• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C–H oxidations

    2022-09-15 03:11:22YubinFnGoWnruXioLiShujunLiBingYuXueninChen
    Chinese Chemical Letters 2022年9期

    Yubin M, Fn Go, Wnru Xio, N Li, Shujun Li,?, Bing Yu, Xuenin Chen,

    a School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University,Xinxiang 453007, China

    b College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

    ABSTRACT The visible-light-induced selective oxidation of ubiquitous C–H bonds into valuable C=O bonds under aerobic conditions is one of the most attractive approaches for the construction of carbonyl-containing molecules.In this work, two transition metal-containing Nb/W mixed-addendum POMs dimers with the formula of K2Na2H5[(Fe(H2O)4)3(P2W15Nb3O62)2]?24H2O (POM[Fe]) and K2Na3H4[(Cr(H2O)4)3(P2W15Nb3O62)2]?32H2O (POM[Cr]) have been synthesized and characterized by various analytical and spectral techniques.POM[Fe] was proved to be an efficient photocatalyst for benzylic C–H oxidation under visible light and using oxygen as an oxidant to produce the corresponding carbonyl complex in good yields.A plausible mechanism involving superoxide radical was proposed for the catalytic reaction.POM[Fe] showed good reusability in the recycling experiments.IR spectroscopy and XRD analysis indicate that POM[Fe] can retain its integrity after catalysis.

    Keywords:Polyoxometalates Mixed-addendum POMs Visible-light-induced catalysis Photocatalysis C–H bonds oxidation

    The selective oxidation of benzyl C–H is of significance in modern organic synthesis and pharmaceutical industries [1,2].Conventionally, benzylic oxidation reactions require not only harsh reaction conditions, but also environmentally unfriendly high-valent oxidants (such as CrO3, MnO2or hypervalent iodine) [3–5].Therefore, the establishment of a green oxidative system for the benzylic oxidation with oxygen as the mild oxidant is highly attractive.In the past decades, many efforts have been directed toward the development of more efficient catalysts and catalytic systems.For example, a range of transition metal complexes have been employed as catalysts in benzylic oxidation reactions, including the complexes of copper [6], manganese [7], cobalt [8,9], rhodium [10],iron [11,12] and palladium [13].However, most of the previously reported systems are homogeneous catalysis, in which the catalysts cannot be recovered and reused thus preventing their further application.It is of great significance to develop a recyclable heterogeneous catalyst for the oxidation of benzyl C–H bonds by molecular oxygen under mild and green conditions.

    The photocatalytic oxidation of benzyl C–H using visible light is a benign alternative to the classical oxidation method from the perspective of green chemistry and sustainable development[14,15].Among various photocatalysts, polyoxometalates (POMs)have been proved to be one of the most promising candidates[16–18].POMs are a large family of metal-oxygen clusters formed by early transition metal with d0electronic configuration(M = Mo6+, W6+, Nb5+, Ta5+) [19–24].Owing to their advantages of diverse and definite structures, adjustable elemental composition and band gap, reversible multielectron processes during catalysis, and high stability toward redox conditions, POMs are attracting more and more attention in the field of photocatalysis[25–28].They have shown potential applications in photocatalytic degradation of organic pollutants and dyes [29–31], H2evolution[32–36] and CO2reduction [37–40].

    POMs can effectively activate molecular oxygen under light,thereby they can catalyze a variety of organic reactions, such as oxidation of benzene to phenol [41], selective oxidation of alcohols[42], oxidative bromination of arenes and alkenes [43] and coupling reaction of benzylamine [44].However, in most of these reports, the POMs photocatalysts require UV light.Considering the effective use of solar energy, the development of visible-lightresponsive photocatalysts, especially the exploration of their application in some new reactions, are highly demanded.

    Herein, we obtained two POMs dimers K2Na2H5[(Fe(H2O)4)3(P2W15Nb3O62)2]?24H2O (POM[Fe]) and K2Na3H4[(Cr(H2O)4)3(P2W15Nb3O62)2]?32H2O (POM[Cr]) by the reactions of Nb/W mixed-addenda POM and transition metal (TM)ions (Fe3+and Cr3+) under conventional aqueous solution.The two polyanions both display dimer structures, which are composed of two {P2W15Nb3} linked by three octahedrally coordinated metal ions.POM[Fe] was proved to be a highly efficient heterogeneous photocatalyst for the visible-light-induced oxidation of benzyl C–H using oxygen as the oxidant.Moreover, the POM[Fe] catalyst displayed excellent cyclability in the catalytic process.

    POM[Fe] and POM[Cr] were synthesized in conventional aqueous solution using a Nb/W mixed-addendum precursor(K8H[P2W15(NbO2)3O59]·12H2O) and corresponding transition metal salts (FeCl3·6H2O and Cr(NO3)3·9H2O).The pH values and the use of 2-aminopyrimidine-5-boronic acid pinacol ester play essential roles in the synthesis of the two compounds.The syntheses of the two compounds are performed at different pH values which should be controlled carefully, and upon deviating from the pH ranges, no target product can be afforded.In addition,2-aminopyrimidine-5-boronic acid pinacol ester served as an essential addition agent, although it does not appear in the final structures of POM[Fe] and POM[Cr].Only some unidentifiable brownish-yellow precipitates can be obtained without the addition of 2-aminopyrimidine-5-boronic acid pinacol ester at last.

    Single-crystal X-ray diffraction structural analysis (Table S1 in Supporting information) reveals that both the two compounds crystallize in space groupP-1.They exhibit similar structures with only differences in the TM ions.Similar to other transition-metal or rare-earth modified Nb/W mixed-addendum POMs [45–47], the clusters {P2W15Nb3O62} coordinate with Fe and Cr using the Lewis base terminal O atoms bonded with Nb (Ot(Nb)).Taking POM[Fe]as an example, it consists of two {P2W15Nb3O62} linked by three{FeO4} to form a sandwich dimer structure (Fig.1a and Fig.S1 in Supporting information).The three Fe3+ions connect to six Ot(Nb) from two {P2W15Nb3O62} through three (Nb)Ot-Fe-Ot(Nb)bridges.The Fe-O bond lengths are between 1.920 and 1.943 ?A.Each Fe ion adopts six-coordinated octahedral geometry with two Ot(Nb) from POMs and four terminal O atoms (Fig.S1).Bond valence sums (BVS) analyses reveal that the bond valences for all the four terminal O atoms coordinated with Fe3+are in the range of 0.429 and 0.506 (Table S2 in Supporting information), indicating that all of them exist in the form of coordination water.Two dimeric structures are connected by K1 and Na2 to form a tetrameric {(P2W15Nb3O62)4(Fe3O12)2} cluster (Fig.1b), which are further linked by two additional K ions (K2) to form Z-shaped onedimensional (1-D) chains (Fig.1c and Fig.S3 in Supporting information).These 1-D chains are interconnected with each other via Na1 ions resulting in the 2-D networks (Fig.2).

    Fig.1.(a) The polyhedral representation of [Fe3(P2W15Nb3)2] of POM [Fe].(b) The polyhedral/ball-and-stick representation of {(P2W15Nb3O62)4(Fe3O12)2}.(c) Z-shaped one-dimensional (1-D) chain structure of POM[Fe] (top view).

    Fig.2.The 2-D network in POM[Fe] constructed by the building block{(P2W15Nb3O62)4(Fe3O12)2} and Na1.

    Fig.3.(a, b) UV-vis spectra and (c, d) XPS spectra for POM[Fe] and POM[Cr].

    The character of light absorption of two compounds was investigated by UV-vis diffuse reflection spectroscopy.Due to the presence of transition metals, the UV-vis spectra of POM[Fe] and POM[Cr] exhibit absorption peaks in the visible light region, indicating their potential application in photocatalysis (Figs.3a and b).The XPS technique was further employed to determine the chemical states of Fe and Cr in POM[Fe] and POM[Cr].The peaks with binding energies at 724.4 eV and 711.2 eV of POM[Fe] correspond to Fe3+2p1/2and Fe3+2p3/2states, respectively (Fig.3c) [48,49].The spectrum of POM[Cr] shows two binding energies at 588.2 eV and 578.4 eV which represent the electrons in the Cr3+2p1/2and Cr3+2p3/2states, respectively (Fig.3d) [50,51].The +3 oxidation states of these metal ions indicated by XPS were fully consistent with the results of BVS analyses (Table S3 in Supporting information).

    Fig.4.Cyclic voltammograms of (a) Fe-CPE and (b) Cr-CPE in an aqueous solution of 0.05 mol/L KCl and 0.026 mol/L HCl under different scan rates from inner to outer of 40, 60, 80, 100, 140, 180, 220, 260, 300 mV/s.

    To elucidate the electrochemical features of the POM[Fe] and POM[Cr], Fe-CPE and Cr-CPE were prepared for cyclic voltammogram measurements [52].As shown in Fig.4, in the potential range of +200 mV to ?800 mV, three pairs of redox peaks (I-I’, II?II’,III?III’) are both observed for the two compounds.The two pairs of redox peaks in the negative region of potential values with E1/2peak potentials located at ?205 mV (II/II’) and ?525 mV (III/III’) for POM[Fe] and ?195 mV (II/II’) and ?550 mV (III/III’)) for POM[Cr]are assigned to the redox process of the W centers [53].A couple of redox peaks in the region with an E1/2peak potential of ?20 mV(I/I’) for POM[Fe] and ?25 mV (I/I’) for POM[Cr] are attributed to the Fe and Cr centers, respectively [54].Their peak currents were proportional to the square root of the scan rates, which indicates that their redox processes are both diffusion-controlled (Fig.S4 in Supporting information).

    To gain the optimization for the reaction conditions, a series of experiments were conducted by using isochromane (1a) as the model substrate to examine the catalytic activity of POM[Cr] and POM[Fe] under irradiation of visible light at room temperature(Table 1).Initially, different wavelengths including 390, 430, 460,520 nm (green light), and white light were examined for the model reaction in CH3CN at room temperature till full conversation, monitoring by thin-layer chromatography (TLC) (entries 1–5).These results revealed that 390 nm was the best light source, leading to the desired product 2a in moderate isolated yield (68%, entry 1).However, considering the significance of visible light in organic synthesis and the negligibly different yields between 390 and 430 nm (entries 1 and 2), we decided to use 430 nm as the optimized light source for further study.When POM[Cr] was employed as photocatalyst in the model reaction, a lower yield of desired product 2a was obtained (entry 6).To further improve the reaction efficiency, a series of solvents including dimethyl sulfoxide(DMSO), H2O, EtOH, dimethyl carbonate (DMC), 1,2-dichloroethane(DCE), acetone,N,N-dimethylformamide (DMF), toluene, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) and 1,4-dioxane were screened (entries 7–16).The results showed that when DMSO, H2O, and acetone were employed as a solvent the yields of 2a were 72%, 71% and 71%, respectively (entries 7, 8 and 12).Given that the catalyst POM[Fe] is soluble in water while insoluble in acetone, we choose acetone as the optimal reaction solvent making POM[Fe] a heterogeneous catalyst.Finally, the examination of the amount of catalyst showed that 0.5 mol% of catalyst was the best amount for this transformation (entries 17–20).Therefore,the optimal conditions were established as follows: 1a (0.4 mmol)and photocatalyst POM[Fe] (0.5 mol%) in acetone (0.2 mol/L) were stirred at room temperature under the irradiation of blue light(430 nm) with O2(1 atm) as the sole oxidant.

    Table 1 Optimization of the reaction.a

    With the optimized conditions in hand, the generality and limitation of this photocatalytic oxygenation protocol were eval-uated by examining diverse compounds (Scheme 1).Firstly, different oxygen-containing heterocycles could be oxidized to corresponding lactones 2a and 2b or ketone 2c in moderate to good yields (43%?76%).2,3-Dihydro-1H-indene and 1,2,3,4-tetrahydronaphthalene afforded the desired product 2d and 2e with the yield of 68% and 63%, respectively.Then, the aromatic substrates with more active methylene could be easily oxidized to generate ketones 2f-2i (46%–82%).Especially, 9,10-dihydroanthracene 1f gave the corresponding anthracene-9,10-dione 2f in the yield of 58%.Encouraged by these results, diverse functional groups (–H, –CH3, –OMe, –CH2Ph, –Ph, –Py) on the benzylic position were further evaluated.It was found that all of the compounds 1j-1o could be oxidized under the optimized reaction conditions albeit with a longer reaction time (2j-2o).Finally,N-heterocyclic compounds were further evaluated in this photocatalytic system, generating the corresponding products 2p-2s in moderated yields (43%?61%).It is a pity that this protocol failed to realize the selective mono-oxidation of isoindoline 1s, which has great value in medicines and materials [55].Moreover, we also found that the current catalytic system has some limitations.For example, theN-heterocyclic compounds 1t-1y and the aliphatic substrate 1z are not suitable in this oxidative reaction.

    Scheme 1.Substrate scope.Reaction conditions: 1 (0.4 mmol), POM[Fe] (0.5 mol%),acetone (0.2 mol/L), blue LED (430 nm, 10 W), using O2 balloon at room temperature.Isolated yields were given.a EtOH instead of acetone.

    To get a deep insight into the reaction mechanism, a series of control experiments were conducted as shown in Table 2.Firstly,we concluded that oxygen was an essential and efficient factorviacarrying out reaction under air and nitrogen atmosphere(Table 2, entries 2 and 3).Then, no desired product was obtained without light irradiation, indicating that light is of significance in this process (Table 2, entry 4).Radical scavengers (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO) was added under standard conditions (Table 2, entry 5).This reaction was inhibited, indicating that a radical mechanism may be involved in this protocol.Meanwhile, the adduct of TEMPO and radical species from 1a (i.e.,intermediate 3 in Scheme 2) was detected by using high-resolution mass spectroscopy (HRMS) (Fig.S8 in Supporting information).Additionally, when superoxide radical scavenger 4-benzoquinone (BQ)[56] was added into the reaction, the decreased yield of 2a demonstrated that superoxide radical was generated and played an important role in the reaction process (Table 2, entry 6).Finally, hydroperoxide radical may exist in this system through the result of adding FeSO4under standard conditions (Table 2, entry 7).

    Scheme 2.Plausible reaction mechanism.

    Table 2 Control experiments.a

    Based on the above experimental results, a plausible mechanism was proposed as shown in Scheme 2.Firstly, ground state POM[Fe] was transformed into excited state POM[Fe]?under the irradiation of visible light.Then, substrate 1a underwent a hydrogen atom transfer (HAT) process under the effect of excited state POM[Fe]?to generate intermediate 3, along with the generation of POM[Fe]-H.Intermediate POM[Fe]-H was oxidized by oxygen to regenerate the ground state POM[Fe] to accomplish the photoredox cycle and release a proton.Simultaneously, oxygen was transformed into a superoxide radical.On the one hand, intermediate 3 was combined with superoxide radical to generate intermediate 4, which was protonated to obtain intermediate 5 (path a).On the other hand, intermediate 3 reacted with hydroperoxide radical to generate intermediate 5 (path b).Finally, intermediate 5 released H2O to afford desired products 2a.

    The stability and reusability of POM[Fe] were also evaluated.After the reaction, photocatalyst POM[Fe] was isolated by centrifugation, washed with 15 mL CH2Cl2three times, and air-dried at room temperature for 24 h, then directly used in the next reaction.As shown in Fig.5, good stability and high catalytic activity of POM[Fe] was demonstrated due to the negligibly decreased yield of 2a after the 7thcycle.Meanwhile, the results of PXRD patterns and FTIR spectroscopy of recovered POM[Fe] also indicated the good stability and well-maintained in crystal lattice (Fig.S9 in Supporting information).

    Fig.5.Recycling experiments.

    In summary, two POM dimers have been successfully synthesized by the reaction of Nb/W mixed-addendum POM and TM ions(Fe3+and Cr3+).POM[Fe] can efficiently catalyze the selective oxidation of sp3C–H bonds under visible light using oxygen as an oxidant.The catalyst shows good stability and reusability in multiple catalytic cycles.Mechanistic investigations suggest that the catalytic reaction has gone through a hydrogen atom transfer process.The superoxide radical has generated and played an important role in the reaction processes.This work provides a feasible revelation for exploring the development of new transition metal-modified POMs in visible-light-induced organic reactions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22171073, 21971224 and U1804253),and the Natural Science Foundation of Henan Province (No.202300410246).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.023.

    嫁个100分男人电影在线观看| av福利片在线观看| 国内精品宾馆在线| 国产精品女同一区二区软件 | 3wmmmm亚洲av在线观看| 在线观看免费视频日本深夜| 日本熟妇午夜| 国产成人av教育| 热99re8久久精品国产| a在线观看视频网站| av视频在线观看入口| 噜噜噜噜噜久久久久久91| 欧美zozozo另类| 18禁在线播放成人免费| 九色成人免费人妻av| 久久久久久久午夜电影| 精品人妻熟女av久视频| 日本在线视频免费播放| 在线a可以看的网站| 国产爱豆传媒在线观看| 九九久久精品国产亚洲av麻豆| 欧美成人性av电影在线观看| 乱系列少妇在线播放| 天美传媒精品一区二区| 久久99热6这里只有精品| 亚洲美女搞黄在线观看 | netflix在线观看网站| 一个人看视频在线观看www免费| 亚洲性久久影院| 欧美日韩综合久久久久久 | 免费搜索国产男女视频| 美女 人体艺术 gogo| 天堂影院成人在线观看| 黄色一级大片看看| 日韩一本色道免费dvd| 99久久中文字幕三级久久日本| 97人妻精品一区二区三区麻豆| 色播亚洲综合网| 国产精品无大码| 动漫黄色视频在线观看| 欧美激情国产日韩精品一区| 亚洲 国产 在线| 99久久久亚洲精品蜜臀av| 在线观看66精品国产| 欧美激情久久久久久爽电影| 免费观看在线日韩| 精品一区二区三区视频在线观看免费| 婷婷精品国产亚洲av| 欧美绝顶高潮抽搐喷水| 三级男女做爰猛烈吃奶摸视频| 精品福利观看| 小说图片视频综合网站| 一个人看视频在线观看www免费| 免费看光身美女| 精品久久久久久久人妻蜜臀av| 99热6这里只有精品| 99在线人妻在线中文字幕| 午夜影院日韩av| 日韩欧美精品v在线| 最好的美女福利视频网| 亚洲中文字幕一区二区三区有码在线看| 精品一区二区三区人妻视频| 午夜福利在线在线| 88av欧美| 亚洲综合色惰| 哪里可以看免费的av片| 最后的刺客免费高清国语| 国产精华一区二区三区| 欧美成人a在线观看| 99久久精品国产国产毛片| 色精品久久人妻99蜜桃| 一边摸一边抽搐一进一小说| 简卡轻食公司| 欧美色视频一区免费| 国产亚洲av嫩草精品影院| 99riav亚洲国产免费| 18禁黄网站禁片午夜丰满| 乱系列少妇在线播放| 在线免费十八禁| 一本一本综合久久| 精品一区二区三区视频在线| 精品欧美国产一区二区三| 给我免费播放毛片高清在线观看| 亚洲五月天丁香| 久久天躁狠狠躁夜夜2o2o| 嫩草影院入口| 日本免费a在线| 久久精品影院6| 久久人人爽人人爽人人片va| 亚洲国产欧洲综合997久久,| 精品人妻1区二区| 黄色女人牲交| 高清日韩中文字幕在线| 久久精品国产亚洲av香蕉五月| 男女下面进入的视频免费午夜| 一区二区三区激情视频| 国产高清视频在线播放一区| 国产免费一级a男人的天堂| 国内少妇人妻偷人精品xxx网站| 精品人妻视频免费看| 久久人人爽人人爽人人片va| 最近在线观看免费完整版| 午夜久久久久精精品| h日本视频在线播放| 亚洲乱码一区二区免费版| 精品午夜福利在线看| 亚洲欧美日韩高清专用| 国内精品久久久久精免费| 在线播放国产精品三级| 国产精品亚洲一级av第二区| 日韩欧美一区二区三区在线观看| 欧美一区二区亚洲| 国产视频内射| 午夜日韩欧美国产| 国产伦精品一区二区三区视频9| 免费大片18禁| 欧美日韩亚洲国产一区二区在线观看| 日韩国内少妇激情av| 免费av不卡在线播放| 亚洲av免费在线观看| 欧美zozozo另类| 欧美xxxx黑人xx丫x性爽| 乱码一卡2卡4卡精品| 亚洲色图av天堂| 亚洲美女视频黄频| 欧美成人a在线观看| 久久精品国产99精品国产亚洲性色| 亚洲最大成人中文| 少妇被粗大猛烈的视频| 嫩草影院入口| 人妻久久中文字幕网| 中国美白少妇内射xxxbb| 成人三级黄色视频| 琪琪午夜伦伦电影理论片6080| 嫩草影院精品99| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看 | 村上凉子中文字幕在线| 国产真实伦视频高清在线观看 | 欧美日韩亚洲国产一区二区在线观看| 亚洲中文字幕一区二区三区有码在线看| 99热网站在线观看| 亚洲成a人片在线一区二区| 国产精品一区二区免费欧美| 最近最新中文字幕大全电影3| 啦啦啦韩国在线观看视频| 又爽又黄无遮挡网站| 嫩草影院新地址| 亚洲黑人精品在线| 高清毛片免费观看视频网站| 特大巨黑吊av在线直播| 亚洲天堂国产精品一区在线| 亚洲精品乱码久久久v下载方式| 欧美日韩亚洲国产一区二区在线观看| 99精品在免费线老司机午夜| 国产主播在线观看一区二区| 嫩草影院入口| 麻豆一二三区av精品| 久久精品91蜜桃| avwww免费| 亚洲五月天丁香| 校园春色视频在线观看| 精品福利观看| 亚州av有码| 欧美成人一区二区免费高清观看| 又黄又爽又刺激的免费视频.| 此物有八面人人有两片| 嫩草影院精品99| 三级毛片av免费| 成人高潮视频无遮挡免费网站| 免费看a级黄色片| 波多野结衣高清作品| 在线免费观看不下载黄p国产 | 88av欧美| 国产美女午夜福利| 老熟妇乱子伦视频在线观看| 88av欧美| 久99久视频精品免费| 久久久久久久久中文| 国产一级毛片七仙女欲春2| 欧美日韩中文字幕国产精品一区二区三区| 无人区码免费观看不卡| 女同久久另类99精品国产91| 精品久久国产蜜桃| 男女视频在线观看网站免费| 成人一区二区视频在线观看| 22中文网久久字幕| 欧美黑人巨大hd| 色av中文字幕| 一进一出抽搐gif免费好疼| 久久久久久伊人网av| 亚洲最大成人av| 免费黄网站久久成人精品| 黄色配什么色好看| 国产成人福利小说| 久久久国产成人精品二区| 国产成人a区在线观看| 日本与韩国留学比较| 舔av片在线| 久久精品国产亚洲av天美| 免费av不卡在线播放| 成人国产一区最新在线观看| 亚洲国产欧洲综合997久久,| 欧美精品国产亚洲| 18禁在线播放成人免费| 亚洲五月天丁香| 欧美成人a在线观看| 老司机福利观看| 特大巨黑吊av在线直播| 在线看三级毛片| 午夜爱爱视频在线播放| 午夜激情欧美在线| 国产人妻一区二区三区在| 国产亚洲av嫩草精品影院| 国产69精品久久久久777片| 如何舔出高潮| 成人永久免费在线观看视频| 熟女电影av网| 国产男靠女视频免费网站| 久久99热这里只有精品18| 国产蜜桃级精品一区二区三区| 欧美性感艳星| 久久久久国内视频| 热99re8久久精品国产| 中文字幕人妻熟人妻熟丝袜美| 小说图片视频综合网站| 精品人妻1区二区| 亚州av有码| 最后的刺客免费高清国语| 成人精品一区二区免费| 波多野结衣高清无吗| 最近最新免费中文字幕在线| 免费在线观看日本一区| 国产高清不卡午夜福利| 亚洲狠狠婷婷综合久久图片| 老司机福利观看| 啦啦啦观看免费观看视频高清| 午夜福利欧美成人| 成年人黄色毛片网站| 午夜精品一区二区三区免费看| www日本黄色视频网| 男女视频在线观看网站免费| 真实男女啪啪啪动态图| 精品久久久久久久久亚洲 | 亚洲va日本ⅴa欧美va伊人久久| 国产不卡一卡二| 国产精品福利在线免费观看| 亚洲五月天丁香| 亚洲精品乱码久久久v下载方式| 又黄又爽又刺激的免费视频.| 日韩欧美精品v在线| av视频在线观看入口| 国产淫片久久久久久久久| 91狼人影院| 免费av毛片视频| 精品欧美国产一区二区三| 午夜视频国产福利| 美女高潮喷水抽搐中文字幕| 桃色一区二区三区在线观看| 人妻夜夜爽99麻豆av| 琪琪午夜伦伦电影理论片6080| 久久久午夜欧美精品| 啦啦啦啦在线视频资源| 亚洲精品456在线播放app | 亚洲三级黄色毛片| av福利片在线观看| 最好的美女福利视频网| 男女边吃奶边做爰视频| 久久6这里有精品| 亚洲av电影不卡..在线观看| 在线国产一区二区在线| 麻豆成人av在线观看| 自拍偷自拍亚洲精品老妇| 日韩强制内射视频| 亚洲精品456在线播放app | 日本色播在线视频| 欧美xxxx性猛交bbbb| 搞女人的毛片| 亚洲美女视频黄频| 精品日产1卡2卡| 久久香蕉精品热| 精品免费久久久久久久清纯| 精品人妻一区二区三区麻豆 | 99热这里只有精品一区| 看免费成人av毛片| 少妇裸体淫交视频免费看高清| 九九爱精品视频在线观看| 亚洲美女黄片视频| 99riav亚洲国产免费| 国产真实乱freesex| 欧美最新免费一区二区三区| 淫秽高清视频在线观看| 大又大粗又爽又黄少妇毛片口| 99国产极品粉嫩在线观看| 国产精品女同一区二区软件 | 色综合亚洲欧美另类图片| 在线看三级毛片| 黄色一级大片看看| 免费高清视频大片| 国产大屁股一区二区在线视频| 国产高潮美女av| 中亚洲国语对白在线视频| 日韩欧美在线乱码| 最新中文字幕久久久久| 欧美日韩亚洲国产一区二区在线观看| 欧美一区二区精品小视频在线| 男人的好看免费观看在线视频| 成人一区二区视频在线观看| 十八禁网站免费在线| xxxwww97欧美| 国产女主播在线喷水免费视频网站 | 丰满的人妻完整版| 亚洲av中文av极速乱 | 亚洲国产色片| 窝窝影院91人妻| 久久久久久九九精品二区国产| 校园人妻丝袜中文字幕| 女的被弄到高潮叫床怎么办 | 免费观看人在逋| 美女 人体艺术 gogo| 九色国产91popny在线| 免费av不卡在线播放| 国产一区二区在线观看日韩| 综合色av麻豆| 一本一本综合久久| 亚洲第一电影网av| 在线观看舔阴道视频| 国产极品精品免费视频能看的| 亚洲精品日韩av片在线观看| 99热只有精品国产| 日本爱情动作片www.在线观看 | 欧美黑人巨大hd| 在线免费观看不下载黄p国产 | 久久精品久久久久久噜噜老黄 | 国产私拍福利视频在线观看| 综合色av麻豆| 色精品久久人妻99蜜桃| 精品日产1卡2卡| 在线播放无遮挡| 亚洲一区二区三区色噜噜| 国产伦精品一区二区三区视频9| 中文字幕熟女人妻在线| 亚洲五月天丁香| 欧美3d第一页| 国产伦精品一区二区三区四那| 亚洲成人免费电影在线观看| 少妇人妻一区二区三区视频| 我要看日韩黄色一级片| 久久九九热精品免费| 欧美丝袜亚洲另类 | 亚洲18禁久久av| 啦啦啦啦在线视频资源| 国产白丝娇喘喷水9色精品| 香蕉av资源在线| 亚洲成人久久爱视频| 午夜免费男女啪啪视频观看 | 一进一出抽搐gif免费好疼| 国产国拍精品亚洲av在线观看| 国产欧美日韩一区二区精品| 日韩大尺度精品在线看网址| 国产精品久久久久久久电影| 国产国拍精品亚洲av在线观看| 欧美zozozo另类| 18禁黄网站禁片午夜丰满| 国产欧美日韩一区二区精品| 亚洲人成网站在线播| 91狼人影院| 日本五十路高清| a级毛片a级免费在线| 久9热在线精品视频| 真实男女啪啪啪动态图| 国产精品1区2区在线观看.| 97人妻精品一区二区三区麻豆| 琪琪午夜伦伦电影理论片6080| 国内精品宾馆在线| 午夜久久久久精精品| 欧美不卡视频在线免费观看| 18禁黄网站禁片免费观看直播| 在线观看美女被高潮喷水网站| 啦啦啦啦在线视频资源| 欧美激情国产日韩精品一区| 日本五十路高清| 色综合站精品国产| 久久久国产成人免费| 成人欧美大片| 久久久久久九九精品二区国产| 国产一区二区在线av高清观看| 在线免费十八禁| 日韩大尺度精品在线看网址| 日韩中文字幕欧美一区二区| 日韩欧美三级三区| 禁无遮挡网站| 乱码一卡2卡4卡精品| 亚洲成人免费电影在线观看| 国产精品久久久久久精品电影| 欧美激情在线99| 免费黄网站久久成人精品| h日本视频在线播放| 久久精品国产亚洲av香蕉五月| 免费人成视频x8x8入口观看| 老司机福利观看| 又黄又爽又免费观看的视频| 久久亚洲精品不卡| 午夜老司机福利剧场| 久久国产精品人妻蜜桃| 一区二区三区激情视频| 精品午夜福利在线看| 欧美色视频一区免费| 国产在线男女| 国产精品久久久久久亚洲av鲁大| 露出奶头的视频| 97超级碰碰碰精品色视频在线观看| 国产午夜精品论理片| 五月伊人婷婷丁香| 99久久无色码亚洲精品果冻| 欧美国产日韩亚洲一区| 在线观看免费视频日本深夜| 久久中文看片网| 久9热在线精品视频| 小蜜桃在线观看免费完整版高清| 国产男靠女视频免费网站| av在线天堂中文字幕| 又爽又黄无遮挡网站| 欧美不卡视频在线免费观看| 国产精品一及| 日韩亚洲欧美综合| 午夜视频国产福利| 国产男靠女视频免费网站| 搡老妇女老女人老熟妇| 午夜福利成人在线免费观看| 免费av不卡在线播放| 国产国拍精品亚洲av在线观看| 精品无人区乱码1区二区| 日日摸夜夜添夜夜添av毛片 | 午夜福利视频1000在线观看| 国产综合懂色| 精品人妻偷拍中文字幕| 一个人免费在线观看电影| 国产久久久一区二区三区| 精品不卡国产一区二区三区| 99久久中文字幕三级久久日本| 国产欧美日韩一区二区精品| 日日摸夜夜添夜夜添av毛片 | 亚洲人与动物交配视频| 欧美人与善性xxx| avwww免费| 日韩高清综合在线| 国产欧美日韩精品一区二区| 色在线成人网| 亚洲精品久久国产高清桃花| 成人一区二区视频在线观看| 欧美又色又爽又黄视频| 亚洲av第一区精品v没综合| 亚洲图色成人| 99久久久亚洲精品蜜臀av| 国内毛片毛片毛片毛片毛片| 亚洲国产精品久久男人天堂| 日韩欧美国产在线观看| 小说图片视频综合网站| 精品久久久久久久久av| 在线看三级毛片| 在线观看66精品国产| 丰满乱子伦码专区| 99热这里只有精品一区| 我的老师免费观看完整版| 成人特级av手机在线观看| 特大巨黑吊av在线直播| 永久网站在线| 我要看日韩黄色一级片| 亚洲精品乱码久久久v下载方式| 国内精品美女久久久久久| 免费看美女性在线毛片视频| 亚洲图色成人| 22中文网久久字幕| 成人午夜高清在线视频| 又黄又爽又刺激的免费视频.| 亚洲精品在线观看二区| 亚洲精华国产精华精| 国产精品电影一区二区三区| av国产免费在线观看| 日本欧美国产在线视频| 国产免费男女视频| 国产成年人精品一区二区| 日本撒尿小便嘘嘘汇集6| 亚洲av五月六月丁香网| 哪里可以看免费的av片| 老司机午夜福利在线观看视频| 一区二区三区激情视频| 欧美性感艳星| 国产色爽女视频免费观看| 村上凉子中文字幕在线| 春色校园在线视频观看| 日韩欧美在线乱码| 国产私拍福利视频在线观看| 麻豆av噜噜一区二区三区| 欧美三级亚洲精品| 一级毛片久久久久久久久女| 久久人妻av系列| 精华霜和精华液先用哪个| 乱系列少妇在线播放| 老熟妇乱子伦视频在线观看| 琪琪午夜伦伦电影理论片6080| 日本在线视频免费播放| 97碰自拍视频| 高清毛片免费观看视频网站| 亚洲美女视频黄频| 中文字幕人妻熟人妻熟丝袜美| 色吧在线观看| 亚洲精品久久国产高清桃花| 亚洲国产日韩欧美精品在线观看| 精品乱码久久久久久99久播| 国产精品伦人一区二区| 人妻夜夜爽99麻豆av| 一区二区三区四区激情视频 | 男女做爰动态图高潮gif福利片| x7x7x7水蜜桃| 午夜福利在线观看免费完整高清在 | 桃红色精品国产亚洲av| 不卡视频在线观看欧美| 久久久久久国产a免费观看| 级片在线观看| 精华霜和精华液先用哪个| 熟女人妻精品中文字幕| 又紧又爽又黄一区二区| 校园人妻丝袜中文字幕| 麻豆一二三区av精品| 国产一区二区在线观看日韩| 亚洲人与动物交配视频| 亚洲国产高清在线一区二区三| 嫩草影院精品99| 久久久精品大字幕| 久久婷婷人人爽人人干人人爱| 亚洲一区高清亚洲精品| 亚洲专区中文字幕在线| 国产亚洲精品久久久com| 网址你懂的国产日韩在线| 国内毛片毛片毛片毛片毛片| 美女被艹到高潮喷水动态| 午夜福利欧美成人| 97超级碰碰碰精品色视频在线观看| 女同久久另类99精品国产91| av视频在线观看入口| 中国美白少妇内射xxxbb| 国产精品三级大全| 成人美女网站在线观看视频| 久久99热这里只有精品18| 中出人妻视频一区二区| 精品人妻1区二区| 能在线免费观看的黄片| 国产熟女欧美一区二区| 亚洲欧美日韩卡通动漫| 国产伦一二天堂av在线观看| 欧美日韩中文字幕国产精品一区二区三区| av在线老鸭窝| 精品一区二区免费观看| 亚洲avbb在线观看| 日本色播在线视频| 欧美丝袜亚洲另类 | 国产亚洲精品久久久com| 变态另类成人亚洲欧美熟女| 欧美zozozo另类| 日韩,欧美,国产一区二区三区 | 极品教师在线免费播放| 午夜视频国产福利| 国产成人福利小说| 人妻丰满熟妇av一区二区三区| 国产精品国产三级国产av玫瑰| 亚洲图色成人| 国产高清激情床上av| 成熟少妇高潮喷水视频| 成人三级黄色视频| 久久久国产成人精品二区| 2021天堂中文幕一二区在线观| 国产中年淑女户外野战色| 日韩人妻高清精品专区| 成人性生交大片免费视频hd| 我的老师免费观看完整版| 久久午夜亚洲精品久久| 成年女人看的毛片在线观看| 18禁裸乳无遮挡免费网站照片| 三级男女做爰猛烈吃奶摸视频| 夜夜爽天天搞| 伦理电影大哥的女人| 亚洲国产精品成人综合色| 欧美激情国产日韩精品一区| 国内毛片毛片毛片毛片毛片| 中国美白少妇内射xxxbb| 99九九线精品视频在线观看视频| 亚洲成av人片在线播放无| 国产一区二区三区在线臀色熟女| 色综合婷婷激情| 综合色av麻豆| 国产精品不卡视频一区二区| 久久久精品欧美日韩精品| 人人妻人人看人人澡| 舔av片在线| 欧美高清成人免费视频www| 国产精品自产拍在线观看55亚洲| 国产精品野战在线观看| 久久精品综合一区二区三区| 看黄色毛片网站| 露出奶头的视频| 91在线观看av| 日韩欧美免费精品| 国产精品乱码一区二三区的特点| 观看美女的网站| 又黄又爽又免费观看的视频| 少妇猛男粗大的猛烈进出视频 | 午夜免费男女啪啪视频观看 | 久久人人爽人人爽人人片va| 窝窝影院91人妻| a级毛片a级免费在线| 尾随美女入室| 国产高清有码在线观看视频| 亚洲av五月六月丁香网|