看| 国产黄频视频在线观看| 精品人妻一区二区三区麻豆| av一本久久久久| 成年版毛片免费区| 久久久久网色| eeuss影院久久| 国产色婷婷99| 久久精品久久精品一区二区三区| 天堂中文最新版在线下载 | 老女人水多毛片| 噜噜噜噜噜久久久久久91| 国产白丝娇喘喷水9色精品| 男人爽女人下面视频在线观看| 亚洲欧美日韩无卡精品| 国产亚洲av片在线观看秒播厂 | 国产淫语在线视频| 国产av国产精品国产| 三级国产精品欧美在线观看| 嘟嘟电影网在线观看| 亚洲自偷自拍三级| 不卡视频在线观看欧美| 日韩亚洲欧美综合| 亚洲欧美日韩无卡精品| 亚洲av成人精品一区久久| 国产视频首页在线观看| 色网站视频免费| 国产黄色视频一区二区在线观看| 少妇丰满av| 美女被艹到高潮喷水动态| 成人午夜高清在线视频| 国产精品综合久久久久久久免费| 精品99又大又爽又粗少妇毛片| 国产成人精品婷婷| 一个人看视频在线观看www免费| 国产亚洲精品久久久com| 国产精品无大码| 国产成人a区在线观看| 亚洲av一区综合| 天堂中文最新版在线下载 | 国产日韩欧美在线精品| 日本av手机在线免费观看| 国产午夜福利久久久久久| 色视频www国产| 亚洲av.av天堂| 日日摸夜夜添夜夜添av毛片| 精品久久久精品久久久| 亚洲精品,欧美精品| 中文在线观看免费www的网站| 亚洲av电影在线观看一区二区三区 | 欧美xxⅹ黑人| 欧美 日韩 精品 国产| 高清av免费在线| 欧美激情国产日韩精品一区| 久久久色成人| 五月伊人婷婷丁香| 可以在线观看毛片的网站| 亚洲欧美日韩卡通动漫| 日本黄大片高清| 韩国高清视频一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 十八禁网站网址无遮挡 | 哪个播放器可以免费观看大片| 日韩视频在线欧美| 日韩av在线大香蕉| 男人舔奶头视频| 欧美成人午夜免费资源| 最近视频中文字幕2019在线8| 亚洲成人av在线免费| 韩国av在线不卡| 高清日韩中文字幕在线| 特级一级黄色大片| 成人性生交大片免费视频hd| 久久99热这里只有精品18| 日韩成人伦理影院| 高清欧美精品videossex| av免费观看日本| 久久这里有精品视频免费| 好男人视频免费观看在线| av在线观看视频网站免费| 十八禁国产超污无遮挡网站| 一区二区三区四区激情视频| 男女啪啪激烈高潮av片| 在线观看人妻少妇| 国产黄片视频在线免费观看| 精品人妻偷拍中文字幕| 天堂影院成人在线观看| 校园人妻丝袜中文字幕| 天天躁夜夜躁狠狠久久av| 尤物成人国产欧美一区二区三区| 超碰av人人做人人爽久久| 麻豆久久精品国产亚洲av| 内地一区二区视频在线| 乱人视频在线观看| 亚洲av日韩在线播放| 亚洲美女搞黄在线观看| 一级二级三级毛片免费看| 国产精品一区二区性色av| 欧美成人午夜免费资源| 深爱激情五月婷婷| 欧美精品一区二区大全| 亚洲不卡免费看| 免费大片18禁| 边亲边吃奶的免费视频| 直男gayav资源| 一个人免费在线观看电影| 午夜福利高清视频| 在线观看人妻少妇| 国精品久久久久久国模美| 亚洲av中文av极速乱| 99热这里只有是精品50| 亚洲国产精品成人久久小说| 亚洲综合色惰| 亚洲最大成人中文| 非洲黑人性xxxx精品又粗又长| 国产一区亚洲一区在线观看| 三级经典国产精品| 干丝袜人妻中文字幕| 国产一区二区亚洲精品在线观看| 国产熟女欧美一区二区| 亚洲av电影不卡..在线观看| 91久久精品国产一区二区三区| 精品熟女少妇av免费看| 亚洲久久久久久中文字幕|