• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C–H oxidations

    2022-09-15 03:11:22YubinFnGoWnruXioLiShujunLiBingYuXueninChen
    Chinese Chemical Letters 2022年9期

    Yubin M, Fn Go, Wnru Xio, N Li, Shujun Li,?, Bing Yu, Xuenin Chen,

    a School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University,Xinxiang 453007, China

    b College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

    ABSTRACT The visible-light-induced selective oxidation of ubiquitous C–H bonds into valuable C=O bonds under aerobic conditions is one of the most attractive approaches for the construction of carbonyl-containing molecules.In this work, two transition metal-containing Nb/W mixed-addendum POMs dimers with the formula of K2Na2H5[(Fe(H2O)4)3(P2W15Nb3O62)2]?24H2O (POM[Fe]) and K2Na3H4[(Cr(H2O)4)3(P2W15Nb3O62)2]?32H2O (POM[Cr]) have been synthesized and characterized by various analytical and spectral techniques.POM[Fe] was proved to be an efficient photocatalyst for benzylic C–H oxidation under visible light and using oxygen as an oxidant to produce the corresponding carbonyl complex in good yields.A plausible mechanism involving superoxide radical was proposed for the catalytic reaction.POM[Fe] showed good reusability in the recycling experiments.IR spectroscopy and XRD analysis indicate that POM[Fe] can retain its integrity after catalysis.

    Keywords:Polyoxometalates Mixed-addendum POMs Visible-light-induced catalysis Photocatalysis C–H bonds oxidation

    The selective oxidation of benzyl C–H is of significance in modern organic synthesis and pharmaceutical industries [1,2].Conventionally, benzylic oxidation reactions require not only harsh reaction conditions, but also environmentally unfriendly high-valent oxidants (such as CrO3, MnO2or hypervalent iodine) [3–5].Therefore, the establishment of a green oxidative system for the benzylic oxidation with oxygen as the mild oxidant is highly attractive.In the past decades, many efforts have been directed toward the development of more efficient catalysts and catalytic systems.For example, a range of transition metal complexes have been employed as catalysts in benzylic oxidation reactions, including the complexes of copper [6], manganese [7], cobalt [8,9], rhodium [10],iron [11,12] and palladium [13].However, most of the previously reported systems are homogeneous catalysis, in which the catalysts cannot be recovered and reused thus preventing their further application.It is of great significance to develop a recyclable heterogeneous catalyst for the oxidation of benzyl C–H bonds by molecular oxygen under mild and green conditions.

    The photocatalytic oxidation of benzyl C–H using visible light is a benign alternative to the classical oxidation method from the perspective of green chemistry and sustainable development[14,15].Among various photocatalysts, polyoxometalates (POMs)have been proved to be one of the most promising candidates[16–18].POMs are a large family of metal-oxygen clusters formed by early transition metal with d0electronic configuration(M = Mo6+, W6+, Nb5+, Ta5+) [19–24].Owing to their advantages of diverse and definite structures, adjustable elemental composition and band gap, reversible multielectron processes during catalysis, and high stability toward redox conditions, POMs are attracting more and more attention in the field of photocatalysis[25–28].They have shown potential applications in photocatalytic degradation of organic pollutants and dyes [29–31], H2evolution[32–36] and CO2reduction [37–40].

    POMs can effectively activate molecular oxygen under light,thereby they can catalyze a variety of organic reactions, such as oxidation of benzene to phenol [41], selective oxidation of alcohols[42], oxidative bromination of arenes and alkenes [43] and coupling reaction of benzylamine [44].However, in most of these reports, the POMs photocatalysts require UV light.Considering the effective use of solar energy, the development of visible-lightresponsive photocatalysts, especially the exploration of their application in some new reactions, are highly demanded.

    Herein, we obtained two POMs dimers K2Na2H5[(Fe(H2O)4)3(P2W15Nb3O62)2]?24H2O (POM[Fe]) and K2Na3H4[(Cr(H2O)4)3(P2W15Nb3O62)2]?32H2O (POM[Cr]) by the reactions of Nb/W mixed-addenda POM and transition metal (TM)ions (Fe3+and Cr3+) under conventional aqueous solution.The two polyanions both display dimer structures, which are composed of two {P2W15Nb3} linked by three octahedrally coordinated metal ions.POM[Fe] was proved to be a highly efficient heterogeneous photocatalyst for the visible-light-induced oxidation of benzyl C–H using oxygen as the oxidant.Moreover, the POM[Fe] catalyst displayed excellent cyclability in the catalytic process.

    POM[Fe] and POM[Cr] were synthesized in conventional aqueous solution using a Nb/W mixed-addendum precursor(K8H[P2W15(NbO2)3O59]·12H2O) and corresponding transition metal salts (FeCl3·6H2O and Cr(NO3)3·9H2O).The pH values and the use of 2-aminopyrimidine-5-boronic acid pinacol ester play essential roles in the synthesis of the two compounds.The syntheses of the two compounds are performed at different pH values which should be controlled carefully, and upon deviating from the pH ranges, no target product can be afforded.In addition,2-aminopyrimidine-5-boronic acid pinacol ester served as an essential addition agent, although it does not appear in the final structures of POM[Fe] and POM[Cr].Only some unidentifiable brownish-yellow precipitates can be obtained without the addition of 2-aminopyrimidine-5-boronic acid pinacol ester at last.

    Single-crystal X-ray diffraction structural analysis (Table S1 in Supporting information) reveals that both the two compounds crystallize in space groupP-1.They exhibit similar structures with only differences in the TM ions.Similar to other transition-metal or rare-earth modified Nb/W mixed-addendum POMs [45–47], the clusters {P2W15Nb3O62} coordinate with Fe and Cr using the Lewis base terminal O atoms bonded with Nb (Ot(Nb)).Taking POM[Fe]as an example, it consists of two {P2W15Nb3O62} linked by three{FeO4} to form a sandwich dimer structure (Fig.1a and Fig.S1 in Supporting information).The three Fe3+ions connect to six Ot(Nb) from two {P2W15Nb3O62} through three (Nb)Ot-Fe-Ot(Nb)bridges.The Fe-O bond lengths are between 1.920 and 1.943 ?A.Each Fe ion adopts six-coordinated octahedral geometry with two Ot(Nb) from POMs and four terminal O atoms (Fig.S1).Bond valence sums (BVS) analyses reveal that the bond valences for all the four terminal O atoms coordinated with Fe3+are in the range of 0.429 and 0.506 (Table S2 in Supporting information), indicating that all of them exist in the form of coordination water.Two dimeric structures are connected by K1 and Na2 to form a tetrameric {(P2W15Nb3O62)4(Fe3O12)2} cluster (Fig.1b), which are further linked by two additional K ions (K2) to form Z-shaped onedimensional (1-D) chains (Fig.1c and Fig.S3 in Supporting information).These 1-D chains are interconnected with each other via Na1 ions resulting in the 2-D networks (Fig.2).

    Fig.1.(a) The polyhedral representation of [Fe3(P2W15Nb3)2] of POM [Fe].(b) The polyhedral/ball-and-stick representation of {(P2W15Nb3O62)4(Fe3O12)2}.(c) Z-shaped one-dimensional (1-D) chain structure of POM[Fe] (top view).

    Fig.2.The 2-D network in POM[Fe] constructed by the building block{(P2W15Nb3O62)4(Fe3O12)2} and Na1.

    Fig.3.(a, b) UV-vis spectra and (c, d) XPS spectra for POM[Fe] and POM[Cr].

    The character of light absorption of two compounds was investigated by UV-vis diffuse reflection spectroscopy.Due to the presence of transition metals, the UV-vis spectra of POM[Fe] and POM[Cr] exhibit absorption peaks in the visible light region, indicating their potential application in photocatalysis (Figs.3a and b).The XPS technique was further employed to determine the chemical states of Fe and Cr in POM[Fe] and POM[Cr].The peaks with binding energies at 724.4 eV and 711.2 eV of POM[Fe] correspond to Fe3+2p1/2and Fe3+2p3/2states, respectively (Fig.3c) [48,49].The spectrum of POM[Cr] shows two binding energies at 588.2 eV and 578.4 eV which represent the electrons in the Cr3+2p1/2and Cr3+2p3/2states, respectively (Fig.3d) [50,51].The +3 oxidation states of these metal ions indicated by XPS were fully consistent with the results of BVS analyses (Table S3 in Supporting information).

    Fig.4.Cyclic voltammograms of (a) Fe-CPE and (b) Cr-CPE in an aqueous solution of 0.05 mol/L KCl and 0.026 mol/L HCl under different scan rates from inner to outer of 40, 60, 80, 100, 140, 180, 220, 260, 300 mV/s.

    To elucidate the electrochemical features of the POM[Fe] and POM[Cr], Fe-CPE and Cr-CPE were prepared for cyclic voltammogram measurements [52].As shown in Fig.4, in the potential range of +200 mV to ?800 mV, three pairs of redox peaks (I-I’, II?II’,III?III’) are both observed for the two compounds.The two pairs of redox peaks in the negative region of potential values with E1/2peak potentials located at ?205 mV (II/II’) and ?525 mV (III/III’) for POM[Fe] and ?195 mV (II/II’) and ?550 mV (III/III’)) for POM[Cr]are assigned to the redox process of the W centers [53].A couple of redox peaks in the region with an E1/2peak potential of ?20 mV(I/I’) for POM[Fe] and ?25 mV (I/I’) for POM[Cr] are attributed to the Fe and Cr centers, respectively [54].Their peak currents were proportional to the square root of the scan rates, which indicates that their redox processes are both diffusion-controlled (Fig.S4 in Supporting information).

    To gain the optimization for the reaction conditions, a series of experiments were conducted by using isochromane (1a) as the model substrate to examine the catalytic activity of POM[Cr] and POM[Fe] under irradiation of visible light at room temperature(Table 1).Initially, different wavelengths including 390, 430, 460,520 nm (green light), and white light were examined for the model reaction in CH3CN at room temperature till full conversation, monitoring by thin-layer chromatography (TLC) (entries 1–5).These results revealed that 390 nm was the best light source, leading to the desired product 2a in moderate isolated yield (68%, entry 1).However, considering the significance of visible light in organic synthesis and the negligibly different yields between 390 and 430 nm (entries 1 and 2), we decided to use 430 nm as the optimized light source for further study.When POM[Cr] was employed as photocatalyst in the model reaction, a lower yield of desired product 2a was obtained (entry 6).To further improve the reaction efficiency, a series of solvents including dimethyl sulfoxide(DMSO), H2O, EtOH, dimethyl carbonate (DMC), 1,2-dichloroethane(DCE), acetone,N,N-dimethylformamide (DMF), toluene, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) and 1,4-dioxane were screened (entries 7–16).The results showed that when DMSO, H2O, and acetone were employed as a solvent the yields of 2a were 72%, 71% and 71%, respectively (entries 7, 8 and 12).Given that the catalyst POM[Fe] is soluble in water while insoluble in acetone, we choose acetone as the optimal reaction solvent making POM[Fe] a heterogeneous catalyst.Finally, the examination of the amount of catalyst showed that 0.5 mol% of catalyst was the best amount for this transformation (entries 17–20).Therefore,the optimal conditions were established as follows: 1a (0.4 mmol)and photocatalyst POM[Fe] (0.5 mol%) in acetone (0.2 mol/L) were stirred at room temperature under the irradiation of blue light(430 nm) with O2(1 atm) as the sole oxidant.

    Table 1 Optimization of the reaction.a

    With the optimized conditions in hand, the generality and limitation of this photocatalytic oxygenation protocol were eval-uated by examining diverse compounds (Scheme 1).Firstly, different oxygen-containing heterocycles could be oxidized to corresponding lactones 2a and 2b or ketone 2c in moderate to good yields (43%?76%).2,3-Dihydro-1H-indene and 1,2,3,4-tetrahydronaphthalene afforded the desired product 2d and 2e with the yield of 68% and 63%, respectively.Then, the aromatic substrates with more active methylene could be easily oxidized to generate ketones 2f-2i (46%–82%).Especially, 9,10-dihydroanthracene 1f gave the corresponding anthracene-9,10-dione 2f in the yield of 58%.Encouraged by these results, diverse functional groups (–H, –CH3, –OMe, –CH2Ph, –Ph, –Py) on the benzylic position were further evaluated.It was found that all of the compounds 1j-1o could be oxidized under the optimized reaction conditions albeit with a longer reaction time (2j-2o).Finally,N-heterocyclic compounds were further evaluated in this photocatalytic system, generating the corresponding products 2p-2s in moderated yields (43%?61%).It is a pity that this protocol failed to realize the selective mono-oxidation of isoindoline 1s, which has great value in medicines and materials [55].Moreover, we also found that the current catalytic system has some limitations.For example, theN-heterocyclic compounds 1t-1y and the aliphatic substrate 1z are not suitable in this oxidative reaction.

    Scheme 1.Substrate scope.Reaction conditions: 1 (0.4 mmol), POM[Fe] (0.5 mol%),acetone (0.2 mol/L), blue LED (430 nm, 10 W), using O2 balloon at room temperature.Isolated yields were given.a EtOH instead of acetone.

    To get a deep insight into the reaction mechanism, a series of control experiments were conducted as shown in Table 2.Firstly,we concluded that oxygen was an essential and efficient factorviacarrying out reaction under air and nitrogen atmosphere(Table 2, entries 2 and 3).Then, no desired product was obtained without light irradiation, indicating that light is of significance in this process (Table 2, entry 4).Radical scavengers (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO) was added under standard conditions (Table 2, entry 5).This reaction was inhibited, indicating that a radical mechanism may be involved in this protocol.Meanwhile, the adduct of TEMPO and radical species from 1a (i.e.,intermediate 3 in Scheme 2) was detected by using high-resolution mass spectroscopy (HRMS) (Fig.S8 in Supporting information).Additionally, when superoxide radical scavenger 4-benzoquinone (BQ)[56] was added into the reaction, the decreased yield of 2a demonstrated that superoxide radical was generated and played an important role in the reaction process (Table 2, entry 6).Finally, hydroperoxide radical may exist in this system through the result of adding FeSO4under standard conditions (Table 2, entry 7).

    Scheme 2.Plausible reaction mechanism.

    Table 2 Control experiments.a

    Based on the above experimental results, a plausible mechanism was proposed as shown in Scheme 2.Firstly, ground state POM[Fe] was transformed into excited state POM[Fe]?under the irradiation of visible light.Then, substrate 1a underwent a hydrogen atom transfer (HAT) process under the effect of excited state POM[Fe]?to generate intermediate 3, along with the generation of POM[Fe]-H.Intermediate POM[Fe]-H was oxidized by oxygen to regenerate the ground state POM[Fe] to accomplish the photoredox cycle and release a proton.Simultaneously, oxygen was transformed into a superoxide radical.On the one hand, intermediate 3 was combined with superoxide radical to generate intermediate 4, which was protonated to obtain intermediate 5 (path a).On the other hand, intermediate 3 reacted with hydroperoxide radical to generate intermediate 5 (path b).Finally, intermediate 5 released H2O to afford desired products 2a.

    The stability and reusability of POM[Fe] were also evaluated.After the reaction, photocatalyst POM[Fe] was isolated by centrifugation, washed with 15 mL CH2Cl2three times, and air-dried at room temperature for 24 h, then directly used in the next reaction.As shown in Fig.5, good stability and high catalytic activity of POM[Fe] was demonstrated due to the negligibly decreased yield of 2a after the 7thcycle.Meanwhile, the results of PXRD patterns and FTIR spectroscopy of recovered POM[Fe] also indicated the good stability and well-maintained in crystal lattice (Fig.S9 in Supporting information).

    Fig.5.Recycling experiments.

    In summary, two POM dimers have been successfully synthesized by the reaction of Nb/W mixed-addendum POM and TM ions(Fe3+and Cr3+).POM[Fe] can efficiently catalyze the selective oxidation of sp3C–H bonds under visible light using oxygen as an oxidant.The catalyst shows good stability and reusability in multiple catalytic cycles.Mechanistic investigations suggest that the catalytic reaction has gone through a hydrogen atom transfer process.The superoxide radical has generated and played an important role in the reaction processes.This work provides a feasible revelation for exploring the development of new transition metal-modified POMs in visible-light-induced organic reactions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22171073, 21971224 and U1804253),and the Natural Science Foundation of Henan Province (No.202300410246).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.023.

    99riav亚洲国产免费| 国产精品亚洲美女久久久| 成年版毛片免费区| 国产真人三级小视频在线观看| 国产精品日韩av在线免费观看| 桃红色精品国产亚洲av| 最近最新中文字幕大全电影3| 99国产精品一区二区三区| 亚洲 国产 在线| 中文字幕人妻丝袜一区二区| 久久久久九九精品影院| 中文字幕人妻熟人妻熟丝袜美 | 国产欧美日韩精品亚洲av| 18禁裸乳无遮挡免费网站照片| 国产精品久久电影中文字幕| 亚洲av五月六月丁香网| 亚洲美女视频黄频| 一个人观看的视频www高清免费观看| 亚洲精品456在线播放app | 国产精品一区二区免费欧美| 国产精品99久久99久久久不卡| 搡老岳熟女国产| 国产一区二区三区在线臀色熟女| av片东京热男人的天堂| 又黄又粗又硬又大视频| 国产成人系列免费观看| 91在线精品国自产拍蜜月 | 91麻豆精品激情在线观看国产| 亚洲黑人精品在线| 国内久久婷婷六月综合欲色啪| 日韩精品中文字幕看吧| 九九久久精品国产亚洲av麻豆| 女人十人毛片免费观看3o分钟| 桃色一区二区三区在线观看| 两性午夜刺激爽爽歪歪视频在线观看| eeuss影院久久| 欧美日韩乱码在线| 一卡2卡三卡四卡精品乱码亚洲| 又黄又粗又硬又大视频| 最新中文字幕久久久久| 欧美成人一区二区免费高清观看| xxx96com| 久久久久久九九精品二区国产| 久久精品影院6| 真人一进一出gif抽搐免费| 国产精品一区二区免费欧美| 日韩欧美 国产精品| 国产成年人精品一区二区| 亚洲精品影视一区二区三区av| 欧美极品一区二区三区四区| 变态另类成人亚洲欧美熟女| 久久久成人免费电影| 男女视频在线观看网站免费| 尤物成人国产欧美一区二区三区| 国产午夜福利久久久久久| 国产91精品成人一区二区三区| 久久天躁狠狠躁夜夜2o2o| 蜜桃久久精品国产亚洲av| 手机成人av网站| 国产真人三级小视频在线观看| 两个人视频免费观看高清| 99久久综合精品五月天人人| 亚洲av五月六月丁香网| 九九久久精品国产亚洲av麻豆| 色精品久久人妻99蜜桃| 久久久久久久亚洲中文字幕 | 男女床上黄色一级片免费看| 十八禁人妻一区二区| 久9热在线精品视频| 精品久久久久久久久久免费视频| 欧美+日韩+精品| 91字幕亚洲| 成人特级av手机在线观看| 三级毛片av免费| 亚洲成av人片在线播放无| av天堂在线播放| 最近视频中文字幕2019在线8| 很黄的视频免费| 91在线观看av| 日本与韩国留学比较| 欧美性猛交╳xxx乱大交人| 国产亚洲欧美98| 国产精品99久久久久久久久| 少妇丰满av| 日日干狠狠操夜夜爽| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人久久性| 国产黄a三级三级三级人| 精品熟女少妇八av免费久了| 99久久99久久久精品蜜桃| 亚洲真实伦在线观看| 亚洲无线在线观看| 欧美中文日本在线观看视频| 亚洲最大成人中文| 国产不卡一卡二| 日韩av在线大香蕉| 久久伊人香网站| 黄色成人免费大全| 亚洲av成人av| 一级黄片播放器| 91九色精品人成在线观看| 国产午夜精品久久久久久一区二区三区 | 老鸭窝网址在线观看| 校园春色视频在线观看| 免费无遮挡裸体视频| av欧美777| 啪啪无遮挡十八禁网站| 国产aⅴ精品一区二区三区波| 熟女电影av网| 哪里可以看免费的av片| 在线看三级毛片| 欧美日韩国产亚洲二区| 国产精品av视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 两个人看的免费小视频| 亚洲精品亚洲一区二区| 欧美激情在线99| svipshipincom国产片| 九九在线视频观看精品| 亚洲av成人av| 国产视频内射| 在线a可以看的网站| 中文字幕人妻丝袜一区二区| 亚洲成a人片在线一区二区| 日韩国内少妇激情av| 草草在线视频免费看| 日韩欧美精品免费久久 | av在线蜜桃| 国产精品日韩av在线免费观看| 国产亚洲欧美98| 白带黄色成豆腐渣| 国产精品一区二区三区四区久久| 51国产日韩欧美| 国产熟女xx| 最新中文字幕久久久久| 日韩有码中文字幕| 欧美日韩瑟瑟在线播放| 亚洲精品美女久久久久99蜜臀| 亚洲人成电影免费在线| 亚洲欧美日韩东京热| 久久99热这里只有精品18| 国产精品嫩草影院av在线观看 | 很黄的视频免费| 伊人久久精品亚洲午夜| 岛国视频午夜一区免费看| 狂野欧美白嫩少妇大欣赏| 亚洲一区二区三区不卡视频| 香蕉av资源在线| 国产淫片久久久久久久久 | 亚洲专区国产一区二区| 成年女人永久免费观看视频| 99久国产av精品| 亚洲专区国产一区二区| 久久久久久大精品| 国产精品 欧美亚洲| 三级国产精品欧美在线观看| 国产黄色小视频在线观看| 国产精品永久免费网站| 91字幕亚洲| av视频在线观看入口| 亚洲天堂国产精品一区在线| 久久精品人妻少妇| 女人十人毛片免费观看3o分钟| 九色国产91popny在线| 亚洲 国产 在线| 18禁在线播放成人免费| 高清毛片免费观看视频网站| 久久草成人影院| 国产亚洲精品一区二区www| 午夜a级毛片| 久久九九热精品免费| 午夜视频国产福利| 国产免费av片在线观看野外av| 精品熟女少妇八av免费久了| 亚洲av五月六月丁香网| 欧美日韩中文字幕国产精品一区二区三区| 色尼玛亚洲综合影院| 国产精品综合久久久久久久免费| 国产高清有码在线观看视频| 免费在线观看日本一区| 精品国产三级普通话版| 狂野欧美白嫩少妇大欣赏| 国产精品国产高清国产av| 亚洲精品色激情综合| 老司机午夜十八禁免费视频| 久久精品91蜜桃| 中文字幕熟女人妻在线| 亚洲天堂国产精品一区在线| 日韩成人在线观看一区二区三区| 国产亚洲av嫩草精品影院| 日韩欧美在线乱码| 精品乱码久久久久久99久播| 免费在线观看亚洲国产| 在线a可以看的网站| 男女做爰动态图高潮gif福利片| 亚洲精品色激情综合| 一个人看的www免费观看视频| 久久人人精品亚洲av| 午夜福利免费观看在线| 日本在线视频免费播放| 999久久久精品免费观看国产| 国内毛片毛片毛片毛片毛片| 亚洲在线观看片| 精品人妻1区二区| 天天躁日日操中文字幕| 国产熟女xx| 久久中文看片网| 欧美黄色淫秽网站| 欧美日韩黄片免| 天美传媒精品一区二区| 国产激情偷乱视频一区二区| 在线观看一区二区三区| 亚洲人成伊人成综合网2020| 精品国产亚洲在线| 亚洲黑人精品在线| 搡老熟女国产l中国老女人| 高清日韩中文字幕在线| 亚洲欧美精品综合久久99| 国产极品精品免费视频能看的| 偷拍熟女少妇极品色| 中文字幕人妻熟人妻熟丝袜美 | 日韩有码中文字幕| 日本成人三级电影网站| 国内毛片毛片毛片毛片毛片| 亚洲av成人精品一区久久| 国产真实伦视频高清在线观看 | 男人舔女人下体高潮全视频| 精品无人区乱码1区二区| 又紧又爽又黄一区二区| 我要搜黄色片| 日日摸夜夜添夜夜添小说| 在线观看一区二区三区| 成年免费大片在线观看| 国产精品综合久久久久久久免费| 午夜老司机福利剧场| 亚洲国产欧美网| 国产精品免费一区二区三区在线| 成年女人毛片免费观看观看9| 国产一级毛片七仙女欲春2| 日本a在线网址| 啦啦啦韩国在线观看视频| 亚洲片人在线观看| 桃色一区二区三区在线观看| 伊人久久大香线蕉亚洲五| 午夜老司机福利剧场| 丁香六月欧美| 亚洲,欧美精品.| 久久草成人影院| 久久久久久九九精品二区国产| 日本 欧美在线| 欧美日本视频| 国产蜜桃级精品一区二区三区| 成人无遮挡网站| 女人被狂操c到高潮| 国产免费av片在线观看野外av| 岛国在线免费视频观看| 天堂影院成人在线观看| 国产高清视频在线播放一区| 国产一区二区激情短视频| 欧美丝袜亚洲另类 | 久9热在线精品视频| 香蕉久久夜色| 国产免费av片在线观看野外av| 亚洲人成电影免费在线| 岛国在线观看网站| 97超视频在线观看视频| 国产亚洲精品久久久com| 日本在线视频免费播放| 亚洲色图av天堂| 欧美在线黄色| 色精品久久人妻99蜜桃| 黑人欧美特级aaaaaa片| 精品国产亚洲在线| or卡值多少钱| 国产精品永久免费网站| 亚洲精品在线观看二区| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品av在线| 搡女人真爽免费视频火全软件 | 欧美一级毛片孕妇| 国产99白浆流出| 99国产精品一区二区蜜桃av| 日韩大尺度精品在线看网址| 波多野结衣高清无吗| 午夜福利在线在线| 在线视频色国产色| 久久久精品欧美日韩精品| 亚洲一区高清亚洲精品| av福利片在线观看| 亚洲精品美女久久久久99蜜臀| 美女 人体艺术 gogo| 搡老熟女国产l中国老女人| 精品人妻偷拍中文字幕| 亚洲精品在线美女| 亚洲熟妇中文字幕五十中出| 午夜老司机福利剧场| 国产探花在线观看一区二区| 午夜福利在线在线| 亚洲aⅴ乱码一区二区在线播放| 国内久久婷婷六月综合欲色啪| 麻豆久久精品国产亚洲av| 天天添夜夜摸| 日本黄色片子视频| 国产精品亚洲一级av第二区| 免费高清视频大片| av片东京热男人的天堂| 在线观看免费视频日本深夜| 成人特级av手机在线观看| 亚洲国产精品久久男人天堂| 国产99白浆流出| 精品久久久久久久毛片微露脸| 首页视频小说图片口味搜索| 欧美日韩综合久久久久久 | 午夜老司机福利剧场| 欧美一级a爱片免费观看看| 99久久久亚洲精品蜜臀av| 成年女人永久免费观看视频| 精品久久久久久成人av| 国产午夜福利久久久久久| 亚洲性夜色夜夜综合| 老司机福利观看| 国产老妇女一区| 久久精品影院6| 一本一本综合久久| 午夜免费男女啪啪视频观看 | 又爽又黄无遮挡网站| 男人舔奶头视频| 一级作爱视频免费观看| 成人av一区二区三区在线看| 欧美日韩一级在线毛片| 在线观看av片永久免费下载| 欧美日韩一级在线毛片| 国产乱人视频| 免费在线观看亚洲国产| 午夜免费成人在线视频| 成年免费大片在线观看| 欧美av亚洲av综合av国产av| 成人鲁丝片一二三区免费| 国产男靠女视频免费网站| 国产精品美女特级片免费视频播放器| 精品电影一区二区在线| 女警被强在线播放| 亚洲av成人不卡在线观看播放网| 午夜精品久久久久久毛片777| 欧美乱色亚洲激情| 天堂√8在线中文| 天堂网av新在线| 亚洲国产精品sss在线观看| 十八禁人妻一区二区| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片| 波野结衣二区三区在线 | 搡老熟女国产l中国老女人| 精品久久久久久久毛片微露脸| 麻豆一二三区av精品| 亚洲精品粉嫩美女一区| 中文字幕高清在线视频| 欧美性感艳星| 日本熟妇午夜| 免费搜索国产男女视频| 手机成人av网站| 丝袜美腿在线中文| 久久国产精品影院| www.www免费av| 在线观看免费视频日本深夜| 午夜福利视频1000在线观看| 动漫黄色视频在线观看| 精品一区二区三区视频在线 | 又爽又黄无遮挡网站| 欧美黄色淫秽网站| 村上凉子中文字幕在线| 欧美中文日本在线观看视频| 国产不卡一卡二| 精品99又大又爽又粗少妇毛片 | 人人妻人人澡欧美一区二区| 亚洲一区高清亚洲精品| 国产一区二区在线观看日韩 | 日本与韩国留学比较| 国产视频内射| 一级a爱片免费观看的视频| 91麻豆av在线| 九九久久精品国产亚洲av麻豆| 丰满人妻熟妇乱又伦精品不卡| 久久久成人免费电影| 国产在视频线在精品| 免费电影在线观看免费观看| 夜夜躁狠狠躁天天躁| 一二三四社区在线视频社区8| 国产成人av激情在线播放| 国产精品一区二区三区四区久久| 国产激情偷乱视频一区二区| 欧美性感艳星| 久久久久国产精品人妻aⅴ院| 亚洲av熟女| 国产精品国产高清国产av| 一个人观看的视频www高清免费观看| 国产黄片美女视频| 一本久久中文字幕| 一区二区三区高清视频在线| 国产成人av教育| 日韩欧美国产一区二区入口| 欧美黄色淫秽网站| 一区福利在线观看| 中文字幕人妻熟人妻熟丝袜美 | 久久精品国产综合久久久| 叶爱在线成人免费视频播放| 国产精品国产高清国产av| 亚洲精品影视一区二区三区av| 欧美区成人在线视频| 青草久久国产| 老汉色∧v一级毛片| 操出白浆在线播放| 午夜福利18| 亚洲精品456在线播放app | 亚洲乱码一区二区免费版| 日本黄色片子视频| 亚洲片人在线观看| 亚洲av成人精品一区久久| 变态另类丝袜制服| 免费av观看视频| 日韩欧美免费精品| 网址你懂的国产日韩在线| 免费看十八禁软件| 每晚都被弄得嗷嗷叫到高潮| 午夜激情欧美在线| www日本黄色视频网| 国产精品 欧美亚洲| 美女黄网站色视频| 国产精品一区二区免费欧美| 亚洲无线在线观看| 伊人久久精品亚洲午夜| 免费看十八禁软件| 老熟妇仑乱视频hdxx| 免费在线观看成人毛片| 在线观看一区二区三区| 国产精品一区二区免费欧美| 久久久久久大精品| 国产精品国产高清国产av| 日韩欧美精品免费久久 | 麻豆国产97在线/欧美| 亚洲在线自拍视频| 91麻豆精品激情在线观看国产| 亚洲不卡免费看| 麻豆久久精品国产亚洲av| 丁香欧美五月| 狂野欧美激情性xxxx| 国产男靠女视频免费网站| 免费在线观看亚洲国产| 成人高潮视频无遮挡免费网站| av女优亚洲男人天堂| 国产亚洲精品综合一区在线观看| 在线免费观看的www视频| 中文在线观看免费www的网站| 搡女人真爽免费视频火全软件 | 精品熟女少妇八av免费久了| 午夜两性在线视频| 99久久无色码亚洲精品果冻| 久久精品亚洲精品国产色婷小说| 国产成人福利小说| 黑人欧美特级aaaaaa片| 久久久成人免费电影| 亚洲av电影不卡..在线观看| 久久国产乱子伦精品免费另类| 热99re8久久精品国产| 欧美三级亚洲精品| 天天躁日日操中文字幕| 亚洲欧美日韩东京热| 国内毛片毛片毛片毛片毛片| 一区二区三区国产精品乱码| 国产av不卡久久| 怎么达到女性高潮| 深夜精品福利| 两个人看的免费小视频| 免费电影在线观看免费观看| 一本精品99久久精品77| 国产伦精品一区二区三区视频9 | 国产精品一区二区三区四区免费观看 | 国产在视频线在精品| 少妇的逼好多水| 搡老熟女国产l中国老女人| 男女视频在线观看网站免费| 一区二区三区高清视频在线| 亚洲第一欧美日韩一区二区三区| 久久久久久久久久黄片| 久久精品国产综合久久久| 免费搜索国产男女视频| 国产精品综合久久久久久久免费| 久久草成人影院| 国产精品,欧美在线| 色综合婷婷激情| 99久久无色码亚洲精品果冻| av在线蜜桃| 性欧美人与动物交配| 亚洲激情在线av| 天堂av国产一区二区熟女人妻| or卡值多少钱| 一级黄色大片毛片| 中文字幕精品亚洲无线码一区| 国产午夜精品久久久久久一区二区三区 | 成年版毛片免费区| 一级作爱视频免费观看| 3wmmmm亚洲av在线观看| 怎么达到女性高潮| 日本a在线网址| 亚洲精品在线美女| 国产视频内射| 18禁国产床啪视频网站| 91九色精品人成在线观看| 欧美成人一区二区免费高清观看| 成人国产一区最新在线观看| 亚洲精品乱码久久久v下载方式 | 欧美不卡视频在线免费观看| 99在线视频只有这里精品首页| 精品久久久久久,| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美日韩中文字幕国产精品一区二区三区| 国产精品国产高清国产av| 给我免费播放毛片高清在线观看| 一区二区三区激情视频| 一本一本综合久久| 午夜福利18| 两个人看的免费小视频| 国产一区二区激情短视频| 少妇的逼水好多| 国内毛片毛片毛片毛片毛片| 亚洲 欧美 日韩 在线 免费| 美女高潮的动态| 国产精品,欧美在线| 欧美乱码精品一区二区三区| a在线观看视频网站| 日韩欧美国产一区二区入口| 国产精品 欧美亚洲| 欧美性猛交黑人性爽| 亚洲色图av天堂| 亚洲人与动物交配视频| 一a级毛片在线观看| av专区在线播放| 两个人视频免费观看高清| 12—13女人毛片做爰片一| 亚洲av电影不卡..在线观看| 亚洲国产欧美人成| 免费av不卡在线播放| 一级黄片播放器| 亚洲激情在线av| 91九色精品人成在线观看| 一本久久中文字幕| 日韩成人在线观看一区二区三区| 夜夜躁狠狠躁天天躁| 两个人视频免费观看高清| 一区二区三区高清视频在线| 欧美中文综合在线视频| 90打野战视频偷拍视频| 国产成人系列免费观看| 最新美女视频免费是黄的| 日韩欧美免费精品| 色哟哟哟哟哟哟| 精品午夜福利视频在线观看一区| 19禁男女啪啪无遮挡网站| h日本视频在线播放| 三级毛片av免费| 免费av毛片视频| 国产熟女xx| 一本一本综合久久| 久久精品国产自在天天线| 窝窝影院91人妻| 亚洲精品影视一区二区三区av| 国产精品影院久久| 两个人看的免费小视频| 狠狠狠狠99中文字幕| 国产高潮美女av| 法律面前人人平等表现在哪些方面| 久久久久久国产a免费观看| 在线a可以看的网站| 国产69精品久久久久777片| 亚洲av免费在线观看| 成人高潮视频无遮挡免费网站| 亚洲人成电影免费在线| 色综合亚洲欧美另类图片| 亚洲午夜理论影院| 日本一二三区视频观看| 啦啦啦免费观看视频1| 国产激情偷乱视频一区二区| 一边摸一边抽搐一进一小说| 欧美日本亚洲视频在线播放| 日韩大尺度精品在线看网址| 免费看美女性在线毛片视频| 国产一区二区三区视频了| 熟女少妇亚洲综合色aaa.| 露出奶头的视频| 九九在线视频观看精品| 中出人妻视频一区二区| 色综合站精品国产| 精品不卡国产一区二区三区| 欧美中文日本在线观看视频| 亚洲精品国产精品久久久不卡| 一级黄色大片毛片| www国产在线视频色| 美女高潮喷水抽搐中文字幕| 成人国产综合亚洲| 99热6这里只有精品| 岛国视频午夜一区免费看| 国产毛片a区久久久久| 国内精品久久久久久久电影| 亚洲18禁久久av| 亚洲欧美日韩东京热| 美女 人体艺术 gogo| 国产成年人精品一区二区| 国产乱人伦免费视频| 欧美丝袜亚洲另类 | 久久精品国产亚洲av香蕉五月| 好看av亚洲va欧美ⅴa在| 国产真实乱freesex| 国产91精品成人一区二区三区| 亚洲欧美日韩东京热| 免费在线观看亚洲国产|