• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Au nanoparticles loaded on hollow BiOCl microstructures boosting CO2 photoreduction

    2022-09-15 03:11:20SiwenGongFeiRoWeiinZhngQeerUlHssnZhoqingLiuJinzhiGoJingoLuMirosHojmerievGngqingZhu
    Chinese Chemical Letters 2022年9期

    Siwen Gong, Fei Ro, Weiin Zhng, Qeer-Ul Hssn, Zhoqing Liu, Jinzhi Go,Jingo Lu, Miros Hojmeriev, Gngqing Zhu,?

    a School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China

    b School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China

    c School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China

    d Institute of Chemistry, Technical University of Berlin, Berlin 10623, Germany

    ABSTRACT The BiOCl (BOC) synthesized by the water bath heating method was treated with sodium borohydride(NaBH4) to introduce oxygen vacancies (OVs).At the same time, Au nanoparticles were loaded to prepare a series of Au/BiOCl samples with different ratios.OVs and Au nanoparticles can promote the light absorption of host photocatalyst in the visible region.The calculated work function of BiOCl and Au can verify the existence of Ohmic contact between the interface of them, which is conducive to the separation of charge carriers.Through a series of photoelectric tests, it was verified experimentally that the separation of charge carriers is indeed enhanced.The high-energy hot electrons produced by Au under the surface plasmon resonance (SPR) effect can increase the counts of electrons to participate in the CO2 reduction reaction.Especially for 1.0%-Au/BOC, the yields of CO can reach 43.16 μmol g?1 h?1, which is 6.6 times more than that of BOC.Therefore, loading precious metal on semiconductors is an effective strategy to promote the photocatalytic performance of CO2 reduction reactions.

    Keywords:BiOCl Au nanoparticles Oxygen vacancy Ohmic contact CO2 photoreduction

    Photocatalytic reduction of CO2needs a very negative reduction potential, which requires the photocatalyst to have a relatively negative conduction band (CB) position.Generally, semiconductor photocatalysts that meet this condition have a wide band gap, which is not conducive to the absorption of visible light [1,2].Introducing defects and loading precious metals can be used as two important methods to solve this problem [3–8].Due to its unique electronic structure, oxygen vacancies (OVs) will change the light absorption capacity and photogenerated carrier mobility of the semiconductor photocatalyst, thereby enhancing its performance [9].The local electrons near the OVs can induce shallow donor levels below CB[10,11].The donor levels caused by the suitable content of OVs can further hybridize with the CB, thereby changing the Fermi level of the semiconductor and the forbidden band width [12].Meanwhile,this energy level also promotes the separation of charge carriers[13].

    The surface plasmon resonance (SPR) effect makes noble metal nanoparticles capture partial visible light, and then produce highenergy hot electrons [14–17].In this way, semiconductor loaded with noble metals can use these high-energy hot electrons to drive chemical reactions on their surfaces.Meanwhile, the metalsemiconductor heterojunction that forms Ohmic contacts facilitates the separation of charge carriers and promotes the progress of photocatalytic reactions [18,19].Thus, it is very critical to select the appropriate semiconductor and precious metal for constructing nanocomposites.BiOCl (BOC) is a wide-gap photocatalytic material.The CB position of BOC is relatively negative, generally between ?0.9 V ~?1.1 V (vs.SHE), which matches with the potential of reducing CO2to CO (?0.51 Vvs.SHE) and CH4(?0.24 Vvs.SHE) [20].BOC has a valence band (VB) position of 1.7 V ~1.8 V(vs.SHE), which has sufficient oxidation capacity to decompose water (0.82 Vvs.SHE), providing protons for CO2reduction [21].Therefore, BOC can meet the potential requirements of CO2reduction.Loading metal nanoparticles with a suitable Fermi level can be selected to form a heterojunction in Ohmic contact with BOC,thereby improving the light absorption ability and the separation ability of photogenerated charge carriers.

    Fig.1.The TEM images (a, b), HAADF-STEM images (c-e) and EDX mappings of 1.0%-Au/BOC (f, g).

    In this work, the presence of OVs and Au nanoparticles in BOC (OVs-Au/BOC) not only significantly enhances the visible light absorption capacity of the composite sample, but also significantly improves the separation ability of photo-generated carriers, thereby greatly boosting the catalytic activity of the photocatalyst.Through the combination of experiments and DFT calculations, the improvement mechanism of photocatalytic activity and the reaction process of photocatalytic reduction of CO2are explored (Supplementary Notes 1–4 in Supporting information).

    The synthesis process of BOC is described in Supplementary Note 5 (Supporting information).Furthermore, dissolve 0.2 g BOC in 30 mL deionized water, and then add the corresponding chloroauric acid solution and stirred for 1 h (Au:Bi molar ratios of 0.5%, 1.0%, 1.5%, 2.0%, 2.5%).Weigh an appropriate amount of NaBH4(the molar concentration is 5 times than the Au concentration in the corresponding mixed solution), dissolve it in 30 mL of deionized water, and quickly pour it into the stirred mixed solution.The precipitate was washed several times with deionized water and alcohol, and collected after drying for 6 h at 60 °C.According to the different proportions of Au loading, the photocatalyst is recorded as BOC, 0.5%-Au/BOC, 1.0%-Au/BOC, 1.5%-Au/BOC,2.0%-Au/BOC, 2.5%-Au/BOC.

    As shown in Fig.S1a (Supporting information), the X-ray diffraction (XRD) pattern is exactly the same as that of the tetragonal BiOCl (PDF #85–0861).However, the diffraction peaks of Au are not observed after because of the low loading counts and unique dispersion [19].As shown in Fig.S1b (Supporting information),FTIR further confirms the phase structure of as-prepared samples.In BOC and Au/BOC samples, the peak at 527 cm?1is attributed to the Bi-O stretching mode [19], and the peaks at 1293, 1423, and 1663 cm?1are attributed to the N?H ?O group, pyrrole and free C=O stretch mode [22].There is no obvious change in the position of the signal indicates that further characterization methods are needed to observe the loaded Au species.

    The TEM image of 1.0%-Au/BOC is shown in Fig.1a, which maintains the flower-shaped appearance of hollow structure of BOC stacked of nanosheets, where some nanoparticles with a diameter of 5–6 nm are distributed on the surface (Fig.1b).In the HAADF-STEM images (Figs.1c and d), two clear lattice plane spacings of 0.275 nm and 0.738 nm are shown, corresponding to the(110) and (001) of BiOCl, respectively.Fig.1e shows a set of clear lattice plane spacing 0.235 nm, corresponding to the (111) lattice plane of Au0.Energy dispersive X-ray spectroscopy (EDS) further shows the distribution of elements.From Figs.1f and g, it can be seen that the Bi, O, and Cl elements are uniformly distributed on the nanosheets, while the Au elements are mostly concentrated to form the nanoparticles.It proved that Au0was successfully loaded onto BiOCl nanosheets.

    Fig.2.The high-resolution XPS spectra of Au 4f (a), O 1s (b) and EPR spectra (c)of BOC and 1.0%-Au/BOC samples, UV–vis diffuse absorbance spectra of all prepared samples (d).

    The element composition and chemical state of the sample were further analyzed by X-ray photoelectron spectroscopy (XPS).The survey spectra and high-resolution spectra of Bi 4f and Cl 2p of BOC and 1.0%-Au/BOC samples are shown in Fig.S2 (Supporting information).In the HR-XPS of Au 4f, the peaks at 83.2 eV and 86.8 eV can be attributed to Au0[23], indicating that Au exists in the composite sample in the form of metal, and there is no Au element in the pure BOC sample (Fig.2a).In Fig.2b, three peaks at 529.4, 531.4 and 532.9 eV are ascribed to lattice oxygen,surface adsorbed oxygen, and surface adsorbed oxygen in water molecules [24].The O at 530.5 eV is OV.It can be seen that the peak area of OVs in the metal-loaded BOC has increased, which demonstrates that the amount of OVs has been increased.In order to directly prove the existence and variation of OVs in as-prepared samples, the electron paramagnetic resonance (EPR) spectroscopy of the sample was tested, as shown in Fig.2c.BOC and 1.0%-Au/BOC both show resonance signals atg=2.003 [25], while the signal of BOC is relatively weak.It indicates that OVs have existed in BOC.After chemical reduction, more OVs are generated, so the peak intensity in 1.0%-Au/BOC gets higher, which is consistent with the conclusion in XPS.

    Fig.2d records the UV–vis absorption spectra of BOC and Au/BOC, reflecting the light absorption properties of the photocatalysts.The location of the absorption band edge of BOC is about 367 nm, which shows that BOC has strong absorption for ultraviolet light and has a weak response to visible light.This weak visible light response can be attributed to the existence of the OVs in BOC.As the loading of Au nanoparticles increases, the absorption of the photocatalyst in the visible light region becomes more robust.In addition, an absorption peak that appears near 531 nm can be attributed to the SPR effect of Au nanoparticles [26].From the absorption edge of as-prepared samples, it can be observed that the edge gradually redshifts toward the visible region with the increase of the Au loading, owing to the increasing content of OVs.OVs are mainly reflected in two aspects to promote the activity of semiconductor photocatalysts.Firstly, the localized electrons on OVs energy level can be excited to the CB under visible light [2].Secondly, the intermediate energy levels of these defect states may also accept electrons in the valence band (VB) transition under the excitation of visible light, and indirectly transfer photoelectrons to CB, which not only broadens the visible light response range, but also inhibits the recombination of e?-h+pairs [27].According to the DFT calculation of the density of states (DOS), the conclusion can be drawn that the shallow energy levels come into being by O 2p orbit in OVs-BOC (Fig.S3 in Supporting information), which is overlapped with the bottom of the CB to narrow the band gap,thereby enhancing light absorption.

    Fig.3.Generation rate of CO and CH4 under simulated sunlight (a), under visible light (b), cyclic experiment over 1.0%-Au/BOC (c), mass spectra of 13CH4 (m/z 17)and 13CO (m/z 29) generated over 1.0%-Au/BOC (d).

    The photocatalytic performance of the as-prepared samples is evaluated by the CO2photoreduction test.As shown in Fig.3a, after 1 h of simulated sunlight exposure, the formation rate of CO and CH4over BOC are 6.57 μmol/g and 3.03 μmol/g, respectively.The loading of Au0in BOC and the introduction of OVs remarkably boosted the photoreduction activity of CO2(Table S1 in Supporting information).Especially for 1.0%-Au/BOC, the yields of CO and CH4can reach up to 43.16 μmol g?1h?1and 5.98 μmol g?1h?1, respectively.The rate of CO generation is 6.6 times higher than that of pristine BOC.Furthermore, the activity of 1.0%-Au/BOC is still very good compared with other photocatalysts (Table S2 in Supporting information).However, with the continuous increase of the loading, the photocatalytic activity decreased, which is due to the size augment of Au0nanoparticles.The changes in the specific surface area (SBET) and pore size distribution of the pure BOC sample and composite material can be observed through the nitrogen(N2) adsorption-desorption curves (Fig.S4 in Supporting information), which is an essential factor affecting the photocatalytic activity.With reference to the IUPAC classification, the isotherm of the sample shows a typical IV-type isotherm and H3 hysteresis, indicating that the synthesized material has a mesoporous structure.After loading Au0, the increasedSBETof the sample is beneficial to the photocatalytic performance.But as the loading ratios increase,theSBETof the sample gradually decreases, which decreases the surface reaction and adsorption sites for the target gas.The size augment of Au0nanoparticles will cause the photogenerated electrons to recombine before reaching the surface of the Au0to react with CO2, thereby reducing the reaction activity [20].Therefore, it is extremely important to adjust the loading amount so that the Au0nanoparticles maintain the appropriate amount and size to promote the CO2photoreduction performance.

    Fig.4.The in situ FTIR spectra of 1.0%-Au/BOC during the CO2 reduction process(a) in dark and (b) with illumination under simulated light, schematic diagram of energy band change of 1.0%-Au/BOC before (c) and after (d) contact (Φ is the work function, E0 is the vacuum level, Ef1 and Ef2 are the Fermi levels of OVs-BOC and Au0, respectively, and Ef is the Fermi level of 1.0%-Au/BOC).

    In order to verify that the promotion of the photocatalytic activity is due to the SPR effect of Au0, the performance test under visible light irradiation was carried out.It can be observed that the photocatalytic performance trends of all samples are consistent with the results under simulated sunlight (Fig.3b).After loading Au0nanoparticles, 1.0%-Au/BOC has the most significant increase.It can reach CO: 13.02 μmol g?1h?1, CH4: 1.90 μmol g?1h?1, respectively, which is 8 times and 5 times than BOC.It can be proved that the loading of Au0nanoparticles enhances the effective absorption of visible light.Detailed performance data is shown in the supporting documents (Table S3 in Supporting information).In addition,a cyclic measurement was performed to manifest the stability of 1.0%-Au/BOC.Even after five photocatalytic reactions, 1.0%-Au/BOC still maintains high reactivity (Fig.3c).By comparing the XRD before and after the reaction (Fig.S5a in Supporting information), it can be seen that the phase structure of the catalyst was not destroyed even after several photocatalytic reduction experiments of CO2, which indicates that 1.0%-Au/BOC possesses high stability.

    To explore the source of carbon in the product, a sequence of experiments have been done to prove that under the effect of the photocatalyst, CO2is reduced to other carbon-containing substances (Fig.S5b in Supporting information).In order to more intuitively verify the source of carbon in the product, the isotope labeling method (13CO2) was used in the experiment.From Fig.3d,the peaks of 1.0%-Au/BOC atm/z17 andm/z29 can be ascribed to13CH4and13CO, respectively, which proves the carbon in CH4and CO comes from the13CO2.

    To explore the specific process of CO2reduction and the intermediate products,in-situFT-IR tests were carried out in the presence or absence of light irradiation condition.As exhibited in Fig.4a, the adsorption/desorption equilibrium is reached in the dark environment.The peaks at 1650 cm?1correspond to H2O, and the peaks at 1280 and 1369 cm?1attributed to bicarbonate (HCO3–),the peaks at 1314, 1426, 1463, and 1616 cm?1ascribed to carbonate (CO32–), which are all caused by the initial reactive adsorption of CO2[28–30].The peaks at 1515 and 1771 cm?1correspond to formate (HCOO–), and the peaks at 1695 and 1740 cm?1correspond to CO2–and CO, respectively [12,19].These are important intermediate products in the reduction of CO2.After turning on the light, as shown in Fig.4b, it can be observed that the shape of thein-situinfrared peak has no obvious change, but the intensity is significantly increased, especially for CO and HCOO–.The increase of these two important intermediate products represents the rapid progress of the reaction.The specific reaction process is listed in Supplementary Note 6 (Supporting information).

    After loading Au nanoparticles, the performance of the photocatalyst has been greatly improved.The adsorption of CO2over the surface of photocatalysts has an important influence on CO2photoreduction.The CO2adsorption curve has been shown in Fig.S6 (Supporting information).It can be found that there is no significant difference between the two samples, which indicates that in this experiment, the CO2physical adsorption ability is not the main factor impacting the photocatalytic performance.The enhancement of photocatalytic performance is governed by other factors.

    Promoting the effective separation of photogenerated carriers is an important aspect to boost the activity of photocatalysts.Fig.S7 (Supporting information) shows the surface photovoltage spectra (SPV), the photocurrent response, the impedance spectroscopy(EIS) and the fluorescence spectra, which suggests that the Au0component can improve the separation ability and suppress the recombination of photogenerated carriers so that the activity of the photocatalyst has been improved.

    The fundamental reason why the separation ability of photogenerated carriers has been improved will be further explored through DFT calculation.The heterojunction composed by metal nanoparticles and semiconductor is favorable for charge carrier transfer.As shown in Fig.S8 (Supporting information), the work function of OVs-BOC (110) (5.19 eV) is higher than the work function of Au0(111) (3.32 eV), so an Ohmic contact can be formed in the interface between them [15].The band structure of Au0and OVs-BOC before contact is exhibited in Fig.4c.After contact (Fig.4d), the electrons of Au0flow to OVs-BOC to achieve a thermodynamic balance, thereby bending the energy band of OVs-BOC to form an Ohmic contact.When 1.0%-Au/BOC was excited by light with suitable energy, photogenerated electrons jumped from VB in OVs-BOC to CB.In addition, the photogenerated electrons move to Au0under the effect of the built-in electric field, which improves the separation ability of photogenerated electron-hole pairs.

    In summary, the semiconductor is mainly excited by ultraviolet light to produce e?/h+pairs in the BOC without modification;when OVs are present, OVs can form shallow energy levels near the CB, which can not only hybridize with the bottom of the CB to narrow the band gap, and can also be used as a step for photogenerated electrons.The electrons generated by light excitation can first jump to the OVs energy level and then jump to the CB.This process will absorb visible light, thereby enhancing the light absorption.After loading Au0, the electrons on the CB will move to Au nanoparticles to participate in the reaction, enhancing the separation ability of e?/h+pairs.In addition, Au nanoparticles will absorb visible light and produce the SPR effect and generate hot electrons.The hot electrons with higher energy will cross the contact barrier between the semiconductor and the metal and move to the CB of the semiconductor to participate in the reaction, so that the number of available electrons participating in the reaction will increase, which in turn accelerate the reaction rate.Our work provides a new perspective for the use of defects and metal loading to solve the problem of low efficiency of photoreduction of CO2.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.51772183, 52072230), and the Yulin Science and Technology Project (No.CXY-2020–040).The authors also thank Professor Jiangbo Lu, Dr.Wang Li, Dr.Hongmei Jing and Dr.Lujun Zhu for the help in using ac-TEM (the Electron Microscopy Platform of School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.039.

    精华霜和精华液先用哪个| 久久久久久久久久人人人人人人| 国产精品国产三级专区第一集| 亚洲av.av天堂| 最近中文字幕高清免费大全6| 乱系列少妇在线播放| 国产色爽女视频免费观看| 人妻制服诱惑在线中文字幕| 婷婷色综合大香蕉| 校园人妻丝袜中文字幕| 91精品国产九色| 免费看不卡的av| 国产精品综合久久久久久久免费| 中文精品一卡2卡3卡4更新| 久久午夜福利片| 91精品国产九色| 国产伦在线观看视频一区| 天天躁夜夜躁狠狠久久av| 欧美精品国产亚洲| 亚洲欧美中文字幕日韩二区| 日本一本二区三区精品| 国产精品一区二区性色av| 免费电影在线观看免费观看| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 99re6热这里在线精品视频| 日日啪夜夜撸| 日本免费a在线| 麻豆乱淫一区二区| 色5月婷婷丁香| 久久精品人妻少妇| 一级二级三级毛片免费看| 免费黄色在线免费观看| 午夜免费男女啪啪视频观看| 一区二区三区高清视频在线| 成人特级av手机在线观看| 在线 av 中文字幕| a级一级毛片免费在线观看| 国产成人精品久久久久久| 日日撸夜夜添| 亚洲国产最新在线播放| 人妻系列 视频| 成人亚洲欧美一区二区av| 全区人妻精品视频| 精品一区二区三区人妻视频| 国产精品无大码| 日韩不卡一区二区三区视频在线| 九色成人免费人妻av| 成人漫画全彩无遮挡| 成人av在线播放网站| 一级av片app| 天堂影院成人在线观看| 国产成人freesex在线| 夜夜看夜夜爽夜夜摸| 亚洲精品aⅴ在线观看| 哪个播放器可以免费观看大片| 亚洲国产av新网站| 丰满乱子伦码专区| 国产免费视频播放在线视频 | 成人亚洲精品av一区二区| 青春草视频在线免费观看| 久久久久久久久中文| 亚洲色图av天堂| 纵有疾风起免费观看全集完整版 | 精品人妻熟女av久视频| 中文字幕av在线有码专区| ponron亚洲| 国产精品三级大全| 成年免费大片在线观看| 一个人看视频在线观看www免费| 久久国产乱子免费精品| 国产黄片视频在线免费观看| av线在线观看网站| 国产成人精品久久久久久| 国产亚洲91精品色在线| 99久国产av精品国产电影| 亚洲在线观看片| 国产成人精品久久久久久| 久久人人爽人人爽人人片va| 精品人妻熟女av久视频| 一个人看视频在线观看www免费| 五月伊人婷婷丁香| 国产在视频线精品| 日韩欧美一区视频在线观看 | 老师上课跳d突然被开到最大视频| 成人综合一区亚洲| 你懂的网址亚洲精品在线观看| 亚洲综合色惰| 国产人妻一区二区三区在| a级一级毛片免费在线观看| 男人舔奶头视频| 国产精品精品国产色婷婷| 久久99热6这里只有精品| 精品少妇黑人巨大在线播放| 男人舔女人下体高潮全视频| 日本一二三区视频观看| 丝袜喷水一区| 午夜日本视频在线| 亚洲aⅴ乱码一区二区在线播放| 色尼玛亚洲综合影院| 精品国产露脸久久av麻豆 | 日本三级黄在线观看| 欧美区成人在线视频| 国产欧美另类精品又又久久亚洲欧美| 午夜激情欧美在线| 高清视频免费观看一区二区 | 狂野欧美白嫩少妇大欣赏| 国产亚洲av片在线观看秒播厂 | 国内揄拍国产精品人妻在线| 舔av片在线| 日韩 亚洲 欧美在线| 中文字幕人妻熟人妻熟丝袜美| 国产欧美日韩精品一区二区| 国产精品一区二区性色av| 久久久成人免费电影| 91在线精品国自产拍蜜月| 国产精品一二三区在线看| 国产探花在线观看一区二区| 成人亚洲精品一区在线观看 | 免费观看无遮挡的男女| 亚洲av成人精品一区久久| ponron亚洲| 美女xxoo啪啪120秒动态图| 91精品国产九色| 老司机影院毛片| 国产一区亚洲一区在线观看| 成年免费大片在线观看| 99视频精品全部免费 在线| 五月玫瑰六月丁香| 一级黄片播放器| 伊人久久精品亚洲午夜| 国产成年人精品一区二区| 日韩 亚洲 欧美在线| 国产伦在线观看视频一区| 在线观看一区二区三区| 久久国内精品自在自线图片| 天堂av国产一区二区熟女人妻| 蜜臀久久99精品久久宅男| 搡老妇女老女人老熟妇| 欧美97在线视频| 神马国产精品三级电影在线观看| 18禁在线无遮挡免费观看视频| 十八禁国产超污无遮挡网站| 久久99精品国语久久久| 成人无遮挡网站| 日韩电影二区| 亚洲美女视频黄频| 日韩 亚洲 欧美在线| 日韩国内少妇激情av| 亚洲av男天堂| 成人鲁丝片一二三区免费| 网址你懂的国产日韩在线| 久久久久久久久久黄片| 特大巨黑吊av在线直播| 永久免费av网站大全| 乱人视频在线观看| 亚洲精品国产av蜜桃| 插逼视频在线观看| 成人漫画全彩无遮挡| 欧美高清性xxxxhd video| 肉色欧美久久久久久久蜜桃 | 三级毛片av免费| 成人高潮视频无遮挡免费网站| 亚洲欧洲国产日韩| 99热6这里只有精品| 亚洲最大成人中文| 国产精品日韩av在线免费观看| 又爽又黄无遮挡网站| 欧美最新免费一区二区三区| 欧美精品国产亚洲| 狠狠精品人妻久久久久久综合| 日本免费在线观看一区| 综合色丁香网| 中文字幕久久专区| 国内揄拍国产精品人妻在线| 国产乱来视频区| 免费av不卡在线播放| 一级a做视频免费观看| 欧美丝袜亚洲另类| 欧美区成人在线视频| 丰满乱子伦码专区| 国产在视频线在精品| 天天躁夜夜躁狠狠久久av| 久久97久久精品| av在线老鸭窝| 国产一区二区在线观看日韩| 一级黄片播放器| 亚洲av二区三区四区| 麻豆国产97在线/欧美| 男人狂女人下面高潮的视频| 一区二区三区高清视频在线| 六月丁香七月| 亚洲性久久影院| 国产精品一及| 91精品国产九色| 亚洲欧美一区二区三区黑人 | 熟女电影av网| 深爱激情五月婷婷| 亚洲在线自拍视频| 亚洲美女视频黄频| 国产精品国产三级国产专区5o| 人人妻人人澡人人爽人人夜夜 | 真实男女啪啪啪动态图| 少妇被粗大猛烈的视频| 51国产日韩欧美| 欧美最新免费一区二区三区| 日本av手机在线免费观看| 日本一本二区三区精品| 日韩精品有码人妻一区| 建设人人有责人人尽责人人享有的 | 高清av免费在线| 99久国产av精品| 身体一侧抽搐| 国精品久久久久久国模美| 乱码一卡2卡4卡精品| 日产精品乱码卡一卡2卡三| 久久午夜福利片| 在线播放无遮挡| 亚洲自拍偷在线| 毛片女人毛片| 亚洲色图av天堂| av一本久久久久| 精品人妻一区二区三区麻豆| 看非洲黑人一级黄片| 亚洲va在线va天堂va国产| 中国美白少妇内射xxxbb| 亚洲国产av新网站| 国产精品蜜桃在线观看| 亚洲激情五月婷婷啪啪| 美女cb高潮喷水在线观看| 欧美人与善性xxx| 国产一区亚洲一区在线观看| 99热这里只有精品一区| 国产精品福利在线免费观看| 亚洲成人久久爱视频| 欧美最新免费一区二区三区| 两个人视频免费观看高清| 亚洲在线自拍视频| 99热网站在线观看| 欧美 日韩 精品 国产| 国产精品综合久久久久久久免费| 日本一二三区视频观看| av福利片在线观看| 丝袜美腿在线中文| 一个人看视频在线观看www免费| 中文精品一卡2卡3卡4更新| 亚洲精品国产av蜜桃| 男人舔奶头视频| 午夜免费激情av| 国产精品99久久久久久久久| 国产亚洲最大av| 中文在线观看免费www的网站| 中文欧美无线码| 日本欧美国产在线视频| 99re6热这里在线精品视频| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人综合色| 亚洲图色成人| 国产男女超爽视频在线观看| 国产精品人妻久久久影院| 久久久久性生活片| 国产精品一区二区在线观看99 | 亚洲精品第二区| 免费看不卡的av| 亚洲欧洲国产日韩| 精品欧美国产一区二区三| 丝瓜视频免费看黄片| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久国产电影| 女人久久www免费人成看片| 美女国产视频在线观看| 国产亚洲精品久久久com| av专区在线播放| 国产精品国产三级专区第一集| 一级二级三级毛片免费看| 99热这里只有精品一区| 亚洲电影在线观看av| 91久久精品国产一区二区三区| videos熟女内射| 哪个播放器可以免费观看大片| 国产麻豆成人av免费视频| 日本免费在线观看一区| 一区二区三区乱码不卡18| 伊人久久精品亚洲午夜| 99九九线精品视频在线观看视频| 人人妻人人看人人澡| 亚洲国产欧美在线一区| 男女那种视频在线观看| 国产精品久久久久久精品电影| 久热久热在线精品观看| 男女边摸边吃奶| 99久久精品国产国产毛片| 国产黄片美女视频| 天天躁日日操中文字幕| 女人久久www免费人成看片| 欧美一区二区亚洲| 久久久久免费精品人妻一区二区| 激情五月婷婷亚洲| 国产欧美日韩精品一区二区| 亚洲av免费在线观看| 99久久人妻综合| 亚洲熟女精品中文字幕| 免费黄色在线免费观看| 午夜日本视频在线| 非洲黑人性xxxx精品又粗又长| 欧美日韩一区二区视频在线观看视频在线 | 色哟哟·www| 中文字幕人妻熟人妻熟丝袜美| 少妇丰满av| 国产69精品久久久久777片| 纵有疾风起免费观看全集完整版 | 精品酒店卫生间| 久久综合国产亚洲精品| 国产午夜精品论理片| 91久久精品国产一区二区三区| 国产一区有黄有色的免费视频 | 久久久久久久大尺度免费视频| 亚洲精品日韩在线中文字幕| 久久精品夜色国产| 夫妻性生交免费视频一级片| 国产成人福利小说| 男人狂女人下面高潮的视频| 国产av码专区亚洲av| 国产欧美另类精品又又久久亚洲欧美| 久99久视频精品免费| 免费看不卡的av| 久久精品夜夜夜夜夜久久蜜豆| 久久久色成人| 国产伦一二天堂av在线观看| 国产成人91sexporn| 日韩 亚洲 欧美在线| 亚洲av二区三区四区| 色哟哟·www| 嘟嘟电影网在线观看| 亚洲电影在线观看av| 国产一区二区亚洲精品在线观看| 男人狂女人下面高潮的视频| 寂寞人妻少妇视频99o| 国产黄色小视频在线观看| 观看免费一级毛片| av国产免费在线观看| 麻豆av噜噜一区二区三区| 亚洲av国产av综合av卡| 久久精品夜色国产| 久久99精品国语久久久| 超碰97精品在线观看| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品电影小说 | av黄色大香蕉| 国产精品一及| 天堂网av新在线| 国产 亚洲一区二区三区 | 久久久久久久大尺度免费视频| 91aial.com中文字幕在线观看| 久久99热6这里只有精品| 国产精品国产三级专区第一集| 99热6这里只有精品| 亚洲激情五月婷婷啪啪| 国产视频内射| 深夜a级毛片| 一级av片app| 97人妻精品一区二区三区麻豆| 免费看日本二区| 国产午夜精品久久久久久一区二区三区| 亚洲欧美一区二区三区国产| 汤姆久久久久久久影院中文字幕 | 欧美三级亚洲精品| 老司机影院成人| 国产成人精品久久久久久| 99久国产av精品国产电影| 永久网站在线| 成人性生交大片免费视频hd| 欧美精品一区二区大全| 国产麻豆成人av免费视频| 91午夜精品亚洲一区二区三区| av女优亚洲男人天堂| 边亲边吃奶的免费视频| 最近2019中文字幕mv第一页| 免费看a级黄色片| 韩国高清视频一区二区三区| 国产真实伦视频高清在线观看| 国产一级毛片在线| av在线老鸭窝| 日本猛色少妇xxxxx猛交久久| 久久精品熟女亚洲av麻豆精品 | 老女人水多毛片| 日韩大片免费观看网站| 日韩视频在线欧美| 男女国产视频网站| 国产伦在线观看视频一区| 国产黄色小视频在线观看| 久久鲁丝午夜福利片| 少妇猛男粗大的猛烈进出视频 | av免费在线看不卡| 欧美97在线视频| 色哟哟·www| 午夜免费男女啪啪视频观看| 青青草视频在线视频观看| 搞女人的毛片| 大片免费播放器 马上看| av福利片在线观看| 男人和女人高潮做爰伦理| 91久久精品电影网| 午夜激情福利司机影院| 精品一区二区三区人妻视频| 久久精品夜色国产| 97人妻精品一区二区三区麻豆| 亚洲av电影不卡..在线观看| 亚洲国产精品专区欧美| 青春草视频在线免费观看| 九色成人免费人妻av| 中文字幕av在线有码专区| 亚洲av电影在线观看一区二区三区 | 国产成人精品福利久久| 亚洲精品影视一区二区三区av| 成人亚洲欧美一区二区av| 日本一二三区视频观看| 中文字幕av成人在线电影| 国产精品一二三区在线看| 亚洲成人中文字幕在线播放| 丝瓜视频免费看黄片| 我的女老师完整版在线观看| 成人欧美大片| 综合色丁香网| 欧美最新免费一区二区三区| 亚洲精品日本国产第一区| 国产永久视频网站| 成人二区视频| 久久99热这里只有精品18| 国产一区有黄有色的免费视频 | 男女那种视频在线观看| 久久久久久久午夜电影| 不卡视频在线观看欧美| av国产久精品久网站免费入址| 免费观看在线日韩| 三级毛片av免费| 国产真实伦视频高清在线观看| 欧美极品一区二区三区四区| 99热网站在线观看| 国产激情偷乱视频一区二区| 中国国产av一级| 免费大片黄手机在线观看| 欧美成人一区二区免费高清观看| 国产免费一级a男人的天堂| 午夜激情欧美在线| 亚洲熟女精品中文字幕| 午夜久久久久精精品| 中文精品一卡2卡3卡4更新| 免费黄频网站在线观看国产| 男女国产视频网站| 黄色一级大片看看| 一区二区三区免费毛片| 一区二区三区高清视频在线| 免费看av在线观看网站| 精品久久久久久电影网| 国产欧美日韩精品一区二区| 搡老妇女老女人老熟妇| 熟女电影av网| 午夜激情福利司机影院| 又大又黄又爽视频免费| 成人美女网站在线观看视频| 国产精品爽爽va在线观看网站| 国产一区二区三区综合在线观看 | 欧美日韩视频高清一区二区三区二| 欧美人与善性xxx| 天美传媒精品一区二区| 日韩在线高清观看一区二区三区| 91aial.com中文字幕在线观看| 噜噜噜噜噜久久久久久91| 青春草亚洲视频在线观看| 免费av观看视频| 日本免费a在线| 麻豆av噜噜一区二区三区| 黄片无遮挡物在线观看| 国产黄色视频一区二区在线观看| 九九在线视频观看精品| 精品久久久精品久久久| 成人亚洲精品一区在线观看 | 欧美日韩国产mv在线观看视频 | 男人爽女人下面视频在线观看| 欧美最新免费一区二区三区| 偷拍熟女少妇极品色| 免费看不卡的av| 亚洲国产欧美人成| 成年女人在线观看亚洲视频 | 观看美女的网站| 欧美日本视频| 成人漫画全彩无遮挡| 亚洲精华国产精华液的使用体验| 久久久久久久午夜电影| 久久这里有精品视频免费| 久久久国产一区二区| 国产探花在线观看一区二区| xxx大片免费视频| 欧美一级a爱片免费观看看| 在线免费观看的www视频| 观看免费一级毛片| 免费电影在线观看免费观看| 老女人水多毛片| 日韩三级伦理在线观看| 精品久久久噜噜| 午夜激情久久久久久久| 成年女人在线观看亚洲视频 | 欧美 日韩 精品 国产| 免费不卡的大黄色大毛片视频在线观看 | 九九久久精品国产亚洲av麻豆| 日韩电影二区| 69av精品久久久久久| 两个人的视频大全免费| 18禁动态无遮挡网站| 777米奇影视久久| 内射极品少妇av片p| 午夜福利视频1000在线观看| 中文欧美无线码| 老女人水多毛片| 一级二级三级毛片免费看| 欧美区成人在线视频| 少妇熟女欧美另类| 久久久久久久久大av| 免费av观看视频| 成人无遮挡网站| 汤姆久久久久久久影院中文字幕 | 亚洲成人中文字幕在线播放| 欧美一级a爱片免费观看看| 一个人免费在线观看电影| 天堂中文最新版在线下载 | 丝袜喷水一区| 欧美日韩视频高清一区二区三区二| 九九在线视频观看精品| 一级黄片播放器| 国产精品久久久久久精品电影| 欧美高清成人免费视频www| 国模一区二区三区四区视频| 国产亚洲5aaaaa淫片| 老师上课跳d突然被开到最大视频| 亚洲最大成人av| 国产高清不卡午夜福利| 人妻系列 视频| 最近最新中文字幕免费大全7| 亚洲欧美成人精品一区二区| 精品久久久精品久久久| 亚洲自拍偷在线| 免费少妇av软件| 日日干狠狠操夜夜爽| 纵有疾风起免费观看全集完整版 | 黄片无遮挡物在线观看| 一级爰片在线观看| 啦啦啦中文免费视频观看日本| 永久免费av网站大全| 国产91av在线免费观看| 有码 亚洲区| 亚洲成色77777| 午夜激情福利司机影院| 国产老妇伦熟女老妇高清| 哪个播放器可以免费观看大片| 大又大粗又爽又黄少妇毛片口| 日本av手机在线免费观看| 国产免费一级a男人的天堂| 亚洲av电影不卡..在线观看| 国产精品日韩av在线免费观看| 夫妻性生交免费视频一级片| 国产亚洲一区二区精品| 97超视频在线观看视频| 少妇熟女aⅴ在线视频| 国产精品一区www在线观看| 在线观看一区二区三区| 看黄色毛片网站| 一区二区三区乱码不卡18| 亚洲成人精品中文字幕电影| 中文字幕久久专区| 六月丁香七月| 久久99蜜桃精品久久| 夜夜爽夜夜爽视频| 视频中文字幕在线观看| 日韩欧美 国产精品| 亚洲图色成人| 免费大片18禁| 麻豆久久精品国产亚洲av| 狠狠精品人妻久久久久久综合| 精品一区在线观看国产| av.在线天堂| 久久久久久久大尺度免费视频| 97在线视频观看| 精品不卡国产一区二区三区| 婷婷色av中文字幕| 少妇的逼好多水| 免费av不卡在线播放| 国产69精品久久久久777片| 天堂√8在线中文| 欧美最新免费一区二区三区| 成人鲁丝片一二三区免费| 亚洲内射少妇av| av福利片在线观看| 成人二区视频| 久久久久久久午夜电影| 夜夜看夜夜爽夜夜摸| 午夜福利成人在线免费观看| 日韩强制内射视频| 日本-黄色视频高清免费观看| 久久久久久久国产电影| 青春草亚洲视频在线观看| 人妻夜夜爽99麻豆av| 直男gayav资源| 超碰av人人做人人爽久久| 国产爱豆传媒在线观看| 尤物成人国产欧美一区二区三区| 日本av手机在线免费观看| 日韩av不卡免费在线播放| 又黄又爽又刺激的免费视频.| 日韩av在线大香蕉| 2021天堂中文幕一二区在线观| 国产淫语在线视频| 一区二区三区乱码不卡18| 看非洲黑人一级黄片| 中文资源天堂在线|