• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boosting electrocatalytic selectivity in carbon dioxide reduction: The fundamental role of dispersing gold nanoparticles on silicon nanowires

    2022-09-15 03:11:20FnLioXingFnHuixinShiQingLiMengjieWenxingZhuHipingLinYouyongLiMingwngSho
    Chinese Chemical Letters 2022年9期

    Fn Lio, Xing Fn, Huixin Shi, Qing Li, Mengjie M, Wenxing Zhu,Hiping Lin,1,?, Youyong Li, Mingwng Sho,?

    a Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University,Suzhou 215123, China

    b School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China

    ABSTRACT Carbon dioxide electrochemical reduction (CO2RR) has been recognized as an efficient way to mitigate CO2 emissions and alleviate the pressure on global warming and associated environmental consequences.Gold (Au) is reported as stable and active electrocatalysts to convert CO2 to CO at low overpotential due to its moderate adsorption strength of ?COOH and ?CO.The request for improved catalytic performance,however, is motivated by current unsatisfied catalytic selectivity because of the side hydrogen evolution reaction.In this context, the design of Au based binary catalysts that can boost CO selectivity is of great interest.In the present work, we report that Au nanoparticles can be feasibly dispersed and anchored on silicon nanowires to form Au-Si binary nanomaterials.The Au-Si may stably drive CO2RR with a CO Faraday efficiency of 95.6% at ?0.6 V vs. RHE in 0.5 mol/L KHCO3 solution.Such selectivity outperforms Au particles by up to 61%.Controlled experiments illustrate that such catalytic enhancement can chiefly be ascribed to electronic effects of binary catalysts.Theoretical calculations reveal that spontaneously produced silicon oxide may not only inhibit hydrogen evolution reaction, but also stabilize the key intermediate ?COOH in CO formation.

    Keywords:Gold nanoparticles Silicon nanowires Electrocatalysis Carbon dioxide reduction Noble metals

    There is an ever-increasing demand to reduce atmospheric CO2concentration due to the greenhouse effect resulting from increasing use of fossil fuels [1–4].It is an attractive strategy to convert CO2into value-added fuels through electrochemical reduction because of mild operating conditions and its potential integration with the renewable electricity intermittently generated from solar or wind energy [5–11].

    Among various electrocatalysts for CO2electrochemical reduction (CO2RR), gold (Au) shows nice activity in converting CO2into CO, a fundamental chemical building block for other carbon products [12], due to weak binding interactions between Au and CO[13,14].Unfortunately, CO2RR on Au nanoparticles suffer from declining stability and selectivity with increasing overpotential owing to the competing hydrogen evolution reaction (HER).A number of studies demonstrate that better catalytic performances can be achieved by adjusting the size of Au nanoparticles, tuning crystallographic orientations, and producing multicomponent catalysts[15–19].Despite successfully design and synthesis of catalysts, the selectivity issue remains a longstanding challenge that preclude further considerations of Au for practical CO2RR applications.

    One strategy to alleviate this challenge is to disperse Au on suitable substrates that can effectively modulate the electronic structures (known as the electronic effect) and consequently the interactions with key reaction intermediates, as we have learned from previous electrocatalysis [20–23].For example, Gonget al.loaded Au on CeOxnanosheets.The Ce3+promotes the activation of CO2and the formation of?COOH [24].The reduced graphene oxide supported Au nanoparticles delivers high Au-specific mass activities and good Faradaic efficiency (FE) for the CO2-to-CO conversion at moderate overpotentials [25].Despite the encouraging performance gains, the fabrication of these catalysts often needs extra reduction process, which increase the operational complexity and decrease the tightly contact of metal to the substates.

    Fig.1.Phase and morphology characterization of Au-Si-2.(a) XRD patterns of Au-Si-2, SiNW and Au-C.(b) TEM image of Au-Si-2, insert is the EDS spectrum.(c)HRTEM image of an Au nanoparticle on SiNW, showing the lattice spacing of Au and Si.(d) HAADF-STEM image of Au-Si-2, and the corresponding EDX mapping of Si (blue), Au (yellow), and overlay.(e) N2 adsorption-desorption isotherms and (f)CO2 adsorption-desorption isotherms for Au-Si-2 and Au-C.

    Compared with metal oxides and carbon materials, silicon is an outstanding multifunctional supporting material which offers not only the electronic effect, but also structural engineering of metallic electrocatalysts at the nanoscale, for example, enhancing the electrochemical surface areas or creating abundant undercoordinated sites [26].In our previous works, we observed that silicon can directly fix CO2from the atmosphere [27].When the noble metals such as Pt and Ir are cooperated with silicon nanowires(SiNWs), the nanocomposites are excellent HER electrocatalysts[28,29].The presence of silicon can change thedband center of noble metals, which finally regulate the hydrogen adsorption energy closer to zero and facilitate the production rate of hydrogen[30].To the best of our knowledge, there are very few successful demonstrations of using Si as substrates to design CO2RR catalysts.

    In this work, we report the rational synthesis of uniformly dispersed Au nanoparticles on SiNWsviaa feasiblein-situreduction method.A layer of silicon oxide is formed when the Au-Si catalysts are exposed to the atmosphere.Subsequently, electrocatalytic studies show that Au-Si with Au content of about 20 wt% can drive CO2RR with an onset overpotential of 0.15 V in the 0.5 mol/L KHCO3solution.The CO FE reaches 95.6% at ?0.6 Vvs.RHE.The promotion of CO production by introducing SiNWs into metal catalysts is also confirmed in other metal catalysts including Ag, Ru and Pd.Mechanism study by density functional theory (DFT) reveals that the silicon oxide on the surface of Si inhibits HER.The enhanced CO2RR performance can be attributed to the increased binding interaction to?COOH at the interface of the catalyst.

    The fabrication processes of the catalysts are schematically shown in Fig.S1 (Supporting information) and the raw materials and metal contents are listed in Table S1 (Supporting information).The Au-Si-2 composite was first investigated by X-ray diffraction (XRD) and compared with the pure SiNWs and Au-C.Besides the peaks of Si at 28.4°, 47.3° and 56.1° (JCPDF Card No.27–1402), other peaks for Au-Si-2 (Fig.1a) are confirmed to be the face-centered cubic structure of Au nanoparticles (JCPDF No.04–0784).Scanning electron microscope (SEM) image showed the overall morphology of Au-Si-2 (Fig.S2 in Supporting Information).The nanowire structure was retained.When the carbon black was added, the nanowires are connected by carbon and form a network structure, which increase the conductivity of the catalyst.Au nanoparticles are not obvious at this enlargement factor due to their small size.Transmission electron microscopy (TEM) image in Fig.1b gives a detail for Au-Si-2.Several Au nanoparticles are uniformly dispersed on a single SiNW.The inserted energy dispersive spectroscopy (EDS) spectrum indicated the existence of Au and Si elements.C and O originated from the surface absorbance or sample oxidation.Cu came from the sample support grid.Highresolution TEM enlargement (HRTEM, Fig.1c) shows Au nanoparticles embedded in the SiNWs with lattice spacing of 0.245 nm corresponding to the (111) interplanar distance of cubic Au.The lattice spacing of 0.164 nm belongs to the (311) plane of Si.The intersection angle for the (311) and (?311) faces is 129.5° Highangle annular dark field scanning TEM (HAADF-STEM) image of Au nanoparticles attached to SiNW (Fig.1d) and the corresponding EDS mapping show the elemental distribution of silicon (blue),Au (yellow) and their overlay, respectively, which is in accordance with the EDS spectrum inserted in Fig.1b.

    The X-ray photoelectron spectroscopy (XPS) was applied to research the surface chemical element existence of Au-Si-2.The survey spectrum in Fig.S3a (Supporting information) confirmed that the composite consists of Au and Si elements.C and O elements originated from the surface oxidation and absorption of samples as confirmed by EDS before.The high-resolution Si 2p spectrum was divided into two components (Fig.S3b in Supporting information).The peak located at 99.6 eV was attributed to Si?Si bonds,while the higher binding energy peak at 103.5 eV was assigned to the Si?O peak [31].The high-resolution spectrum of the Au 4f orbital reveals the existence of Au(0) in Fig.S3c (Supporting information) with the binding energy at 84.18 (4f7/2) and 87.88 eV (4f5/2).Two small shoulder peaks located at 85.37 and 87.92 eV belong to the oxidation peak of Au.The strong peak at 533.2 eV in the O 1s spectrum (Fig.S3d in Supporting information) was assigned to the Si?O bond [31].Both oxide peaks are observed in Au and Si elements, which are caused by the oxidation of the sample in the air.

    The specific surface areas of the catalysts are evaluated by Brunauer-Emmett-Teller (BET) method.The surface area of Au-Si-2 is 45.18 m2/g (Fig.1e), larger than that of Au-C (34.17 m2/g).CO2adsorption is one of the key steps in CO2RR, which can be evaluated through the CO2adsorption-desorption isotherms (Fig.1f).The Au-Si catalyst adsorbs more CO2than the Au-C catalyst at room temperature.Large surface area and high CO2adsorption capacity are conductive to improve the performance of CO2RR.

    Next, the electrochemical CO2RR activities of all catalysts were carried out in a two-compartment cell with a standard threeelectrode configuration.The CO2RR performance of Au-Si-2 catalysts was firstly evaluated by linear sweep voltammetry (LSV)in 0.5 mol/L KHCO3solution with saturated N2and CO2respectively (Fig.2a).It can be seen that the current density normalized to the geometric area of the Au-Si-2 electrode in CO2-saturated 0.5 mol/L KHCO3(pH 7.2) is obviously larger than that in N2-saturated 0.5 mol/L KHCO3.For example, the current density is enhanced from 5.1 mA/cm2in N2to 10.6 mA/cm2in CO2at ?0.8 Vvs.RHE.The increased current density is contributed to reduction of CO2.After short time potentiostatic electrolysis, the gas phase products were analyzed by gas chromatography (GC) and the liquid phase products were quantitatively determined by nuclear magnetic resonance (NMR).The main products were only CO and H2while the liquid products are below the detection limits.Trace CO can be detected at ?0.26 Vvs.RHE.It indicates that the catalyst has low onset overpotential of 0.15 V.The products were collected from ?0.3 Vvs.RHE.Fig.2b presents an intuitive histogram for the calculated FEs of CO and H2for the Au-Si-2 at different applied potentials from ?0.3 V to ?1.0 Vvs.RHE.It can be seen that the FEs of CO show a rapidly incremental tendency from ?0.3 V to ?0.6 Vvs.RHE and reach to the maximum value of ~95.6% at a potential of ?0.6 Vvs.RHE.This value is higher than many reported works(see Table S2 in Supporting information).Afterwards, the FEs of CO declined gradually when the applied potential became more negative and the minimum value declines to ~76.1% at the potential of ?1.0 Vvs.RHE.In the potential range from ?0.5 V to ?1.0 V, the catalytic selectivity of Au-Si-2 for CO2RR is higher than that of water electrolysis, indicating a more favorable electrocatalytic CO2RR activity compared to the competing HER reaction.

    Fig.2.(a) LSV curves of Au-Si-2 measured in CO2-saturated (red) and N2-saturated(black) 0.5 mol/L KHCO3 electrolyte, respectively.(b) FE histograms of CO and H2 vs.the applied potential catalyzed by Au-Si-2.(c) FEs of CO at different applied potentials for SiNWs, Au-C and Au-Si catalysts with different Au concentration.(d) Stability performance of Au-Si-2 and Au-C for CO2 reduction operated at potentiostatic potentials of ?0.6 V vs. RHE for 4.5 h.

    The FE of CO for Au-Si-2 is also compared with SiNWs, Au-C and Au-Si nanocomposites with different concentration of Au (Fig.2c and Figs.S4 and S5 in Supporting information).The SiNWs exhibited a negligible CO2RR activity (Fig.S4a) and the main products are H2(Fig.S4b).The catalysts that contained Au all can effectively convert CO2to CO, which means the electrocatalytic activity mostly came from Au.However, the FEs of CO for other catalysts are lower than that of Au-Si-2 at the same tested potentials.The Au-Si-1 and Au-Si-3 both showed similar current-voltage profiles with lower current response for CO2RR than Au-Si-2 (Fig.S5).Different content of Au would affect the ratio of CO and H2products.The selection of CO for Au-Si catalysts increased and then decreased with the metal content.With low Au concentration, the active sites were not enough, while with high Au concentration,they tended to agglomeration, which also decrease the catalytic performance.When SiNWs were completely removed from the catalysts and employed only carbon black as substrate (Au-C), the FE of CO decreased obviously (Fig.2c and Fig.S6 in Supporting information).During the catalyst ink preparation process, carbon black was added in Au-Si-2.The effect of carbon black in the catalyst was also investigated.Au-Si-2 catalyst without carbon black (the detailed preparation method is in Supporting information) was also tested for CO2RR.The FEs of CO at different potentials are a little lower than those of the Au-Si-2 sample with carbon black (Fig.S7 in Supporting information).The addition of carbon black may increase the conductivity of the samples, which is beneficial for the increasement of the CO2RR performance.

    The electrochemically active surface areas (ECSAs) of Au in Au-Si-2 and Au-C were determined by measuring the charge from the reduction peak in the cyclic voltammetry curves and dividing it by the specific charge of one monolayer of Au (390 μC/cm2) [32].The ECSA of Au-Si-2 is 28.9 m2/gAuand that of Au-C is 21.9 m2/gAu(Fig.S8 in Supporting information), indicating that Au-Si-2 exposed more accessible active sites than Au-C.The electrochemical impedance spectroscopy (EIS) spectra for Au-Si-2 and Au-C were explored to investigate the charge-transfer process in CO2reduction (Fig.S9 in Supporting information).The apparent smaller radius for Au-Si-2 relative to Au-C is observed, which may originate from increased conductivity due to connection through SiNWs between Au and carbon black.

    The long-term stability test is one important parameter to evaluate the performance of catalysts.The Au-Si-2 composite was measured at the constant potential of ?0.6 V for 4.5 h and maintain the fluctuated FECOof 92.0% (Fig.2d).The FECOof Au-C showed downward trend after a period of time with the FECOlower than 50%, indicating that the addition of SiNWs improved the stability of the catalyst.This is reasonable for Au nanoparticles are closely attached on the surface of SiNWs and not easy to migrate during durability test.

    In the following control experiments, the LSV curves in CO2-saturated 0.5 mol/L KHCO3electrolyte for Ag-Si, Pd-Si and Ru-Si catalysts were compared with Au-Si-2 (Fig.S10a in Supporting information).The metal contents of Ag, Pd and Ru in each catalyst are close to 20% (Table S1 in Supporting information).All catalysts possess CO2RR performance, and the main products are CO without any liquid products.From Fig.S10a, Au-Si-2 catalyst exhibits larger current density than others, which is appropriately 5.5-, 1.4- and 2.8-fold compared with Ag-Si, Pd-Si and Ru-Si catalysts at ?1.0 V, respectively.The FEs of CO for different metal catalysts (Fig.S10b in Supporting information) showed that the electrocatalytic reduction of CO2is not only related to the ratio of Au in Au-Si but also related to the kind of metals.

    The FEs of CO for metal-Si are compared with those of metal-C catalysts (Figs.3a-c).After the addition of Si, the FEs of CO all increased.The largest FEs of CO for Au-Si, Pd-Si, Ru-Si and Ag-Si(Fig.3d) are 95.6% (?0.6 Vvs.RHE), 54.4% (?0.9 Vvs.RHE), 50.1%(?0.8 Vvs.RHE) and 40.1 (?0.8 Vvs.RHE), 61.2%, 28.2%, 24.6% and 13.3% higher than those of the Au-C, Pd-C, Ru-C and Ag-C, respectively.

    To better understand the reason for the significant performance improvement of the metal-Si catalysts, Tafel analysis was used to research the CO2reduction kinetics of metal-Si and metal-C composites (Figs.3e and f).Tafel plots were plotted according to the logarithm ofjCOand its overpotential.The values of Tafel slope for metal-Si are all lower than that of the corresponding metal-C, respectively, indicating the addition of Si can accelerate the kinetic rate of CO2RR.When the rate-limiting step of CO2to CO is the adsorbed CO2to generate the surface adsorbed CO2??through one single electron transfer process, the theoretical Tafel slope is 118 mV/dec [33].For metal-C catalysts, the Tafel slope is consistent with that theoretical value, suggesting that the rate-limiting step of CO2RR is not changed.In comparison, the Tafel slopes for metal-Si are lower than 118 mV/dec.In particular, the Tafel slope value of Au-Si-2 is 82 mV/dec, showing a trend to the theoretical value of 59 mV/dec, demonstrating that the rate-limiting step is likely to undergo a preequilibration change from the first one electron transfer step to the proton transfer chemical step [34–37].The smaller Tafel slope indicates that the overpotential in the catalytic process is lower, and the Au-Si-2 catalytic has the fastest reaction CO2RR kinetics than other catalysts.

    The addition of Si in the four metals increases the FECOand kinetics processes of CO2RR.Generally speaking, the conversion of CO2to CO on the surface of Au is divided into the following steps(Eqs.1–3) [38]:

    Fig.3.(a-d) FEs of CO comparison of metal-Si and metal-C: (a) Ag-Si and Ag-C; (b) Pd-Si and Pd-C; (c) Ru-Si and Ru-C; (d) summarize of the optimal FEs of CO at optimal applied potentials vs. RHE.(e) Tafel plots of CO2RR by Au-Si-2, Ag-Si, Pd-Si and Ru-Si composites.(f) Tafel plots of CO2 reduction by Au-C, Ag-C, Pd-C and Ru-C composites.

    Fig.4.DFT calculation.(a) The free energy diagram of HER on Au(111) and SiO2/Au(111).(b) The free energy diagram of CO2 reduction to CO on Au(111) and SiO2/Au(111).The yellow balls represent Au, the gray balls represent C, the red balls represent O, the white balls represent H, and the purple balls represent Si.

    The transition from?COOH to?CO is a relatively easy step,while the formation of?COOH and the final CO desorption have a high energy barrier.To further understand the contribution of SiNWs, the DFT calculation is adopted to analyze the potential barrier that needs to be overcome for the reduction of CO2on Au and Au-Si catalysts [39].As confirmed in the XPS results, the Si surface is covered by an amorphous silicon oxide.In the neutral electrolyte, this oxide is retained.So, the interface is simplified as Au on the surface of SiO2.

    The DFT calculations were first conducted to compare the electrocatalytic selectivity and activity for CO2RR on the interfaces of SiO2/Au(111) and Au(111).TheΔGH? value on SiO2/Au(111) is far away from zero compared with that on Au(111), as shown in Fig.4a.According to Sabatier’s principle [34], the HER should be much less active on the SiO2/Au(111) surface.

    As shown in Fig.4b, when SiO2is introduced, the formation of COOH?is energetically much more favorable than that on Au(111).The free energetic difference decreased from 0.68 eV to 0.45 eV,suggesting a strong tendency of the conversion from CO2to CO on the interface of SiO2/Au(111).As Fig.S11 (Supporting information) shows, the intermediate of?COOH forms the adsorption bond on the pure Au(111) surface based on C and Au atoms, while it can form an additional coordination bondviathe oxygen atom in the?COOH group with the Si atom in the SiO2of the SiO2/Au(111)catalyst, leading to the improved bonding strength and stability of?COOH on the SiO2/Au(111) surfaces (Figs.S12 and S13 in Supporting information).

    In summary, four noble metals, including Au, Ag, Ru and Pd,are modified on the surface of SiNWs by using the reductive properties of Si?H bonds and employed as electrocatalysts for CO2RR.Au-Si catalytic system shows the best CO2RR performance among the four metals.The specific surface area and the adsorption of CO2of Au-Si are higher than those of Au-C.When the content of Au is about 20%, the onset CO2RR potential is 0.15 V and the highest FE of CO reaches 95.6% at ?0.6 Vvs.RHE, which is superior to the FE for Au-C (59.3% at ?0.6 Vvs.RHE).The presence of Si can improve the selectivity of the catalysts to CO.The conversion efficiency from CO2to CO for other three precious metals are all improved after the introduction of SiNWs, indicating the universality of this Si-assistant method.By DFT calculation for the Au catalytic system,ΔGH?on SiO2/Au(111) is higher than that on Au(111).The?COOH intermediate is stable on SiO2/Au(111), in favor of the formation of CO.SiNWs make the noble metals uniformly dispersed, increase the surface areas and CO2adsorption capacity,and improve the stability of the catalysts.It also plays a role of cocatalysts, which suppresses HER and promotes CO2RR at the same time.Such a multi-functional support design strategy can be generalized to other catalytic applications.

    Declaration of competing interest

    The authors declare that they have no known competing finan

    cial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported by the National Key Research and Development Program of China (No.2020YFA0406103), National Natural Science Foundation of China (Nos.51902217 and 21771134),National Key Research and Development Program of China(No.2017YFA0204800), National MCF Energy R&D Program (No.2018YFE0306105), the Suzhou Key Laboratory of Functional Nano& Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.034.

    成人毛片a级毛片在线播放| 国产精品精品国产色婷婷| av视频在线观看入口| 久久久国产成人免费| 熟女人妻精品中文字幕| 夜夜躁狠狠躁天天躁| 美女被艹到高潮喷水动态| 久久天躁狠狠躁夜夜2o2o| 国产欧美日韩一区二区精品| 一本久久中文字幕| 一本久久中文字幕| 怎么达到女性高潮| 国产亚洲精品久久久久久毛片| 在线观看免费视频日本深夜| 日本 av在线| 色哟哟·www| 麻豆国产97在线/欧美| 午夜a级毛片| 国产亚洲欧美在线一区二区| 十八禁人妻一区二区| 日本撒尿小便嘘嘘汇集6| 亚洲真实伦在线观看| 网址你懂的国产日韩在线| 又黄又爽又刺激的免费视频.| 精品久久久久久久久av| 婷婷亚洲欧美| 国产av一区在线观看免费| 又爽又黄a免费视频| 美女被艹到高潮喷水动态| 99久久99久久久精品蜜桃| 国产毛片a区久久久久| 国产在线男女| 亚洲一区二区三区不卡视频| 91在线观看av| 午夜亚洲福利在线播放| 欧美色视频一区免费| 蜜桃亚洲精品一区二区三区| 中文字幕av成人在线电影| a级一级毛片免费在线观看| 国产精品嫩草影院av在线观看 | 精品欧美国产一区二区三| 熟妇人妻久久中文字幕3abv| 琪琪午夜伦伦电影理论片6080| 国产一级毛片七仙女欲春2| 好看av亚洲va欧美ⅴa在| 人妻丰满熟妇av一区二区三区| 一个人看视频在线观看www免费| 日本黄色视频三级网站网址| 一进一出抽搐gif免费好疼| 欧美在线黄色| 国产精品一区二区三区四区久久| 九九热线精品视视频播放| 18美女黄网站色大片免费观看| 免费在线观看亚洲国产| 欧美最黄视频在线播放免费| 99久久九九国产精品国产免费| 国产高清视频在线播放一区| 精品国产三级普通话版| 69人妻影院| 免费人成视频x8x8入口观看| 毛片女人毛片| 日韩大尺度精品在线看网址| bbb黄色大片| 亚洲不卡免费看| 757午夜福利合集在线观看| 日韩精品青青久久久久久| 在线免费观看的www视频| 亚洲,欧美精品.| 女人十人毛片免费观看3o分钟| 欧美性感艳星| 精品人妻熟女av久视频| 免费av观看视频| 嫩草影视91久久| 亚州av有码| a在线观看视频网站| 国产精品久久电影中文字幕| 国产毛片a区久久久久| 国产一区二区在线观看日韩| www.www免费av| 高清在线国产一区| 亚洲精品在线美女| 琪琪午夜伦伦电影理论片6080| 精品一区二区三区视频在线| 日日摸夜夜添夜夜添av毛片 | 在线免费观看的www视频| 99riav亚洲国产免费| 丰满人妻熟妇乱又伦精品不卡| 网址你懂的国产日韩在线| 亚洲美女视频黄频| 成年人黄色毛片网站| 男女那种视频在线观看| 日韩欧美 国产精品| 亚洲内射少妇av| 能在线免费观看的黄片| 熟妇人妻久久中文字幕3abv| 男女做爰动态图高潮gif福利片| 色精品久久人妻99蜜桃| 亚洲在线自拍视频| 精品人妻1区二区| 偷拍熟女少妇极品色| 麻豆av噜噜一区二区三区| 特级一级黄色大片| www.色视频.com| 在线观看午夜福利视频| 国产精品电影一区二区三区| av中文乱码字幕在线| 免费大片18禁| 高清在线国产一区| ponron亚洲| 麻豆国产97在线/欧美| 精品熟女少妇八av免费久了| 日韩国内少妇激情av| 午夜福利欧美成人| 亚洲欧美日韩高清专用| 中文资源天堂在线| 热99在线观看视频| 一级作爱视频免费观看| 国产精品99久久久久久久久| 他把我摸到了高潮在线观看| 国产成人av教育| 免费av观看视频| 日韩欧美精品v在线| 嫩草影院新地址| 一卡2卡三卡四卡精品乱码亚洲| 激情在线观看视频在线高清| www.999成人在线观看| av女优亚洲男人天堂| 国产在线男女| 久久亚洲精品不卡| 麻豆成人午夜福利视频| 国产精品99久久久久久久久| 亚洲,欧美精品.| 一级作爱视频免费观看| 国内精品一区二区在线观看| 五月玫瑰六月丁香| 国产精品伦人一区二区| 99视频精品全部免费 在线| 亚洲av美国av| 免费在线观看亚洲国产| 一级黄色大片毛片| 欧美一区二区国产精品久久精品| 亚洲人成网站在线播| 精品不卡国产一区二区三区| 欧美一区二区国产精品久久精品| 内地一区二区视频在线| 免费在线观看影片大全网站| 欧美成人性av电影在线观看| 真实男女啪啪啪动态图| 国产男靠女视频免费网站| 少妇裸体淫交视频免费看高清| 91麻豆av在线| 我的老师免费观看完整版| 亚洲国产欧美人成| 亚洲美女搞黄在线观看 | 99国产精品一区二区三区| 搞女人的毛片| 黄色一级大片看看| 在线a可以看的网站| 少妇高潮的动态图| 99久久精品国产亚洲精品| 国产精品嫩草影院av在线观看 | 免费搜索国产男女视频| 国产成人aa在线观看| 亚洲av不卡在线观看| 99热这里只有是精品50| 内射极品少妇av片p| 亚洲成人免费电影在线观看| 国产午夜精品久久久久久一区二区三区 | 精品99又大又爽又粗少妇毛片 | 久久草成人影院| 校园春色视频在线观看| 国内精品美女久久久久久| 久久久久久大精品| 国产av一区在线观看免费| 国产高潮美女av| 最近视频中文字幕2019在线8| 极品教师在线视频| 日本免费一区二区三区高清不卡| 亚洲精品影视一区二区三区av| 午夜精品一区二区三区免费看| 精品人妻1区二区| 国产精品久久久久久人妻精品电影| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一个人观看的视频www高清免费观看| 欧美成人免费av一区二区三区| 日本黄色视频三级网站网址| 最近中文字幕高清免费大全6 | 中文字幕av在线有码专区| av在线观看视频网站免费| 欧美成人性av电影在线观看| 日日摸夜夜添夜夜添小说| 亚洲精品日韩av片在线观看| 一本久久中文字幕| 日本熟妇午夜| 少妇的逼好多水| 可以在线观看的亚洲视频| 亚洲va日本ⅴa欧美va伊人久久| 色综合亚洲欧美另类图片| 亚洲成人久久爱视频| 91在线观看av| www.999成人在线观看| 日本黄色片子视频| 99视频精品全部免费 在线| 国产亚洲欧美在线一区二区| 亚洲天堂国产精品一区在线| 18禁黄网站禁片免费观看直播| 亚洲,欧美精品.| 桃红色精品国产亚洲av| 啦啦啦韩国在线观看视频| 国产亚洲精品久久久久久毛片| avwww免费| 欧美日韩乱码在线| 成人鲁丝片一二三区免费| 人人妻人人看人人澡| 大型黄色视频在线免费观看| 深夜精品福利| 久久久久久久精品吃奶| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久久成人| 91av网一区二区| 亚洲七黄色美女视频| 亚洲av电影不卡..在线观看| 激情在线观看视频在线高清| 久久这里只有精品中国| 欧美成人一区二区免费高清观看| 精品国产三级普通话版| 国产午夜福利久久久久久| 国产精品日韩av在线免费观看| 国产高清有码在线观看视频| 亚洲男人的天堂狠狠| 国产午夜福利久久久久久| 国产一区二区三区在线臀色熟女| 午夜激情福利司机影院| 中文资源天堂在线| 波多野结衣高清无吗| 国产一区二区激情短视频| 欧美xxxx黑人xx丫x性爽| 国产色爽女视频免费观看| 亚洲精品一区av在线观看| 99久久无色码亚洲精品果冻| 欧美国产日韩亚洲一区| 永久网站在线| 国产一区二区激情短视频| 99热这里只有是精品在线观看 | 久久国产乱子伦精品免费另类| 最近视频中文字幕2019在线8| 欧美日韩福利视频一区二区| 国产精品野战在线观看| 好男人电影高清在线观看| 变态另类丝袜制服| 美女 人体艺术 gogo| 久久久久久久久久成人| 日韩中字成人| 99久久无色码亚洲精品果冻| 又爽又黄a免费视频| 身体一侧抽搐| 露出奶头的视频| 性欧美人与动物交配| 成人高潮视频无遮挡免费网站| 最新中文字幕久久久久| 亚洲精品影视一区二区三区av| 真人做人爱边吃奶动态| 亚洲片人在线观看| 亚洲精品456在线播放app | 波多野结衣高清作品| 99久国产av精品| 成人毛片a级毛片在线播放| 一边摸一边抽搐一进一小说| 欧美激情久久久久久爽电影| 我要搜黄色片| 91在线观看av| 久久久久久大精品| 国产av麻豆久久久久久久| 九九久久精品国产亚洲av麻豆| 中文字幕精品亚洲无线码一区| 日本黄色视频三级网站网址| 97热精品久久久久久| 欧美激情国产日韩精品一区| 噜噜噜噜噜久久久久久91| 国产成人a区在线观看| 亚洲片人在线观看| 欧美另类亚洲清纯唯美| 精品人妻视频免费看| 精品人妻熟女av久视频| 日韩欧美 国产精品| 99riav亚洲国产免费| 欧美激情久久久久久爽电影| а√天堂www在线а√下载| 国产在线男女| 有码 亚洲区| 又爽又黄a免费视频| 午夜福利欧美成人| 性欧美人与动物交配| 亚洲精品亚洲一区二区| 男人和女人高潮做爰伦理| 亚洲经典国产精华液单 | 久久香蕉精品热| 丝袜美腿在线中文| 亚洲国产精品合色在线| 免费大片18禁| 亚洲,欧美,日韩| 床上黄色一级片| 真实男女啪啪啪动态图| 国产精品免费一区二区三区在线| 精品人妻一区二区三区麻豆 | 亚洲av二区三区四区| 一个人免费在线观看的高清视频| 美女被艹到高潮喷水动态| 美女高潮喷水抽搐中文字幕| 99热这里只有是精品50| 五月玫瑰六月丁香| 天堂网av新在线| 国产91精品成人一区二区三区| 精品日产1卡2卡| 国产男靠女视频免费网站| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 亚洲五月婷婷丁香| 亚洲精品在线美女| 精品欧美国产一区二区三| 中文亚洲av片在线观看爽| 最近最新免费中文字幕在线| 国产精品1区2区在线观看.| 欧美日韩乱码在线| 天天一区二区日本电影三级| 免费看美女性在线毛片视频| 欧美激情国产日韩精品一区| 51午夜福利影视在线观看| 好看av亚洲va欧美ⅴa在| 一个人免费在线观看的高清视频| 亚洲午夜理论影院| 嫩草影院精品99| 中文字幕高清在线视频| 成人特级av手机在线观看| 精品国内亚洲2022精品成人| 国产精品三级大全| 丁香六月欧美| 变态另类丝袜制服| 国产在线男女| 亚洲性夜色夜夜综合| 国产伦精品一区二区三区四那| 天堂√8在线中文| av在线老鸭窝| 亚洲av美国av| 中文字幕久久专区| 国产高清视频在线观看网站| 精品国内亚洲2022精品成人| 国产一区二区亚洲精品在线观看| 少妇的逼水好多| 少妇的逼好多水| 看免费av毛片| 精品久久国产蜜桃| 欧美高清成人免费视频www| 麻豆国产97在线/欧美| 日日夜夜操网爽| 免费电影在线观看免费观看| 国产高清三级在线| 久久欧美精品欧美久久欧美| 欧美成人a在线观看| 久久久久免费精品人妻一区二区| 国产亚洲欧美在线一区二区| 在线播放无遮挡| 露出奶头的视频| 18+在线观看网站| 国产一区二区三区在线臀色熟女| 欧美+日韩+精品| 欧美性猛交╳xxx乱大交人| 中文字幕av在线有码专区| 九九热线精品视视频播放| 小蜜桃在线观看免费完整版高清| 露出奶头的视频| 99久久99久久久精品蜜桃| 乱人视频在线观看| 欧美激情国产日韩精品一区| 亚洲aⅴ乱码一区二区在线播放| 成人国产综合亚洲| 亚洲五月天丁香| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久视频播放| 99视频精品全部免费 在线| 嫁个100分男人电影在线观看| 全区人妻精品视频| 久久久国产成人免费| 一区二区三区高清视频在线| 一级黄片播放器| 自拍偷自拍亚洲精品老妇| 麻豆av噜噜一区二区三区| 亚洲乱码一区二区免费版| 夜夜夜夜夜久久久久| 亚洲成人精品中文字幕电影| 如何舔出高潮| 99久久精品热视频| 最近最新中文字幕大全电影3| 在线免费观看的www视频| 精品久久久久久久久久免费视频| 亚洲精品粉嫩美女一区| 国产亚洲精品综合一区在线观看| 欧美一区二区亚洲| 成人高潮视频无遮挡免费网站| 丝袜美腿在线中文| 成人特级黄色片久久久久久久| 欧美成人一区二区免费高清观看| 不卡一级毛片| 国产成人av教育| 免费看a级黄色片| 久久草成人影院| avwww免费| 尤物成人国产欧美一区二区三区| 久久中文看片网| 久久久精品大字幕| 一个人免费在线观看的高清视频| 日本熟妇午夜| 午夜老司机福利剧场| 999久久久精品免费观看国产| 好男人在线观看高清免费视频| 国内少妇人妻偷人精品xxx网站| 国产精品美女特级片免费视频播放器| 午夜福利18| 中出人妻视频一区二区| 国产高清激情床上av| 尤物成人国产欧美一区二区三区| 哪里可以看免费的av片| 久久久久免费精品人妻一区二区| 亚洲av熟女| 国产白丝娇喘喷水9色精品| 久久午夜福利片| 中文亚洲av片在线观看爽| 欧美色视频一区免费| 色哟哟哟哟哟哟| 午夜激情欧美在线| 婷婷色综合大香蕉| 天堂影院成人在线观看| 久久精品影院6| 在线国产一区二区在线| 国产精品自产拍在线观看55亚洲| 日韩国内少妇激情av| 欧美成人a在线观看| 欧美三级亚洲精品| x7x7x7水蜜桃| www日本黄色视频网| 99久久成人亚洲精品观看| 国产高清视频在线观看网站| 色综合婷婷激情| 精品免费久久久久久久清纯| 国产视频一区二区在线看| 久久久国产成人免费| 国产av在哪里看| 精品日产1卡2卡| 国产91精品成人一区二区三区| 亚洲三级黄色毛片| 一级毛片久久久久久久久女| 欧美最新免费一区二区三区 | 国产黄片美女视频| 国产欧美日韩一区二区精品| 好男人在线观看高清免费视频| 不卡一级毛片| 国产亚洲欧美98| 一a级毛片在线观看| 国产色爽女视频免费观看| 国产一区二区激情短视频| 亚洲,欧美,日韩| 精品久久久久久久末码| 欧美日韩黄片免| 在线免费观看不下载黄p国产 | 两个人视频免费观看高清| 在线观看66精品国产| 十八禁人妻一区二区| 日本免费一区二区三区高清不卡| 如何舔出高潮| 日本精品一区二区三区蜜桃| 免费av观看视频| 色播亚洲综合网| 日韩中文字幕欧美一区二区| 在线免费观看不下载黄p国产 | 亚洲精品影视一区二区三区av| 不卡一级毛片| 欧美3d第一页| 91麻豆精品激情在线观看国产| 国产伦精品一区二区三区四那| 男女之事视频高清在线观看| 夜夜看夜夜爽夜夜摸| 日韩 亚洲 欧美在线| 搡老岳熟女国产| 九色国产91popny在线| 色哟哟·www| 国产免费男女视频| 一本久久中文字幕| av中文乱码字幕在线| 精品99又大又爽又粗少妇毛片 | 国产亚洲精品久久久com| 亚洲 国产 在线| 成人亚洲精品av一区二区| 深夜精品福利| 国产伦一二天堂av在线观看| 一区二区三区免费毛片| 嫩草影视91久久| 亚洲久久久久久中文字幕| 五月玫瑰六月丁香| 内射极品少妇av片p| 精品久久久久久久末码| 91av网一区二区| 久久人妻av系列| 国产精品自产拍在线观看55亚洲| 变态另类成人亚洲欧美熟女| 狂野欧美白嫩少妇大欣赏| 国产一区二区在线观看日韩| 久久人妻av系列| 听说在线观看完整版免费高清| 成年版毛片免费区| 精品熟女少妇八av免费久了| 日韩中字成人| 欧美潮喷喷水| 欧美成人性av电影在线观看| 1000部很黄的大片| 亚洲av不卡在线观看| 亚洲av成人av| 国内精品一区二区在线观看| 99在线视频只有这里精品首页| 日本与韩国留学比较| 又爽又黄a免费视频| 淫秽高清视频在线观看| 一级黄色大片毛片| 亚洲欧美激情综合另类| 久久久成人免费电影| 亚洲中文日韩欧美视频| 欧美xxxx黑人xx丫x性爽| 亚洲av成人不卡在线观看播放网| 精品久久久久久成人av| 琪琪午夜伦伦电影理论片6080| 白带黄色成豆腐渣| 简卡轻食公司| 色噜噜av男人的天堂激情| 国产精品电影一区二区三区| av视频在线观看入口| 99久久久亚洲精品蜜臀av| 99久国产av精品| 免费高清视频大片| 黄色一级大片看看| 一进一出抽搐动态| 日本 av在线| 美女被艹到高潮喷水动态| 一区二区三区四区激情视频 | 中出人妻视频一区二区| 长腿黑丝高跟| 亚洲一区二区三区不卡视频| 成年人黄色毛片网站| 午夜福利18| 久久久精品大字幕| 超碰av人人做人人爽久久| 亚洲成人免费电影在线观看| 首页视频小说图片口味搜索| 国产91精品成人一区二区三区| 99久久99久久久精品蜜桃| 一本久久中文字幕| 亚洲美女黄片视频| 亚洲欧美日韩高清在线视频| 成人午夜高清在线视频| 国产一级毛片七仙女欲春2| 国产精品伦人一区二区| 亚洲熟妇熟女久久| 国产精品一区二区三区四区免费观看 | 色吧在线观看| 内射极品少妇av片p| 99在线视频只有这里精品首页| 久久精品久久久久久噜噜老黄 | 自拍偷自拍亚洲精品老妇| 男女那种视频在线观看| 欧美成人性av电影在线观看| 国产乱人视频| 一本精品99久久精品77| 乱人视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人久久爱视频| 免费av毛片视频| 91在线观看av| 一本一本综合久久| 精品国产三级普通话版| 欧美日本视频| 俺也久久电影网| 亚洲成人中文字幕在线播放| 免费一级毛片在线播放高清视频| 欧美成人一区二区免费高清观看| 亚洲成人精品中文字幕电影| 国产精品电影一区二区三区| 最近视频中文字幕2019在线8| 成人国产综合亚洲| 久久性视频一级片| 两性午夜刺激爽爽歪歪视频在线观看| 久久人人精品亚洲av| 成年女人毛片免费观看观看9| 热99在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲激情在线av| 免费观看精品视频网站| 淫秽高清视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 在线观看午夜福利视频| 91久久精品电影网| 精品无人区乱码1区二区| 欧美在线黄色| 啦啦啦观看免费观看视频高清| a级毛片a级免费在线| 亚洲无线观看免费| 久久天躁狠狠躁夜夜2o2o| 我的老师免费观看完整版| 美女高潮的动态| 亚洲激情在线av| 中文字幕av在线有码专区| 亚洲欧美日韩卡通动漫| 成人特级黄色片久久久久久久| 国产麻豆成人av免费视频| 日韩成人在线观看一区二区三区| 国内久久婷婷六月综合欲色啪| 一二三四社区在线视频社区8| 在线观看舔阴道视频|