• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boosting electrocatalytic selectivity in carbon dioxide reduction: The fundamental role of dispersing gold nanoparticles on silicon nanowires

    2022-09-15 03:11:20FnLioXingFnHuixinShiQingLiMengjieWenxingZhuHipingLinYouyongLiMingwngSho
    Chinese Chemical Letters 2022年9期

    Fn Lio, Xing Fn, Huixin Shi, Qing Li, Mengjie M, Wenxing Zhu,Hiping Lin,1,?, Youyong Li, Mingwng Sho,?

    a Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University,Suzhou 215123, China

    b School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China

    ABSTRACT Carbon dioxide electrochemical reduction (CO2RR) has been recognized as an efficient way to mitigate CO2 emissions and alleviate the pressure on global warming and associated environmental consequences.Gold (Au) is reported as stable and active electrocatalysts to convert CO2 to CO at low overpotential due to its moderate adsorption strength of ?COOH and ?CO.The request for improved catalytic performance,however, is motivated by current unsatisfied catalytic selectivity because of the side hydrogen evolution reaction.In this context, the design of Au based binary catalysts that can boost CO selectivity is of great interest.In the present work, we report that Au nanoparticles can be feasibly dispersed and anchored on silicon nanowires to form Au-Si binary nanomaterials.The Au-Si may stably drive CO2RR with a CO Faraday efficiency of 95.6% at ?0.6 V vs. RHE in 0.5 mol/L KHCO3 solution.Such selectivity outperforms Au particles by up to 61%.Controlled experiments illustrate that such catalytic enhancement can chiefly be ascribed to electronic effects of binary catalysts.Theoretical calculations reveal that spontaneously produced silicon oxide may not only inhibit hydrogen evolution reaction, but also stabilize the key intermediate ?COOH in CO formation.

    Keywords:Gold nanoparticles Silicon nanowires Electrocatalysis Carbon dioxide reduction Noble metals

    There is an ever-increasing demand to reduce atmospheric CO2concentration due to the greenhouse effect resulting from increasing use of fossil fuels [1–4].It is an attractive strategy to convert CO2into value-added fuels through electrochemical reduction because of mild operating conditions and its potential integration with the renewable electricity intermittently generated from solar or wind energy [5–11].

    Among various electrocatalysts for CO2electrochemical reduction (CO2RR), gold (Au) shows nice activity in converting CO2into CO, a fundamental chemical building block for other carbon products [12], due to weak binding interactions between Au and CO[13,14].Unfortunately, CO2RR on Au nanoparticles suffer from declining stability and selectivity with increasing overpotential owing to the competing hydrogen evolution reaction (HER).A number of studies demonstrate that better catalytic performances can be achieved by adjusting the size of Au nanoparticles, tuning crystallographic orientations, and producing multicomponent catalysts[15–19].Despite successfully design and synthesis of catalysts, the selectivity issue remains a longstanding challenge that preclude further considerations of Au for practical CO2RR applications.

    One strategy to alleviate this challenge is to disperse Au on suitable substrates that can effectively modulate the electronic structures (known as the electronic effect) and consequently the interactions with key reaction intermediates, as we have learned from previous electrocatalysis [20–23].For example, Gonget al.loaded Au on CeOxnanosheets.The Ce3+promotes the activation of CO2and the formation of?COOH [24].The reduced graphene oxide supported Au nanoparticles delivers high Au-specific mass activities and good Faradaic efficiency (FE) for the CO2-to-CO conversion at moderate overpotentials [25].Despite the encouraging performance gains, the fabrication of these catalysts often needs extra reduction process, which increase the operational complexity and decrease the tightly contact of metal to the substates.

    Fig.1.Phase and morphology characterization of Au-Si-2.(a) XRD patterns of Au-Si-2, SiNW and Au-C.(b) TEM image of Au-Si-2, insert is the EDS spectrum.(c)HRTEM image of an Au nanoparticle on SiNW, showing the lattice spacing of Au and Si.(d) HAADF-STEM image of Au-Si-2, and the corresponding EDX mapping of Si (blue), Au (yellow), and overlay.(e) N2 adsorption-desorption isotherms and (f)CO2 adsorption-desorption isotherms for Au-Si-2 and Au-C.

    Compared with metal oxides and carbon materials, silicon is an outstanding multifunctional supporting material which offers not only the electronic effect, but also structural engineering of metallic electrocatalysts at the nanoscale, for example, enhancing the electrochemical surface areas or creating abundant undercoordinated sites [26].In our previous works, we observed that silicon can directly fix CO2from the atmosphere [27].When the noble metals such as Pt and Ir are cooperated with silicon nanowires(SiNWs), the nanocomposites are excellent HER electrocatalysts[28,29].The presence of silicon can change thedband center of noble metals, which finally regulate the hydrogen adsorption energy closer to zero and facilitate the production rate of hydrogen[30].To the best of our knowledge, there are very few successful demonstrations of using Si as substrates to design CO2RR catalysts.

    In this work, we report the rational synthesis of uniformly dispersed Au nanoparticles on SiNWsviaa feasiblein-situreduction method.A layer of silicon oxide is formed when the Au-Si catalysts are exposed to the atmosphere.Subsequently, electrocatalytic studies show that Au-Si with Au content of about 20 wt% can drive CO2RR with an onset overpotential of 0.15 V in the 0.5 mol/L KHCO3solution.The CO FE reaches 95.6% at ?0.6 Vvs.RHE.The promotion of CO production by introducing SiNWs into metal catalysts is also confirmed in other metal catalysts including Ag, Ru and Pd.Mechanism study by density functional theory (DFT) reveals that the silicon oxide on the surface of Si inhibits HER.The enhanced CO2RR performance can be attributed to the increased binding interaction to?COOH at the interface of the catalyst.

    The fabrication processes of the catalysts are schematically shown in Fig.S1 (Supporting information) and the raw materials and metal contents are listed in Table S1 (Supporting information).The Au-Si-2 composite was first investigated by X-ray diffraction (XRD) and compared with the pure SiNWs and Au-C.Besides the peaks of Si at 28.4°, 47.3° and 56.1° (JCPDF Card No.27–1402), other peaks for Au-Si-2 (Fig.1a) are confirmed to be the face-centered cubic structure of Au nanoparticles (JCPDF No.04–0784).Scanning electron microscope (SEM) image showed the overall morphology of Au-Si-2 (Fig.S2 in Supporting Information).The nanowire structure was retained.When the carbon black was added, the nanowires are connected by carbon and form a network structure, which increase the conductivity of the catalyst.Au nanoparticles are not obvious at this enlargement factor due to their small size.Transmission electron microscopy (TEM) image in Fig.1b gives a detail for Au-Si-2.Several Au nanoparticles are uniformly dispersed on a single SiNW.The inserted energy dispersive spectroscopy (EDS) spectrum indicated the existence of Au and Si elements.C and O originated from the surface absorbance or sample oxidation.Cu came from the sample support grid.Highresolution TEM enlargement (HRTEM, Fig.1c) shows Au nanoparticles embedded in the SiNWs with lattice spacing of 0.245 nm corresponding to the (111) interplanar distance of cubic Au.The lattice spacing of 0.164 nm belongs to the (311) plane of Si.The intersection angle for the (311) and (?311) faces is 129.5° Highangle annular dark field scanning TEM (HAADF-STEM) image of Au nanoparticles attached to SiNW (Fig.1d) and the corresponding EDS mapping show the elemental distribution of silicon (blue),Au (yellow) and their overlay, respectively, which is in accordance with the EDS spectrum inserted in Fig.1b.

    The X-ray photoelectron spectroscopy (XPS) was applied to research the surface chemical element existence of Au-Si-2.The survey spectrum in Fig.S3a (Supporting information) confirmed that the composite consists of Au and Si elements.C and O elements originated from the surface oxidation and absorption of samples as confirmed by EDS before.The high-resolution Si 2p spectrum was divided into two components (Fig.S3b in Supporting information).The peak located at 99.6 eV was attributed to Si?Si bonds,while the higher binding energy peak at 103.5 eV was assigned to the Si?O peak [31].The high-resolution spectrum of the Au 4f orbital reveals the existence of Au(0) in Fig.S3c (Supporting information) with the binding energy at 84.18 (4f7/2) and 87.88 eV (4f5/2).Two small shoulder peaks located at 85.37 and 87.92 eV belong to the oxidation peak of Au.The strong peak at 533.2 eV in the O 1s spectrum (Fig.S3d in Supporting information) was assigned to the Si?O bond [31].Both oxide peaks are observed in Au and Si elements, which are caused by the oxidation of the sample in the air.

    The specific surface areas of the catalysts are evaluated by Brunauer-Emmett-Teller (BET) method.The surface area of Au-Si-2 is 45.18 m2/g (Fig.1e), larger than that of Au-C (34.17 m2/g).CO2adsorption is one of the key steps in CO2RR, which can be evaluated through the CO2adsorption-desorption isotherms (Fig.1f).The Au-Si catalyst adsorbs more CO2than the Au-C catalyst at room temperature.Large surface area and high CO2adsorption capacity are conductive to improve the performance of CO2RR.

    Next, the electrochemical CO2RR activities of all catalysts were carried out in a two-compartment cell with a standard threeelectrode configuration.The CO2RR performance of Au-Si-2 catalysts was firstly evaluated by linear sweep voltammetry (LSV)in 0.5 mol/L KHCO3solution with saturated N2and CO2respectively (Fig.2a).It can be seen that the current density normalized to the geometric area of the Au-Si-2 electrode in CO2-saturated 0.5 mol/L KHCO3(pH 7.2) is obviously larger than that in N2-saturated 0.5 mol/L KHCO3.For example, the current density is enhanced from 5.1 mA/cm2in N2to 10.6 mA/cm2in CO2at ?0.8 Vvs.RHE.The increased current density is contributed to reduction of CO2.After short time potentiostatic electrolysis, the gas phase products were analyzed by gas chromatography (GC) and the liquid phase products were quantitatively determined by nuclear magnetic resonance (NMR).The main products were only CO and H2while the liquid products are below the detection limits.Trace CO can be detected at ?0.26 Vvs.RHE.It indicates that the catalyst has low onset overpotential of 0.15 V.The products were collected from ?0.3 Vvs.RHE.Fig.2b presents an intuitive histogram for the calculated FEs of CO and H2for the Au-Si-2 at different applied potentials from ?0.3 V to ?1.0 Vvs.RHE.It can be seen that the FEs of CO show a rapidly incremental tendency from ?0.3 V to ?0.6 Vvs.RHE and reach to the maximum value of ~95.6% at a potential of ?0.6 Vvs.RHE.This value is higher than many reported works(see Table S2 in Supporting information).Afterwards, the FEs of CO declined gradually when the applied potential became more negative and the minimum value declines to ~76.1% at the potential of ?1.0 Vvs.RHE.In the potential range from ?0.5 V to ?1.0 V, the catalytic selectivity of Au-Si-2 for CO2RR is higher than that of water electrolysis, indicating a more favorable electrocatalytic CO2RR activity compared to the competing HER reaction.

    Fig.2.(a) LSV curves of Au-Si-2 measured in CO2-saturated (red) and N2-saturated(black) 0.5 mol/L KHCO3 electrolyte, respectively.(b) FE histograms of CO and H2 vs.the applied potential catalyzed by Au-Si-2.(c) FEs of CO at different applied potentials for SiNWs, Au-C and Au-Si catalysts with different Au concentration.(d) Stability performance of Au-Si-2 and Au-C for CO2 reduction operated at potentiostatic potentials of ?0.6 V vs. RHE for 4.5 h.

    The FE of CO for Au-Si-2 is also compared with SiNWs, Au-C and Au-Si nanocomposites with different concentration of Au (Fig.2c and Figs.S4 and S5 in Supporting information).The SiNWs exhibited a negligible CO2RR activity (Fig.S4a) and the main products are H2(Fig.S4b).The catalysts that contained Au all can effectively convert CO2to CO, which means the electrocatalytic activity mostly came from Au.However, the FEs of CO for other catalysts are lower than that of Au-Si-2 at the same tested potentials.The Au-Si-1 and Au-Si-3 both showed similar current-voltage profiles with lower current response for CO2RR than Au-Si-2 (Fig.S5).Different content of Au would affect the ratio of CO and H2products.The selection of CO for Au-Si catalysts increased and then decreased with the metal content.With low Au concentration, the active sites were not enough, while with high Au concentration,they tended to agglomeration, which also decrease the catalytic performance.When SiNWs were completely removed from the catalysts and employed only carbon black as substrate (Au-C), the FE of CO decreased obviously (Fig.2c and Fig.S6 in Supporting information).During the catalyst ink preparation process, carbon black was added in Au-Si-2.The effect of carbon black in the catalyst was also investigated.Au-Si-2 catalyst without carbon black (the detailed preparation method is in Supporting information) was also tested for CO2RR.The FEs of CO at different potentials are a little lower than those of the Au-Si-2 sample with carbon black (Fig.S7 in Supporting information).The addition of carbon black may increase the conductivity of the samples, which is beneficial for the increasement of the CO2RR performance.

    The electrochemically active surface areas (ECSAs) of Au in Au-Si-2 and Au-C were determined by measuring the charge from the reduction peak in the cyclic voltammetry curves and dividing it by the specific charge of one monolayer of Au (390 μC/cm2) [32].The ECSA of Au-Si-2 is 28.9 m2/gAuand that of Au-C is 21.9 m2/gAu(Fig.S8 in Supporting information), indicating that Au-Si-2 exposed more accessible active sites than Au-C.The electrochemical impedance spectroscopy (EIS) spectra for Au-Si-2 and Au-C were explored to investigate the charge-transfer process in CO2reduction (Fig.S9 in Supporting information).The apparent smaller radius for Au-Si-2 relative to Au-C is observed, which may originate from increased conductivity due to connection through SiNWs between Au and carbon black.

    The long-term stability test is one important parameter to evaluate the performance of catalysts.The Au-Si-2 composite was measured at the constant potential of ?0.6 V for 4.5 h and maintain the fluctuated FECOof 92.0% (Fig.2d).The FECOof Au-C showed downward trend after a period of time with the FECOlower than 50%, indicating that the addition of SiNWs improved the stability of the catalyst.This is reasonable for Au nanoparticles are closely attached on the surface of SiNWs and not easy to migrate during durability test.

    In the following control experiments, the LSV curves in CO2-saturated 0.5 mol/L KHCO3electrolyte for Ag-Si, Pd-Si and Ru-Si catalysts were compared with Au-Si-2 (Fig.S10a in Supporting information).The metal contents of Ag, Pd and Ru in each catalyst are close to 20% (Table S1 in Supporting information).All catalysts possess CO2RR performance, and the main products are CO without any liquid products.From Fig.S10a, Au-Si-2 catalyst exhibits larger current density than others, which is appropriately 5.5-, 1.4- and 2.8-fold compared with Ag-Si, Pd-Si and Ru-Si catalysts at ?1.0 V, respectively.The FEs of CO for different metal catalysts (Fig.S10b in Supporting information) showed that the electrocatalytic reduction of CO2is not only related to the ratio of Au in Au-Si but also related to the kind of metals.

    The FEs of CO for metal-Si are compared with those of metal-C catalysts (Figs.3a-c).After the addition of Si, the FEs of CO all increased.The largest FEs of CO for Au-Si, Pd-Si, Ru-Si and Ag-Si(Fig.3d) are 95.6% (?0.6 Vvs.RHE), 54.4% (?0.9 Vvs.RHE), 50.1%(?0.8 Vvs.RHE) and 40.1 (?0.8 Vvs.RHE), 61.2%, 28.2%, 24.6% and 13.3% higher than those of the Au-C, Pd-C, Ru-C and Ag-C, respectively.

    To better understand the reason for the significant performance improvement of the metal-Si catalysts, Tafel analysis was used to research the CO2reduction kinetics of metal-Si and metal-C composites (Figs.3e and f).Tafel plots were plotted according to the logarithm ofjCOand its overpotential.The values of Tafel slope for metal-Si are all lower than that of the corresponding metal-C, respectively, indicating the addition of Si can accelerate the kinetic rate of CO2RR.When the rate-limiting step of CO2to CO is the adsorbed CO2to generate the surface adsorbed CO2??through one single electron transfer process, the theoretical Tafel slope is 118 mV/dec [33].For metal-C catalysts, the Tafel slope is consistent with that theoretical value, suggesting that the rate-limiting step of CO2RR is not changed.In comparison, the Tafel slopes for metal-Si are lower than 118 mV/dec.In particular, the Tafel slope value of Au-Si-2 is 82 mV/dec, showing a trend to the theoretical value of 59 mV/dec, demonstrating that the rate-limiting step is likely to undergo a preequilibration change from the first one electron transfer step to the proton transfer chemical step [34–37].The smaller Tafel slope indicates that the overpotential in the catalytic process is lower, and the Au-Si-2 catalytic has the fastest reaction CO2RR kinetics than other catalysts.

    The addition of Si in the four metals increases the FECOand kinetics processes of CO2RR.Generally speaking, the conversion of CO2to CO on the surface of Au is divided into the following steps(Eqs.1–3) [38]:

    Fig.3.(a-d) FEs of CO comparison of metal-Si and metal-C: (a) Ag-Si and Ag-C; (b) Pd-Si and Pd-C; (c) Ru-Si and Ru-C; (d) summarize of the optimal FEs of CO at optimal applied potentials vs. RHE.(e) Tafel plots of CO2RR by Au-Si-2, Ag-Si, Pd-Si and Ru-Si composites.(f) Tafel plots of CO2 reduction by Au-C, Ag-C, Pd-C and Ru-C composites.

    Fig.4.DFT calculation.(a) The free energy diagram of HER on Au(111) and SiO2/Au(111).(b) The free energy diagram of CO2 reduction to CO on Au(111) and SiO2/Au(111).The yellow balls represent Au, the gray balls represent C, the red balls represent O, the white balls represent H, and the purple balls represent Si.

    The transition from?COOH to?CO is a relatively easy step,while the formation of?COOH and the final CO desorption have a high energy barrier.To further understand the contribution of SiNWs, the DFT calculation is adopted to analyze the potential barrier that needs to be overcome for the reduction of CO2on Au and Au-Si catalysts [39].As confirmed in the XPS results, the Si surface is covered by an amorphous silicon oxide.In the neutral electrolyte, this oxide is retained.So, the interface is simplified as Au on the surface of SiO2.

    The DFT calculations were first conducted to compare the electrocatalytic selectivity and activity for CO2RR on the interfaces of SiO2/Au(111) and Au(111).TheΔGH? value on SiO2/Au(111) is far away from zero compared with that on Au(111), as shown in Fig.4a.According to Sabatier’s principle [34], the HER should be much less active on the SiO2/Au(111) surface.

    As shown in Fig.4b, when SiO2is introduced, the formation of COOH?is energetically much more favorable than that on Au(111).The free energetic difference decreased from 0.68 eV to 0.45 eV,suggesting a strong tendency of the conversion from CO2to CO on the interface of SiO2/Au(111).As Fig.S11 (Supporting information) shows, the intermediate of?COOH forms the adsorption bond on the pure Au(111) surface based on C and Au atoms, while it can form an additional coordination bondviathe oxygen atom in the?COOH group with the Si atom in the SiO2of the SiO2/Au(111)catalyst, leading to the improved bonding strength and stability of?COOH on the SiO2/Au(111) surfaces (Figs.S12 and S13 in Supporting information).

    In summary, four noble metals, including Au, Ag, Ru and Pd,are modified on the surface of SiNWs by using the reductive properties of Si?H bonds and employed as electrocatalysts for CO2RR.Au-Si catalytic system shows the best CO2RR performance among the four metals.The specific surface area and the adsorption of CO2of Au-Si are higher than those of Au-C.When the content of Au is about 20%, the onset CO2RR potential is 0.15 V and the highest FE of CO reaches 95.6% at ?0.6 Vvs.RHE, which is superior to the FE for Au-C (59.3% at ?0.6 Vvs.RHE).The presence of Si can improve the selectivity of the catalysts to CO.The conversion efficiency from CO2to CO for other three precious metals are all improved after the introduction of SiNWs, indicating the universality of this Si-assistant method.By DFT calculation for the Au catalytic system,ΔGH?on SiO2/Au(111) is higher than that on Au(111).The?COOH intermediate is stable on SiO2/Au(111), in favor of the formation of CO.SiNWs make the noble metals uniformly dispersed, increase the surface areas and CO2adsorption capacity,and improve the stability of the catalysts.It also plays a role of cocatalysts, which suppresses HER and promotes CO2RR at the same time.Such a multi-functional support design strategy can be generalized to other catalytic applications.

    Declaration of competing interest

    The authors declare that they have no known competing finan

    cial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported by the National Key Research and Development Program of China (No.2020YFA0406103), National Natural Science Foundation of China (Nos.51902217 and 21771134),National Key Research and Development Program of China(No.2017YFA0204800), National MCF Energy R&D Program (No.2018YFE0306105), the Suzhou Key Laboratory of Functional Nano& Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.034.

    免费观看在线日韩| 日韩中文字幕欧美一区二区| 国产高潮美女av| 国产蜜桃级精品一区二区三区| 日本免费a在线| 成人av在线播放网站| 黄色丝袜av网址大全| 在线国产一区二区在线| 人人妻,人人澡人人爽秒播| 亚洲自偷自拍三级| 性插视频无遮挡在线免费观看| 国产真实乱freesex| 十八禁国产超污无遮挡网站| 久久精品91蜜桃| www.色视频.com| 成人午夜高清在线视频| 亚洲av不卡在线观看| 欧美日本视频| 国产精品无大码| 久久久久久大精品| 久久精品国产亚洲网站| 尾随美女入室| 搡老岳熟女国产| 一级毛片久久久久久久久女| 老司机午夜福利在线观看视频| 日韩在线高清观看一区二区三区 | 狠狠狠狠99中文字幕| 麻豆精品久久久久久蜜桃| 国产av麻豆久久久久久久| 最好的美女福利视频网| 国产精品爽爽va在线观看网站| 日韩高清综合在线| 精品一区二区三区av网在线观看| 国内少妇人妻偷人精品xxx网站| 国产av不卡久久| 成年人黄色毛片网站| 国产 一区 欧美 日韩| .国产精品久久| 国产男靠女视频免费网站| 亚洲国产欧美人成| 午夜精品在线福利| 免费人成在线观看视频色| 日本成人三级电影网站| 国产精品久久久久久精品电影| 久久精品综合一区二区三区| 夜夜夜夜夜久久久久| 国产精品一区二区免费欧美| 老司机午夜福利在线观看视频| 极品教师在线视频| 黄色一级大片看看| 久久精品久久久久久噜噜老黄 | 亚洲色图av天堂| 成人三级黄色视频| 日日干狠狠操夜夜爽| 国产亚洲欧美98| 国产精品人妻久久久久久| 久久热精品热| 舔av片在线| 国产成人av教育| 中文字幕久久专区| 日韩一本色道免费dvd| АⅤ资源中文在线天堂| 午夜爱爱视频在线播放| 人人妻人人看人人澡| 老熟妇仑乱视频hdxx| 久久人人爽人人爽人人片va| 三级毛片av免费| 窝窝影院91人妻| 一进一出抽搐gif免费好疼| 国产精品免费一区二区三区在线| 国产精品嫩草影院av在线观看 | 少妇被粗大猛烈的视频| 亚洲精华国产精华精| 如何舔出高潮| 亚洲经典国产精华液单| 97超视频在线观看视频| 久99久视频精品免费| 欧美最黄视频在线播放免费| 中文亚洲av片在线观看爽| 色综合亚洲欧美另类图片| 99国产精品一区二区蜜桃av| 日韩欧美在线二视频| 国产毛片a区久久久久| 国产一区二区在线观看日韩| 午夜免费激情av| 欧美国产日韩亚洲一区| 国产乱人伦免费视频| 久久婷婷人人爽人人干人人爱| 69av精品久久久久久| 91精品国产九色| 搞女人的毛片| 欧美bdsm另类| 两个人视频免费观看高清| 色视频www国产| 亚洲国产日韩欧美精品在线观看| 深夜a级毛片| 天美传媒精品一区二区| av黄色大香蕉| 中文亚洲av片在线观看爽| 国产成年人精品一区二区| 日韩欧美精品免费久久| 尤物成人国产欧美一区二区三区| .国产精品久久| 精品一区二区免费观看| 男人的好看免费观看在线视频| 99久久成人亚洲精品观看| 一个人看的www免费观看视频| 久久这里只有精品中国| 国产精品嫩草影院av在线观看 | 黄片wwwwww| 国产高清有码在线观看视频| 日本三级黄在线观看| 亚洲精品一卡2卡三卡4卡5卡| 九九久久精品国产亚洲av麻豆| 性插视频无遮挡在线免费观看| 国内久久婷婷六月综合欲色啪| 成人高潮视频无遮挡免费网站| 亚洲国产精品sss在线观看| 欧美激情在线99| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三区视频在线观看免费| 淫秽高清视频在线观看| 一级av片app| 日日摸夜夜添夜夜添av毛片 | 国产综合懂色| 国产乱人视频| 一区二区三区四区激情视频 | 美女高潮的动态| 久久久久久久久久成人| 国产蜜桃级精品一区二区三区| 日韩高清综合在线| 午夜免费男女啪啪视频观看 | 午夜亚洲福利在线播放| 国产精品永久免费网站| 国产高清视频在线播放一区| 免费看美女性在线毛片视频| 亚洲天堂国产精品一区在线| 成人av一区二区三区在线看| 国内毛片毛片毛片毛片毛片| 在线播放国产精品三级| 国产爱豆传媒在线观看| 一夜夜www| 亚洲久久久久久中文字幕| av天堂中文字幕网| 丰满乱子伦码专区| 亚洲一区高清亚洲精品| 亚洲人成网站在线播放欧美日韩| 久久久久久国产a免费观看| 日本撒尿小便嘘嘘汇集6| 特级一级黄色大片| 亚州av有码| 国产人妻一区二区三区在| 赤兔流量卡办理| 最好的美女福利视频网| 99riav亚洲国产免费| 黄色欧美视频在线观看| 深夜a级毛片| 国产精品久久久久久av不卡| 天堂网av新在线| 亚洲成人精品中文字幕电影| 亚洲aⅴ乱码一区二区在线播放| 精品人妻一区二区三区麻豆 | 午夜a级毛片| 中亚洲国语对白在线视频| 国产综合懂色| 999久久久精品免费观看国产| 成人毛片a级毛片在线播放| 十八禁网站免费在线| 热99re8久久精品国产| 韩国av一区二区三区四区| 日本色播在线视频| 亚洲av熟女| 别揉我奶头 嗯啊视频| av.在线天堂| 狂野欧美激情性xxxx在线观看| 夜夜夜夜夜久久久久| 亚洲av二区三区四区| 88av欧美| 国产亚洲欧美98| 国产精品98久久久久久宅男小说| 深夜精品福利| 91精品国产九色| 不卡一级毛片| 久久久久久久精品吃奶| 成人一区二区视频在线观看| 亚洲精品成人久久久久久| 日韩欧美精品免费久久| 中文字幕av在线有码专区| 热99在线观看视频| 午夜激情福利司机影院| 亚洲专区国产一区二区| a级毛片a级免费在线| 亚洲人成网站在线播| 欧美三级亚洲精品| 国产高清有码在线观看视频| 看片在线看免费视频| 日韩精品有码人妻一区| 女人十人毛片免费观看3o分钟| 午夜爱爱视频在线播放| 久久久久久久久久久丰满 | 俄罗斯特黄特色一大片| 99热这里只有是精品50| 美女免费视频网站| 可以在线观看的亚洲视频| 一个人看视频在线观看www免费| 亚洲综合色惰| 一进一出抽搐动态| 全区人妻精品视频| 中文字幕熟女人妻在线| 久久久精品大字幕| 日韩精品有码人妻一区| 97超级碰碰碰精品色视频在线观看| 婷婷亚洲欧美| 露出奶头的视频| 日本三级黄在线观看| 亚洲成人久久性| 一区二区三区四区激情视频 | 天堂影院成人在线观看| 波多野结衣高清无吗| 丝袜美腿在线中文| 十八禁国产超污无遮挡网站| 97人妻精品一区二区三区麻豆| 国模一区二区三区四区视频| 尾随美女入室| 天堂动漫精品| 婷婷丁香在线五月| 老熟妇仑乱视频hdxx| 久久久久久久精品吃奶| 在线播放无遮挡| 久久婷婷人人爽人人干人人爱| 国产麻豆成人av免费视频| 免费av不卡在线播放| 色哟哟·www| 蜜桃久久精品国产亚洲av| 一进一出抽搐gif免费好疼| 久久久久久久精品吃奶| 18+在线观看网站| 丰满人妻一区二区三区视频av| 两人在一起打扑克的视频| 亚洲av二区三区四区| 九九热线精品视视频播放| 色av中文字幕| 亚洲av中文av极速乱 | 1000部很黄的大片| 国产高清有码在线观看视频| 午夜视频国产福利| 99热只有精品国产| 亚洲久久久久久中文字幕| 国产高清视频在线播放一区| 97热精品久久久久久| 少妇的逼水好多| 日韩欧美一区二区三区在线观看| 亚洲成a人片在线一区二区| 亚洲国产高清在线一区二区三| 亚洲最大成人av| 一卡2卡三卡四卡精品乱码亚洲| 国内精品美女久久久久久| 搡老妇女老女人老熟妇| 淫妇啪啪啪对白视频| 少妇人妻一区二区三区视频| 一进一出抽搐动态| 成年女人看的毛片在线观看| 69av精品久久久久久| 日日夜夜操网爽| 男人舔女人下体高潮全视频| 桃色一区二区三区在线观看| 12—13女人毛片做爰片一| 91久久精品国产一区二区成人| 亚洲欧美日韩高清在线视频| 国产高清激情床上av| 97超级碰碰碰精品色视频在线观看| 国产视频一区二区在线看| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| 97热精品久久久久久| 搡老熟女国产l中国老女人| 日韩欧美三级三区| 精品日产1卡2卡| 国产免费一级a男人的天堂| 亚洲av第一区精品v没综合| 国内精品久久久久精免费| 黄片wwwwww| 在线免费观看不下载黄p国产 | 国产精品美女特级片免费视频播放器| 成人特级黄色片久久久久久久| 天美传媒精品一区二区| 免费av观看视频| 国产私拍福利视频在线观看| 日韩欧美在线二视频| 99国产极品粉嫩在线观看| 国产精华一区二区三区| 99久久九九国产精品国产免费| 男女边吃奶边做爰视频| 国产在线精品亚洲第一网站| 久久精品夜夜夜夜夜久久蜜豆| 熟女人妻精品中文字幕| 日本黄色视频三级网站网址| 精品久久久久久久末码| 不卡视频在线观看欧美| 亚洲av日韩精品久久久久久密| 午夜久久久久精精品| 国产真实伦视频高清在线观看 | 日韩欧美精品v在线| 熟女人妻精品中文字幕| 国产高潮美女av| 美女cb高潮喷水在线观看| 日韩,欧美,国产一区二区三区 | 伦精品一区二区三区| 国产亚洲91精品色在线| 老女人水多毛片| 少妇人妻一区二区三区视频| 色视频www国产| 国产女主播在线喷水免费视频网站 | 在线观看一区二区三区| 久久久国产成人精品二区| 永久网站在线| 18禁裸乳无遮挡免费网站照片| 伦精品一区二区三区| 少妇的逼好多水| 别揉我奶头 嗯啊视频| 午夜福利18| 无人区码免费观看不卡| 国产免费一级a男人的天堂| 性插视频无遮挡在线免费观看| 欧美日韩国产亚洲二区| 露出奶头的视频| 九色国产91popny在线| www日本黄色视频网| 免费在线观看成人毛片| 国产一区二区三区视频了| 啪啪无遮挡十八禁网站| 少妇熟女aⅴ在线视频| 91久久精品国产一区二区三区| 天堂影院成人在线观看| 91av网一区二区| 日韩 亚洲 欧美在线| 日韩中文字幕欧美一区二区| 亚洲精品久久国产高清桃花| h日本视频在线播放| 男女之事视频高清在线观看| 国产亚洲精品av在线| 麻豆国产97在线/欧美| 精品久久久久久久久久免费视频| 国产不卡一卡二| 热99re8久久精品国产| 身体一侧抽搐| 在线观看午夜福利视频| av福利片在线观看| 丝袜美腿在线中文| 特级一级黄色大片| 琪琪午夜伦伦电影理论片6080| 久久人妻av系列| 国产主播在线观看一区二区| 久久精品国产99精品国产亚洲性色| 22中文网久久字幕| 熟女人妻精品中文字幕| 久久精品91蜜桃| 性插视频无遮挡在线免费观看| 日本熟妇午夜| 露出奶头的视频| 日韩大尺度精品在线看网址| 国产精品免费一区二区三区在线| 日本在线视频免费播放| 欧美bdsm另类| 亚洲avbb在线观看| 国产一区二区在线观看日韩| 精品午夜福利视频在线观看一区| 国产不卡一卡二| 女的被弄到高潮叫床怎么办 | 国产在线精品亚洲第一网站| 国产精品国产三级国产av玫瑰| 亚洲精品乱码久久久v下载方式| 欧美+亚洲+日韩+国产| 91久久精品国产一区二区成人| 国产成人a区在线观看| 国产精品国产高清国产av| 久久精品国产亚洲av香蕉五月| 日韩av在线大香蕉| 乱码一卡2卡4卡精品| 在线a可以看的网站| 在线观看美女被高潮喷水网站| 亚洲久久久久久中文字幕| 欧美区成人在线视频| 国产av不卡久久| 亚洲在线自拍视频| 久久久久久久久久黄片| 老师上课跳d突然被开到最大视频| 久久亚洲精品不卡| 中文字幕免费在线视频6| av国产免费在线观看| 久久99热6这里只有精品| 亚洲精品亚洲一区二区| 51国产日韩欧美| 国产女主播在线喷水免费视频网站 | 亚洲av一区综合| 日日摸夜夜添夜夜添av毛片 | 欧美激情久久久久久爽电影| 日本a在线网址| 欧美人与善性xxx| 亚洲狠狠婷婷综合久久图片| 久久久久免费精品人妻一区二区| 日本爱情动作片www.在线观看 | 久久精品国产自在天天线| 91精品国产九色| 日韩中字成人| 97超级碰碰碰精品色视频在线观看| 亚洲av中文av极速乱 | 日韩欧美精品v在线| 国产亚洲欧美98| 国产精品福利在线免费观看| 一级av片app| 国产 一区精品| 国内精品久久久久久久电影| 日本五十路高清| 精品一区二区三区视频在线| 1000部很黄的大片| 成人av在线播放网站| 身体一侧抽搐| 1024手机看黄色片| 国产一级毛片七仙女欲春2| 高清毛片免费观看视频网站| 99视频精品全部免费 在线| 午夜老司机福利剧场| av福利片在线观看| 日韩欧美精品免费久久| 国产亚洲精品久久久久久毛片| 性色avwww在线观看| h日本视频在线播放| 国产精品久久视频播放| 中文亚洲av片在线观看爽| 亚洲精华国产精华精| 国语自产精品视频在线第100页| 69av精品久久久久久| 亚洲色图av天堂| 精品久久久久久久末码| 亚洲电影在线观看av| 亚洲av免费高清在线观看| 人妻夜夜爽99麻豆av| 简卡轻食公司| 久久欧美精品欧美久久欧美| xxxwww97欧美| 最好的美女福利视频网| 特大巨黑吊av在线直播| 国产高清激情床上av| av黄色大香蕉| 88av欧美| 国产伦精品一区二区三区四那| 最近视频中文字幕2019在线8| 欧美绝顶高潮抽搐喷水| 中亚洲国语对白在线视频| av.在线天堂| 久99久视频精品免费| 亚洲真实伦在线观看| 国产精品久久久久久久久免| 久久这里只有精品中国| 午夜精品一区二区三区免费看| 亚洲内射少妇av| 在线播放无遮挡| 狠狠狠狠99中文字幕| 免费av不卡在线播放| 免费观看的影片在线观看| 免费在线观看影片大全网站| 亚洲成a人片在线一区二区| www日本黄色视频网| 午夜精品一区二区三区免费看| 免费高清视频大片| 18+在线观看网站| 国产伦人伦偷精品视频| 熟女电影av网| 狂野欧美白嫩少妇大欣赏| 亚洲真实伦在线观看| 色av中文字幕| 国产精品,欧美在线| av专区在线播放| 美女xxoo啪啪120秒动态图| 亚洲va日本ⅴa欧美va伊人久久| 免费搜索国产男女视频| 在线天堂最新版资源| 午夜精品在线福利| 国产精品久久久久久亚洲av鲁大| 欧美中文日本在线观看视频| 色综合亚洲欧美另类图片| 成人美女网站在线观看视频| 淫秽高清视频在线观看| 亚洲最大成人中文| 久久天躁狠狠躁夜夜2o2o| 日韩中文字幕欧美一区二区| 久久久精品大字幕| 淫秽高清视频在线观看| 黄色配什么色好看| 亚洲四区av| 又粗又爽又猛毛片免费看| 女人被狂操c到高潮| 久久亚洲精品不卡| 成人美女网站在线观看视频| or卡值多少钱| 成人国产综合亚洲| 国产亚洲av嫩草精品影院| 日韩人妻高清精品专区| 成人二区视频| 久久这里只有精品中国| 日日夜夜操网爽| 制服丝袜大香蕉在线| 三级男女做爰猛烈吃奶摸视频| 男人和女人高潮做爰伦理| 精品人妻1区二区| 成年女人毛片免费观看观看9| 日韩精品有码人妻一区| 成人美女网站在线观看视频| 深爱激情五月婷婷| 国产视频一区二区在线看| 人妻少妇偷人精品九色| 亚洲国产精品sss在线观看| 又爽又黄a免费视频| 久久久久久国产a免费观看| 天天一区二区日本电影三级| 亚洲四区av| 日本与韩国留学比较| 欧美高清性xxxxhd video| АⅤ资源中文在线天堂| 老司机深夜福利视频在线观看| www.www免费av| 大型黄色视频在线免费观看| 亚洲欧美精品综合久久99| 久久久久久久久久黄片| 久久久久久久久中文| 最近中文字幕高清免费大全6 | 99国产精品一区二区蜜桃av| av在线蜜桃| 国产69精品久久久久777片| 搡女人真爽免费视频火全软件 | 中文资源天堂在线| 最后的刺客免费高清国语| 又粗又爽又猛毛片免费看| 午夜福利成人在线免费观看| 99热只有精品国产| 国产精品不卡视频一区二区| 中亚洲国语对白在线视频| 成人av一区二区三区在线看| 国产单亲对白刺激| 国产精品国产三级国产av玫瑰| 级片在线观看| 他把我摸到了高潮在线观看| 国产久久久一区二区三区| 在线播放国产精品三级| 色在线成人网| 国产视频内射| 欧美又色又爽又黄视频| 国产精品美女特级片免费视频播放器| 国产高潮美女av| 国产成人aa在线观看| 久久久久久九九精品二区国产| 国产欧美日韩一区二区精品| 久久香蕉精品热| 欧美xxxx黑人xx丫x性爽| 国产精品一区二区三区四区免费观看 | 亚洲va在线va天堂va国产| 黄色欧美视频在线观看| 亚洲一级一片aⅴ在线观看| 国产精品久久电影中文字幕| 美女大奶头视频| 18禁黄网站禁片午夜丰满| 91久久精品电影网| 麻豆国产av国片精品| 国产一级毛片七仙女欲春2| 国内精品宾馆在线| 亚洲中文字幕一区二区三区有码在线看| 国产成人影院久久av| 国产熟女欧美一区二区| 精品久久久久久久末码| 三级男女做爰猛烈吃奶摸视频| 久久久久久久精品吃奶| 国产黄片美女视频| 最近最新免费中文字幕在线| 久久香蕉精品热| 真人一进一出gif抽搐免费| 成人av一区二区三区在线看| 国产成人aa在线观看| 又粗又爽又猛毛片免费看| 日本撒尿小便嘘嘘汇集6| 精华霜和精华液先用哪个| 亚洲av电影不卡..在线观看| 丰满的人妻完整版| 精品99又大又爽又粗少妇毛片 | 久久久国产成人精品二区| 天堂动漫精品| 成人国产综合亚洲| 51国产日韩欧美| 久久久久久久久大av| 欧美绝顶高潮抽搐喷水| 成人性生交大片免费视频hd| 婷婷六月久久综合丁香| 国产亚洲精品av在线| 免费观看的影片在线观看| 91av网一区二区| av专区在线播放| 俺也久久电影网| 黄片wwwwww| 在线播放无遮挡| 最近在线观看免费完整版| 日韩欧美一区二区三区在线观看| 国产精品99久久久久久久久| 可以在线观看的亚洲视频| 美女黄网站色视频| 国产精品国产高清国产av| 在线看三级毛片| 哪里可以看免费的av片| 精品不卡国产一区二区三区| 中出人妻视频一区二区| 欧美日韩中文字幕国产精品一区二区三区| 中文亚洲av片在线观看爽| 成人亚洲精品av一区二区| 乱人视频在线观看| 亚洲中文字幕一区二区三区有码在线看|