• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Au nanoparticles loaded on hollow BiOCl microstructures boosting CO2 photoreduction

    2022-09-15 03:11:20SiwenGongFeiRoWeiinZhngQeerUlHssnZhoqingLiuJinzhiGoJingoLuMirosHojmerievGngqingZhu
    Chinese Chemical Letters 2022年9期

    Siwen Gong, Fei Ro, Weiin Zhng, Qeer-Ul Hssn, Zhoqing Liu, Jinzhi Go,Jingo Lu, Miros Hojmeriev, Gngqing Zhu,?

    a School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China

    b School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China

    c School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China

    d Institute of Chemistry, Technical University of Berlin, Berlin 10623, Germany

    ABSTRACT The BiOCl (BOC) synthesized by the water bath heating method was treated with sodium borohydride(NaBH4) to introduce oxygen vacancies (OVs).At the same time, Au nanoparticles were loaded to prepare a series of Au/BiOCl samples with different ratios.OVs and Au nanoparticles can promote the light absorption of host photocatalyst in the visible region.The calculated work function of BiOCl and Au can verify the existence of Ohmic contact between the interface of them, which is conducive to the separation of charge carriers.Through a series of photoelectric tests, it was verified experimentally that the separation of charge carriers is indeed enhanced.The high-energy hot electrons produced by Au under the surface plasmon resonance (SPR) effect can increase the counts of electrons to participate in the CO2 reduction reaction.Especially for 1.0%-Au/BOC, the yields of CO can reach 43.16 μmol g?1 h?1, which is 6.6 times more than that of BOC.Therefore, loading precious metal on semiconductors is an effective strategy to promote the photocatalytic performance of CO2 reduction reactions.

    Keywords:BiOCl Au nanoparticles Oxygen vacancy Ohmic contact CO2 photoreduction

    Photocatalytic reduction of CO2needs a very negative reduction potential, which requires the photocatalyst to have a relatively negative conduction band (CB) position.Generally, semiconductor photocatalysts that meet this condition have a wide band gap, which is not conducive to the absorption of visible light [1,2].Introducing defects and loading precious metals can be used as two important methods to solve this problem [3–8].Due to its unique electronic structure, oxygen vacancies (OVs) will change the light absorption capacity and photogenerated carrier mobility of the semiconductor photocatalyst, thereby enhancing its performance [9].The local electrons near the OVs can induce shallow donor levels below CB[10,11].The donor levels caused by the suitable content of OVs can further hybridize with the CB, thereby changing the Fermi level of the semiconductor and the forbidden band width [12].Meanwhile,this energy level also promotes the separation of charge carriers[13].

    The surface plasmon resonance (SPR) effect makes noble metal nanoparticles capture partial visible light, and then produce highenergy hot electrons [14–17].In this way, semiconductor loaded with noble metals can use these high-energy hot electrons to drive chemical reactions on their surfaces.Meanwhile, the metalsemiconductor heterojunction that forms Ohmic contacts facilitates the separation of charge carriers and promotes the progress of photocatalytic reactions [18,19].Thus, it is very critical to select the appropriate semiconductor and precious metal for constructing nanocomposites.BiOCl (BOC) is a wide-gap photocatalytic material.The CB position of BOC is relatively negative, generally between ?0.9 V ~?1.1 V (vs.SHE), which matches with the potential of reducing CO2to CO (?0.51 Vvs.SHE) and CH4(?0.24 Vvs.SHE) [20].BOC has a valence band (VB) position of 1.7 V ~1.8 V(vs.SHE), which has sufficient oxidation capacity to decompose water (0.82 Vvs.SHE), providing protons for CO2reduction [21].Therefore, BOC can meet the potential requirements of CO2reduction.Loading metal nanoparticles with a suitable Fermi level can be selected to form a heterojunction in Ohmic contact with BOC,thereby improving the light absorption ability and the separation ability of photogenerated charge carriers.

    Fig.1.The TEM images (a, b), HAADF-STEM images (c-e) and EDX mappings of 1.0%-Au/BOC (f, g).

    In this work, the presence of OVs and Au nanoparticles in BOC (OVs-Au/BOC) not only significantly enhances the visible light absorption capacity of the composite sample, but also significantly improves the separation ability of photo-generated carriers, thereby greatly boosting the catalytic activity of the photocatalyst.Through the combination of experiments and DFT calculations, the improvement mechanism of photocatalytic activity and the reaction process of photocatalytic reduction of CO2are explored (Supplementary Notes 1–4 in Supporting information).

    The synthesis process of BOC is described in Supplementary Note 5 (Supporting information).Furthermore, dissolve 0.2 g BOC in 30 mL deionized water, and then add the corresponding chloroauric acid solution and stirred for 1 h (Au:Bi molar ratios of 0.5%, 1.0%, 1.5%, 2.0%, 2.5%).Weigh an appropriate amount of NaBH4(the molar concentration is 5 times than the Au concentration in the corresponding mixed solution), dissolve it in 30 mL of deionized water, and quickly pour it into the stirred mixed solution.The precipitate was washed several times with deionized water and alcohol, and collected after drying for 6 h at 60 °C.According to the different proportions of Au loading, the photocatalyst is recorded as BOC, 0.5%-Au/BOC, 1.0%-Au/BOC, 1.5%-Au/BOC,2.0%-Au/BOC, 2.5%-Au/BOC.

    As shown in Fig.S1a (Supporting information), the X-ray diffraction (XRD) pattern is exactly the same as that of the tetragonal BiOCl (PDF #85–0861).However, the diffraction peaks of Au are not observed after because of the low loading counts and unique dispersion [19].As shown in Fig.S1b (Supporting information),FTIR further confirms the phase structure of as-prepared samples.In BOC and Au/BOC samples, the peak at 527 cm?1is attributed to the Bi-O stretching mode [19], and the peaks at 1293, 1423, and 1663 cm?1are attributed to the N?H ?O group, pyrrole and free C=O stretch mode [22].There is no obvious change in the position of the signal indicates that further characterization methods are needed to observe the loaded Au species.

    The TEM image of 1.0%-Au/BOC is shown in Fig.1a, which maintains the flower-shaped appearance of hollow structure of BOC stacked of nanosheets, where some nanoparticles with a diameter of 5–6 nm are distributed on the surface (Fig.1b).In the HAADF-STEM images (Figs.1c and d), two clear lattice plane spacings of 0.275 nm and 0.738 nm are shown, corresponding to the(110) and (001) of BiOCl, respectively.Fig.1e shows a set of clear lattice plane spacing 0.235 nm, corresponding to the (111) lattice plane of Au0.Energy dispersive X-ray spectroscopy (EDS) further shows the distribution of elements.From Figs.1f and g, it can be seen that the Bi, O, and Cl elements are uniformly distributed on the nanosheets, while the Au elements are mostly concentrated to form the nanoparticles.It proved that Au0was successfully loaded onto BiOCl nanosheets.

    Fig.2.The high-resolution XPS spectra of Au 4f (a), O 1s (b) and EPR spectra (c)of BOC and 1.0%-Au/BOC samples, UV–vis diffuse absorbance spectra of all prepared samples (d).

    The element composition and chemical state of the sample were further analyzed by X-ray photoelectron spectroscopy (XPS).The survey spectra and high-resolution spectra of Bi 4f and Cl 2p of BOC and 1.0%-Au/BOC samples are shown in Fig.S2 (Supporting information).In the HR-XPS of Au 4f, the peaks at 83.2 eV and 86.8 eV can be attributed to Au0[23], indicating that Au exists in the composite sample in the form of metal, and there is no Au element in the pure BOC sample (Fig.2a).In Fig.2b, three peaks at 529.4, 531.4 and 532.9 eV are ascribed to lattice oxygen,surface adsorbed oxygen, and surface adsorbed oxygen in water molecules [24].The O at 530.5 eV is OV.It can be seen that the peak area of OVs in the metal-loaded BOC has increased, which demonstrates that the amount of OVs has been increased.In order to directly prove the existence and variation of OVs in as-prepared samples, the electron paramagnetic resonance (EPR) spectroscopy of the sample was tested, as shown in Fig.2c.BOC and 1.0%-Au/BOC both show resonance signals atg=2.003 [25], while the signal of BOC is relatively weak.It indicates that OVs have existed in BOC.After chemical reduction, more OVs are generated, so the peak intensity in 1.0%-Au/BOC gets higher, which is consistent with the conclusion in XPS.

    Fig.2d records the UV–vis absorption spectra of BOC and Au/BOC, reflecting the light absorption properties of the photocatalysts.The location of the absorption band edge of BOC is about 367 nm, which shows that BOC has strong absorption for ultraviolet light and has a weak response to visible light.This weak visible light response can be attributed to the existence of the OVs in BOC.As the loading of Au nanoparticles increases, the absorption of the photocatalyst in the visible light region becomes more robust.In addition, an absorption peak that appears near 531 nm can be attributed to the SPR effect of Au nanoparticles [26].From the absorption edge of as-prepared samples, it can be observed that the edge gradually redshifts toward the visible region with the increase of the Au loading, owing to the increasing content of OVs.OVs are mainly reflected in two aspects to promote the activity of semiconductor photocatalysts.Firstly, the localized electrons on OVs energy level can be excited to the CB under visible light [2].Secondly, the intermediate energy levels of these defect states may also accept electrons in the valence band (VB) transition under the excitation of visible light, and indirectly transfer photoelectrons to CB, which not only broadens the visible light response range, but also inhibits the recombination of e?-h+pairs [27].According to the DFT calculation of the density of states (DOS), the conclusion can be drawn that the shallow energy levels come into being by O 2p orbit in OVs-BOC (Fig.S3 in Supporting information), which is overlapped with the bottom of the CB to narrow the band gap,thereby enhancing light absorption.

    Fig.3.Generation rate of CO and CH4 under simulated sunlight (a), under visible light (b), cyclic experiment over 1.0%-Au/BOC (c), mass spectra of 13CH4 (m/z 17)and 13CO (m/z 29) generated over 1.0%-Au/BOC (d).

    The photocatalytic performance of the as-prepared samples is evaluated by the CO2photoreduction test.As shown in Fig.3a, after 1 h of simulated sunlight exposure, the formation rate of CO and CH4over BOC are 6.57 μmol/g and 3.03 μmol/g, respectively.The loading of Au0in BOC and the introduction of OVs remarkably boosted the photoreduction activity of CO2(Table S1 in Supporting information).Especially for 1.0%-Au/BOC, the yields of CO and CH4can reach up to 43.16 μmol g?1h?1and 5.98 μmol g?1h?1, respectively.The rate of CO generation is 6.6 times higher than that of pristine BOC.Furthermore, the activity of 1.0%-Au/BOC is still very good compared with other photocatalysts (Table S2 in Supporting information).However, with the continuous increase of the loading, the photocatalytic activity decreased, which is due to the size augment of Au0nanoparticles.The changes in the specific surface area (SBET) and pore size distribution of the pure BOC sample and composite material can be observed through the nitrogen(N2) adsorption-desorption curves (Fig.S4 in Supporting information), which is an essential factor affecting the photocatalytic activity.With reference to the IUPAC classification, the isotherm of the sample shows a typical IV-type isotherm and H3 hysteresis, indicating that the synthesized material has a mesoporous structure.After loading Au0, the increasedSBETof the sample is beneficial to the photocatalytic performance.But as the loading ratios increase,theSBETof the sample gradually decreases, which decreases the surface reaction and adsorption sites for the target gas.The size augment of Au0nanoparticles will cause the photogenerated electrons to recombine before reaching the surface of the Au0to react with CO2, thereby reducing the reaction activity [20].Therefore, it is extremely important to adjust the loading amount so that the Au0nanoparticles maintain the appropriate amount and size to promote the CO2photoreduction performance.

    Fig.4.The in situ FTIR spectra of 1.0%-Au/BOC during the CO2 reduction process(a) in dark and (b) with illumination under simulated light, schematic diagram of energy band change of 1.0%-Au/BOC before (c) and after (d) contact (Φ is the work function, E0 is the vacuum level, Ef1 and Ef2 are the Fermi levels of OVs-BOC and Au0, respectively, and Ef is the Fermi level of 1.0%-Au/BOC).

    In order to verify that the promotion of the photocatalytic activity is due to the SPR effect of Au0, the performance test under visible light irradiation was carried out.It can be observed that the photocatalytic performance trends of all samples are consistent with the results under simulated sunlight (Fig.3b).After loading Au0nanoparticles, 1.0%-Au/BOC has the most significant increase.It can reach CO: 13.02 μmol g?1h?1, CH4: 1.90 μmol g?1h?1, respectively, which is 8 times and 5 times than BOC.It can be proved that the loading of Au0nanoparticles enhances the effective absorption of visible light.Detailed performance data is shown in the supporting documents (Table S3 in Supporting information).In addition,a cyclic measurement was performed to manifest the stability of 1.0%-Au/BOC.Even after five photocatalytic reactions, 1.0%-Au/BOC still maintains high reactivity (Fig.3c).By comparing the XRD before and after the reaction (Fig.S5a in Supporting information), it can be seen that the phase structure of the catalyst was not destroyed even after several photocatalytic reduction experiments of CO2, which indicates that 1.0%-Au/BOC possesses high stability.

    To explore the source of carbon in the product, a sequence of experiments have been done to prove that under the effect of the photocatalyst, CO2is reduced to other carbon-containing substances (Fig.S5b in Supporting information).In order to more intuitively verify the source of carbon in the product, the isotope labeling method (13CO2) was used in the experiment.From Fig.3d,the peaks of 1.0%-Au/BOC atm/z17 andm/z29 can be ascribed to13CH4and13CO, respectively, which proves the carbon in CH4and CO comes from the13CO2.

    To explore the specific process of CO2reduction and the intermediate products,in-situFT-IR tests were carried out in the presence or absence of light irradiation condition.As exhibited in Fig.4a, the adsorption/desorption equilibrium is reached in the dark environment.The peaks at 1650 cm?1correspond to H2O, and the peaks at 1280 and 1369 cm?1attributed to bicarbonate (HCO3–),the peaks at 1314, 1426, 1463, and 1616 cm?1ascribed to carbonate (CO32–), which are all caused by the initial reactive adsorption of CO2[28–30].The peaks at 1515 and 1771 cm?1correspond to formate (HCOO–), and the peaks at 1695 and 1740 cm?1correspond to CO2–and CO, respectively [12,19].These are important intermediate products in the reduction of CO2.After turning on the light, as shown in Fig.4b, it can be observed that the shape of thein-situinfrared peak has no obvious change, but the intensity is significantly increased, especially for CO and HCOO–.The increase of these two important intermediate products represents the rapid progress of the reaction.The specific reaction process is listed in Supplementary Note 6 (Supporting information).

    After loading Au nanoparticles, the performance of the photocatalyst has been greatly improved.The adsorption of CO2over the surface of photocatalysts has an important influence on CO2photoreduction.The CO2adsorption curve has been shown in Fig.S6 (Supporting information).It can be found that there is no significant difference between the two samples, which indicates that in this experiment, the CO2physical adsorption ability is not the main factor impacting the photocatalytic performance.The enhancement of photocatalytic performance is governed by other factors.

    Promoting the effective separation of photogenerated carriers is an important aspect to boost the activity of photocatalysts.Fig.S7 (Supporting information) shows the surface photovoltage spectra (SPV), the photocurrent response, the impedance spectroscopy(EIS) and the fluorescence spectra, which suggests that the Au0component can improve the separation ability and suppress the recombination of photogenerated carriers so that the activity of the photocatalyst has been improved.

    The fundamental reason why the separation ability of photogenerated carriers has been improved will be further explored through DFT calculation.The heterojunction composed by metal nanoparticles and semiconductor is favorable for charge carrier transfer.As shown in Fig.S8 (Supporting information), the work function of OVs-BOC (110) (5.19 eV) is higher than the work function of Au0(111) (3.32 eV), so an Ohmic contact can be formed in the interface between them [15].The band structure of Au0and OVs-BOC before contact is exhibited in Fig.4c.After contact (Fig.4d), the electrons of Au0flow to OVs-BOC to achieve a thermodynamic balance, thereby bending the energy band of OVs-BOC to form an Ohmic contact.When 1.0%-Au/BOC was excited by light with suitable energy, photogenerated electrons jumped from VB in OVs-BOC to CB.In addition, the photogenerated electrons move to Au0under the effect of the built-in electric field, which improves the separation ability of photogenerated electron-hole pairs.

    In summary, the semiconductor is mainly excited by ultraviolet light to produce e?/h+pairs in the BOC without modification;when OVs are present, OVs can form shallow energy levels near the CB, which can not only hybridize with the bottom of the CB to narrow the band gap, and can also be used as a step for photogenerated electrons.The electrons generated by light excitation can first jump to the OVs energy level and then jump to the CB.This process will absorb visible light, thereby enhancing the light absorption.After loading Au0, the electrons on the CB will move to Au nanoparticles to participate in the reaction, enhancing the separation ability of e?/h+pairs.In addition, Au nanoparticles will absorb visible light and produce the SPR effect and generate hot electrons.The hot electrons with higher energy will cross the contact barrier between the semiconductor and the metal and move to the CB of the semiconductor to participate in the reaction, so that the number of available electrons participating in the reaction will increase, which in turn accelerate the reaction rate.Our work provides a new perspective for the use of defects and metal loading to solve the problem of low efficiency of photoreduction of CO2.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.51772183, 52072230), and the Yulin Science and Technology Project (No.CXY-2020–040).The authors also thank Professor Jiangbo Lu, Dr.Wang Li, Dr.Hongmei Jing and Dr.Lujun Zhu for the help in using ac-TEM (the Electron Microscopy Platform of School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.039.

    国产欧美日韩一区二区精品| 丰满人妻一区二区三区视频av | 啦啦啦免费观看视频1| 国产精品久久久久久精品电影| 日韩欧美免费精品| 久久精品国产99精品国产亚洲性色| 99精品在免费线老司机午夜| 我的老师免费观看完整版| 久久婷婷人人爽人人干人人爱| 午夜福利免费观看在线| 热99re8久久精品国产| 国产aⅴ精品一区二区三区波| 欧美色视频一区免费| 精品国产三级普通话版| 亚洲av熟女| 99久久精品国产亚洲精品| 成人欧美大片| 日韩人妻高清精品专区| 精品久久久久久久毛片微露脸| 成人无遮挡网站| 男人的好看免费观看在线视频| 亚洲精品粉嫩美女一区| 麻豆一二三区av精品| 国产激情久久老熟女| 成人永久免费在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 免费看a级黄色片| 啦啦啦免费观看视频1| 国产真人三级小视频在线观看| 他把我摸到了高潮在线观看| 波多野结衣高清作品| 亚洲aⅴ乱码一区二区在线播放| 国产精品亚洲一级av第二区| 欧美午夜高清在线| 搡老岳熟女国产| 搡老岳熟女国产| 亚洲国产精品sss在线观看| 他把我摸到了高潮在线观看| 久久中文看片网| 国产精品av视频在线免费观看| 美女免费视频网站| 99久久精品热视频| 欧美乱妇无乱码| 午夜亚洲福利在线播放| 黄色视频,在线免费观看| 亚洲18禁久久av| 精品乱码久久久久久99久播| 精品乱码久久久久久99久播| 1000部很黄的大片| 在线十欧美十亚洲十日本专区| 国产又黄又爽又无遮挡在线| 日本一本二区三区精品| 一级毛片高清免费大全| 小蜜桃在线观看免费完整版高清| 国产免费男女视频| 欧美另类亚洲清纯唯美| 久9热在线精品视频| or卡值多少钱| 国产免费av片在线观看野外av| 亚洲av美国av| 一个人看的www免费观看视频| 欧美一级毛片孕妇| 一二三四在线观看免费中文在| 欧美乱妇无乱码| 美女免费视频网站| 久久久精品大字幕| 在线免费观看不下载黄p国产 | 一级作爱视频免费观看| 国产三级在线视频| 在线播放国产精品三级| 国产欧美日韩精品亚洲av| 国产成+人综合+亚洲专区| 久久久久国内视频| 人人妻,人人澡人人爽秒播| 日本三级黄在线观看| 51午夜福利影视在线观看| 又黄又粗又硬又大视频| 久久亚洲真实| 中文在线观看免费www的网站| 手机成人av网站| 午夜精品在线福利| 国产亚洲欧美在线一区二区| 国产成+人综合+亚洲专区| 高清毛片免费观看视频网站| 波多野结衣高清无吗| 日本三级黄在线观看| 欧美性猛交黑人性爽| 特级一级黄色大片| 久久性视频一级片| 色在线成人网| 无限看片的www在线观看| 夜夜爽天天搞| 又粗又爽又猛毛片免费看| 欧美极品一区二区三区四区| 亚洲熟妇熟女久久| 99国产精品一区二区三区| 99精品久久久久人妻精品| 在线观看一区二区三区| 波多野结衣巨乳人妻| 亚洲五月天丁香| 国产男靠女视频免费网站| 国产 一区 欧美 日韩| 国产精品女同一区二区软件 | 麻豆久久精品国产亚洲av| 国产69精品久久久久777片 | 欧美3d第一页| 宅男免费午夜| 亚洲va日本ⅴa欧美va伊人久久| 亚洲性夜色夜夜综合| 精品福利观看| 亚洲人成伊人成综合网2020| 免费电影在线观看免费观看| 国产免费男女视频| 在线免费观看不下载黄p国产 | 国产伦一二天堂av在线观看| 欧美乱妇无乱码| 久久99热这里只有精品18| 亚洲国产精品sss在线观看| 观看免费一级毛片| 最近最新中文字幕大全免费视频| 国产高潮美女av| 高清在线国产一区| av视频在线观看入口| 此物有八面人人有两片| 中文字幕久久专区| 免费看十八禁软件| 亚洲欧洲精品一区二区精品久久久| av黄色大香蕉| 日本在线视频免费播放| 两人在一起打扑克的视频| 青草久久国产| 久久久久久久精品吃奶| 国产精品精品国产色婷婷| 一个人免费在线观看电影 | 少妇人妻一区二区三区视频| 老司机深夜福利视频在线观看| 国产亚洲欧美在线一区二区| 久久香蕉精品热| 亚洲人与动物交配视频| 在线视频色国产色| 亚洲精品456在线播放app | 好男人电影高清在线观看| 久久热在线av| 俺也久久电影网| 99久久精品热视频| 又黄又爽又免费观看的视频| 亚洲成a人片在线一区二区| 琪琪午夜伦伦电影理论片6080| 亚洲 欧美 日韩 在线 免费| 成人18禁在线播放| 欧美三级亚洲精品| 久久中文字幕人妻熟女| 精品电影一区二区在线| 天堂网av新在线| 久久国产乱子伦精品免费另类| 国产精品一区二区免费欧美| 午夜福利视频1000在线观看| 91麻豆精品激情在线观看国产| 国产成人系列免费观看| 久久久国产成人精品二区| 国产精品九九99| 色哟哟哟哟哟哟| 欧美中文综合在线视频| 欧美激情在线99| 免费大片18禁| 神马国产精品三级电影在线观看| 精品一区二区三区av网在线观看| 十八禁人妻一区二区| 午夜免费观看网址| 午夜两性在线视频| 精品一区二区三区av网在线观看| 久久午夜亚洲精品久久| 欧美黄色片欧美黄色片| 亚洲精品美女久久av网站| 久久久久久久久中文| 在线免费观看不下载黄p国产 | 99久久久亚洲精品蜜臀av| 国产探花在线观看一区二区| 国产av一区在线观看免费| 一个人观看的视频www高清免费观看 | 99久久成人亚洲精品观看| 色精品久久人妻99蜜桃| 国产精品,欧美在线| 中文亚洲av片在线观看爽| 国产在线精品亚洲第一网站| 亚洲片人在线观看| x7x7x7水蜜桃| 99国产综合亚洲精品| 久久国产乱子伦精品免费另类| 熟妇人妻久久中文字幕3abv| 日韩有码中文字幕| 露出奶头的视频| 噜噜噜噜噜久久久久久91| 国内精品美女久久久久久| 国产1区2区3区精品| 日本撒尿小便嘘嘘汇集6| 欧美成人性av电影在线观看| 久久99热这里只有精品18| 成年女人看的毛片在线观看| 99精品在免费线老司机午夜| 亚洲人成伊人成综合网2020| 亚洲av第一区精品v没综合| 听说在线观看完整版免费高清| 国产精品亚洲一级av第二区| 精品久久久久久久久久免费视频| 欧美日韩一级在线毛片| a级毛片a级免费在线| av天堂在线播放| 在线免费观看的www视频| 亚洲av成人不卡在线观看播放网| 亚洲中文字幕一区二区三区有码在线看 | 国产乱人视频| 国语自产精品视频在线第100页| 啦啦啦韩国在线观看视频| 亚洲第一欧美日韩一区二区三区| 日本一二三区视频观看| 亚洲精品国产精品久久久不卡| 国产乱人视频| 国产精品99久久99久久久不卡| 国产精品电影一区二区三区| 999久久久精品免费观看国产| 久久久色成人| x7x7x7水蜜桃| 韩国av一区二区三区四区| 国产亚洲精品久久久久久毛片| 色老头精品视频在线观看| 日本免费一区二区三区高清不卡| 亚洲专区中文字幕在线| 日韩三级视频一区二区三区| 亚洲乱码一区二区免费版| 日本成人三级电影网站| 亚洲av成人一区二区三| 美女扒开内裤让男人捅视频| 精品一区二区三区视频在线 | 亚洲黑人精品在线| 久99久视频精品免费| 波多野结衣巨乳人妻| 午夜福利18| 床上黄色一级片| 99国产精品一区二区三区| 久久草成人影院| 丝袜人妻中文字幕| 中文字幕熟女人妻在线| 男人舔女人下体高潮全视频| 亚洲专区中文字幕在线| 黄色成人免费大全| 人人妻人人看人人澡| 国产精品国产高清国产av| 欧美最黄视频在线播放免费| 久久草成人影院| 成人性生交大片免费视频hd| 99国产精品一区二区蜜桃av| 天堂√8在线中文| 久久亚洲精品不卡| 日韩免费av在线播放| 亚洲精品一卡2卡三卡4卡5卡| 日本a在线网址| 亚洲精品美女久久av网站| 欧美一区二区精品小视频在线| 日本熟妇午夜| 中文字幕av在线有码专区| 亚洲欧洲精品一区二区精品久久久| e午夜精品久久久久久久| 午夜免费激情av| 日本在线视频免费播放| 久99久视频精品免费| 又大又爽又粗| 欧美性猛交╳xxx乱大交人| 国产精品免费一区二区三区在线| 久久人人精品亚洲av| ponron亚洲| 精品国产亚洲在线| 又黄又爽又免费观看的视频| 在线国产一区二区在线| 久久热在线av| 不卡av一区二区三区| www.熟女人妻精品国产| av片东京热男人的天堂| 成年女人毛片免费观看观看9| 国产伦精品一区二区三区四那| 国语自产精品视频在线第100页| 国产精品一区二区精品视频观看| 99久国产av精品| 在线十欧美十亚洲十日本专区| 国产高清激情床上av| 高清毛片免费观看视频网站| 看黄色毛片网站| 久久精品夜夜夜夜夜久久蜜豆| 午夜免费激情av| 国产成人av激情在线播放| 亚洲精品在线美女| 国产成年人精品一区二区| 欧美色视频一区免费| 亚洲欧洲精品一区二区精品久久久| 每晚都被弄得嗷嗷叫到高潮| 黄频高清免费视频| 在线观看日韩欧美| 亚洲av中文字字幕乱码综合| 97超视频在线观看视频| а√天堂www在线а√下载| 黄色丝袜av网址大全| 国产爱豆传媒在线观看| 国产精品自产拍在线观看55亚洲| 成人性生交大片免费视频hd| 国产成人av教育| 国产男靠女视频免费网站| 午夜福利高清视频| av在线蜜桃| av在线蜜桃| 两个人的视频大全免费| 国产av不卡久久| 巨乳人妻的诱惑在线观看| 日日夜夜操网爽| 成人一区二区视频在线观看| 国产又色又爽无遮挡免费看| 男女午夜视频在线观看| 2021天堂中文幕一二区在线观| 婷婷精品国产亚洲av在线| 人妻夜夜爽99麻豆av| 成年女人看的毛片在线观看| 亚洲国产欧洲综合997久久,| 少妇丰满av| 男女下面进入的视频免费午夜| 少妇丰满av| 久久这里只有精品中国| 男人舔女人下体高潮全视频| 国产又色又爽无遮挡免费看| 国产不卡一卡二| 久久精品夜夜夜夜夜久久蜜豆| 草草在线视频免费看| 久久久成人免费电影| 国产91精品成人一区二区三区| 免费人成视频x8x8入口观看| 亚洲性夜色夜夜综合| 精品国产乱码久久久久久男人| 偷拍熟女少妇极品色| 少妇裸体淫交视频免费看高清| 国产精品av久久久久免费| 午夜亚洲福利在线播放| 两个人看的免费小视频| 精品久久久久久久久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 法律面前人人平等表现在哪些方面| 黄色丝袜av网址大全| 日本一本二区三区精品| 啦啦啦韩国在线观看视频| 成人精品一区二区免费| 亚洲一区二区三区不卡视频| www日本在线高清视频| 国产乱人伦免费视频| 日韩中文字幕欧美一区二区| 身体一侧抽搐| 亚洲人成网站高清观看| 午夜福利在线观看吧| 精品久久久久久久久久久久久| 亚洲午夜理论影院| 黄色女人牲交| 男女之事视频高清在线观看| 成年人黄色毛片网站| 亚洲精品乱码久久久v下载方式 | 亚洲av熟女| 国产成人影院久久av| 18禁黄网站禁片午夜丰满| 久久久久国产一级毛片高清牌| 亚洲精品乱码久久久v下载方式 | 国产97色在线日韩免费| 亚洲国产中文字幕在线视频| 国产又黄又爽又无遮挡在线| 真人做人爱边吃奶动态| 国产熟女xx| 亚洲午夜精品一区,二区,三区| 午夜两性在线视频| 波多野结衣高清作品| 亚洲色图 男人天堂 中文字幕| 成人永久免费在线观看视频| 国产精品久久久久久亚洲av鲁大| 亚洲av日韩精品久久久久久密| 成人性生交大片免费视频hd| 一级毛片精品| 男人舔女人的私密视频| 中国美女看黄片| 夜夜爽天天搞| 美女 人体艺术 gogo| 精品99又大又爽又粗少妇毛片 | 99在线视频只有这里精品首页| 国产日本99.免费观看| 国产av一区在线观看免费| 波多野结衣巨乳人妻| 精品福利观看| 老熟妇仑乱视频hdxx| 一a级毛片在线观看| 亚洲国产欧洲综合997久久,| 熟女少妇亚洲综合色aaa.| 中国美女看黄片| 精品久久久久久久末码| 91久久精品国产一区二区成人 | 99国产精品99久久久久| 手机成人av网站| 久久久久久国产a免费观看| 中文字幕熟女人妻在线| 欧美成人一区二区免费高清观看 | 婷婷亚洲欧美| 日韩欧美 国产精品| 在线观看一区二区三区| 亚洲精品美女久久av网站| bbb黄色大片| 国产成人av教育| 一卡2卡三卡四卡精品乱码亚洲| 日韩大尺度精品在线看网址| 搞女人的毛片| 日韩欧美 国产精品| 久久久水蜜桃国产精品网| 91麻豆精品激情在线观看国产| 听说在线观看完整版免费高清| 黄片大片在线免费观看| 亚洲精品456在线播放app | 成年人黄色毛片网站| 黄色成人免费大全| 18禁观看日本| 国产私拍福利视频在线观看| 中文字幕熟女人妻在线| 欧美乱妇无乱码| 国产激情久久老熟女| 麻豆一二三区av精品| 亚洲人成网站在线播放欧美日韩| 人人妻人人澡欧美一区二区| 久久中文看片网| 国产黄色小视频在线观看| 成人av在线播放网站| 法律面前人人平等表现在哪些方面| 一级黄色大片毛片| 怎么达到女性高潮| 亚洲国产精品合色在线| 97碰自拍视频| 99热只有精品国产| 亚洲欧美日韩卡通动漫| 99热6这里只有精品| 国产高清三级在线| 老熟妇乱子伦视频在线观看| 日韩欧美三级三区| 亚洲中文av在线| 两性夫妻黄色片| 熟女少妇亚洲综合色aaa.| 91九色精品人成在线观看| 国产极品精品免费视频能看的| 日本 av在线| 日本a在线网址| 99久久精品国产亚洲精品| 嫩草影视91久久| 热99在线观看视频| 搡老妇女老女人老熟妇| 99久久国产精品久久久| 99热精品在线国产| 亚洲精品在线美女| 亚洲激情在线av| 亚洲国产欧美一区二区综合| 久久草成人影院| 国产精品亚洲美女久久久| 男人舔奶头视频| 成年女人永久免费观看视频| 亚洲欧美日韩高清专用| 欧美大码av| 黄色成人免费大全| 欧美zozozo另类| 后天国语完整版免费观看| 真实男女啪啪啪动态图| 在线a可以看的网站| 久久精品国产亚洲av香蕉五月| av视频在线观看入口| 久久久久国产一级毛片高清牌| 国产精品亚洲美女久久久| 日本五十路高清| 视频区欧美日本亚洲| 最好的美女福利视频网| 国产成人福利小说| bbb黄色大片| 身体一侧抽搐| 亚洲18禁久久av| 免费看日本二区| 色哟哟哟哟哟哟| 亚洲av第一区精品v没综合| 欧美一级a爱片免费观看看| 色在线成人网| 黄色片一级片一级黄色片| 在线国产一区二区在线| 久久人人精品亚洲av| 精品免费久久久久久久清纯| 特大巨黑吊av在线直播| 婷婷精品国产亚洲av| 日本 av在线| 又大又爽又粗| 高潮久久久久久久久久久不卡| 两个人的视频大全免费| 国产亚洲欧美在线一区二区| 国产aⅴ精品一区二区三区波| 两性午夜刺激爽爽歪歪视频在线观看| 无遮挡黄片免费观看| 一夜夜www| 熟女少妇亚洲综合色aaa.| av福利片在线观看| 88av欧美| 亚洲熟女毛片儿| 欧美黑人巨大hd| 欧美激情久久久久久爽电影| 热99re8久久精品国产| 欧美日韩瑟瑟在线播放| 床上黄色一级片| 色尼玛亚洲综合影院| 免费看a级黄色片| 成年人黄色毛片网站| 亚洲色图av天堂| 成人午夜高清在线视频| 啦啦啦观看免费观看视频高清| 日韩欧美国产一区二区入口| 一个人免费在线观看电影 | 亚洲中文字幕一区二区三区有码在线看 | www.999成人在线观看| 操出白浆在线播放| 亚洲专区字幕在线| 久久精品国产亚洲av香蕉五月| 青草久久国产| 一本综合久久免费| 一a级毛片在线观看| 俺也久久电影网| 麻豆一二三区av精品| 91av网一区二区| 99riav亚洲国产免费| 成人一区二区视频在线观看| 久久久国产欧美日韩av| 色播亚洲综合网| 国产探花在线观看一区二区| 日本与韩国留学比较| 色精品久久人妻99蜜桃| 怎么达到女性高潮| 日本与韩国留学比较| 免费看十八禁软件| 天堂av国产一区二区熟女人妻| 久久人人精品亚洲av| 麻豆av在线久日| 天堂av国产一区二区熟女人妻| 啦啦啦免费观看视频1| 久久性视频一级片| 亚洲无线观看免费| 香蕉av资源在线| 精品一区二区三区四区五区乱码| 老熟妇乱子伦视频在线观看| 十八禁网站免费在线| 日本黄色片子视频| 熟女电影av网| 国产精品女同一区二区软件 | 亚洲无线观看免费| 国内揄拍国产精品人妻在线| 亚洲国产色片| 婷婷亚洲欧美| 琪琪午夜伦伦电影理论片6080| 99久久综合精品五月天人人| 欧美日韩黄片免| а√天堂www在线а√下载| 欧美一级a爱片免费观看看| 国产成人系列免费观看| 青草久久国产| 亚洲最大成人中文| 哪里可以看免费的av片| 精品久久久久久成人av| 成人国产一区最新在线观看| 亚洲aⅴ乱码一区二区在线播放| 高潮久久久久久久久久久不卡| 97人妻精品一区二区三区麻豆| 国产亚洲av嫩草精品影院| 一个人看的www免费观看视频| 19禁男女啪啪无遮挡网站| www.精华液| 日韩人妻高清精品专区| 成人无遮挡网站| 无限看片的www在线观看| 老汉色av国产亚洲站长工具| 久久久久国产一级毛片高清牌| 老熟妇仑乱视频hdxx| 中亚洲国语对白在线视频| 久久久久免费精品人妻一区二区| 男女床上黄色一级片免费看| 欧美日韩瑟瑟在线播放| 久久久国产精品麻豆| xxx96com| 国产高清激情床上av| xxxwww97欧美| 黄色 视频免费看| 午夜福利在线观看吧| 久久精品亚洲精品国产色婷小说| 亚洲精品美女久久av网站| 亚洲第一电影网av| 97人妻精品一区二区三区麻豆| 国产精品美女特级片免费视频播放器 | 黄色日韩在线| 男女之事视频高清在线观看| 精品久久久久久久人妻蜜臀av| 深夜精品福利| 亚洲第一电影网av| 美女午夜性视频免费| 老司机深夜福利视频在线观看| 一a级毛片在线观看| 国产亚洲欧美98| 亚洲 国产 在线| 欧美色视频一区免费| 久久香蕉精品热| 男女视频在线观看网站免费| 国产免费男女视频| 舔av片在线| 可以在线观看毛片的网站| 欧美黄色片欧美黄色片| 欧美国产日韩亚洲一区| 午夜福利欧美成人| 久久久国产成人精品二区| 亚洲精品在线观看二区| 一进一出抽搐动态|