• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C–H oxidations

    2022-09-15 03:11:22YubinFnGoWnruXioLiShujunLiBingYuXueninChen
    Chinese Chemical Letters 2022年9期

    Yubin M, Fn Go, Wnru Xio, N Li, Shujun Li,?, Bing Yu, Xuenin Chen,

    a School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University,Xinxiang 453007, China

    b College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

    ABSTRACT The visible-light-induced selective oxidation of ubiquitous C–H bonds into valuable C=O bonds under aerobic conditions is one of the most attractive approaches for the construction of carbonyl-containing molecules.In this work, two transition metal-containing Nb/W mixed-addendum POMs dimers with the formula of K2Na2H5[(Fe(H2O)4)3(P2W15Nb3O62)2]?24H2O (POM[Fe]) and K2Na3H4[(Cr(H2O)4)3(P2W15Nb3O62)2]?32H2O (POM[Cr]) have been synthesized and characterized by various analytical and spectral techniques.POM[Fe] was proved to be an efficient photocatalyst for benzylic C–H oxidation under visible light and using oxygen as an oxidant to produce the corresponding carbonyl complex in good yields.A plausible mechanism involving superoxide radical was proposed for the catalytic reaction.POM[Fe] showed good reusability in the recycling experiments.IR spectroscopy and XRD analysis indicate that POM[Fe] can retain its integrity after catalysis.

    Keywords:Polyoxometalates Mixed-addendum POMs Visible-light-induced catalysis Photocatalysis C–H bonds oxidation

    The selective oxidation of benzyl C–H is of significance in modern organic synthesis and pharmaceutical industries [1,2].Conventionally, benzylic oxidation reactions require not only harsh reaction conditions, but also environmentally unfriendly high-valent oxidants (such as CrO3, MnO2or hypervalent iodine) [3–5].Therefore, the establishment of a green oxidative system for the benzylic oxidation with oxygen as the mild oxidant is highly attractive.In the past decades, many efforts have been directed toward the development of more efficient catalysts and catalytic systems.For example, a range of transition metal complexes have been employed as catalysts in benzylic oxidation reactions, including the complexes of copper [6], manganese [7], cobalt [8,9], rhodium [10],iron [11,12] and palladium [13].However, most of the previously reported systems are homogeneous catalysis, in which the catalysts cannot be recovered and reused thus preventing their further application.It is of great significance to develop a recyclable heterogeneous catalyst for the oxidation of benzyl C–H bonds by molecular oxygen under mild and green conditions.

    The photocatalytic oxidation of benzyl C–H using visible light is a benign alternative to the classical oxidation method from the perspective of green chemistry and sustainable development[14,15].Among various photocatalysts, polyoxometalates (POMs)have been proved to be one of the most promising candidates[16–18].POMs are a large family of metal-oxygen clusters formed by early transition metal with d0electronic configuration(M = Mo6+, W6+, Nb5+, Ta5+) [19–24].Owing to their advantages of diverse and definite structures, adjustable elemental composition and band gap, reversible multielectron processes during catalysis, and high stability toward redox conditions, POMs are attracting more and more attention in the field of photocatalysis[25–28].They have shown potential applications in photocatalytic degradation of organic pollutants and dyes [29–31], H2evolution[32–36] and CO2reduction [37–40].

    POMs can effectively activate molecular oxygen under light,thereby they can catalyze a variety of organic reactions, such as oxidation of benzene to phenol [41], selective oxidation of alcohols[42], oxidative bromination of arenes and alkenes [43] and coupling reaction of benzylamine [44].However, in most of these reports, the POMs photocatalysts require UV light.Considering the effective use of solar energy, the development of visible-lightresponsive photocatalysts, especially the exploration of their application in some new reactions, are highly demanded.

    Herein, we obtained two POMs dimers K2Na2H5[(Fe(H2O)4)3(P2W15Nb3O62)2]?24H2O (POM[Fe]) and K2Na3H4[(Cr(H2O)4)3(P2W15Nb3O62)2]?32H2O (POM[Cr]) by the reactions of Nb/W mixed-addenda POM and transition metal (TM)ions (Fe3+and Cr3+) under conventional aqueous solution.The two polyanions both display dimer structures, which are composed of two {P2W15Nb3} linked by three octahedrally coordinated metal ions.POM[Fe] was proved to be a highly efficient heterogeneous photocatalyst for the visible-light-induced oxidation of benzyl C–H using oxygen as the oxidant.Moreover, the POM[Fe] catalyst displayed excellent cyclability in the catalytic process.

    POM[Fe] and POM[Cr] were synthesized in conventional aqueous solution using a Nb/W mixed-addendum precursor(K8H[P2W15(NbO2)3O59]·12H2O) and corresponding transition metal salts (FeCl3·6H2O and Cr(NO3)3·9H2O).The pH values and the use of 2-aminopyrimidine-5-boronic acid pinacol ester play essential roles in the synthesis of the two compounds.The syntheses of the two compounds are performed at different pH values which should be controlled carefully, and upon deviating from the pH ranges, no target product can be afforded.In addition,2-aminopyrimidine-5-boronic acid pinacol ester served as an essential addition agent, although it does not appear in the final structures of POM[Fe] and POM[Cr].Only some unidentifiable brownish-yellow precipitates can be obtained without the addition of 2-aminopyrimidine-5-boronic acid pinacol ester at last.

    Single-crystal X-ray diffraction structural analysis (Table S1 in Supporting information) reveals that both the two compounds crystallize in space groupP-1.They exhibit similar structures with only differences in the TM ions.Similar to other transition-metal or rare-earth modified Nb/W mixed-addendum POMs [45–47], the clusters {P2W15Nb3O62} coordinate with Fe and Cr using the Lewis base terminal O atoms bonded with Nb (Ot(Nb)).Taking POM[Fe]as an example, it consists of two {P2W15Nb3O62} linked by three{FeO4} to form a sandwich dimer structure (Fig.1a and Fig.S1 in Supporting information).The three Fe3+ions connect to six Ot(Nb) from two {P2W15Nb3O62} through three (Nb)Ot-Fe-Ot(Nb)bridges.The Fe-O bond lengths are between 1.920 and 1.943 ?A.Each Fe ion adopts six-coordinated octahedral geometry with two Ot(Nb) from POMs and four terminal O atoms (Fig.S1).Bond valence sums (BVS) analyses reveal that the bond valences for all the four terminal O atoms coordinated with Fe3+are in the range of 0.429 and 0.506 (Table S2 in Supporting information), indicating that all of them exist in the form of coordination water.Two dimeric structures are connected by K1 and Na2 to form a tetrameric {(P2W15Nb3O62)4(Fe3O12)2} cluster (Fig.1b), which are further linked by two additional K ions (K2) to form Z-shaped onedimensional (1-D) chains (Fig.1c and Fig.S3 in Supporting information).These 1-D chains are interconnected with each other via Na1 ions resulting in the 2-D networks (Fig.2).

    Fig.1.(a) The polyhedral representation of [Fe3(P2W15Nb3)2] of POM [Fe].(b) The polyhedral/ball-and-stick representation of {(P2W15Nb3O62)4(Fe3O12)2}.(c) Z-shaped one-dimensional (1-D) chain structure of POM[Fe] (top view).

    Fig.2.The 2-D network in POM[Fe] constructed by the building block{(P2W15Nb3O62)4(Fe3O12)2} and Na1.

    Fig.3.(a, b) UV-vis spectra and (c, d) XPS spectra for POM[Fe] and POM[Cr].

    The character of light absorption of two compounds was investigated by UV-vis diffuse reflection spectroscopy.Due to the presence of transition metals, the UV-vis spectra of POM[Fe] and POM[Cr] exhibit absorption peaks in the visible light region, indicating their potential application in photocatalysis (Figs.3a and b).The XPS technique was further employed to determine the chemical states of Fe and Cr in POM[Fe] and POM[Cr].The peaks with binding energies at 724.4 eV and 711.2 eV of POM[Fe] correspond to Fe3+2p1/2and Fe3+2p3/2states, respectively (Fig.3c) [48,49].The spectrum of POM[Cr] shows two binding energies at 588.2 eV and 578.4 eV which represent the electrons in the Cr3+2p1/2and Cr3+2p3/2states, respectively (Fig.3d) [50,51].The +3 oxidation states of these metal ions indicated by XPS were fully consistent with the results of BVS analyses (Table S3 in Supporting information).

    Fig.4.Cyclic voltammograms of (a) Fe-CPE and (b) Cr-CPE in an aqueous solution of 0.05 mol/L KCl and 0.026 mol/L HCl under different scan rates from inner to outer of 40, 60, 80, 100, 140, 180, 220, 260, 300 mV/s.

    To elucidate the electrochemical features of the POM[Fe] and POM[Cr], Fe-CPE and Cr-CPE were prepared for cyclic voltammogram measurements [52].As shown in Fig.4, in the potential range of +200 mV to ?800 mV, three pairs of redox peaks (I-I’, II?II’,III?III’) are both observed for the two compounds.The two pairs of redox peaks in the negative region of potential values with E1/2peak potentials located at ?205 mV (II/II’) and ?525 mV (III/III’) for POM[Fe] and ?195 mV (II/II’) and ?550 mV (III/III’)) for POM[Cr]are assigned to the redox process of the W centers [53].A couple of redox peaks in the region with an E1/2peak potential of ?20 mV(I/I’) for POM[Fe] and ?25 mV (I/I’) for POM[Cr] are attributed to the Fe and Cr centers, respectively [54].Their peak currents were proportional to the square root of the scan rates, which indicates that their redox processes are both diffusion-controlled (Fig.S4 in Supporting information).

    To gain the optimization for the reaction conditions, a series of experiments were conducted by using isochromane (1a) as the model substrate to examine the catalytic activity of POM[Cr] and POM[Fe] under irradiation of visible light at room temperature(Table 1).Initially, different wavelengths including 390, 430, 460,520 nm (green light), and white light were examined for the model reaction in CH3CN at room temperature till full conversation, monitoring by thin-layer chromatography (TLC) (entries 1–5).These results revealed that 390 nm was the best light source, leading to the desired product 2a in moderate isolated yield (68%, entry 1).However, considering the significance of visible light in organic synthesis and the negligibly different yields between 390 and 430 nm (entries 1 and 2), we decided to use 430 nm as the optimized light source for further study.When POM[Cr] was employed as photocatalyst in the model reaction, a lower yield of desired product 2a was obtained (entry 6).To further improve the reaction efficiency, a series of solvents including dimethyl sulfoxide(DMSO), H2O, EtOH, dimethyl carbonate (DMC), 1,2-dichloroethane(DCE), acetone,N,N-dimethylformamide (DMF), toluene, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) and 1,4-dioxane were screened (entries 7–16).The results showed that when DMSO, H2O, and acetone were employed as a solvent the yields of 2a were 72%, 71% and 71%, respectively (entries 7, 8 and 12).Given that the catalyst POM[Fe] is soluble in water while insoluble in acetone, we choose acetone as the optimal reaction solvent making POM[Fe] a heterogeneous catalyst.Finally, the examination of the amount of catalyst showed that 0.5 mol% of catalyst was the best amount for this transformation (entries 17–20).Therefore,the optimal conditions were established as follows: 1a (0.4 mmol)and photocatalyst POM[Fe] (0.5 mol%) in acetone (0.2 mol/L) were stirred at room temperature under the irradiation of blue light(430 nm) with O2(1 atm) as the sole oxidant.

    Table 1 Optimization of the reaction.a

    With the optimized conditions in hand, the generality and limitation of this photocatalytic oxygenation protocol were eval-uated by examining diverse compounds (Scheme 1).Firstly, different oxygen-containing heterocycles could be oxidized to corresponding lactones 2a and 2b or ketone 2c in moderate to good yields (43%?76%).2,3-Dihydro-1H-indene and 1,2,3,4-tetrahydronaphthalene afforded the desired product 2d and 2e with the yield of 68% and 63%, respectively.Then, the aromatic substrates with more active methylene could be easily oxidized to generate ketones 2f-2i (46%–82%).Especially, 9,10-dihydroanthracene 1f gave the corresponding anthracene-9,10-dione 2f in the yield of 58%.Encouraged by these results, diverse functional groups (–H, –CH3, –OMe, –CH2Ph, –Ph, –Py) on the benzylic position were further evaluated.It was found that all of the compounds 1j-1o could be oxidized under the optimized reaction conditions albeit with a longer reaction time (2j-2o).Finally,N-heterocyclic compounds were further evaluated in this photocatalytic system, generating the corresponding products 2p-2s in moderated yields (43%?61%).It is a pity that this protocol failed to realize the selective mono-oxidation of isoindoline 1s, which has great value in medicines and materials [55].Moreover, we also found that the current catalytic system has some limitations.For example, theN-heterocyclic compounds 1t-1y and the aliphatic substrate 1z are not suitable in this oxidative reaction.

    Scheme 1.Substrate scope.Reaction conditions: 1 (0.4 mmol), POM[Fe] (0.5 mol%),acetone (0.2 mol/L), blue LED (430 nm, 10 W), using O2 balloon at room temperature.Isolated yields were given.a EtOH instead of acetone.

    To get a deep insight into the reaction mechanism, a series of control experiments were conducted as shown in Table 2.Firstly,we concluded that oxygen was an essential and efficient factorviacarrying out reaction under air and nitrogen atmosphere(Table 2, entries 2 and 3).Then, no desired product was obtained without light irradiation, indicating that light is of significance in this process (Table 2, entry 4).Radical scavengers (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO) was added under standard conditions (Table 2, entry 5).This reaction was inhibited, indicating that a radical mechanism may be involved in this protocol.Meanwhile, the adduct of TEMPO and radical species from 1a (i.e.,intermediate 3 in Scheme 2) was detected by using high-resolution mass spectroscopy (HRMS) (Fig.S8 in Supporting information).Additionally, when superoxide radical scavenger 4-benzoquinone (BQ)[56] was added into the reaction, the decreased yield of 2a demonstrated that superoxide radical was generated and played an important role in the reaction process (Table 2, entry 6).Finally, hydroperoxide radical may exist in this system through the result of adding FeSO4under standard conditions (Table 2, entry 7).

    Scheme 2.Plausible reaction mechanism.

    Table 2 Control experiments.a

    Based on the above experimental results, a plausible mechanism was proposed as shown in Scheme 2.Firstly, ground state POM[Fe] was transformed into excited state POM[Fe]?under the irradiation of visible light.Then, substrate 1a underwent a hydrogen atom transfer (HAT) process under the effect of excited state POM[Fe]?to generate intermediate 3, along with the generation of POM[Fe]-H.Intermediate POM[Fe]-H was oxidized by oxygen to regenerate the ground state POM[Fe] to accomplish the photoredox cycle and release a proton.Simultaneously, oxygen was transformed into a superoxide radical.On the one hand, intermediate 3 was combined with superoxide radical to generate intermediate 4, which was protonated to obtain intermediate 5 (path a).On the other hand, intermediate 3 reacted with hydroperoxide radical to generate intermediate 5 (path b).Finally, intermediate 5 released H2O to afford desired products 2a.

    The stability and reusability of POM[Fe] were also evaluated.After the reaction, photocatalyst POM[Fe] was isolated by centrifugation, washed with 15 mL CH2Cl2three times, and air-dried at room temperature for 24 h, then directly used in the next reaction.As shown in Fig.5, good stability and high catalytic activity of POM[Fe] was demonstrated due to the negligibly decreased yield of 2a after the 7thcycle.Meanwhile, the results of PXRD patterns and FTIR spectroscopy of recovered POM[Fe] also indicated the good stability and well-maintained in crystal lattice (Fig.S9 in Supporting information).

    Fig.5.Recycling experiments.

    In summary, two POM dimers have been successfully synthesized by the reaction of Nb/W mixed-addendum POM and TM ions(Fe3+and Cr3+).POM[Fe] can efficiently catalyze the selective oxidation of sp3C–H bonds under visible light using oxygen as an oxidant.The catalyst shows good stability and reusability in multiple catalytic cycles.Mechanistic investigations suggest that the catalytic reaction has gone through a hydrogen atom transfer process.The superoxide radical has generated and played an important role in the reaction processes.This work provides a feasible revelation for exploring the development of new transition metal-modified POMs in visible-light-induced organic reactions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22171073, 21971224 and U1804253),and the Natural Science Foundation of Henan Province (No.202300410246).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.023.

    日韩伦理黄色片| 久久久久久人妻| 亚洲国产看品久久| 夫妻性生交免费视频一级片| 亚洲av电影在线进入| 免费大片18禁| 国产一区二区激情短视频 | 观看美女的网站| 日本av手机在线免费观看| 色视频在线一区二区三区| 免费观看性生交大片5| 亚洲婷婷狠狠爱综合网| 国产精品久久久久成人av| 最后的刺客免费高清国语| 久久国内精品自在自线图片| 亚洲人与动物交配视频| 亚洲伊人色综图| 国产一区二区三区综合在线观看 | 热re99久久精品国产66热6| 成人综合一区亚洲| 亚洲精品aⅴ在线观看| 七月丁香在线播放| 精品久久久精品久久久| 丁香六月天网| 亚洲第一区二区三区不卡| 色婷婷av一区二区三区视频| 欧美日韩国产mv在线观看视频| 香蕉精品网在线| 免费看不卡的av| av网站免费在线观看视频| 国产一区亚洲一区在线观看| 日韩免费高清中文字幕av| 成年av动漫网址| 亚洲在久久综合| 亚洲精品久久久久久婷婷小说| 国产精品免费大片| 欧美日韩av久久| 日本欧美视频一区| 免费女性裸体啪啪无遮挡网站| 亚洲美女视频黄频| 午夜老司机福利剧场| 久久人人97超碰香蕉20202| 精品人妻熟女毛片av久久网站| freevideosex欧美| 欧美日韩视频高清一区二区三区二| 亚洲欧美日韩另类电影网站| 中国美白少妇内射xxxbb| 男女边摸边吃奶| 一级a做视频免费观看| 老司机影院成人| 一级爰片在线观看| 亚洲欧美精品自产自拍| 亚洲内射少妇av| 美女国产高潮福利片在线看| 国产精品国产av在线观看| 男女免费视频国产| 日韩三级伦理在线观看| 久久久久精品性色| 国产av一区二区精品久久| 欧美精品一区二区大全| 97在线视频观看| 亚洲欧美中文字幕日韩二区| 成年女人在线观看亚洲视频| 国产永久视频网站| av天堂久久9| 欧美成人午夜精品| 欧美人与善性xxx| 国产精品成人在线| 午夜福利乱码中文字幕| 久久女婷五月综合色啪小说| 99久久中文字幕三级久久日本| 成人无遮挡网站| 精品亚洲乱码少妇综合久久| 免费女性裸体啪啪无遮挡网站| 亚洲伊人久久精品综合| 日本爱情动作片www.在线观看| 青春草亚洲视频在线观看| 国产欧美日韩一区二区三区在线| 免费黄色在线免费观看| 亚洲国产欧美日韩在线播放| av黄色大香蕉| 少妇的逼水好多| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产片特级美女逼逼视频| 欧美亚洲日本最大视频资源| 国产免费又黄又爽又色| 捣出白浆h1v1| 国产成人精品久久久久久| 国产精品无大码| 国产一区亚洲一区在线观看| 一级毛片我不卡| av在线老鸭窝| 欧美精品人与动牲交sv欧美| 制服人妻中文乱码| 中文字幕亚洲精品专区| 欧美日韩综合久久久久久| 99久久中文字幕三级久久日本| 亚洲av免费高清在线观看| 日韩视频在线欧美| 久久99精品国语久久久| 国产精品久久久久久av不卡| 免费人成在线观看视频色| 国产永久视频网站| 久久综合国产亚洲精品| 黑人巨大精品欧美一区二区蜜桃 | 51国产日韩欧美| 国产精品国产av在线观看| 成人手机av| 天美传媒精品一区二区| 狠狠精品人妻久久久久久综合| 成人亚洲精品一区在线观看| 十分钟在线观看高清视频www| 亚洲四区av| 久久精品熟女亚洲av麻豆精品| 母亲3免费完整高清在线观看 | 亚洲高清免费不卡视频| 少妇精品久久久久久久| 久久久亚洲精品成人影院| 亚洲av电影在线观看一区二区三区| 久久久精品区二区三区| 色94色欧美一区二区| 最近最新中文字幕免费大全7| 99久国产av精品国产电影| 亚洲丝袜综合中文字幕| 国产 一区精品| 卡戴珊不雅视频在线播放| 婷婷成人精品国产| 赤兔流量卡办理| 国产精品一区二区在线观看99| 1024视频免费在线观看| 女人精品久久久久毛片| 国产1区2区3区精品| 美女国产高潮福利片在线看| 亚洲欧美色中文字幕在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费少妇av软件| 亚洲精品美女久久久久99蜜臀 | 亚洲成国产人片在线观看| 黄片播放在线免费| 色婷婷久久久亚洲欧美| 自线自在国产av| 80岁老熟妇乱子伦牲交| 中文字幕人妻丝袜制服| 国产欧美日韩综合在线一区二区| 97在线视频观看| 王馨瑶露胸无遮挡在线观看| 在线观看www视频免费| 久久久国产欧美日韩av| 性高湖久久久久久久久免费观看| 成人手机av| 国产精品人妻久久久影院| 久久久久久久精品精品| 亚洲人与动物交配视频| 久久国产精品男人的天堂亚洲 | 三上悠亚av全集在线观看| 欧美最新免费一区二区三区| 色哟哟·www| 在线观看www视频免费| 性高湖久久久久久久久免费观看| 日韩中文字幕视频在线看片| 超碰97精品在线观看| 女性生殖器流出的白浆| 高清av免费在线| 欧美成人午夜精品| 成人亚洲欧美一区二区av| 大码成人一级视频| 黄网站色视频无遮挡免费观看| 在线天堂中文资源库| 亚洲伊人久久精品综合| 丝袜脚勾引网站| 色5月婷婷丁香| 精品国产乱码久久久久久小说| 一区二区三区乱码不卡18| 成年动漫av网址| 国产女主播在线喷水免费视频网站| 久久ye,这里只有精品| 婷婷成人精品国产| 欧美日韩一区二区视频在线观看视频在线| 中文字幕最新亚洲高清| 亚洲美女搞黄在线观看| 亚洲人成77777在线视频| 日韩av免费高清视频| 建设人人有责人人尽责人人享有的| 国产一区二区激情短视频 | 亚洲综合精品二区| 欧美激情 高清一区二区三区| 26uuu在线亚洲综合色| 夜夜骑夜夜射夜夜干| kizo精华| 国产精品一二三区在线看| 深夜精品福利| 国产精品人妻久久久影院| 建设人人有责人人尽责人人享有的| 成人亚洲精品一区在线观看| 欧美精品av麻豆av| tube8黄色片| 一区二区三区精品91| 啦啦啦视频在线资源免费观看| 亚洲国产欧美日韩在线播放| 97超碰精品成人国产| 十八禁网站网址无遮挡| 日本免费在线观看一区| 69精品国产乱码久久久| 免费不卡的大黄色大毛片视频在线观看| 国产1区2区3区精品| 久久人人97超碰香蕉20202| 亚洲精品一二三| 纵有疾风起免费观看全集完整版| 成人国产av品久久久| 久久99热6这里只有精品| 人妻 亚洲 视频| 99视频精品全部免费 在线| 精品一区在线观看国产| 国产亚洲av片在线观看秒播厂| 丝袜人妻中文字幕| 最后的刺客免费高清国语| 18禁国产床啪视频网站| 免费不卡的大黄色大毛片视频在线观看| 三级国产精品片| 成人亚洲欧美一区二区av| 欧美精品av麻豆av| 久久久久久久亚洲中文字幕| 99香蕉大伊视频| 在线 av 中文字幕| 日韩熟女老妇一区二区性免费视频| 国产激情久久老熟女| 中文字幕亚洲精品专区| 国产黄色免费在线视频| 欧美日韩国产mv在线观看视频| av视频免费观看在线观看| 少妇人妻 视频| 51国产日韩欧美| 久久国产精品大桥未久av| 国产男女内射视频| av线在线观看网站| 免费观看a级毛片全部| 老司机亚洲免费影院| 欧美97在线视频| 中文字幕人妻丝袜制服| 九色成人免费人妻av| 国产精品熟女久久久久浪| 久久久a久久爽久久v久久| 国产高清不卡午夜福利| 国产一区亚洲一区在线观看| 欧美日韩av久久| 成年女人在线观看亚洲视频| 国产极品天堂在线| 色视频在线一区二区三区| 另类精品久久| videosex国产| 少妇的丰满在线观看| 一本大道久久a久久精品| 日本91视频免费播放| 黑丝袜美女国产一区| 亚洲av成人精品一二三区| 丝袜美足系列| 久久国产精品男人的天堂亚洲 | 一个人免费看片子| 精品国产一区二区久久| 建设人人有责人人尽责人人享有的| 制服丝袜香蕉在线| av电影中文网址| 十八禁网站网址无遮挡| 久久久久人妻精品一区果冻| 日韩精品免费视频一区二区三区 | 热re99久久精品国产66热6| 男女下面插进去视频免费观看 | 精品人妻偷拍中文字幕| av国产久精品久网站免费入址| 免费在线观看完整版高清| 啦啦啦在线观看免费高清www| 三上悠亚av全集在线观看| 婷婷色麻豆天堂久久| 最近手机中文字幕大全| 国产男女超爽视频在线观看| 91在线精品国自产拍蜜月| 久久毛片免费看一区二区三区| 国产精品国产三级国产av玫瑰| 欧美 日韩 精品 国产| 午夜日本视频在线| 水蜜桃什么品种好| 男的添女的下面高潮视频| 一级毛片我不卡| 黄色配什么色好看| 天美传媒精品一区二区| 高清视频免费观看一区二区| 在线观看国产h片| 美女中出高潮动态图| 精品一区二区免费观看| 久久精品国产亚洲av天美| 亚洲色图 男人天堂 中文字幕 | 熟女电影av网| videossex国产| 久久久久精品人妻al黑| 日本av手机在线免费观看| 久久精品aⅴ一区二区三区四区 | 视频中文字幕在线观看| 国产伦理片在线播放av一区| av天堂久久9| 男女无遮挡免费网站观看| 我的女老师完整版在线观看| 精品亚洲成a人片在线观看| 婷婷色综合大香蕉| 国产成人欧美| 免费观看a级毛片全部| 韩国av在线不卡| 亚洲精品aⅴ在线观看| 婷婷色综合www| videosex国产| av国产精品久久久久影院| 亚洲,欧美精品.| 丰满乱子伦码专区| 精品人妻在线不人妻| 成人国产av品久久久| 国产黄频视频在线观看| 久久 成人 亚洲| 亚洲精品日本国产第一区| 秋霞伦理黄片| 免费高清在线观看日韩| 国产亚洲最大av| 国产精品久久久久久精品古装| 亚洲av电影在线进入| 一级片'在线观看视频| 性色av一级| 亚洲成色77777| xxx大片免费视频| 丝袜脚勾引网站| 欧美老熟妇乱子伦牲交| 国产黄色免费在线视频| 最近2019中文字幕mv第一页| 亚洲三级黄色毛片| 大香蕉久久成人网| videossex国产| 久久精品aⅴ一区二区三区四区 | 国产精品.久久久| 一本—道久久a久久精品蜜桃钙片| 免费黄色在线免费观看| 国产在线视频一区二区| 国产精品人妻久久久影院| 久久精品夜色国产| 日韩熟女老妇一区二区性免费视频| 国产精品欧美亚洲77777| 在线亚洲精品国产二区图片欧美| 国产福利在线免费观看视频| 日韩欧美一区视频在线观看| 中文字幕人妻丝袜制服| 久久久国产一区二区| 秋霞在线观看毛片| 国产一区二区激情短视频 | 久久久国产精品麻豆| 一边亲一边摸免费视频| 国产精品国产三级国产专区5o| 老司机影院毛片| 久久久精品94久久精品| 男人舔女人的私密视频| 国产成人精品无人区| 天美传媒精品一区二区| 久久精品国产亚洲av天美| 亚洲一区二区三区欧美精品| 久久久精品94久久精品| 精品亚洲乱码少妇综合久久| 99热网站在线观看| 精品亚洲成国产av| 欧美精品国产亚洲| 80岁老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图| 日韩在线高清观看一区二区三区| 国产综合精华液| 人妻一区二区av| 青青草视频在线视频观看| 国产成人一区二区在线| 亚洲精品av麻豆狂野| 国产欧美亚洲国产| 精品卡一卡二卡四卡免费| 免费av不卡在线播放| 大片免费播放器 马上看| 亚洲成色77777| 99九九在线精品视频| 国产男女超爽视频在线观看| 国产精品久久久久成人av| 精品熟女少妇av免费看| 人妻少妇偷人精品九色| av网站免费在线观看视频| 九色亚洲精品在线播放| 久久99蜜桃精品久久| 丰满饥渴人妻一区二区三| 一区二区三区精品91| 免费看av在线观看网站| 免费播放大片免费观看视频在线观看| 极品少妇高潮喷水抽搐| 大码成人一级视频| 另类亚洲欧美激情| 亚洲精品久久午夜乱码| 国产成人精品在线电影| av不卡在线播放| 午夜福利在线观看免费完整高清在| 热99国产精品久久久久久7| 满18在线观看网站| 久久久久国产精品人妻一区二区| 两性夫妻黄色片 | 婷婷色麻豆天堂久久| 国产精品一二三区在线看| 午夜av观看不卡| 在线亚洲精品国产二区图片欧美| 亚洲综合色惰| 久久狼人影院| 国产日韩一区二区三区精品不卡| 久久久久精品人妻al黑| 好男人视频免费观看在线| 成人亚洲欧美一区二区av| 一本大道久久a久久精品| 亚洲国产精品一区二区三区在线| 亚洲人与动物交配视频| 午夜av观看不卡| 国产爽快片一区二区三区| 精品一区二区三区四区五区乱码 | 中文字幕人妻熟女乱码| av在线app专区| 国产精品人妻久久久影院| 日韩精品免费视频一区二区三区 | 国产xxxxx性猛交| √禁漫天堂资源中文www| 熟女av电影| 在线观看美女被高潮喷水网站| 欧美日本中文国产一区发布| 男男h啪啪无遮挡| 成人亚洲欧美一区二区av| 亚洲av免费高清在线观看| a级毛片在线看网站| 韩国高清视频一区二区三区| 国产国语露脸激情在线看| 涩涩av久久男人的天堂| 高清av免费在线| 18禁国产床啪视频网站| 啦啦啦视频在线资源免费观看| 成人亚洲欧美一区二区av| 在现免费观看毛片| av在线观看视频网站免费| 老熟女久久久| av免费观看日本| 成年av动漫网址| 国产精品国产三级国产av玫瑰| 日韩电影二区| 欧美日韩视频高清一区二区三区二| 国产在线免费精品| 婷婷色综合www| 精品国产露脸久久av麻豆| 亚洲av免费高清在线观看| 男女边摸边吃奶| 国产无遮挡羞羞视频在线观看| 免费播放大片免费观看视频在线观看| 国产精品麻豆人妻色哟哟久久| √禁漫天堂资源中文www| 国产成人一区二区在线| 王馨瑶露胸无遮挡在线观看| 欧美精品一区二区大全| 国产精品99久久99久久久不卡 | 亚洲av欧美aⅴ国产| 日韩一区二区三区影片| 日韩伦理黄色片| 午夜精品国产一区二区电影| 少妇的丰满在线观看| 赤兔流量卡办理| 免费观看性生交大片5| 国产av精品麻豆| av女优亚洲男人天堂| 在线观看免费日韩欧美大片| 亚洲美女搞黄在线观看| 日韩av免费高清视频| 国产成人一区二区在线| 久久午夜福利片| 国产免费福利视频在线观看| 久久久精品区二区三区| 少妇人妻久久综合中文| 男女无遮挡免费网站观看| 亚洲av福利一区| 国产日韩欧美在线精品| 久久久久久久久久久免费av| 大片电影免费在线观看免费| 国产在线一区二区三区精| 精品久久久久久电影网| 日日啪夜夜爽| 99久久中文字幕三级久久日本| 午夜福利视频在线观看免费| 国产黄色免费在线视频| 99热6这里只有精品| 母亲3免费完整高清在线观看 | 爱豆传媒免费全集在线观看| 久久精品国产亚洲av天美| 日韩精品有码人妻一区| 飞空精品影院首页| 久久精品国产自在天天线| 纯流量卡能插随身wifi吗| 日本色播在线视频| 国产精品久久久久久精品古装| 街头女战士在线观看网站| 欧美xxxx性猛交bbbb| 亚洲欧美一区二区三区黑人 | 麻豆精品久久久久久蜜桃| 最新的欧美精品一区二区| 下体分泌物呈黄色| 成人毛片60女人毛片免费| 国内精品宾馆在线| 亚洲激情五月婷婷啪啪| 日韩制服丝袜自拍偷拍| 有码 亚洲区| 久久精品国产亚洲av涩爱| 夜夜骑夜夜射夜夜干| av网站免费在线观看视频| 丝袜脚勾引网站| 久久女婷五月综合色啪小说| 久久人妻熟女aⅴ| 国产精品久久久久久av不卡| 久久鲁丝午夜福利片| 9色porny在线观看| 99国产精品免费福利视频| 9色porny在线观看| 久久精品国产亚洲av涩爱| av国产精品久久久久影院| 少妇高潮的动态图| 久久午夜福利片| 你懂的网址亚洲精品在线观看| 春色校园在线视频观看| 精品熟女少妇av免费看| a级毛片黄视频| 久久久久久久久久久久大奶| 51国产日韩欧美| 日产精品乱码卡一卡2卡三| 久久99热6这里只有精品| 日本色播在线视频| 欧美成人午夜免费资源| 色婷婷av一区二区三区视频| 少妇精品久久久久久久| 一边亲一边摸免费视频| 另类亚洲欧美激情| 两个人看的免费小视频| 黄色配什么色好看| 18禁在线无遮挡免费观看视频| 久久国产精品大桥未久av| 最近手机中文字幕大全| 午夜福利网站1000一区二区三区| 下体分泌物呈黄色| 一区二区三区精品91| 18禁动态无遮挡网站| 人人妻人人澡人人看| 新久久久久国产一级毛片| 中文精品一卡2卡3卡4更新| 国产av一区二区精品久久| 黑人欧美特级aaaaaa片| 欧美日本中文国产一区发布| 精品卡一卡二卡四卡免费| 最近中文字幕2019免费版| 亚洲国产色片| 又大又黄又爽视频免费| 欧美变态另类bdsm刘玥| 99九九在线精品视频| 一区二区三区精品91| 又黄又爽又刺激的免费视频.| 午夜免费鲁丝| 边亲边吃奶的免费视频| 亚洲美女搞黄在线观看| 中文字幕最新亚洲高清| 中文字幕人妻丝袜制服| 飞空精品影院首页| 多毛熟女@视频| 久久久久久久久久人人人人人人| 国产亚洲一区二区精品| 日韩中文字幕视频在线看片| 九草在线视频观看| 熟女人妻精品中文字幕| 美女国产视频在线观看| 国产毛片在线视频| 亚洲精品日本国产第一区| 最新中文字幕久久久久| 国产不卡av网站在线观看| 春色校园在线视频观看| 最黄视频免费看| 少妇的逼水好多| 午夜福利影视在线免费观看| 哪个播放器可以免费观看大片| 在线观看免费视频网站a站| 国产精品久久久久久av不卡| 欧美亚洲 丝袜 人妻 在线| 欧美精品高潮呻吟av久久| 中文字幕av电影在线播放| 亚洲一区二区三区欧美精品| 久久久a久久爽久久v久久| 一区二区三区四区激情视频| 男女边摸边吃奶| 国产色爽女视频免费观看| 啦啦啦中文免费视频观看日本| 欧美精品一区二区大全| 高清在线视频一区二区三区| 免费大片18禁| 中文天堂在线官网| 新久久久久国产一级毛片| 校园人妻丝袜中文字幕| 日韩人妻精品一区2区三区| 丁香六月天网| 一区二区三区四区激情视频| 男女边摸边吃奶| 又黄又爽又刺激的免费视频.| 日日爽夜夜爽网站| 中文天堂在线官网| 超碰97精品在线观看| 精品一区二区免费观看| 黄色 视频免费看| 国产一级毛片在线| 黄片无遮挡物在线观看| 午夜精品国产一区二区电影| 99久久中文字幕三级久久日本| 少妇的逼水好多| 9色porny在线观看| 熟女av电影| 久久人人爽av亚洲精品天堂|