• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Au nanoparticles loaded on hollow BiOCl microstructures boosting CO2 photoreduction

    2022-09-15 03:11:20SiwenGongFeiRoWeiinZhngQeerUlHssnZhoqingLiuJinzhiGoJingoLuMirosHojmerievGngqingZhu
    Chinese Chemical Letters 2022年9期

    Siwen Gong, Fei Ro, Weiin Zhng, Qeer-Ul Hssn, Zhoqing Liu, Jinzhi Go,Jingo Lu, Miros Hojmeriev, Gngqing Zhu,?

    a School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China

    b School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China

    c School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China

    d Institute of Chemistry, Technical University of Berlin, Berlin 10623, Germany

    ABSTRACT The BiOCl (BOC) synthesized by the water bath heating method was treated with sodium borohydride(NaBH4) to introduce oxygen vacancies (OVs).At the same time, Au nanoparticles were loaded to prepare a series of Au/BiOCl samples with different ratios.OVs and Au nanoparticles can promote the light absorption of host photocatalyst in the visible region.The calculated work function of BiOCl and Au can verify the existence of Ohmic contact between the interface of them, which is conducive to the separation of charge carriers.Through a series of photoelectric tests, it was verified experimentally that the separation of charge carriers is indeed enhanced.The high-energy hot electrons produced by Au under the surface plasmon resonance (SPR) effect can increase the counts of electrons to participate in the CO2 reduction reaction.Especially for 1.0%-Au/BOC, the yields of CO can reach 43.16 μmol g?1 h?1, which is 6.6 times more than that of BOC.Therefore, loading precious metal on semiconductors is an effective strategy to promote the photocatalytic performance of CO2 reduction reactions.

    Keywords:BiOCl Au nanoparticles Oxygen vacancy Ohmic contact CO2 photoreduction

    Photocatalytic reduction of CO2needs a very negative reduction potential, which requires the photocatalyst to have a relatively negative conduction band (CB) position.Generally, semiconductor photocatalysts that meet this condition have a wide band gap, which is not conducive to the absorption of visible light [1,2].Introducing defects and loading precious metals can be used as two important methods to solve this problem [3–8].Due to its unique electronic structure, oxygen vacancies (OVs) will change the light absorption capacity and photogenerated carrier mobility of the semiconductor photocatalyst, thereby enhancing its performance [9].The local electrons near the OVs can induce shallow donor levels below CB[10,11].The donor levels caused by the suitable content of OVs can further hybridize with the CB, thereby changing the Fermi level of the semiconductor and the forbidden band width [12].Meanwhile,this energy level also promotes the separation of charge carriers[13].

    The surface plasmon resonance (SPR) effect makes noble metal nanoparticles capture partial visible light, and then produce highenergy hot electrons [14–17].In this way, semiconductor loaded with noble metals can use these high-energy hot electrons to drive chemical reactions on their surfaces.Meanwhile, the metalsemiconductor heterojunction that forms Ohmic contacts facilitates the separation of charge carriers and promotes the progress of photocatalytic reactions [18,19].Thus, it is very critical to select the appropriate semiconductor and precious metal for constructing nanocomposites.BiOCl (BOC) is a wide-gap photocatalytic material.The CB position of BOC is relatively negative, generally between ?0.9 V ~?1.1 V (vs.SHE), which matches with the potential of reducing CO2to CO (?0.51 Vvs.SHE) and CH4(?0.24 Vvs.SHE) [20].BOC has a valence band (VB) position of 1.7 V ~1.8 V(vs.SHE), which has sufficient oxidation capacity to decompose water (0.82 Vvs.SHE), providing protons for CO2reduction [21].Therefore, BOC can meet the potential requirements of CO2reduction.Loading metal nanoparticles with a suitable Fermi level can be selected to form a heterojunction in Ohmic contact with BOC,thereby improving the light absorption ability and the separation ability of photogenerated charge carriers.

    Fig.1.The TEM images (a, b), HAADF-STEM images (c-e) and EDX mappings of 1.0%-Au/BOC (f, g).

    In this work, the presence of OVs and Au nanoparticles in BOC (OVs-Au/BOC) not only significantly enhances the visible light absorption capacity of the composite sample, but also significantly improves the separation ability of photo-generated carriers, thereby greatly boosting the catalytic activity of the photocatalyst.Through the combination of experiments and DFT calculations, the improvement mechanism of photocatalytic activity and the reaction process of photocatalytic reduction of CO2are explored (Supplementary Notes 1–4 in Supporting information).

    The synthesis process of BOC is described in Supplementary Note 5 (Supporting information).Furthermore, dissolve 0.2 g BOC in 30 mL deionized water, and then add the corresponding chloroauric acid solution and stirred for 1 h (Au:Bi molar ratios of 0.5%, 1.0%, 1.5%, 2.0%, 2.5%).Weigh an appropriate amount of NaBH4(the molar concentration is 5 times than the Au concentration in the corresponding mixed solution), dissolve it in 30 mL of deionized water, and quickly pour it into the stirred mixed solution.The precipitate was washed several times with deionized water and alcohol, and collected after drying for 6 h at 60 °C.According to the different proportions of Au loading, the photocatalyst is recorded as BOC, 0.5%-Au/BOC, 1.0%-Au/BOC, 1.5%-Au/BOC,2.0%-Au/BOC, 2.5%-Au/BOC.

    As shown in Fig.S1a (Supporting information), the X-ray diffraction (XRD) pattern is exactly the same as that of the tetragonal BiOCl (PDF #85–0861).However, the diffraction peaks of Au are not observed after because of the low loading counts and unique dispersion [19].As shown in Fig.S1b (Supporting information),FTIR further confirms the phase structure of as-prepared samples.In BOC and Au/BOC samples, the peak at 527 cm?1is attributed to the Bi-O stretching mode [19], and the peaks at 1293, 1423, and 1663 cm?1are attributed to the N?H ?O group, pyrrole and free C=O stretch mode [22].There is no obvious change in the position of the signal indicates that further characterization methods are needed to observe the loaded Au species.

    The TEM image of 1.0%-Au/BOC is shown in Fig.1a, which maintains the flower-shaped appearance of hollow structure of BOC stacked of nanosheets, where some nanoparticles with a diameter of 5–6 nm are distributed on the surface (Fig.1b).In the HAADF-STEM images (Figs.1c and d), two clear lattice plane spacings of 0.275 nm and 0.738 nm are shown, corresponding to the(110) and (001) of BiOCl, respectively.Fig.1e shows a set of clear lattice plane spacing 0.235 nm, corresponding to the (111) lattice plane of Au0.Energy dispersive X-ray spectroscopy (EDS) further shows the distribution of elements.From Figs.1f and g, it can be seen that the Bi, O, and Cl elements are uniformly distributed on the nanosheets, while the Au elements are mostly concentrated to form the nanoparticles.It proved that Au0was successfully loaded onto BiOCl nanosheets.

    Fig.2.The high-resolution XPS spectra of Au 4f (a), O 1s (b) and EPR spectra (c)of BOC and 1.0%-Au/BOC samples, UV–vis diffuse absorbance spectra of all prepared samples (d).

    The element composition and chemical state of the sample were further analyzed by X-ray photoelectron spectroscopy (XPS).The survey spectra and high-resolution spectra of Bi 4f and Cl 2p of BOC and 1.0%-Au/BOC samples are shown in Fig.S2 (Supporting information).In the HR-XPS of Au 4f, the peaks at 83.2 eV and 86.8 eV can be attributed to Au0[23], indicating that Au exists in the composite sample in the form of metal, and there is no Au element in the pure BOC sample (Fig.2a).In Fig.2b, three peaks at 529.4, 531.4 and 532.9 eV are ascribed to lattice oxygen,surface adsorbed oxygen, and surface adsorbed oxygen in water molecules [24].The O at 530.5 eV is OV.It can be seen that the peak area of OVs in the metal-loaded BOC has increased, which demonstrates that the amount of OVs has been increased.In order to directly prove the existence and variation of OVs in as-prepared samples, the electron paramagnetic resonance (EPR) spectroscopy of the sample was tested, as shown in Fig.2c.BOC and 1.0%-Au/BOC both show resonance signals atg=2.003 [25], while the signal of BOC is relatively weak.It indicates that OVs have existed in BOC.After chemical reduction, more OVs are generated, so the peak intensity in 1.0%-Au/BOC gets higher, which is consistent with the conclusion in XPS.

    Fig.2d records the UV–vis absorption spectra of BOC and Au/BOC, reflecting the light absorption properties of the photocatalysts.The location of the absorption band edge of BOC is about 367 nm, which shows that BOC has strong absorption for ultraviolet light and has a weak response to visible light.This weak visible light response can be attributed to the existence of the OVs in BOC.As the loading of Au nanoparticles increases, the absorption of the photocatalyst in the visible light region becomes more robust.In addition, an absorption peak that appears near 531 nm can be attributed to the SPR effect of Au nanoparticles [26].From the absorption edge of as-prepared samples, it can be observed that the edge gradually redshifts toward the visible region with the increase of the Au loading, owing to the increasing content of OVs.OVs are mainly reflected in two aspects to promote the activity of semiconductor photocatalysts.Firstly, the localized electrons on OVs energy level can be excited to the CB under visible light [2].Secondly, the intermediate energy levels of these defect states may also accept electrons in the valence band (VB) transition under the excitation of visible light, and indirectly transfer photoelectrons to CB, which not only broadens the visible light response range, but also inhibits the recombination of e?-h+pairs [27].According to the DFT calculation of the density of states (DOS), the conclusion can be drawn that the shallow energy levels come into being by O 2p orbit in OVs-BOC (Fig.S3 in Supporting information), which is overlapped with the bottom of the CB to narrow the band gap,thereby enhancing light absorption.

    Fig.3.Generation rate of CO and CH4 under simulated sunlight (a), under visible light (b), cyclic experiment over 1.0%-Au/BOC (c), mass spectra of 13CH4 (m/z 17)and 13CO (m/z 29) generated over 1.0%-Au/BOC (d).

    The photocatalytic performance of the as-prepared samples is evaluated by the CO2photoreduction test.As shown in Fig.3a, after 1 h of simulated sunlight exposure, the formation rate of CO and CH4over BOC are 6.57 μmol/g and 3.03 μmol/g, respectively.The loading of Au0in BOC and the introduction of OVs remarkably boosted the photoreduction activity of CO2(Table S1 in Supporting information).Especially for 1.0%-Au/BOC, the yields of CO and CH4can reach up to 43.16 μmol g?1h?1and 5.98 μmol g?1h?1, respectively.The rate of CO generation is 6.6 times higher than that of pristine BOC.Furthermore, the activity of 1.0%-Au/BOC is still very good compared with other photocatalysts (Table S2 in Supporting information).However, with the continuous increase of the loading, the photocatalytic activity decreased, which is due to the size augment of Au0nanoparticles.The changes in the specific surface area (SBET) and pore size distribution of the pure BOC sample and composite material can be observed through the nitrogen(N2) adsorption-desorption curves (Fig.S4 in Supporting information), which is an essential factor affecting the photocatalytic activity.With reference to the IUPAC classification, the isotherm of the sample shows a typical IV-type isotherm and H3 hysteresis, indicating that the synthesized material has a mesoporous structure.After loading Au0, the increasedSBETof the sample is beneficial to the photocatalytic performance.But as the loading ratios increase,theSBETof the sample gradually decreases, which decreases the surface reaction and adsorption sites for the target gas.The size augment of Au0nanoparticles will cause the photogenerated electrons to recombine before reaching the surface of the Au0to react with CO2, thereby reducing the reaction activity [20].Therefore, it is extremely important to adjust the loading amount so that the Au0nanoparticles maintain the appropriate amount and size to promote the CO2photoreduction performance.

    Fig.4.The in situ FTIR spectra of 1.0%-Au/BOC during the CO2 reduction process(a) in dark and (b) with illumination under simulated light, schematic diagram of energy band change of 1.0%-Au/BOC before (c) and after (d) contact (Φ is the work function, E0 is the vacuum level, Ef1 and Ef2 are the Fermi levels of OVs-BOC and Au0, respectively, and Ef is the Fermi level of 1.0%-Au/BOC).

    In order to verify that the promotion of the photocatalytic activity is due to the SPR effect of Au0, the performance test under visible light irradiation was carried out.It can be observed that the photocatalytic performance trends of all samples are consistent with the results under simulated sunlight (Fig.3b).After loading Au0nanoparticles, 1.0%-Au/BOC has the most significant increase.It can reach CO: 13.02 μmol g?1h?1, CH4: 1.90 μmol g?1h?1, respectively, which is 8 times and 5 times than BOC.It can be proved that the loading of Au0nanoparticles enhances the effective absorption of visible light.Detailed performance data is shown in the supporting documents (Table S3 in Supporting information).In addition,a cyclic measurement was performed to manifest the stability of 1.0%-Au/BOC.Even after five photocatalytic reactions, 1.0%-Au/BOC still maintains high reactivity (Fig.3c).By comparing the XRD before and after the reaction (Fig.S5a in Supporting information), it can be seen that the phase structure of the catalyst was not destroyed even after several photocatalytic reduction experiments of CO2, which indicates that 1.0%-Au/BOC possesses high stability.

    To explore the source of carbon in the product, a sequence of experiments have been done to prove that under the effect of the photocatalyst, CO2is reduced to other carbon-containing substances (Fig.S5b in Supporting information).In order to more intuitively verify the source of carbon in the product, the isotope labeling method (13CO2) was used in the experiment.From Fig.3d,the peaks of 1.0%-Au/BOC atm/z17 andm/z29 can be ascribed to13CH4and13CO, respectively, which proves the carbon in CH4and CO comes from the13CO2.

    To explore the specific process of CO2reduction and the intermediate products,in-situFT-IR tests were carried out in the presence or absence of light irradiation condition.As exhibited in Fig.4a, the adsorption/desorption equilibrium is reached in the dark environment.The peaks at 1650 cm?1correspond to H2O, and the peaks at 1280 and 1369 cm?1attributed to bicarbonate (HCO3–),the peaks at 1314, 1426, 1463, and 1616 cm?1ascribed to carbonate (CO32–), which are all caused by the initial reactive adsorption of CO2[28–30].The peaks at 1515 and 1771 cm?1correspond to formate (HCOO–), and the peaks at 1695 and 1740 cm?1correspond to CO2–and CO, respectively [12,19].These are important intermediate products in the reduction of CO2.After turning on the light, as shown in Fig.4b, it can be observed that the shape of thein-situinfrared peak has no obvious change, but the intensity is significantly increased, especially for CO and HCOO–.The increase of these two important intermediate products represents the rapid progress of the reaction.The specific reaction process is listed in Supplementary Note 6 (Supporting information).

    After loading Au nanoparticles, the performance of the photocatalyst has been greatly improved.The adsorption of CO2over the surface of photocatalysts has an important influence on CO2photoreduction.The CO2adsorption curve has been shown in Fig.S6 (Supporting information).It can be found that there is no significant difference between the two samples, which indicates that in this experiment, the CO2physical adsorption ability is not the main factor impacting the photocatalytic performance.The enhancement of photocatalytic performance is governed by other factors.

    Promoting the effective separation of photogenerated carriers is an important aspect to boost the activity of photocatalysts.Fig.S7 (Supporting information) shows the surface photovoltage spectra (SPV), the photocurrent response, the impedance spectroscopy(EIS) and the fluorescence spectra, which suggests that the Au0component can improve the separation ability and suppress the recombination of photogenerated carriers so that the activity of the photocatalyst has been improved.

    The fundamental reason why the separation ability of photogenerated carriers has been improved will be further explored through DFT calculation.The heterojunction composed by metal nanoparticles and semiconductor is favorable for charge carrier transfer.As shown in Fig.S8 (Supporting information), the work function of OVs-BOC (110) (5.19 eV) is higher than the work function of Au0(111) (3.32 eV), so an Ohmic contact can be formed in the interface between them [15].The band structure of Au0and OVs-BOC before contact is exhibited in Fig.4c.After contact (Fig.4d), the electrons of Au0flow to OVs-BOC to achieve a thermodynamic balance, thereby bending the energy band of OVs-BOC to form an Ohmic contact.When 1.0%-Au/BOC was excited by light with suitable energy, photogenerated electrons jumped from VB in OVs-BOC to CB.In addition, the photogenerated electrons move to Au0under the effect of the built-in electric field, which improves the separation ability of photogenerated electron-hole pairs.

    In summary, the semiconductor is mainly excited by ultraviolet light to produce e?/h+pairs in the BOC without modification;when OVs are present, OVs can form shallow energy levels near the CB, which can not only hybridize with the bottom of the CB to narrow the band gap, and can also be used as a step for photogenerated electrons.The electrons generated by light excitation can first jump to the OVs energy level and then jump to the CB.This process will absorb visible light, thereby enhancing the light absorption.After loading Au0, the electrons on the CB will move to Au nanoparticles to participate in the reaction, enhancing the separation ability of e?/h+pairs.In addition, Au nanoparticles will absorb visible light and produce the SPR effect and generate hot electrons.The hot electrons with higher energy will cross the contact barrier between the semiconductor and the metal and move to the CB of the semiconductor to participate in the reaction, so that the number of available electrons participating in the reaction will increase, which in turn accelerate the reaction rate.Our work provides a new perspective for the use of defects and metal loading to solve the problem of low efficiency of photoreduction of CO2.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.51772183, 52072230), and the Yulin Science and Technology Project (No.CXY-2020–040).The authors also thank Professor Jiangbo Lu, Dr.Wang Li, Dr.Hongmei Jing and Dr.Lujun Zhu for the help in using ac-TEM (the Electron Microscopy Platform of School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.039.

    亚洲精品一区av在线观看| 久久久国产欧美日韩av| 国产男靠女视频免费网站| xxx96com| 亚洲人成伊人成综合网2020| 这个男人来自地球电影免费观看| 淫秽高清视频在线观看| 成人特级黄色片久久久久久久| 90打野战视频偷拍视频| av欧美777| 国产爱豆传媒在线观看 | 男人的好看免费观看在线视频 | 琪琪午夜伦伦电影理论片6080| 免费av毛片视频| ponron亚洲| 黄网站色视频无遮挡免费观看| 欧美乱码精品一区二区三区| 色综合欧美亚洲国产小说| 夜夜夜夜夜久久久久| 免费在线观看成人毛片| а√天堂www在线а√下载| 在线天堂中文资源库| 久久精品夜夜夜夜夜久久蜜豆 | 精品久久久久久成人av| 久久这里只有精品19| 久久精品91无色码中文字幕| 波多野结衣高清作品| 欧美+亚洲+日韩+国产| 一卡2卡三卡四卡精品乱码亚洲| 亚洲中文av在线| 国产精品综合久久久久久久免费| 欧美成人午夜精品| 激情在线观看视频在线高清| 日韩大尺度精品在线看网址| 精品午夜福利视频在线观看一区| 午夜福利视频1000在线观看| 国产高清有码在线观看视频 | 日本一本二区三区精品| 桃色一区二区三区在线观看| 无人区码免费观看不卡| 狠狠狠狠99中文字幕| 亚洲精品粉嫩美女一区| 黄色女人牲交| 美女免费视频网站| 美女大奶头视频| 999精品在线视频| 亚洲电影在线观看av| 黑人巨大精品欧美一区二区mp4| 伦理电影免费视频| 两人在一起打扑克的视频| 午夜激情福利司机影院| 精品免费久久久久久久清纯| 欧美性猛交╳xxx乱大交人| 久久久精品欧美日韩精品| 日本精品一区二区三区蜜桃| 免费电影在线观看免费观看| 午夜免费观看网址| 国产一区在线观看成人免费| 韩国精品一区二区三区| 激情在线观看视频在线高清| 热re99久久国产66热| 人妻丰满熟妇av一区二区三区| 久久久久国产一级毛片高清牌| 午夜福利在线观看吧| 精品国产美女av久久久久小说| 亚洲国产欧美日韩在线播放| 欧美大码av| 99riav亚洲国产免费| 免费在线观看完整版高清| 欧美黑人巨大hd| 国产精品九九99| 欧美黄色片欧美黄色片| 国产成年人精品一区二区| 色综合亚洲欧美另类图片| 2021天堂中文幕一二区在线观 | 国产不卡一卡二| 亚洲av成人不卡在线观看播放网| 国产精品一区二区精品视频观看| 麻豆一二三区av精品| 欧美精品啪啪一区二区三区| 欧美日韩福利视频一区二区| 大香蕉久久成人网| 中文字幕人妻熟女乱码| 真人一进一出gif抽搐免费| 黄片大片在线免费观看| 国产精品一区二区三区四区久久 | or卡值多少钱| 亚洲精品国产精品久久久不卡| 欧美激情 高清一区二区三区| 欧美黄色片欧美黄色片| 成人国产一区最新在线观看| 少妇粗大呻吟视频| 亚洲一区二区三区色噜噜| 变态另类成人亚洲欧美熟女| 亚洲av成人一区二区三| 亚洲专区字幕在线| 看片在线看免费视频| 欧美中文日本在线观看视频| 日韩一卡2卡3卡4卡2021年| 一本一本综合久久| 欧美激情高清一区二区三区| 精品乱码久久久久久99久播| 久久久久久九九精品二区国产 | 十分钟在线观看高清视频www| av超薄肉色丝袜交足视频| 午夜免费观看网址| 久久欧美精品欧美久久欧美| 少妇粗大呻吟视频| 国产一区二区三区视频了| 欧美三级亚洲精品| 99国产精品一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲av电影不卡..在线观看| 国产av又大| 欧美黑人巨大hd| 宅男免费午夜| 日本免费一区二区三区高清不卡| 美女国产高潮福利片在线看| 亚洲av成人一区二区三| 国产精品乱码一区二三区的特点| 麻豆成人av在线观看| 亚洲三区欧美一区| 成人av一区二区三区在线看| 国产精品综合久久久久久久免费| 好男人电影高清在线观看| 国产高清视频在线播放一区| 亚洲专区国产一区二区| 国产精品免费视频内射| 男人舔女人的私密视频| 老司机深夜福利视频在线观看| 久久久久久久久免费视频了| 国产av又大| 精品熟女少妇八av免费久了| 在线观看免费午夜福利视频| 国产极品粉嫩免费观看在线| 亚洲成人久久爱视频| 久久久久久亚洲精品国产蜜桃av| 国产成人欧美在线观看| 成年女人毛片免费观看观看9| 成人国语在线视频| 久久久久国产一级毛片高清牌| 婷婷丁香在线五月| 91麻豆av在线| 91麻豆av在线| 国产亚洲欧美精品永久| 一卡2卡三卡四卡精品乱码亚洲| 欧美国产日韩亚洲一区| 亚洲天堂国产精品一区在线| 制服人妻中文乱码| 亚洲欧美日韩高清在线视频| 中文字幕高清在线视频| 欧美日本视频| 欧美不卡视频在线免费观看 | 啦啦啦观看免费观看视频高清| 免费一级毛片在线播放高清视频| 看片在线看免费视频| 精品国产国语对白av| 久久久久免费精品人妻一区二区 | 日韩欧美 国产精品| 久久欧美精品欧美久久欧美| av中文乱码字幕在线| 久久人人精品亚洲av| 欧美在线黄色| 长腿黑丝高跟| 成人亚洲精品一区在线观看| 免费观看人在逋| 国产精品久久久久久人妻精品电影| a级毛片在线看网站| 99久久国产精品久久久| 亚洲精品国产一区二区精华液| 中文字幕av电影在线播放| 日本熟妇午夜| 麻豆久久精品国产亚洲av| 男女午夜视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 狠狠狠狠99中文字幕| 亚洲精华国产精华精| 国产日本99.免费观看| 人妻久久中文字幕网| 99国产精品99久久久久| 在线观看免费视频日本深夜| 白带黄色成豆腐渣| 好男人电影高清在线观看| 国产一卡二卡三卡精品| 琪琪午夜伦伦电影理论片6080| 啪啪无遮挡十八禁网站| 在线观看日韩欧美| 欧美一级毛片孕妇| 久久伊人香网站| 国产激情欧美一区二区| 免费在线观看视频国产中文字幕亚洲| 婷婷精品国产亚洲av| 动漫黄色视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 黄片小视频在线播放| 午夜福利免费观看在线| 欧美成人性av电影在线观看| 黄片大片在线免费观看| 成人国语在线视频| 成人18禁高潮啪啪吃奶动态图| 亚洲精品av麻豆狂野| 国产精品国产高清国产av| 国产成人欧美| 久久精品夜夜夜夜夜久久蜜豆 | 欧美最黄视频在线播放免费| 女人爽到高潮嗷嗷叫在线视频| 不卡av一区二区三区| 国产高清视频在线播放一区| 巨乳人妻的诱惑在线观看| 美女免费视频网站| 在线免费观看的www视频| 亚洲av日韩精品久久久久久密| 男女之事视频高清在线观看| 精品一区二区三区四区五区乱码| 熟女少妇亚洲综合色aaa.| 亚洲欧洲精品一区二区精品久久久| 黄色a级毛片大全视频| 欧美乱码精品一区二区三区| 久久香蕉精品热| 午夜福利高清视频| 久久亚洲精品不卡| 一级a爱片免费观看的视频| 国产爱豆传媒在线观看 | 91九色精品人成在线观看| 欧美乱码精品一区二区三区| 一区二区三区高清视频在线| 久久久国产欧美日韩av| 欧美激情极品国产一区二区三区| 国产亚洲精品久久久久5区| 人人妻人人澡人人看| 国产久久久一区二区三区| 中文字幕高清在线视频| 欧美亚洲日本最大视频资源| 国产蜜桃级精品一区二区三区| 嫩草影院精品99| 免费搜索国产男女视频| 麻豆国产av国片精品| 欧美黄色淫秽网站| 日本在线视频免费播放| 国产激情偷乱视频一区二区| 国产精品乱码一区二三区的特点| 国产精品亚洲一级av第二区| 国产精品综合久久久久久久免费| 搡老岳熟女国产| 国产成年人精品一区二区| 日韩视频一区二区在线观看| 欧美zozozo另类| 1024手机看黄色片| 亚洲免费av在线视频| 国产精品永久免费网站| 夜夜躁狠狠躁天天躁| 亚洲专区字幕在线| 久久香蕉精品热| 91成人精品电影| 亚洲男人天堂网一区| 免费观看人在逋| 给我免费播放毛片高清在线观看| 精品久久蜜臀av无| 亚洲午夜理论影院| 麻豆久久精品国产亚洲av| 亚洲精品久久成人aⅴ小说| or卡值多少钱| 18禁裸乳无遮挡免费网站照片 | 色尼玛亚洲综合影院| 色老头精品视频在线观看| 波多野结衣高清无吗| 免费av毛片视频| 精品国产乱码久久久久久男人| 成年人黄色毛片网站| 欧美成人一区二区免费高清观看 | 亚洲中文字幕一区二区三区有码在线看 | 99久久久亚洲精品蜜臀av| 成人三级黄色视频| 亚洲国产欧洲综合997久久, | 欧美绝顶高潮抽搐喷水| 欧美+亚洲+日韩+国产| 日韩欧美一区视频在线观看| 国产精品一区二区三区四区久久 | 色播亚洲综合网| 黄色片一级片一级黄色片| 日本三级黄在线观看| 亚洲成人免费电影在线观看| 俄罗斯特黄特色一大片| 国产精品二区激情视频| 黄频高清免费视频| 操出白浆在线播放| www.熟女人妻精品国产| 亚洲自偷自拍图片 自拍| 婷婷亚洲欧美| 午夜福利高清视频| 一a级毛片在线观看| 久久人妻福利社区极品人妻图片| av福利片在线| 最近最新中文字幕大全电影3 | 亚洲色图av天堂| 欧美日本亚洲视频在线播放| 久久香蕉国产精品| 两性夫妻黄色片| 久久热在线av| 亚洲国产高清在线一区二区三 | 日本免费a在线| 可以在线观看的亚洲视频| 欧美最黄视频在线播放免费| 国产精品综合久久久久久久免费| 国产精品九九99| 一区二区三区精品91| 欧洲精品卡2卡3卡4卡5卡区| 欧美 亚洲 国产 日韩一| 日韩精品青青久久久久久| 亚洲久久久国产精品| 精品国产乱码久久久久久男人| 午夜精品久久久久久毛片777| 亚洲天堂国产精品一区在线| 国产精品国产高清国产av| 91字幕亚洲| 美女高潮喷水抽搐中文字幕| 欧美成人性av电影在线观看| 国产成人欧美在线观看| 在线观看舔阴道视频| av中文乱码字幕在线| 露出奶头的视频| 亚洲一区高清亚洲精品| 亚洲国产精品合色在线| 两个人免费观看高清视频| 成人午夜高清在线视频 | 国产精品野战在线观看| 国产精品1区2区在线观看.| 亚洲美女黄片视频| 99国产综合亚洲精品| 午夜精品久久久久久毛片777| 九色国产91popny在线| 天天一区二区日本电影三级| 国产爱豆传媒在线观看 | 亚洲国产看品久久| 久久久久久大精品| 亚洲国产中文字幕在线视频| 亚洲av五月六月丁香网| 午夜福利一区二区在线看| 久久天躁狠狠躁夜夜2o2o| 国产av一区在线观看免费| 激情在线观看视频在线高清| 国产高清激情床上av| 色精品久久人妻99蜜桃| 午夜久久久在线观看| netflix在线观看网站| 此物有八面人人有两片| 国产三级黄色录像| 在线观看日韩欧美| 男男h啪啪无遮挡| 久久人人精品亚洲av| 免费观看人在逋| 亚洲一区高清亚洲精品| 精品卡一卡二卡四卡免费| 日本免费一区二区三区高清不卡| 亚洲成av片中文字幕在线观看| 桃红色精品国产亚洲av| 亚洲第一电影网av| 老熟妇乱子伦视频在线观看| 国产蜜桃级精品一区二区三区| 嫁个100分男人电影在线观看| 色尼玛亚洲综合影院| 欧美不卡视频在线免费观看 | 亚洲国产毛片av蜜桃av| 日韩av在线大香蕉| 日韩欧美在线二视频| 夜夜看夜夜爽夜夜摸| 女性生殖器流出的白浆| 99久久精品国产亚洲精品| 国产伦在线观看视频一区| 日本五十路高清| 91av网站免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品1区2区在线观看.| 草草在线视频免费看| 久久久久九九精品影院| 久久青草综合色| 村上凉子中文字幕在线| 搡老妇女老女人老熟妇| 国产精品一区二区免费欧美| 波多野结衣高清无吗| 亚洲精品久久国产高清桃花| 久久久久久久久中文| 日本五十路高清| 精品久久久久久久毛片微露脸| 三级毛片av免费| 国产激情欧美一区二区| 999精品在线视频| 国产午夜精品久久久久久| 在线观看日韩欧美| 午夜日韩欧美国产| 少妇被粗大的猛进出69影院| 18美女黄网站色大片免费观看| 成人精品一区二区免费| 国产欧美日韩一区二区三| 国产日本99.免费观看| 搞女人的毛片| 欧美av亚洲av综合av国产av| 免费看美女性在线毛片视频| av片东京热男人的天堂| 女人爽到高潮嗷嗷叫在线视频| 国产主播在线观看一区二区| 午夜精品在线福利| 欧美乱码精品一区二区三区| 午夜福利欧美成人| tocl精华| 亚洲最大成人中文| 一区二区日韩欧美中文字幕| 欧美日韩一级在线毛片| 一本综合久久免费| 男人舔女人的私密视频| 久久久精品欧美日韩精品| 亚洲国产精品久久男人天堂| 自线自在国产av| 两个人视频免费观看高清| 国产aⅴ精品一区二区三区波| 午夜视频精品福利| 亚洲狠狠婷婷综合久久图片| 桃色一区二区三区在线观看| 岛国在线观看网站| 久久99热这里只有精品18| 禁无遮挡网站| 国产激情偷乱视频一区二区| 亚洲美女黄片视频| 一级片免费观看大全| 观看免费一级毛片| 亚洲专区中文字幕在线| 日本免费a在线| 午夜成年电影在线免费观看| 国产一级毛片七仙女欲春2 | 精品国产乱码久久久久久男人| 亚洲欧洲精品一区二区精品久久久| 亚洲在线自拍视频| 欧美日本亚洲视频在线播放| 日韩高清综合在线| netflix在线观看网站| 日韩欧美一区二区三区在线观看| 久久久久国内视频| 欧美绝顶高潮抽搐喷水| 一二三四社区在线视频社区8| 久久这里只有精品19| 久久精品亚洲精品国产色婷小说| 久久精品国产亚洲av香蕉五月| 日本一区二区免费在线视频| av免费在线观看网站| 久久久精品欧美日韩精品| 久久久久精品国产欧美久久久| 久久久久亚洲av毛片大全| av视频在线观看入口| 丁香六月欧美| www日本黄色视频网| 91国产中文字幕| 少妇熟女aⅴ在线视频| 男女做爰动态图高潮gif福利片| 在线观看日韩欧美| 亚洲自偷自拍图片 自拍| 在线观看一区二区三区| 两性夫妻黄色片| 成人永久免费在线观看视频| 国产不卡一卡二| 给我免费播放毛片高清在线观看| 久久精品国产综合久久久| 亚洲av美国av| 欧美丝袜亚洲另类 | 欧美激情极品国产一区二区三区| 少妇的丰满在线观看| 一边摸一边做爽爽视频免费| 欧美午夜高清在线| 国产成人一区二区三区免费视频网站| 亚洲av五月六月丁香网| 在线免费观看的www视频| 两人在一起打扑克的视频| 变态另类成人亚洲欧美熟女| 国产午夜精品久久久久久| www.精华液| 此物有八面人人有两片| 99久久无色码亚洲精品果冻| 国产99久久九九免费精品| 久久国产精品男人的天堂亚洲| 香蕉国产在线看| 亚洲自偷自拍图片 自拍| www.999成人在线观看| 亚洲av片天天在线观看| 麻豆久久精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 不卡一级毛片| 一区二区三区激情视频| 午夜福利在线在线| 最好的美女福利视频网| 日本免费一区二区三区高清不卡| 欧美成人性av电影在线观看| 99热6这里只有精品| 久久久久国产精品人妻aⅴ院| 国产一区二区激情短视频| 中文在线观看免费www的网站 | 一区福利在线观看| 久久久国产成人精品二区| 国产午夜福利久久久久久| 国产精品 国内视频| 国产伦一二天堂av在线观看| 久久中文字幕一级| 久久久精品国产亚洲av高清涩受| 亚洲成人久久性| 国产欧美日韩一区二区精品| 身体一侧抽搐| 亚洲成人久久爱视频| 自线自在国产av| 国产av又大| 亚洲午夜理论影院| 日韩视频一区二区在线观看| 国产激情偷乱视频一区二区| 成人亚洲精品一区在线观看| 韩国av一区二区三区四区| 极品教师在线免费播放| 在线国产一区二区在线| 天天添夜夜摸| 亚洲国产日韩欧美精品在线观看 | 亚洲成人久久爱视频| 日本五十路高清| 国产亚洲av嫩草精品影院| 亚洲精品在线美女| 国产精品久久久久久人妻精品电影| 亚洲中文日韩欧美视频| 亚洲精品美女久久久久99蜜臀| 级片在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 在线免费观看的www视频| 亚洲成国产人片在线观看| 亚洲av成人不卡在线观看播放网| 亚洲欧美一区二区三区黑人| 亚洲 欧美一区二区三区| 两个人免费观看高清视频| 男人操女人黄网站| 中文字幕精品免费在线观看视频| 美女高潮到喷水免费观看| 黄片播放在线免费| 久久狼人影院| 久久久久久亚洲精品国产蜜桃av| 动漫黄色视频在线观看| 这个男人来自地球电影免费观看| 亚洲午夜精品一区,二区,三区| 黄色视频,在线免费观看| 国产伦一二天堂av在线观看| 免费在线观看完整版高清| 欧美最黄视频在线播放免费| 亚洲av电影在线进入| 欧美乱码精品一区二区三区| 99在线人妻在线中文字幕| 亚洲专区字幕在线| 在线观看免费日韩欧美大片| 久久精品人妻少妇| 精品日产1卡2卡| 免费高清视频大片| 成年版毛片免费区| 大香蕉久久成人网| 无遮挡黄片免费观看| 国产片内射在线| 国产精品爽爽va在线观看网站 | 久久久久久久午夜电影| 国产黄片美女视频| 无人区码免费观看不卡| 婷婷六月久久综合丁香| 中文资源天堂在线| 亚洲五月天丁香| 韩国精品一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 色综合站精品国产| 国产亚洲精品久久久久久毛片| 三级毛片av免费| 两个人免费观看高清视频| netflix在线观看网站| 99riav亚洲国产免费| 免费在线观看影片大全网站| 亚洲成国产人片在线观看| 十八禁网站免费在线| 日本熟妇午夜| 中文字幕人妻熟女乱码| 亚洲精品久久成人aⅴ小说| 99国产精品99久久久久| 亚洲国产欧美一区二区综合| 自线自在国产av| 最新美女视频免费是黄的| 香蕉丝袜av| 亚洲精品国产区一区二| 可以免费在线观看a视频的电影网站| 日本精品一区二区三区蜜桃| 欧美国产精品va在线观看不卡| 午夜精品在线福利| 中文字幕人成人乱码亚洲影| 亚洲 欧美一区二区三区| 色精品久久人妻99蜜桃| 亚洲精品在线观看二区| 观看免费一级毛片| 精品免费久久久久久久清纯| 成人av一区二区三区在线看| 欧美日韩亚洲国产一区二区在线观看| 老汉色av国产亚洲站长工具| 色婷婷久久久亚洲欧美| 午夜精品在线福利| 男女做爰动态图高潮gif福利片| 亚洲国产欧美网| 国产伦人伦偷精品视频| 欧美亚洲日本最大视频资源| 国产亚洲欧美精品永久| 亚洲av日韩精品久久久久久密| 女同久久另类99精品国产91| 女警被强在线播放| 免费av毛片视频| 成人永久免费在线观看视频| 最近在线观看免费完整版| 一区福利在线观看| 亚洲av片天天在线观看| 久久午夜亚洲精品久久| av在线播放免费不卡| 色综合婷婷激情| 国产精华一区二区三区|