• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks

    2022-09-24 08:00:28JianZhang張健YimingLiu劉一鳴andZhanchunTu涂展春
    Chinese Physics B 2022年9期
    關鍵詞:張健嚴謹性題設

    Jian Zhang(張健), Yiming Liu(劉一鳴), and Zhanchun Tu(涂展春)

    Department of Physics,Beijing Normal University,Beijing 100875,China

    Keywords: neural networks,planetary orbit,conserved quantity

    1. Introduction

    Nowadays, with the flourishing development of artificial intelligence(AI),[2,3]machine learning has become a new“smart” tool for analyzing experimental data in fundamental science, such as astrophysics,[4,5]biological physics,[6,7]condensed-matter physics,[8-13]engineering mechanics,[14]high-energy physics,[15]statistical physics,[16-21]and so on.It is the latest trend to discover fundamental laws of physics based on machine learning without prior experience about physics. Zhao[22]inferred the dynamics of two models including a representative model of low-dimensional nonlinear dynamical systems and a spatiotemporal model of reactiondiffusion systems.He found that,instead of establishing equations of motion,the learning machine could be uesd to infer the dynamic properties of“black-box”systems. Itenet al.[23]investigated a toy system consisting of the Sun,Mars and Earth by building a neural network named SciNet. Although the training data only contain angles of Mars and the Sun as seen from Earth,they found that the SciNet could switch these angles to a heliocentric representation. This finding implies that the SciNet can gain conceptual insight that the solar system is heliocentric. Qin[24]predicted the orbits of planets in the solar system by designing a method for learning and serving. It is found that the algorithm could learn Kepler’s laws to some extent. In view of these works,we believe that neural networks will bring infinite possibilities for research. In this paper, we employ gated recurrent unit(GRU),[25-27]one of the common neural networks,to explore the fundamental laws of classical mechanics via predicting the orbits of planets. Although the training data only contain position information of planets and the Sun in geocentric system,we find that the Sun is crucial to the generalization ability of neural networks, which inspires an insight that the solar system is heliocentric. We further obtain the evidence for the existence of conserved quantities by making mutual predictions between position and velocity of planets in heliocentric system. The rest content of our paper is organized as follows. In Section 2, we introduce the data of planetary position and velocity and structure of the neural network we adpot. In Section 3, we present our results on the prediction of planetary orbits in geocentric system. In Section 4,we explore the existence of conserved quantities in mechanical systems. The last section is a brief summary and discussion.

    2. Data set and structure of neural network

    The initial data of planetary position and velocity in the heliocentric system come from Jet Propulsion Laboratory Planetary and Lunar Ephemeris DE421.[28]We obtain timedependent data sets of planetary position and velocity in the heliocentric system by solving a set of differential equations governed by Newton’s second law and the law of universal gravitation with time interval 0.01 years (Earth years). Here,we merely consider gravitation between the Sun and planets.The data of planets and the Sun in geocentric system are obtained by subtracting the data of the Earth from the data in heliocentric system. We regard these data as true values of“experimental”data.

    Fig.1. Graphical illustration of the neural network: (a)gated recurrent unit,which includes the reset gate r,the update gate z,the activation h,and the candidate activation ?h;[25,26] (b) the structure of neural network we use, which consists of an input layer, a hidden layer, and an output layer. Note that panel(a)is the concrete structure of each hidden neuron in panel(b).

    Recurrent neural network[29]has been widely used in processing time-series beacuse of its powerful fitting ability.[30]GRU is an improved model of recurrent neural network as shown in Fig. 1(a). The main characteristic for GRU[25,26]is controlling the update of information by introducing gating units, which include a reset gater, an update gatez, an activationh, and a candidate activation ?h. The structure of the neural network in this work is shown in Fig. 1(b). The neural network contains one hidden layer, which is composed of GRU and fully connected with an input layer and an output layer. We use supervised learning algorithm and carry out our work with Keras[31]running on top of Tensorflow.[32]

    3. Prediction of planetary orbits in geocentric system

    In this section, we use the neural network to predict the orbits of planets which consist of Venus, Mars, and Jupiter.The detailed hyperparameters of the neural network are shown in Table 1. The input layer and output layer contain 10 neurons and 1 neuron,respectively. The training set contains 14-year data,totally 1400 samples,and the test set contains 4-year data,totally 400 samples.

    The data processing is given below. We train the neural network to learn a mappingf:

    through the training set,whereUnis an element of time-series.Then we use the trained neural network to predict planetary orbits. During the training,all inputUn(n=1 to 1400)are true values in training set. During the prediction,we merely input ten true values ofUn(n=1401 to 1410)in test set. And then we output the predicted values ofUn(n=1411 to 1800).

    The neural network operates on two types of data in geocentric system. One merely includes the position information of a planet,i.e.,Un= (xan,yan,zan), wherexan,yan, andzanare the coordinates of the planet in geocentric system. Another includes simultaneously position information of a planet and the Sun in geocentric system,i.e.,Un=(xan,yan,zan,xsn,ysn,zsn),wherexsn,ysn, andzsnare the coordinates of the Sun. We normalize the data with constantXmax-Xmin, whereXmaxandXminare the maximum and the minimum ofxanforn= 1 to 1400, respectively. For example,yanis transformed into(yan-Xmin)/(Xmax-Xmin).

    第(Ⅰ)問求解時,不論學生使用正弦定理還是余弦定理,都會求得cos∠ADB的兩個解,學生需要結合題設條件舍棄一解.此問考查學生思維的嚴謹性,有部分學生正是因為缺乏這樣的基本數(shù)學素養(yǎng)失分.

    Table 1. Hyperparameters of the neural network in Section 3.

    Table 2. Test errors of prediction for planetary orbits in Fig.2.

    The predicted orbits of Venus, Mars, and Jupiter are shown in Fig.2. Each figure contains two curves. The dashed line represents true orbit, and the solid line represents predicted orbit. We show the result without considering information of the Sun in the left column. And we show the result with information of the Sun in the right column. By glancing at these images, we find that the predicted values are closer to the true values when considering the Sun. As shown in Table 2, we calculate the test errors (mean squared error) by comparing the predicted values and the true values. The precision for predicted cruves has been significantly improved with the information of the Sun.

    Fig. 2. Images of planet orbits. The dashed line represents the true values,and the solid line represents the predicted values. The results without considering information of the Sun is on the left, and the results with information of the Sun is on the right. (a)Orbit of Venus. (b)Orbit of Mars. (c)Orbit of Jupiter.

    We also predict orbits of planets with information of another planet rather than the Sun. We predict orbits of Venus and Mars with information of Jupiter. As shown in Fig.3,the precision of prediction decreases obviously. Without any prior knowledge, these facts imply that the Sun is particularly important in the model system including Venus, Mars, Jupiter,the Earth, and the Sun. In a way, this finding based on neural networks helps us to gain Copernicus’heliocentric theory.This is one of the main results in our paper.

    Fig.3. Images of orbits with information of Jupiter rather than the Sun. (a)Orbit of Venus. (b)Orbit of Mars.

    4. Evidence for the existence of conserved quantities

    According to the universal approximation theorem,[34,35]the reason for successful prediction is that neural networks can learn a mapping from big data. The predicted results of neural networks may indicate whether there are conserved quantities in a mechanical system. We propose that if there are enough conserved quantities in a system,neural networks can successfully learn the mapping between positon and velocity. In order to explore the existence of conserved quantities, we turn to a model system including Venus, Mars, and Jupiter in heliocentric system since we have found that the Sun plays a very important role in predicting orbits in the previous section.

    We adopt the same structure of neural network shown in Fig. 1. Unlike in the previous section, here the input layer and output layer only contain one neuron, respectively. The training set contains 14-year data of position and velocity in heliocentric system,totally 1400 samples,and the test set contains 12-year data,totally 1200 samples. The hyperparameters of the neural network are shown in Table 3.

    Table 3. Hyperparameters of the neural network in Section 4.

    To demonstrate our idea further, we choose two timedependent series. One is the data of velocityvn=(vnx,vny,vnz), wherevnx,vny, andvnzare the components of velocity for a planet in heliocentric system. The other is the data of positionrn=(xn,yn,zn), wherexn,yn, andznare the coordinates of the planet in heliocentric system. We normalize the data of velocityvnwith constantVmax-Vmin, whereVmaxandVminare the maximum and the minimum ofvnx. We normalize the data of positionrnwith constantRmax-Rmin,whereRmaxandRminare the maximum and the minimum ofxnforn=1-1400,respectively.

    We use the neural network to predictvnfromrn. In training set,rn(n=1-1400)are the features andvn(n=1-1400)are the labels. During the prediction,we inputrn(n=1401-2600)in test set. And then we output the predicted values ofvn(n=1401-2600).

    Predicted hodographs of Venus, Mars, and Jupiter are shown in the left column of Fig. 4. The small deviation between the predicted values and true values implies that the neural network have learned the mappingg:

    Similarly, we use the neural network to predictrnfromvn.The predicted orbits of Venus,Mars and Jupiter are shown in the right column of Fig. 4. The deviation between the predicted values and true values is also small. For each of the three planets,we also use data of 3/4 period in training set to predict data of one period in test set, respectively. And these mutual predictions are similar to Fig.4.

    Fig.4. Mutual predictions of velocity and position for planets. The left column is predicted hodograph from position. The right column is predicted orbit from velocity. (a) Predicted resluts of Venus. (b) Predicted resluts of Mars. (c)Predicted resluts of Jupiter.

    The vector mapping (2) contains three scalar relations which represent three first integrals for planetary motion in heliocentric system. As we know,planetary motion satisfies the conservation of mechanical energy and conservation of angular momentum. The mechanical energy of the system is expressed as one independent relation wherevis the speed of the planet.ris the distance between the planet and the sun,mis mass of the planet.kis the stress of gravitation.Eis the mechanical energy.

    The angular momentum of the system has three componentsLx,Ly,andLz. According to poisson theorem,ifLxandLyare conserved quantities,Lzis also a conserved quantity.[36]Thus,the conservation of angular momentum merely contains two independent relations

    wherevx,vy, andvzare the components of velocity for the planet.x,y,andzare the coordinates of the planet. Therefore,three independent relations of conserved quantities are satisfied in planetary motion. Equations (3)-(5) should be equivalent to Eq.(2). Since we can solve the relationship between velocity and position from Eqs.(3)-(5)in principle.But we do not know the specific correspondence between these relations[Eqs. (3)-(5)] and the three first integrals hidden in Eq. (2)learned by neural networks for planetary motion in heliocentric system.

    We infer that the neural network can successfully learn the mapping(2)when the number of first integrals are equal to the dimension of data,instead of learning the differential relationship between velocity and position. To further verify our idea, we discuss an example where the number of conserved quantities is less than the dimension of data in a mechanical system. The planar motion of a particle in a time-dependent central force field can be expressed as

    whereris position vector. The initial velocity isv0=(0,1)and position isr0=(0.5,0). There is only one independent conserved quantity (conservation of angular momentum) in this system. Using the same neural network and data processing as planetary motion in heliocentric system,we continue to make the mutual prediction of position and velocity. The data set includes time-series of velocity and position with the time interval of 0.5. The training set contains data of 6000 samples,and the test set contains data of 4000 samples. The hyperparameters of the neural network are the same as Table 3.

    The predicted results are shown in Fig.5. Obviously,the mutual predictions of position and velocity are very bad. We also obtain the same conclusion for time step 0.1 and 0.01.This example reveals that the neural network we adopt fails in predictions when the number of conserved quantities is less than the dimensions of data, although there is a differential relationship between position and velocity.

    These results mentioned above suggest the strong correlation between the existence of conserved quantities in mechanical system and the predicted quality of neural networks. This is the second main result in our paper. Our research provides a new way to explore the existence of conserved quantities in mechanical system based on neural networks.

    Fig. 5. Mutual predictions of velocity and position for a particle in a timedependent central force field. (a) Predicted hodograph from position. (b)Predicted orbit from velocity.

    5. Conclusion

    In the above discussion, we make a new attempt to gain physical insights underlying big data by using neural networks. In this sense,the simpler neural network is,the closer it is likely to the human thought. We have accomplished the goal perfectly with GRU,one of the common neural networks.On the one hand,we find that the precision of predicting orbits in geocentric system strongly depend on whether the data of the Sun is included in training set or not. When considerating the information of the Sun,we make successful prediction of planetary orbits. We fail in prediction without the information of the Sun. Even for Mercury,we also arrive at the same result. We merely need to change the time interval to 0.001 years, because Mercury has a short period of motion. This striking contrast suggests that the Sun is of great significance in geocentric system and further hints the solar system is heliocentric. On the other hand,we make the mutual prediction of position and velocity in mechanical systems. We demonstrate that the reason for successful prediction is the dimension of system is equal to the number of first integrals. This provides an evidence for the existence of conserved quantities in mechanical system. We emphasize that our work does not imply the impossibility of learning a dynamic process where there exist no orbitals (e.g., the chaotic systems). For these systems,the research of learning dynamics from data has been explored,such as the work of Zhao.[22]

    Liu[37]predicted the orbits of planets by long short-term memory network,and the results are qualitatively and quantitatively consistent with the present work. We also use fully connected neural networks to explore the existence of conserved quantities and come to the same conclusion. These suggest that our conclusions are of a certain universality. Recently, AI physicist[38]has opened and represents a new research paradigm.Our work contributes a footnote for a special AI physicist. In the future,we hope to clarify the specific correspondence between the three conserved relations[Eqs.(3)-(5)] and the three first integrals hidden in Eq. (2) learned by neural networks for planetary motion in heliocentric system.It will be an exciting mission to use neural networks to discover physical laws directly, which will be a promising road to scientific research.

    Acknowledgments

    The authors would like to thank Xinran Ma for the helpful discussion in machine learning.

    Project supported by the National Natural Science Foundation of China(Grant No.11975050).

    猜你喜歡
    張健嚴謹性題設
    2022年高考數(shù)學北京卷壓軸題的自然解法
    用“先必要后充分”解一道數(shù)學試題
    張健書法作品
    廣告大觀(2020年3期)2020-10-20 12:34:00
    解答一道課本習題的一般情形
    高職院學生嚴謹性培養(yǎng)
    張健的傳銷邪教
    試談參考書例習題中的“嚴謹性”問題
    “勾股定理”之我見
    關注解題中所設的隱患
    會說話的樹
    英語學習(2015年11期)2015-02-01 19:57:13
    久久久久久久久免费视频了| 亚洲国产精品999| 欧美 日韩 精品 国产| 亚洲欧美色中文字幕在线| 人妻一区二区av| 欧美av亚洲av综合av国产av | 婷婷色麻豆天堂久久| 婷婷色麻豆天堂久久| 大码成人一级视频| 2018国产大陆天天弄谢| 精品国产一区二区久久| 中文字幕制服av| av卡一久久| 最近中文字幕高清免费大全6| 少妇人妻 视频| 亚洲av中文av极速乱| 啦啦啦啦在线视频资源| 午夜精品国产一区二区电影| 热99国产精品久久久久久7| 下体分泌物呈黄色| 丰满饥渴人妻一区二区三| 欧美日韩亚洲国产一区二区在线观看 | 国产精品一区二区在线不卡| 亚洲精品久久久久久婷婷小说| 成人亚洲精品一区在线观看| 亚洲成人av在线免费| 美女视频免费永久观看网站| 啦啦啦在线观看免费高清www| 最新在线观看一区二区三区 | 国产一区二区激情短视频 | 成人漫画全彩无遮挡| 丰满乱子伦码专区| 丰满迷人的少妇在线观看| 免费不卡黄色视频| 日日撸夜夜添| 91aial.com中文字幕在线观看| 天天添夜夜摸| 另类亚洲欧美激情| 日日啪夜夜爽| 人人澡人人妻人| 国产免费一区二区三区四区乱码| 18禁观看日本| 大香蕉久久网| 最黄视频免费看| 亚洲国产精品一区三区| 下体分泌物呈黄色| 午夜福利乱码中文字幕| 一级,二级,三级黄色视频| 亚洲综合色网址| 欧美乱码精品一区二区三区| 国产日韩欧美亚洲二区| av.在线天堂| 久久这里只有精品19| 久久久久久久精品精品| 欧美成人午夜精品| 亚洲男人天堂网一区| 一级片免费观看大全| 国产男人的电影天堂91| 国产精品免费视频内射| 亚洲欧美成人精品一区二区| 国产精品无大码| 久久久久人妻精品一区果冻| 免费看av在线观看网站| 19禁男女啪啪无遮挡网站| 久久性视频一级片| 最近中文字幕高清免费大全6| 久久久久久免费高清国产稀缺| 久久久久久久国产电影| 免费观看av网站的网址| √禁漫天堂资源中文www| 下体分泌物呈黄色| 中文字幕人妻丝袜一区二区 | 亚洲欧美激情在线| kizo精华| av福利片在线| 午夜福利影视在线免费观看| 午夜福利乱码中文字幕| 婷婷色麻豆天堂久久| 成人18禁高潮啪啪吃奶动态图| 亚洲精品第二区| 1024香蕉在线观看| bbb黄色大片| 国产成人a∨麻豆精品| 狠狠精品人妻久久久久久综合| 看免费成人av毛片| 一本—道久久a久久精品蜜桃钙片| 国语对白做爰xxxⅹ性视频网站| 亚洲图色成人| 免费女性裸体啪啪无遮挡网站| 亚洲成国产人片在线观看| 高清欧美精品videossex| 一个人免费看片子| 又大又爽又粗| 丁香六月欧美| 男女午夜视频在线观看| 美女大奶头黄色视频| 2018国产大陆天天弄谢| 黑人猛操日本美女一级片| 亚洲少妇的诱惑av| 少妇人妻精品综合一区二区| 欧美日韩av久久| 一边摸一边做爽爽视频免费| 国产 精品1| 狂野欧美激情性bbbbbb| 欧美 日韩 精品 国产| av视频免费观看在线观看| 国产av码专区亚洲av| 香蕉国产在线看| av网站在线播放免费| 精品国产国语对白av| 女人被躁到高潮嗷嗷叫费观| 久久国产精品大桥未久av| 18禁裸乳无遮挡动漫免费视频| 日本欧美国产在线视频| 亚洲久久久国产精品| 欧美日韩一级在线毛片| 国产片特级美女逼逼视频| 男女无遮挡免费网站观看| 日韩av不卡免费在线播放| 精品国产一区二区久久| 亚洲色图综合在线观看| 精品人妻一区二区三区麻豆| 欧美黄色片欧美黄色片| 国产毛片在线视频| 婷婷色综合www| 欧美日韩视频高清一区二区三区二| 国产99久久九九免费精品| 一本久久精品| 久久久精品区二区三区| 国产精品香港三级国产av潘金莲 | 日韩 亚洲 欧美在线| 丰满乱子伦码专区| 国产精品久久久久久精品古装| 久久鲁丝午夜福利片| 日本wwww免费看| 一本久久精品| 黄片小视频在线播放| 街头女战士在线观看网站| 中文字幕最新亚洲高清| 高清在线视频一区二区三区| av网站免费在线观看视频| 久久久久人妻精品一区果冻| 精品人妻一区二区三区麻豆| 欧美精品一区二区大全| xxxhd国产人妻xxx| tube8黄色片| 久久天躁狠狠躁夜夜2o2o | 在线免费观看不下载黄p国产| 久久久欧美国产精品| 国产精品国产三级专区第一集| 午夜免费鲁丝| tube8黄色片| 麻豆av在线久日| 制服人妻中文乱码| 精品亚洲成a人片在线观看| 51午夜福利影视在线观看| 国产精品 欧美亚洲| 韩国高清视频一区二区三区| 精品国产一区二区三区久久久樱花| 免费久久久久久久精品成人欧美视频| 中文字幕亚洲精品专区| 欧美在线一区亚洲| 99久久综合免费| 男人添女人高潮全过程视频| 看非洲黑人一级黄片| 又黄又粗又硬又大视频| 国产不卡av网站在线观看| 操出白浆在线播放| 欧美国产精品va在线观看不卡| 亚洲精品一二三| 看非洲黑人一级黄片| 亚洲自偷自拍图片 自拍| 国产精品久久久人人做人人爽| 国产一区二区三区av在线| 少妇猛男粗大的猛烈进出视频| 波多野结衣av一区二区av| 男女边摸边吃奶| 亚洲 欧美一区二区三区| 免费黄频网站在线观看国产| 婷婷色综合大香蕉| 丝袜脚勾引网站| 日本黄色日本黄色录像| 午夜激情久久久久久久| 婷婷成人精品国产| 在线看a的网站| 久久午夜综合久久蜜桃| 丝袜喷水一区| 欧美日韩一级在线毛片| 亚洲精品成人av观看孕妇| 女性生殖器流出的白浆| 国产片内射在线| 中文字幕制服av| 亚洲一码二码三码区别大吗| 一二三四中文在线观看免费高清| 国产午夜精品一二区理论片| 亚洲av男天堂| 啦啦啦啦在线视频资源| 交换朋友夫妻互换小说| 亚洲成人手机| 亚洲第一青青草原| 大码成人一级视频| 黑人巨大精品欧美一区二区蜜桃| 十八禁人妻一区二区| 卡戴珊不雅视频在线播放| 亚洲欧美色中文字幕在线| 亚洲激情五月婷婷啪啪| 一区二区三区乱码不卡18| 午夜免费男女啪啪视频观看| 国产成人欧美在线观看 | 热99久久久久精品小说推荐| 十分钟在线观看高清视频www| 最近的中文字幕免费完整| 五月开心婷婷网| 高清av免费在线| 国产精品久久久久久精品古装| 国产伦人伦偷精品视频| xxxhd国产人妻xxx| 国产成人午夜福利电影在线观看| 一本—道久久a久久精品蜜桃钙片| 国产精品国产三级国产专区5o| 久久国产精品大桥未久av| 亚洲欧洲精品一区二区精品久久久 | 涩涩av久久男人的天堂| 中文字幕另类日韩欧美亚洲嫩草| 午夜久久久在线观看| 欧美成人精品欧美一级黄| 国产在线免费精品| 18禁裸乳无遮挡动漫免费视频| 中文乱码字字幕精品一区二区三区| 日本欧美视频一区| 99热国产这里只有精品6| 亚洲国产精品成人久久小说| 国产高清不卡午夜福利| av国产精品久久久久影院| 亚洲国产看品久久| 色婷婷av一区二区三区视频| 女的被弄到高潮叫床怎么办| 又大又爽又粗| 曰老女人黄片| 丝袜美腿诱惑在线| 男男h啪啪无遮挡| 久久天堂一区二区三区四区| xxx大片免费视频| 在线亚洲精品国产二区图片欧美| 在线观看免费日韩欧美大片| 最近2019中文字幕mv第一页| 国产伦人伦偷精品视频| 国产1区2区3区精品| 两个人免费观看高清视频| 人人妻人人澡人人看| 一级a爱视频在线免费观看| 90打野战视频偷拍视频| 我的亚洲天堂| 国产午夜精品一二区理论片| 熟女少妇亚洲综合色aaa.| 午夜精品国产一区二区电影| 如日韩欧美国产精品一区二区三区| www日本在线高清视频| 亚洲精品美女久久av网站| 国产精品欧美亚洲77777| 丝瓜视频免费看黄片| 又大又爽又粗| 日韩 亚洲 欧美在线| 99国产综合亚洲精品| 综合色丁香网| 久久毛片免费看一区二区三区| 日本vs欧美在线观看视频| 国产无遮挡羞羞视频在线观看| 欧美xxⅹ黑人| 91精品国产国语对白视频| a级片在线免费高清观看视频| 18禁裸乳无遮挡动漫免费视频| 18禁动态无遮挡网站| 1024视频免费在线观看| 免费日韩欧美在线观看| 你懂的网址亚洲精品在线观看| 校园人妻丝袜中文字幕| 亚洲精品一二三| av又黄又爽大尺度在线免费看| 18禁动态无遮挡网站| 汤姆久久久久久久影院中文字幕| 日本欧美国产在线视频| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产综合久久久| 美女中出高潮动态图| 老鸭窝网址在线观看| 日日啪夜夜爽| 少妇被粗大的猛进出69影院| 国产精品成人在线| 卡戴珊不雅视频在线播放| 午夜免费观看性视频| 69精品国产乱码久久久| 少妇猛男粗大的猛烈进出视频| 亚洲精品久久成人aⅴ小说| 在线观看免费日韩欧美大片| 天堂8中文在线网| 亚洲精品第二区| 精品少妇黑人巨大在线播放| 伦理电影免费视频| 一区二区日韩欧美中文字幕| 七月丁香在线播放| 狠狠精品人妻久久久久久综合| 欧美日韩成人在线一区二区| 久久人人爽人人片av| 在线看a的网站| 日韩欧美精品免费久久| 成人亚洲精品一区在线观看| 卡戴珊不雅视频在线播放| 人人妻人人爽人人添夜夜欢视频| 亚洲精品国产色婷婷电影| 国产又爽黄色视频| 久久久久视频综合| 少妇精品久久久久久久| 各种免费的搞黄视频| 国产深夜福利视频在线观看| 欧美人与性动交α欧美精品济南到| 一边摸一边做爽爽视频免费| 亚洲av中文av极速乱| 国产老妇伦熟女老妇高清| 人体艺术视频欧美日本| 9191精品国产免费久久| 亚洲av日韩精品久久久久久密 | 91老司机精品| 亚洲男人天堂网一区| 丰满乱子伦码专区| 久久天堂一区二区三区四区| 国产人伦9x9x在线观看| 成人午夜精彩视频在线观看| 亚洲国产中文字幕在线视频| 美女中出高潮动态图| 少妇的丰满在线观看| 亚洲少妇的诱惑av| 女人精品久久久久毛片| 国产亚洲av片在线观看秒播厂| 免费在线观看黄色视频的| 性色av一级| 亚洲av国产av综合av卡| 久热爱精品视频在线9| 51午夜福利影视在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲精品美女久久av网站| 国产成人av激情在线播放| 国产午夜精品一二区理论片| 中文字幕最新亚洲高清| 人妻一区二区av| av天堂久久9| 精品人妻在线不人妻| 熟女少妇亚洲综合色aaa.| 亚洲第一av免费看| av又黄又爽大尺度在线免费看| 女人高潮潮喷娇喘18禁视频| 亚洲伊人久久精品综合| 国产亚洲精品第一综合不卡| 国产成人欧美在线观看 | 老司机影院毛片| 啦啦啦在线免费观看视频4| 人人妻人人爽人人添夜夜欢视频| 人人妻人人添人人爽欧美一区卜| 男女床上黄色一级片免费看| 我的亚洲天堂| 九草在线视频观看| 日日摸夜夜添夜夜爱| 欧美激情极品国产一区二区三区| 美女福利国产在线| 成人亚洲欧美一区二区av| 色播在线永久视频| 大陆偷拍与自拍| 亚洲成人手机| 精品国产乱码久久久久久男人| 女人爽到高潮嗷嗷叫在线视频| 国产免费现黄频在线看| 色播在线永久视频| 一级毛片黄色毛片免费观看视频| 国产av国产精品国产| 国产成人系列免费观看| 国产爽快片一区二区三区| 国产成人精品福利久久| xxx大片免费视频| 少妇人妻精品综合一区二区| 亚洲,欧美,日韩| 少妇的丰满在线观看| 一区二区三区乱码不卡18| 欧美成人精品欧美一级黄| 高清视频免费观看一区二区| 国产精品无大码| 99久久综合免费| 免费黄频网站在线观看国产| 成年美女黄网站色视频大全免费| 日本一区二区免费在线视频| 最近中文字幕高清免费大全6| 国产 精品1| 捣出白浆h1v1| 亚洲美女视频黄频| 日韩一区二区三区影片| 亚洲国产日韩一区二区| 七月丁香在线播放| 婷婷色综合www| 精品国产一区二区三区四区第35| 中文欧美无线码| 亚洲精品av麻豆狂野| 久热这里只有精品99| 国产成人免费观看mmmm| 亚洲av综合色区一区| 人成视频在线观看免费观看| 日日爽夜夜爽网站| 成人18禁高潮啪啪吃奶动态图| 国产成人a∨麻豆精品| 波多野结衣av一区二区av| 亚洲熟女精品中文字幕| 咕卡用的链子| 深夜精品福利| 久久青草综合色| 精品少妇黑人巨大在线播放| 精品少妇内射三级| 精品国产露脸久久av麻豆| 女人爽到高潮嗷嗷叫在线视频| 国产av精品麻豆| 欧美人与性动交α欧美软件| 国产精品久久久久久人妻精品电影 | 欧美日韩亚洲高清精品| 日韩不卡一区二区三区视频在线| 男女午夜视频在线观看| 一边亲一边摸免费视频| kizo精华| 啦啦啦视频在线资源免费观看| 五月开心婷婷网| 99九九在线精品视频| 国产有黄有色有爽视频| 午夜激情av网站| 久久天躁狠狠躁夜夜2o2o | 人人妻人人爽人人添夜夜欢视频| 久久国产亚洲av麻豆专区| 亚洲成色77777| 无限看片的www在线观看| 男女下面插进去视频免费观看| 欧美日韩av久久| 十八禁人妻一区二区| 国产精品久久久久久精品古装| 国产极品粉嫩免费观看在线| 欧美av亚洲av综合av国产av | 捣出白浆h1v1| 亚洲欧美一区二区三区久久| 交换朋友夫妻互换小说| 啦啦啦啦在线视频资源| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦在线免费观看视频4| 国产成人a∨麻豆精品| 熟女av电影| 啦啦啦在线观看免费高清www| 乱人伦中国视频| 青草久久国产| 一二三四在线观看免费中文在| 久久精品国产亚洲av高清一级| 欧美乱码精品一区二区三区| 欧美精品一区二区大全| 亚洲精品中文字幕在线视频| 性少妇av在线| 久久精品aⅴ一区二区三区四区| 久久ye,这里只有精品| 国产精品二区激情视频| 午夜91福利影院| av.在线天堂| 色婷婷久久久亚洲欧美| 日韩av不卡免费在线播放| 久久久精品区二区三区| 精品一区二区三区四区五区乱码 | 午夜福利视频在线观看免费| 多毛熟女@视频| 精品少妇黑人巨大在线播放| 一区二区三区乱码不卡18| 伊人亚洲综合成人网| 日韩中文字幕欧美一区二区 | 美女福利国产在线| 成人毛片60女人毛片免费| 一区二区三区激情视频| 看非洲黑人一级黄片| av在线老鸭窝| 欧美精品av麻豆av| 黄色视频不卡| 超碰成人久久| 国产精品偷伦视频观看了| 九九爱精品视频在线观看| 国产精品亚洲av一区麻豆 | 国产成人免费无遮挡视频| 黄频高清免费视频| 亚洲三区欧美一区| 日本vs欧美在线观看视频| 久久国产精品男人的天堂亚洲| 精品一区在线观看国产| 美女高潮到喷水免费观看| 不卡av一区二区三区| 欧美日韩成人在线一区二区| 国产在线一区二区三区精| 在线观看三级黄色| 中文字幕人妻丝袜一区二区 | 亚洲激情五月婷婷啪啪| 18禁观看日本| 亚洲精品国产一区二区精华液| 一本一本久久a久久精品综合妖精| 久久国产亚洲av麻豆专区| 亚洲七黄色美女视频| 丰满饥渴人妻一区二区三| 精品久久久久久电影网| 午夜福利乱码中文字幕| 中文字幕av电影在线播放| 51午夜福利影视在线观看| 国产精品国产三级国产专区5o| 亚洲欧美成人综合另类久久久| 男人添女人高潮全过程视频| xxxhd国产人妻xxx| 亚洲国产精品一区二区三区在线| 亚洲av综合色区一区| 成人国产av品久久久| 成人国语在线视频| 久热这里只有精品99| 啦啦啦在线免费观看视频4| 亚洲欧美精品自产自拍| 亚洲av综合色区一区| 最新在线观看一区二区三区 | 国产欧美亚洲国产| 成年人午夜在线观看视频| 久久天躁狠狠躁夜夜2o2o | 日韩熟女老妇一区二区性免费视频| 在线 av 中文字幕| 男人操女人黄网站| 一级爰片在线观看| 综合色丁香网| 亚洲欧美一区二区三区黑人| 国产精品久久久久久精品古装| 中国三级夫妇交换| 人人妻人人爽人人添夜夜欢视频| 最近手机中文字幕大全| 欧美日韩成人在线一区二区| 精品亚洲成国产av| 日韩中文字幕视频在线看片| 91精品三级在线观看| 2021少妇久久久久久久久久久| 久久久亚洲精品成人影院| 久久久久久久国产电影| 国产亚洲午夜精品一区二区久久| 欧美激情极品国产一区二区三区| 国产精品久久久久久精品电影小说| 欧美人与性动交α欧美精品济南到| 免费少妇av软件| 午夜免费鲁丝| 亚洲一码二码三码区别大吗| 中文字幕亚洲精品专区| 国产精品三级大全| 90打野战视频偷拍视频| 一级黄片播放器| 操美女的视频在线观看| 18禁国产床啪视频网站| 欧美日韩国产mv在线观看视频| 日韩大码丰满熟妇| 亚洲少妇的诱惑av| 9色porny在线观看| 国产免费福利视频在线观看| 亚洲精品中文字幕在线视频| av网站在线播放免费| 国产在线免费精品| 久热爱精品视频在线9| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃在线观看..| 国产在视频线精品| 香蕉国产在线看| 日韩视频在线欧美| 亚洲色图综合在线观看| 久久久久久久久久久久大奶| 乱人伦中国视频| 中国国产av一级| 免费观看av网站的网址| 飞空精品影院首页| √禁漫天堂资源中文www| 亚洲人成77777在线视频| 亚洲欧美精品综合一区二区三区| 亚洲美女视频黄频| 亚洲,欧美精品.| 日本欧美国产在线视频| 免费在线观看黄色视频的| 赤兔流量卡办理| 国语对白做爰xxxⅹ性视频网站| 91aial.com中文字幕在线观看| 国产xxxxx性猛交| 国产1区2区3区精品| 亚洲av中文av极速乱| 狠狠精品人妻久久久久久综合| 中国三级夫妇交换| 考比视频在线观看| 免费高清在线观看视频在线观看| 久久影院123| 国产探花极品一区二区| 美国免费a级毛片| 男的添女的下面高潮视频| 久久人人爽人人片av| 久久久亚洲精品成人影院| 一级a爱视频在线免费观看| 成人黄色视频免费在线看| av在线app专区| 亚洲国产中文字幕在线视频| 国产精品二区激情视频| 99久久综合免费| 精品国产乱码久久久久久男人| 老司机在亚洲福利影院| 免费人妻精品一区二区三区视频| 国产乱来视频区| 欧美日韩视频精品一区| 老熟女久久久| 狂野欧美激情性xxxx| 日韩一区二区视频免费看| 国产亚洲午夜精品一区二区久久| 在线观看一区二区三区激情| 少妇人妻久久综合中文| 久久狼人影院| 国产亚洲欧美精品永久| 免费少妇av软件|