• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unusual hexa-nuclear cadmium cluster functionalized phosphomolybdate as effective photoelectrochemical sensor for trace Cr(VI) detection

    2022-09-15 03:11:22WentingAnXiujuanZhangJiaqiNiuYuanyuanMaZhangangHan
    Chinese Chemical Letters 2022年9期

    Wenting An, Xiujuan Zhang, Jiaqi Niu, Yuanyuan Ma, Zhangang Han

    Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China

    ABSTRACT Photo-assisted electrochemical technique provides a promising approach towards carcinogen chromium(VI) detection, which requires reasonable catalyst design.Herein, an unusual hexa-nuclear cadmium cluster functionalized reductive phosphomolybdate hybrid as photo-electrochemical sensor was designed and synthesized with formula of {[Cd(H2O)2]2[Cd(btmbp)]2}{Cd(P4Mo6O31H7)2}·20H2O (1)(btmbp= 4,4′-bis((1H-1,2,4-triazol-1-yl)methyl)biphenyl), in which the photoactive hexa-nuclear {Cd6}clusters cooperated with reductive phosphomolybdate [P4Mo6O31]12? endow the material with wide light absorption and remarkable redox activity, thus achieving efficient photo-assisted electrochemical Cr(VI) detection performance.Under visible-light assistance, the detection limit (LOD) and sensitivity of Cr(VI) is 4.17 nmol/L (0.225 ppb) and 226.32 μA L/μmol, which is apparently superior to the performance without photo-assistance (6.25 nmol/L and 106.95 μA L/μmol) and far satisfies the demands of world health organization (WHO) for potable water (50 ppb).Moreover, compound 1 showed prominent Cr(VI)detection performance in practical water samples together with remarkable anti-interference capacity and good electrochemical durability.This work provides an important guidance for designing efficient polyoxometalate-based crystalline sensors for Cr(VI) detection.

    Keywords:Phosphomolybdate Cadmium cluster Photoelectrocatalysis Electrochemical detection Hexavalent chromium

    Heavy metal contamination brings out severe environmental intimidation to human health as a result of their biotoxicity and amassing in human body [1–3].Hexavalent chromium,denoted as Cr(VI), as a representative of high poisonous heavymetal contaminants has attracted the widespread attention of many researchers because of its high carcinogenic-mutagenic effect and poisonousness on human body [4–7].Nowadays, the Cr(VI)-containing species have been included in the human carcinogen set by International Agency for Research on cancer (IARC) and World Health Organization (WHO) and the maximum permissible limit for total Cr content in potable water and industrial water are 0.05 ppm and 0.5 ppm [8,9], respectively.Therefore, establishing an efficient and rapid detection approach to achieve the effective monitor on Cr(VI) content is very significant and urgency.

    At present, electrochemical sensing methods have been widely known as a reliable analytic approach for detecting Cr(VI) with trace level due to their inherent merits including simple operation, high sensitivity, short analysis time and low detection limit[10–13].During the electrochemical detection process, Cr(VI) pollutants can be transformed into non-toxic Cr(III) speciesviaa direct electron-transfer pathway to produce an obvious analytical signal for the quantitative detection.To facilitate the electron transfer and achieve more efficient electrochemical detection, external field-assistance strategy (light, heat,etc.), has been considered as one of effective approaches, among which photo-assistance exhibit promising application in electrochemical detection due to its green and environment-friendly feature [14–16].Siet al.constructed surface-engineered MI-TiO2/ITO electrode and achieved efficient photo-assisted electrochemical detection of bisphenol A in water with wide detection range, high sensitivity and good renewability [17].Huet al.reported zeolitic imidazolate framework-8 electrode achieved effective electrochemical detection of organic pollution under the light illumination with lower detection limitation and superior regeneration property [18].The photogenerated electron on electrochemical sensors could synergistically accelerate the electron transfer process [19], thus enhancing the detection performance.Therefore, it is expected that employing photoassisted strategy in electrochemical Cr(VI) detection will achieve the improvement on electrochemical performance but rarely reported so far.

    To achieve effective photo-assisted electrochemical detection,the reasonable design of electrochemical sensor with suitable photocatalytic activity is crucial adjective.Polyoxometalates (POMs),as a distinctive and intriguing category of nanosized anionic metal-oxo clusters, have displayed enormous application potential in various fields owing to their structural diversity and fascinating physicochemical properties [20–25].Among POMs family, hourglass-type phosphomolybdate {M[P4MoV6O31]2}n?(abbr.M{P4Mo6}2) cluster, built up from two [P4MoV6O31]12?(abbr.{P4Mo6}) subunits bridged by one metal (M) center, has attracted more attentions due to its specific structure and fascinating physicochemical properties [26–28].The {P4Mo6} subunit possesses a high negatively charged surface with all Mo atoms in the +5 oxidation state, which endows the assembled M{P4Mo6}2cluster with a peculiar reversible redox feature and makes them an attractive candidate as electrochemical sensor for Cr(VI) detection [29,30].Importantly, the electron structure of M{P4Mo6}2is flexible and tunable, and can be easily manipulated by adjusting the central metal species and the circumjacent functionalized groups, opening up the possibilities for the exploitation of versatile materials with designed functions [31–33].Nowadays, cadmium oxide as ntype and II–VI semiconductor oxide with a direct and narrow band gap, has arouse increasing interests in the fields of solar cells, phototransistor and photocatalysis [34–38].Functionalizing hourglasstype M{P4Mo6}2cluster with nanosized cadmium oxide cluster will endow the materials with desire photo- and electrochemical activity, thus obtaining efficient detection performance towards trace Cr(VI).

    Based on the above consideration, an unusual hexa-nuclear cadmium cluster functionalized reductive phosphomolybdate hybrid with formula of {[Cd(H2O)2]2[Cd(btmbp)]2}{Cd(P4Mo6O31H7)2}·20H2O(1)(btmbp=4,4′-bis((1H-1,2,4-triazol-1-yl)methyl)biphenyl)was hydrothermally synthesized as sensor for photo-assisted electrochemical Cr(VI) detectionviathe reaction of Na2MoO4·2H2O, CdCl2·2.5H2O,H3PO4and N-containing btmbp ligand in a C2H5OH/H2O solution at 160 °C (Fig.S1 in Supporting information).Here the closed-shell metal ion Cd2+with 4d10configuration was chosen to construct the transition-metal functionalized M{P4Mo6}2cluster due to its flexible coordination feature and unique photochemical property.During the hydrothermal synthetic process, the N-containing btmbp ligand and ethanol serve as reducing agent to create a reducing environment for the assembly of the hourglass-type {Cd[P4Mo6O31H8]2}6?cluster (denoted as Cd{P4Mo6}2).The formed Cd{P4Mo6}2cluster withC3symmetry can act as structure-directing agent to induce the arrangement of Cd2+into hexa-nuclear ring-shaped Cd-oxo cluster (denoted as {Cd6}), thus facilitating the achievement of target Cd{P4Mo6}2framework of compound 1.Meanwhile, for comparison a pure inorganic salt of Cd{P4Mo6}2formulated as K5[K(H2O)][Cd(H2O)2]2{Cd(P4Mo6O31H6)2}·6H2O (2) was also synthesized (Table S1 and Fig.S2 in Supporting information).

    Fig.1.(a) Polyhedral view of hourglass-type Cd{P4Mo6}2 cluster in 1.(b) Coordination environments of three kinds of Cd centers in 1.(c) Polyhedral view of ringshaped hexa-nuclear {Cd6} cluster in 1.(d) 1-D inorganic chain-like structure of 1.Organic moiety and water molecules were omitted for clarity.

    Single crystal X-ray diffraction analysis demonstrated that compound 1 crystallizes in the space groupC2/cof monoclinic crystal system (Table S1), which is mainly composed of one hourglasstype Cd{P4Mo6}2clusters, three kinds of Cd centers and btmbp ligands.In 1, Cd centers can be divided into three kinds: Cd1,Cd2 and Cd3, respectively.Cd1 serves as sandwiched atom with six-coordinated mode to bridge two {P4Mo6} subunits into a typical hourglass-type Cd{P4Mo6}2cluster with Cd?O bond lengths of 2.250?2.295 ?A (Fig.1a, Tables S2 and S3 in Supporting information).Cd2 and Cd3 centers also display similar six-coordinated octahedral configurations (Fig.1b), in which Cd2 connects with two oppositeμ2-OH oxygen atoms (O12), two nitrogen atoms from two independent btmbp ligands and twoμ3-O atoms (O25) of two phosphate groups from two Cd{P4Mo6}2clusters with Cd-O/N distances of 2.295?2.460 ?A, while Cd3-O octahedron is constructed with twoμ2-OH groups (O1 and O12), twoμ3-O-atom donors(O2 and O25) shared with two {PO4} fragments from two different Cd{P4Mo6}2clusters and two coordinated water molecules(O3 and O5).It should be noted that two Cd3 centers are linked togetherviathe bridgingμ2-OH group (O1) to form a {Cd2}dimer, two sets of {Cd2} dimers are further alternatively coupled with two Cd2 centers to constitute a novel ring-shaped hexanuclear {Cd6} cluster (Figs.1b and c).The non-bonding Cd···Cd contacts in hexa-nuclear ring-like {Cd6} cluster vary from 3.675 ?A to 3.756 ?A, the angles of ∠Cd3-Cd2-Cd3 and ∠Cd2-Cd3-Cd3 are 119.798° and 120.101°, respectively.Such ring-shaped {Cd6} cluster demonstrated a slightly disordered hexagon character.As shown in Fig.1d, the {Cd6} subunits in face-to-face mode link Cd{P4Mo6}2clusters into one-dimensional (1-D) chain-liked structure of inorganic moiety in 1.To the best of our knowledge, hexagon {Cd6}cluster has never been reported up to now.As is known that the cadmium clusters display significant role in the various photocatalytic process and the hourglass-type phosphomolybdates have excellent electrochemical properties, the functionalization of the ring-shaped {Cd6} cluster to hourglass-type Cd{P4Mo6}2cluster will induce interesting photoelectrochemical properties.

    Another significant structural feature of 1 is that the ringshaped {Cd6} clusters serve as six-connection nodes to coordinate with Cd{P4Mo6}2clusters and btmbp ligands to extend the structure into three-dimensional (3-D) porous frameworks (Fig.2).Concretely, the btmbp ligands withtransconfiguration act as bridging linker to connect with two sets of {Cd6} clusters, and each{Cd6} cluster in 1-D inorganic chain joints with four btmbp ligands.These linkages spread the structure of 1 into a 3-D porous framework with {412.63}pcutopology (Figs.2a and b).It is worth noting that there are two kinds of interpenetratingpcunets in such 3-D porous frameworks.The window size of eachpcuframework is calculated to be 25.69 ?A×25.69 ?A, which could be enough to allow another set of network to interwoven it in a parallel manner,resulting in a 2-fold interpenetrating metal–organic network.Owing to this feature, the channel window is divided into four sections with window size ofca.12.85 ?A×12.85 ?A (Figs.2c and d),which could benefit for the mass transport during Cr(VI) detection.These results indicate that hexa-nuclear {Cd6} cluster functionalized reductive Cd{P4Mo6}2porous hybrid framework is successfully synthesized.The integration of photoactive {Cd6} subunits with electroactive Cd{P4Mo6}2will endow the compound 1 with specific photo-electrochemical properties, making it promising versatile materials toward photo-electrocatalytic reactions.

    Fig.2.(a) Ball-and-stick and polyhedral views of the 3-D open framework of 1.(b) Schematic view of pcu topology framework.(c) The two-fold interpenetrating frameworks in 1.(d) Schematic topology view of the crystal structure.

    Fig.3.(a) CV curves of 1 at different scan rates.(b) UV-vis diffuse reflection spectra of 1 and 2.Insert: the corresponding plot of the (αhν)2 versus hν.(c) Mott–Schottky plots of 1 in 0.2 mol/L Na2SO4 solution at pH 6.80.(d) Energy diagram of the HOMO and LUMO levels of 1 and 2.(e) Transient photocurrent response of 1 and 2.(f)Stability of the transient photocurrent under periodic off-on-off light for 10 cycles.

    The structure of 1 was further characterized by Fourier transform infrared spectrum (FT-IR), X-ray powder diffractometer (XRD),thermogravimetric (TG) techniques and Energy dispersive spectrometer (Fig.S3 in Supporting information).Pure inorganic salt of Cd{P4Mo6}2cluster named compound 2 was synthesized as comparison (Fig.S4 in Supporting information).The cyclic voltammetry(CV) curves in Fig.3a show three pairs of redox peaks with halfwave potentialE1/2at ?26 mV (I-I’), 216 mV (II-II’) and 372 mV (IIIIII’) for compound 1, ?15 mV (I-I’), 225 mV (II-II’) and 377 mV (IIIIII’) for compound 2 (Table S5 in Supporting information), respectively.They could be ascribed to continuous multi-electrons redox processes of Mo atoms in hourglass-type Cd{P4Mo6}2cluster, implying the excellent electrochemical redox property of 1 and 2.In Fig.3b, compound 1 exhibits the stronger and wider absorption capacity in the wavelength range of 200~800 nm compared to compound 2, indicating that the modification of {Cd6} to Cd{P4Mo6}2cluster can promote its optical property.Besides, the band gap (Eg)of 1 was measured to be 2.43 eV (Fig.3b).Mott–Schottky plot of 1 (Fig.3c) determined the conduction band potential (CB) value of ?0.36 Vvs.Ag/AgCl, which corresponds to ?0.16 Vvs.NHE.The positive slope of the linear region inC2–Eplots reveals the typical n-type semiconductor behavior of 1.As comparison, theEgof compound 2 is 2.80 eV (Fig.3b), which is larger than that of 1,indicating that the functionalization of {Cd6} can regulate the energy band structure of Cd{P4Mo6}2cluster.It should be noted that the CB positions of 1 and 2 are more negative than the CB position of Cr(VI)/Cr(III) (+0.51 V, pH 6.8), which signifies the thermodynamically feasibility for the photoreduction Cr(VI) (Fig.3d and Fig.S5 in Supporting information).In addition, the transient photocurrent response of 1 was measured under visible-light illumination to investigate its photo-induced charges separation efficiency.As depicted in Fig.3e, compound 1 produced a transient photocurrent of 0.49 μA, showing nearly 2-fold higher than that of compound 2 (0.25 μA).This result suggested that the functionalization of {Cd6} on Cd{P4Mo6}2clusters can distinctly accelerate the separation of photo-generated carriers, thereby improving the photoelectrochemical conversion efficiency and amplifying the photocurrents.Moreover, compound 1 displayed stable photocurrents during 10 cycles of on/off light (Fig.3f), demonstrating great potentials as photoelectrochemical sensors for photo-assisted electrochemical Cr(VI) detection.

    The electrochemical performance of title compound for trace Cr(VI) detection was firstly explored in 0.5 mol/L H2SO4electrolyte under dark condition by employing the differential pulse voltammetry (DPV) technique As shown in Figs.4a and b, the response currents of compound 1 were remarkably enhanced accompanied by the continuous increase of Cr(VI) concentration from 0.1 μmol/L to 1.0 μmol/L, which demonstrates the quick and sensitive electrochemical response abilities of 1 to the change of Cr(VI) concentration.Notably, compound 1 exhibits a benign linear response correlation range in the Cr(VI) concentration from 0.1 μmol/L to 1.0 μmol/L with the linear regression equation ofI(μA)=?106.95×C(μmol/L) – 96.47, in whichCrepresents the Cr(VI) concentration andIstands for the response current acquired by differential pulse voltammetry (Fig.4b).Based on the principle of S/N=3, the detection limit of compound 1 for Cr(VI) is calculated to be 6.25 nmol/L (0.325 ppb) and the sensitivity is 106.95 μA L/μmol, which is superior to 2 and far meets the standard concentration (≤0.05 ppm) of WHO set for potable water (Fig.S6 in Supporting information).

    Fig.4.(a) DPV curves of compounds 1-modified electrodes in 0.5 mol/L H2SO4 with continuous addition of Cr(VI).(b) Its corresponding linear dependences of 1.(c) DPV curves of 1 and 2 in 0.5 mol/L H2SO4 with the addition of 1.0 μmol/L Cr(VI) under visible light illumination.(d) DPV curves of 1 with continuous additions of Cr(VI)under the visible light illumination.(e) The linear dependence curve of 1; (f) Current interference of 1 towards Cr(VI) with different interferents of 400 μmol/L Na+,K+, Ca2+, Cd2+, Co2+, Mg2+, Mn2+, Ni2+, Zn2+, Al3+, Cr3+and their mixture with 40 μmol/L Cr(VI), respectively.(g) DPV curves of compound 1 in acidified lake water with continuous additions of Cr(VI).(h) The linear dependence curve of 1.

    To further enhance the detection performance of 1, the photoassisted electrochemical Cr(VI) determination was carried out under the illumination of 40 W white light.As shown in Fig.4c, with addition of 1.0 μmol/L Cr(VI), compound 1 produced a current increment of 196.3 μA, which is apparently larger than that in dark condition (90.6 μA), indicating its excellent photo-electrochemical response.The response current of 1 is also larger than that of compound 2 under the illumination of visible light (Fig.4c and Fig.S7 in Supporting information), which indicates that the modifying Cd{P4Mo6}2cluster with {Cd6} cluster can promote their photoactivity and accelerate the electron transfer process during Cr(VI) detection, thus achieving distinct response signal.Moreover, with the continuous addition of Cr(VI), the DPV curves of compound 1 (Figs.4d and e) demonstrated a distinct linear relationship range with the linear regression equations ofI(μA)=?226.32×C(μmol/L) – 58.77 (R2=0.995), from which the LODs of compound 1 were calculated to be 4.17 nmol/L (0.225 ppb) and the sensitivity is as high as 226.32 μA L/μmol.Compared to the dark condition, the sensitivity of compound 1 enhanced from 106.95 to 226.32 μA L/μmol and the Cr(VI) LODs improved from 6.25 to 4.17 nmol/L, manifesting the excellent photo-electrochemical detection activity of 1 towards Cr(VI).Such performance far meets the requirements of WHO set for drinking water (50 ppb) and superior to most of reported noble metal-based electrochemical sensors (Table S6 in Supporting information).To gain more insights, the electrochemical impedance spectroscopy (EIS) was used to study the electron transfer behavior of 1 in dark and light-irradiation condition.As shown in Fig.S8 (Supporting information), compound 1 exhibits a small electron transfer resistance under irradiation,revealing its fast electron-transfer capacity and excellent photoactivity.In addition, in order to further exclude the impact of organic ligand on the detection performance, the DPV of btmbp ligand was also investigated, which show that there is nearly no detection performance towards Cr(VI) (Fig.S9 in Supporting information).Besides, the analytic selectivity and anti-interference of 1 was examined by adding some common metal ions (Na+,K+, Ca2+, Cd2+, Co2+, Pb2+, Mg2+, Mn2+, Ni2+, Zn2+, Al3+, Cr3+)into the Cr(VI) detection system, respectively.It can be found from Fig.4f that only the introduction of Cr(VI) can engender evident response current signal and the impact of these interference ions on response current does not exceed 3%.These results suggest that compound 1 possesses great anti-interference capacity and high selectivity to Cr(VI), which provides a basis for heavy metal Cr(VI) detection in practical aqueous environmental system.

    Then, compound 1 was employed as photoelectrochemical sensor to determine the Cr(VI) concentration in the real lake water sample.As shown in Figs.4g and h, compound 1 displayed apparent response current towards Cr(VI) with the linear regression equation ofI(μA)=–204.32×C(μmol/L)– 147.6 (R2=0.993), from which the sensitivity and detection of limit of 1 were calculated to be 204.32 μA L/μmol and 4.73 nmol/L (0.246 ppb), respectively.This result not only satisfies the standard of WHO, also shows good conformity with that in deionized water, implying the significant practicability of 1.Moreover, compound 1 exhibited good long-term durability and it can continuously operate in Cr(VI)-containing 0.5 mol/L H2SO4electrolyte for 10 h with slight change of the signal currents (Fig.S10 in Supporting information), suggesting the excellent electrocatalytic stability of compound 1.In addition,the structural stability of compound 1 after electrochemical detection was also characterized.Fig.S11 (Supporting information)shows the IR and XRD patterns of compound 1 after electrochemical detection.It was found that all peak positions almost remained unchanged, revealing its excellent structural stability.These results further illustrate the great promise of compound 1 for practical implications of Cr(VI) detection in environmental system.

    In summary, an unusual hexa-nuclear cadmium cluster functionalized reductive phosphomolybdate sensor was synthesized for photo-assisted electrochemical detection of ultra-trace Cr(VI) in real samples.With the help of photoassistance, compound 1 displayed efficient photo-assisted electrochemical Cr(VI) detection performance with the Cr(VI)LOD of 4.17 nmol/L (0.225 ppb) and sensitivity of 226.32 μA L/μmol, which is apparently superior to the performance without photo-assistance (6.25 nmol/L and 106.95 μA L/μmol)and far satisfies the demands of WHO set for potable water(50 ppb).This work provides an efficient avenue for designing efficient POM-based crystalline materials for photoelectrochemical reactions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (Nos.21871076, 21901060), Natural Science Foundation of Hebei Province (Nos.B2016205051, B2020205008 and B2019205074), Science and Technology Project of Hebei Education Department (No.BJ2020037), Project funded by China Postdoctoral Science Foundation (No.2021TQ0095), the Science Foundation of Hebei Normal University (No.L2019B15).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.021.

    中文字幕人妻熟女乱码| 亚洲av电影在线进入| 女人爽到高潮嗷嗷叫在线视频| 美女大奶头黄色视频| a级毛片黄视频| 91精品国产国语对白视频| 18禁黄网站禁片午夜丰满| 老鸭窝网址在线观看| 青春草视频在线免费观看| 国产一区二区 视频在线| 夫妻午夜视频| 国产在线免费精品| 久久久久久免费高清国产稀缺| 亚洲欧洲日产国产| 日韩制服丝袜自拍偷拍| 欧美 亚洲 国产 日韩一| 啦啦啦视频在线资源免费观看| 亚洲avbb在线观看| 桃花免费在线播放| 免费观看a级毛片全部| 大陆偷拍与自拍| 丝袜在线中文字幕| 国产成+人综合+亚洲专区| 久久99热这里只频精品6学生| 亚洲精品国产色婷婷电影| 日韩制服骚丝袜av| 久久久国产成人免费| 久久久久国产一级毛片高清牌| 久久ye,这里只有精品| 91精品伊人久久大香线蕉| 一边摸一边做爽爽视频免费| 欧美精品高潮呻吟av久久| 午夜福利乱码中文字幕| 19禁男女啪啪无遮挡网站| 日韩视频一区二区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产男女内射视频| 久久精品国产综合久久久| 成年av动漫网址| 青春草视频在线免费观看| 亚洲精品美女久久av网站| 亚洲精品久久久久久婷婷小说| 国产一区二区在线观看av| 午夜成年电影在线免费观看| 在线观看免费高清a一片| 一区二区三区激情视频| 午夜影院在线不卡| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品久久久久久婷婷小说| 美女主播在线视频| 亚洲精品国产一区二区精华液| 国产精品一区二区免费欧美 | 免费观看人在逋| 母亲3免费完整高清在线观看| 99香蕉大伊视频| 一级片'在线观看视频| 国产精品 欧美亚洲| 曰老女人黄片| 国产深夜福利视频在线观看| 人人妻人人爽人人添夜夜欢视频| 成在线人永久免费视频| 欧美另类亚洲清纯唯美| 99久久99久久久精品蜜桃| 我要看黄色一级片免费的| 免费日韩欧美在线观看| 免费少妇av软件| www.av在线官网国产| 69av精品久久久久久 | 国产一区二区 视频在线| 日本精品一区二区三区蜜桃| 欧美激情极品国产一区二区三区| 精品国产一区二区久久| 精品久久久精品久久久| 欧美97在线视频| 国产免费福利视频在线观看| 一本色道久久久久久精品综合| 在线观看舔阴道视频| 人人妻,人人澡人人爽秒播| 国产免费现黄频在线看| 成人国产av品久久久| 老司机深夜福利视频在线观看 | 三级毛片av免费| 真人做人爱边吃奶动态| 黄网站色视频无遮挡免费观看| 久久久国产欧美日韩av| 最近中文字幕2019免费版| 汤姆久久久久久久影院中文字幕| 亚洲精品国产一区二区精华液| 日日爽夜夜爽网站| 国产成人欧美| 精品乱码久久久久久99久播| 亚洲精品久久久久久婷婷小说| 91麻豆av在线| 夜夜骑夜夜射夜夜干| 超碰97精品在线观看| 久久亚洲国产成人精品v| 久久精品国产亚洲av高清一级| 亚洲人成电影免费在线| 青青草视频在线视频观看| 婷婷色av中文字幕| a级片在线免费高清观看视频| 免费看十八禁软件| 色综合欧美亚洲国产小说| 丰满迷人的少妇在线观看| 热re99久久精品国产66热6| 美女午夜性视频免费| 女人久久www免费人成看片| 精品国产乱码久久久久久小说| 黑人猛操日本美女一级片| 国产99久久九九免费精品| 国产欧美日韩一区二区三区在线| 99精品欧美一区二区三区四区| 久久人妻福利社区极品人妻图片| 成年女人毛片免费观看观看9 | 99国产精品免费福利视频| 久久中文字幕一级| 老司机午夜十八禁免费视频| 国产高清国产精品国产三级| 国产无遮挡羞羞视频在线观看| 久久久国产一区二区| 国产色视频综合| 国产高清视频在线播放一区 | 黄片播放在线免费| 午夜免费鲁丝| 欧美久久黑人一区二区| 欧美人与性动交α欧美精品济南到| 国产男人的电影天堂91| 成年女人毛片免费观看观看9 | 大陆偷拍与自拍| 成人亚洲精品一区在线观看| 91成年电影在线观看| 美女高潮到喷水免费观看| 在线天堂中文资源库| 性高湖久久久久久久久免费观看| 久久精品人人爽人人爽视色| 亚洲欧美精品自产自拍| 亚洲熟女精品中文字幕| 国产高清videossex| 久久久久网色| h视频一区二区三区| 最新的欧美精品一区二区| 亚洲国产中文字幕在线视频| 亚洲午夜精品一区,二区,三区| 日韩 亚洲 欧美在线| 在线观看一区二区三区激情| 日韩大码丰满熟妇| 欧美精品av麻豆av| 免费在线观看视频国产中文字幕亚洲 | 欧美黄色片欧美黄色片| 丝袜人妻中文字幕| 亚洲av成人一区二区三| 亚洲伊人色综图| 国产一卡二卡三卡精品| 女警被强在线播放| 大片免费播放器 马上看| 啦啦啦啦在线视频资源| 男女免费视频国产| 高清av免费在线| 国产成人a∨麻豆精品| 国产又爽黄色视频| 中文字幕另类日韩欧美亚洲嫩草| 在线av久久热| 亚洲精品在线美女| 成年人免费黄色播放视频| 最黄视频免费看| 黄色a级毛片大全视频| 曰老女人黄片| 日本欧美视频一区| 亚洲人成电影观看| 人人澡人人妻人| 亚洲自偷自拍图片 自拍| 一区二区日韩欧美中文字幕| 69av精品久久久久久 | 欧美日韩视频精品一区| 99九九在线精品视频| 国产欧美日韩一区二区三区在线| 90打野战视频偷拍视频| 国产亚洲午夜精品一区二区久久| 老司机在亚洲福利影院| av视频免费观看在线观看| 这个男人来自地球电影免费观看| 亚洲欧美清纯卡通| 国产日韩欧美亚洲二区| 男女边摸边吃奶| 一级片'在线观看视频| 欧美性长视频在线观看| 日韩,欧美,国产一区二区三区| 国产成人影院久久av| www.精华液| 亚洲三区欧美一区| 国产欧美亚洲国产| 亚洲九九香蕉| 亚洲情色 制服丝袜| 精品福利观看| 国产精品一二三区在线看| 黄色视频不卡| 亚洲美女黄色视频免费看| 午夜日韩欧美国产| www.自偷自拍.com| 在线天堂中文资源库| 可以免费在线观看a视频的电影网站| 夜夜骑夜夜射夜夜干| 12—13女人毛片做爰片一| 老司机影院毛片| 视频区图区小说| 国精品久久久久久国模美| 午夜精品国产一区二区电影| www.av在线官网国产| 亚洲精品日韩在线中文字幕| 看免费av毛片| 成人av一区二区三区在线看 | 精品卡一卡二卡四卡免费| 蜜桃国产av成人99| 十八禁网站网址无遮挡| 色综合欧美亚洲国产小说| 男人爽女人下面视频在线观看| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清 | 日韩,欧美,国产一区二区三区| 国产黄色免费在线视频| 欧美少妇被猛烈插入视频| 国产精品一区二区精品视频观看| avwww免费| 老司机影院毛片| 亚洲av电影在线观看一区二区三区| 午夜激情av网站| 巨乳人妻的诱惑在线观看| 欧美成狂野欧美在线观看| 国产成人av激情在线播放| 国产亚洲av高清不卡| 老司机影院毛片| 十分钟在线观看高清视频www| 午夜福利视频精品| 久久久欧美国产精品| 国产精品偷伦视频观看了| 国产亚洲欧美精品永久| 老汉色∧v一级毛片| 欧美日本中文国产一区发布| 国产一区二区三区av在线| 啦啦啦视频在线资源免费观看| 建设人人有责人人尽责人人享有的| 亚洲性夜色夜夜综合| 国产区一区二久久| 一区二区三区乱码不卡18| 亚洲成人免费av在线播放| 欧美激情 高清一区二区三区| 女人精品久久久久毛片| 一二三四在线观看免费中文在| 性高湖久久久久久久久免费观看| 老司机福利观看| 咕卡用的链子| 女性生殖器流出的白浆| 精品久久蜜臀av无| 国产在线一区二区三区精| 最近中文字幕2019免费版| 欧美日韩视频精品一区| 欧美日韩国产mv在线观看视频| 在线观看一区二区三区激情| 人人妻人人澡人人看| 无限看片的www在线观看| av在线老鸭窝| 国产成人av教育| 亚洲欧美一区二区三区久久| 国产欧美亚洲国产| 可以免费在线观看a视频的电影网站| 搡老熟女国产l中国老女人| 美女高潮喷水抽搐中文字幕| 午夜精品久久久久久毛片777| 国产成人av激情在线播放| 精品一品国产午夜福利视频| 美女主播在线视频| 啦啦啦中文免费视频观看日本| 18禁观看日本| 亚洲av日韩在线播放| 人人澡人人妻人| 成年av动漫网址| 狠狠婷婷综合久久久久久88av| 2018国产大陆天天弄谢| 久久久久久免费高清国产稀缺| 国产亚洲精品久久久久5区| 欧美精品av麻豆av| 蜜桃国产av成人99| 日韩人妻精品一区2区三区| 成人18禁高潮啪啪吃奶动态图| 久久精品国产综合久久久| 国产在线视频一区二区| 日韩制服骚丝袜av| 黄色怎么调成土黄色| 日韩 欧美 亚洲 中文字幕| 久久精品成人免费网站| 黄色视频在线播放观看不卡| 国产精品.久久久| 最新在线观看一区二区三区| 亚洲精品国产av蜜桃| 国产伦人伦偷精品视频| 丰满迷人的少妇在线观看| 午夜福利乱码中文字幕| 亚洲欧美成人综合另类久久久| 男男h啪啪无遮挡| 久久亚洲国产成人精品v| 99久久国产精品久久久| 色老头精品视频在线观看| 老司机影院毛片| 欧美另类亚洲清纯唯美| 精品亚洲成国产av| 日日摸夜夜添夜夜添小说| 人妻人人澡人人爽人人| 性色av一级| 成年人午夜在线观看视频| 精品一区二区三区四区五区乱码| 国产97色在线日韩免费| 成人18禁高潮啪啪吃奶动态图| 天堂8中文在线网| 国产成+人综合+亚洲专区| av在线app专区| 女人久久www免费人成看片| 日本撒尿小便嘘嘘汇集6| 一级毛片精品| 12—13女人毛片做爰片一| 日韩电影二区| 在线观看免费视频网站a站| 最近中文字幕2019免费版| av福利片在线| 久久午夜综合久久蜜桃| 婷婷色av中文字幕| avwww免费| 黄频高清免费视频| 成人手机av| 搡老乐熟女国产| 国产视频一区二区在线看| 国产精品久久久久久人妻精品电影 | 国产成人影院久久av| 亚洲中文日韩欧美视频| 在线观看人妻少妇| 亚洲熟女精品中文字幕| 久久综合国产亚洲精品| 18禁国产床啪视频网站| 成年女人毛片免费观看观看9 | 免费看十八禁软件| 亚洲精品久久午夜乱码| 日韩视频在线欧美| 男女下面插进去视频免费观看| av电影中文网址| 国产精品国产av在线观看| 黄片大片在线免费观看| 久久久精品区二区三区| 亚洲一码二码三码区别大吗| 老司机深夜福利视频在线观看 | 亚洲精品中文字幕一二三四区 | 国产日韩一区二区三区精品不卡| 妹子高潮喷水视频| videosex国产| 欧美日韩亚洲综合一区二区三区_| 欧美久久黑人一区二区| 男女午夜视频在线观看| 青草久久国产| 国产精品1区2区在线观看. | 丝袜美腿诱惑在线| 亚洲欧美一区二区三区久久| 亚洲第一青青草原| 久久人人爽av亚洲精品天堂| 巨乳人妻的诱惑在线观看| 首页视频小说图片口味搜索| 午夜视频精品福利| 18在线观看网站| 久久久久国产精品人妻一区二区| 少妇裸体淫交视频免费看高清 | 免费在线观看黄色视频的| 欧美亚洲日本最大视频资源| 一级片免费观看大全| 夜夜骑夜夜射夜夜干| 亚洲精品美女久久av网站| 亚洲avbb在线观看| 午夜福利一区二区在线看| 国产成人av教育| 黄色毛片三级朝国网站| 欧美激情极品国产一区二区三区| 国产人伦9x9x在线观看| 精品乱码久久久久久99久播| 首页视频小说图片口味搜索| 亚洲国产成人一精品久久久| 美女大奶头黄色视频| 欧美日韩国产mv在线观看视频| 宅男免费午夜| 各种免费的搞黄视频| 飞空精品影院首页| 国产一区二区在线观看av| 老熟女久久久| 成人黄色视频免费在线看| 国产精品久久久久久精品古装| 欧美成狂野欧美在线观看| 一边摸一边抽搐一进一出视频| 久久99一区二区三区| 久久 成人 亚洲| 国产精品九九99| 免费av中文字幕在线| 国产一级毛片在线| 免费在线观看黄色视频的| 精品少妇一区二区三区视频日本电影| 国产成人精品在线电影| 欧美黄色淫秽网站| 三上悠亚av全集在线观看| 亚洲激情五月婷婷啪啪| 国产精品一区二区精品视频观看| 满18在线观看网站| 9色porny在线观看| 女性生殖器流出的白浆| 50天的宝宝边吃奶边哭怎么回事| 久久久水蜜桃国产精品网| 国产亚洲午夜精品一区二区久久| 80岁老熟妇乱子伦牲交| 亚洲国产欧美在线一区| 亚洲国产成人一精品久久久| 99久久精品国产亚洲精品| 黄色 视频免费看| 午夜精品久久久久久毛片777| 秋霞在线观看毛片| 香蕉丝袜av| 亚洲中文日韩欧美视频| 亚洲成人国产一区在线观看| 精品国产乱子伦一区二区三区 | 亚洲欧洲日产国产| av天堂在线播放| 两性夫妻黄色片| 999久久久国产精品视频| 久久精品成人免费网站| 天天躁日日躁夜夜躁夜夜| 亚洲精品美女久久av网站| 亚洲精品国产色婷婷电影| 人妻一区二区av| 亚洲avbb在线观看| 亚洲第一青青草原| 搡老乐熟女国产| 亚洲成人国产一区在线观看| 国产片内射在线| 亚洲全国av大片| 在线av久久热| 精品人妻1区二区| 婷婷丁香在线五月| tube8黄色片| 高清av免费在线| 国产亚洲av片在线观看秒播厂| 国产成人欧美| 久久久国产精品麻豆| 久久精品国产综合久久久| 性高湖久久久久久久久免费观看| 国产一区二区 视频在线| 97在线人人人人妻| 五月开心婷婷网| 一个人免费看片子| 交换朋友夫妻互换小说| 亚洲精品乱久久久久久| 在线 av 中文字幕| 亚洲第一av免费看| av视频免费观看在线观看| 精品国产一区二区三区四区第35| 日韩,欧美,国产一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 中文字幕色久视频| 手机成人av网站| 天天添夜夜摸| 久久久久国产一级毛片高清牌| 欧美精品啪啪一区二区三区 | 91精品三级在线观看| 久久久精品国产亚洲av高清涩受| 91九色精品人成在线观看| 黑人巨大精品欧美一区二区蜜桃| 叶爱在线成人免费视频播放| av在线播放精品| 午夜影院在线不卡| 久久精品成人免费网站| 久久热在线av| 国产精品一二三区在线看| 99九九在线精品视频| 亚洲性夜色夜夜综合| 国产熟女午夜一区二区三区| 一级毛片女人18水好多| 久久久久久久大尺度免费视频| 一本一本久久a久久精品综合妖精| 成人黄色视频免费在线看| 在线观看免费高清a一片| 欧美精品高潮呻吟av久久| 视频区图区小说| 不卡一级毛片| 日韩视频一区二区在线观看| 国产亚洲欧美精品永久| 国产成人欧美| 亚洲国产欧美一区二区综合| 国产99久久九九免费精品| 无遮挡黄片免费观看| 久久香蕉激情| 国产在视频线精品| 精品人妻熟女毛片av久久网站| 少妇的丰满在线观看| 秋霞在线观看毛片| 成年美女黄网站色视频大全免费| 久久久久久久精品精品| 亚洲视频免费观看视频| 亚洲欧洲日产国产| 美女午夜性视频免费| 色婷婷av一区二区三区视频| 黄网站色视频无遮挡免费观看| 成人亚洲精品一区在线观看| 亚洲伊人久久精品综合| 日韩一区二区三区影片| 老司机影院毛片| 亚洲专区中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 久久久精品94久久精品| 欧美+亚洲+日韩+国产| 在线 av 中文字幕| 国产xxxxx性猛交| 亚洲精品中文字幕一二三四区 | 亚洲专区字幕在线| 亚洲国产毛片av蜜桃av| 精品熟女少妇八av免费久了| 丁香六月欧美| 亚洲精品国产区一区二| 亚洲精品美女久久久久99蜜臀| 99精品久久久久人妻精品| 亚洲成人免费av在线播放| 国产一区二区在线观看av| 男女无遮挡免费网站观看| 狂野欧美激情性xxxx| 91麻豆精品激情在线观看国产 | 国产精品久久久久久精品电影小说| 桃红色精品国产亚洲av| 黑人巨大精品欧美一区二区mp4| 精品熟女少妇八av免费久了| 999久久久国产精品视频| 欧美另类亚洲清纯唯美| 国产无遮挡羞羞视频在线观看| 亚洲精品粉嫩美女一区| 黄色视频,在线免费观看| 肉色欧美久久久久久久蜜桃| 777米奇影视久久| 国产在线一区二区三区精| 黄频高清免费视频| 精品欧美一区二区三区在线| 国产精品免费视频内射| 成年人免费黄色播放视频| 最新在线观看一区二区三区| 国产精品一区二区精品视频观看| 在线观看人妻少妇| 俄罗斯特黄特色一大片| 午夜老司机福利片| 国产欧美日韩一区二区三区在线| 国产熟女午夜一区二区三区| 精品少妇一区二区三区视频日本电影| 久久精品国产亚洲av高清一级| av福利片在线| 啪啪无遮挡十八禁网站| 精品久久久久久电影网| 欧美日韩国产mv在线观看视频| 丝瓜视频免费看黄片| 免费高清在线观看日韩| 国产一区二区在线观看av| 母亲3免费完整高清在线观看| 免费av中文字幕在线| 色老头精品视频在线观看| 国产日韩欧美在线精品| 免费人妻精品一区二区三区视频| 91大片在线观看| 国产精品久久久久久精品古装| 丝袜在线中文字幕| 国产一区有黄有色的免费视频| 性高湖久久久久久久久免费观看| 精品国产一区二区久久| 五月天丁香电影| 在线精品无人区一区二区三| 国产成人欧美在线观看 | 丝瓜视频免费看黄片| 国产亚洲精品久久久久5区| 亚洲avbb在线观看| 好男人电影高清在线观看| 一级,二级,三级黄色视频| 久久精品国产综合久久久| 欧美在线黄色| 欧美国产精品一级二级三级| 亚洲精品一区蜜桃| 各种免费的搞黄视频| 国产亚洲一区二区精品| 一区二区av电影网| 午夜免费成人在线视频| 精品第一国产精品| 成年美女黄网站色视频大全免费| 老司机在亚洲福利影院| 日本wwww免费看| 亚洲精品一二三| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品无人区| 三上悠亚av全集在线观看| 这个男人来自地球电影免费观看| 亚洲国产毛片av蜜桃av| 啦啦啦视频在线资源免费观看| 90打野战视频偷拍视频| 另类精品久久| 热99re8久久精品国产| 1024香蕉在线观看| 精品第一国产精品| 永久免费av网站大全| 咕卡用的链子| 亚洲精品中文字幕一二三四区 | 欧美精品啪啪一区二区三区 | 91精品国产国语对白视频| 亚洲中文av在线| 精品少妇一区二区三区视频日本电影| tocl精华| 国产主播在线观看一区二区| 国产精品一区二区免费欧美 | 99九九在线精品视频| 国产色视频综合| 在线亚洲精品国产二区图片欧美| 丰满人妻熟妇乱又伦精品不卡| 国产av一区二区精品久久|