• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polymerization-induced microphase separation of polymer-polyoxometalate nanocomposites for anhydrous solid state electrolytes

    2022-09-15 03:11:12LuLiuZichengWuZhoZhengQinjieZhouKunChenPnchoYin
    Chinese Chemical Letters 2022年9期

    Lu Liu, Zicheng Wu, Zho Zheng, Qinjie Zhou, Kun Chen,b,?, Pncho Yin,b,?

    a South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China

    b Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China

    ABSTRACT Solid-state electrolytes (SSEs) with high ionic conductivity, mechanical stability, and high thermal stability, as well as the stringent requirement of application in high-temperature fuel cells and lithium-ion batteries is receiving increasing attention.Polymer nanocomposites (PNCs), combining the advantages of inorganic materials with those of polymeric materials, offer numerous opportunities for SSEs design.In this work, we report a facile and general one-pot approach based on polymerization-induced microphase separation (PIMS) to generate PNCs with bi-continuous microphases.This synthetic strategy transforms a homogeneous liquid precursor consisting of polyoxometalates (POMs, H3PW12O40, Li7[V15O36(CO3)]),poly(ethylene glycol) (PEG) macro-chain-transfer agent, styrene and divinylbenzene monomers, into a robust and transparent monolith.The resulting POMs are uniformly dispersed in the PEG block (PEG/POM)to form a conducting pathway that successfully realizes the effective transfer of protons and lithium ions,while the highly cross-linked polystyrene domains (P(S-co-DVB)) as mechanical support provide outstanding mechanical properties and thermal stability.As the POM loading ratio up to 35 wt%, the proton conductivity of nanocomposite reaches as high as 5.99×10-4 S/cm at 100 °C in anhydrous environment,which effectively promotes proton transfer under extreme environments.This study broadens the application of fuel cells and lithium-ion batteries in extreme environments.

    Keywords:Solid-state electrolyte Microphase separation Bi-continuous structure Polymer Polyoxometalate

    Solid-state electrolytes (SSEs), as solid or quasi-solid materials with high ionic conductivities (IC), have emerged as highpriority materials for energy conversion and storage devices with promising safety and high energy density [1–6].Generally, SSEs mainly include inorganic solid electrolytes (ISEs), solid polymer electrolytes (SPEs) and inorganic-organic hybrid composite electrolytes [7–9].Dating back to 1960s, the discovery of the ceramicbasedβ-alumina and its successful application in Na-S batteries, bring the prelude to the ISEs system [10].Nevertheless, they still suffer from several tough solid-solid interface compatibility issues resulting from their rigid nature [11].SPEs represent a broad class of materials with long polymeric chains and relatively high ion concentrations that offer outstanding advantages over conventional liquid electrolytes in current lithium-ion batteries including no leakage of electrolytes, low flammability, good flexibility,safety and stable contact with the electrode [12,13].SPEs possess excellent processability and flexibility as compared to ISEs,enabling their strong adhesive on the surface of electrodes and thus the decrease of interfacial impedance [14,15].Especially, in fuel cells, reactants such as H2and O2and products such as H2O continuously flow past the electrodes, and therefore, the effective polymer electrolyte membranes (PEMs) must maintain a combination of high modulus, toughness, stability, and high ionic conductivity [16–18].However, the ionic conductivity in most SPEs is directly tied to segmental mobility and chain dynamics, which is difficult to improve along with mechanical strength simultaneously [19–22].One way to accomplish this goal is the development of microphase separated polymers, wherein one of the microphases conducts ions while the other is responsible for the mechanical rigidity of the heterogeneous polymer electrolyte [23–26].However, these protocols are complex, and much synthetic efforts are required.Although much progress has been made in fabricating microphase-separated structures, these strategies still require either relatively complex polymerization reactions or delicate modifications of nanoparticles (NPs).Therefore, there is an urgent need for general and cost-effective approaches for the design of SSEs with both promising conductivities and mechanical strengths.

    Polymer nanocomposites (PNCs) are prepared by dispersing nano-sized inorganic phases into polymer matrix, which can lead to synergized functionalities better than the single component[27–30].The PNCs combining the advantages of inorganic materials(for example, wide temperature range stability and high ionic conductivity) with those of polymeric materials (for example, strong plasticity and high processability) offer numerous opportunities for SSEs design [31–34].Their application in PEMs is receiving increasing attention [18,35].However, the bulk structures of PNCs are difficult to regulate as the interaction between the NP phases and polymers are complex and usually weak, leading to phase separation and the coagulation of NPs, and the long-term failure of PNC-based functional materials [33,36].Polyoxometalates (POMs),as a large class of well-defined anionic molecular clusters of metal oxides with sizes at nanoscale [37], are widely used as inorganic building blocks to prepare functional hybrid materials, in particular POM-polymer composite electrolytes, owing to their high ionic conduction, excellent electrochemical stabilities, excellent thermal stability and electromagnetic response properties [38–40].Zhanget al.developed a facile approach to fabricate bi-continuous polymer nanocomposites through a POM-induced phase transition of lamellar PS-b-P2VP [41].The electrostatic cross-linking effect of POM on the P2VP chains contributes to the disturbance of the lamellar phase and the formation of a stable bi-continuous phase.Moreover, the POMs increase the proton conductivity of the system and endow the bi-continuous nanocomposites with an increased conductivity of 0.1 mS/cm and an enhanced Young’s modulus of 7.4 GPa at room temperature.They also fabricate nanocomposite electrolytes containing inverse hexagonal cylindrical phase and highly ordered lamellar proton-conducting nanochannels, by the electrostatic self-assembly of a polyoxometalate H3PW12O40(PW12) and other copolymers [42,43].Recently, bi-continuous polymer composite electrolytes through the electrostatic self-assembly of PW12and a comb copolymer PEEK-g-PVP have been reported with applications in the direct methanol fuel cells (DMFCs) [44].Meanwhile, the introduction of nanomaterials with Li+conductive activity into polymers to prepare nanocomposite polymer electrolyte materials is also one of the important ideas for preparing lithium ion SPEs [1,4,11,12,19,20,24,34,45].Herein, we report a facile and general approach for both proton and lithium ion conductive organic-inorganic nanocomposites for anhydrous SSEs.Nanocomposites with bi-continuous microphase separated structures are prepared using poly(ethylene glycol) (PEG) and cross-linked polystyrene (PS) block copolymersviapolymerizationinduced microphase separation (PIMS) [24–26,46].The nanoscale molecular clusters of POMs are uniformly doped into the phase domain formed by the PEG block to constitute the conductive phase,while the cross-linked PS domain provides mechanical support and ensures the thermal and structural stability of SSEs.Specifically, reversible addition-fragmentation chain-transfer (RAFT) polymerization was implemented for the controlled growth of styrene and divinylbenzene (DVB) from a PEG macro-chain-transfer agent(PEG-CTA) in the presence of stoichiometric POMs.The POMs can effectively suppress the crystallization behavior of PEG blocks in nanocomposites and contribute to the effective segregation between the mechanical phases and conducting domains.PIMS nanocomposites make up the long-range, isotropic, cross-linked domains with an exceptional combination of ionic conductivity,thermal stability, and mechanical robustness, enabling them as promising candidates for high-temperature anhydrous PEMs applications.

    Several POMs show high solubility in PEG melts, and herein,representative POMs with H+(H3PW12O40, abbreviated as PW12)or Li+(Li7[V15O36(CO3)]·ca.39H2O, abbreviated as V15) as counterions, are dissolved with macromolecular initiator, PEG-CTA,and the obtained complexes are mixed with styrene monomers and crosslinking agent DVB for reversible addition- fragmentation chain-transfer (RAFT) polymerization (Figs.S1–S3, Tables S1 and S2 in Supporting information).Due to the incompatibility between PEG and styrene phase, the polymerization can induce the formation of bi-continuous microphases.POMs are uniformly dispersed in PEG phase region through hydrogen bonding (HB) and electrostatic interactions in nanocomposites while the cross-linked PS phase acts as a structural support skeleton (Fig.1).It is reported in our previous work that sub-nm-scaled metal oxide cluster (PW12)shows high solubility in the melt of PEG, fully inhibit the crystallization of PEG, and form stable nanocomposites with PEG, which facilitates the fast dynamics of PEG chains/segments, and the proton conduction in the PEG@POM hybrids by the diffusive motions of PEG chains [47].The obtained PW12-PEG5k-b-P(S-co-DVB)(PPBP) nanocomposites with variant POM contents (0, 10 wt%,20 wt%, 30 wt%, 35 wt% PW12) are abbreviated as PPBP0, PPBP10,PPBP20.PPBP30, PPBP35, respectively, showing promising proton conductivities at ambient conditions [48,49].Meanwhile, the exploration of polyoxovanadate V15as a cathode material for lithium ion batteries reveals its high current density and excellent cycling stability, which fully demonstrates the application prospects of V15in solid-state lithium-ion batteries [26,45].

    To investigate the internal structure of the nanocomposites, the materials are examined using small angle X-ray scattering (SAXS),wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) techniques(Fig.2).In general, a broad principal scattering peak atq?and a weak higher order shoulder at about 2q?in SAXS spectra are characteristic of a structured morphology with microphase-separated domains but without long-range periodic order [46].The position of the primary scattering peak corresponds to the structural length scale of compositional heterogeneities (d=2π/q?), and the characteristic size between the PW12/PEG and the P(S-co-DVB) domains is calculated to be 16–20 nm, significantly larger than the domain spacing between PEG and cross-linked PS phase (~12 nm)in samples without PW12.The selective incorporation of the PW12contributes to the volume fraction increasement of the conducting phase (PEG+PW12) as well as the increasement of the effective interaction parameter,χeff, between the conducting phase and P(S-co-DVB) phase [50], leading to the increase in the average domain spacing between conducting phase and cross-linked PS phase(Fig.2a) [51].The increase ofχeffleads to the increase of the phase separation strength and local order within the nanocomposites, as indicated by the appearance of a more pronounced shoulder atca.2q?when POMs concentrations raise.Overall, the combination of PW12and PEG domains forms the conductive phase, which enables the smooth conduction of protons, while the high modulus phase formed by the cross-linked PS domains provides the skeleton support for this material and ensure its high temperature resistance and mechanical stability in extreme environments.

    Fig.2.Characterization of PW12-PEG5k-b-P(S-co-DVB) (PPBP) PNCs with bicontinuous microphases prepared by polymerization-induced microphase separation (PIMS) approach: (a) SAXS, (b) WAXS, (c) DSC and (d) TGA curves of samples with variant PW12 content (0, 10 wt%, 20 wt%, 30 wt%, 35 wt% PW12 for PPBP0,PPBP10, PPBP20, PPBP30, PPBP35, respectively).

    Meanwhile, wide angle X-ray scattering (WAXS) technique is applied to detect the crystallization of PEG blocks in nanocomposites and the dispersion of POMs in PEG blocks (Fig.2b).Because of the high sensitivity of X-ray to heavy metal ions, the form factor (P(Q)) corresponding to the morphology of PW12molecular clusters and the structure factor (S(Q)) reflecting information such as interactions and possible aggregations between PW12molecular clusters can be effectively collected using WAXS [52,53].As shown in the wide-angle region of WAXS, POM clusters disperse homogeneously in PEG without aggregation and inhibit PEG crystallization completely even at high POM loadings.Owing to the strong interactions, PW12clusters disperse in PEG to form stable complexes.Especially, in PW12-PEG5k-b-P(S-co-DVB) nanocomposites with 35 wt% POM content (abbreviated as PPBP35), no obvious aggregated scattering peaks of POM can be observed.Form factor(P(Q)) and structure factor (S(Q)) of PW12in PPBP35 nanocomposites together demonstrate the complete structure of PW12and the uniform dispersity of PW12in PEG blocks to form the final conductive phase [54].These results consistent with the SAXS data described above.

    Fig.3.Characterization of V15-PEG5k-b-P(S-co-DVB) (VPBP) PNCs with bicontinuous microphases prepared by PIMS approach: (a) SAXS, (b) WAXS, (c) DSC and (d) TGA curves of the samples with variant V15 content (0, 10 wt%, 20 wt%,30 wt% V15 for VPBP0, VPBP10, VPBP20, VPBP30, respectively).

    Meanwhile, similar to PPBP, the microphase separated structure of the nanocomposites is maintained when the PW12molecular clusters are changed to another POM V15, suggesting the universality of this protocol for the preparation of microphase-separated nanocomposite electrolytes (Fig.3).As shown in Fig.3a, the same shape factor (P(Q)) corresponding to the morphology of the V15molecular clusters can be observed in the V15-PEG5k-b-P(S-co-DVB) (abbreviated as VPBP) nanocomposites, indicating the stability and well dispersion of the V15clusters in the polymer matrix.With the increase of V15content, the crystalline scattering peaks of PEG blocks are gradually weakened, suggesting the role of V15as inhibitor for the crystallization of PEG blocks (Fig.3b).

    Furthermore, the crystallization of PEG blocks in PPBP nanocomposites is quantitatively probed using DSC, and the roles of POMs for PEG crystallization inhibition can be revealed.At low PW12content (0–10 wt%), an obvious crystalline melt peak can be observed around 50–60 °C, indicating that part of the PEG blocks in the nanocomposites are still in a crystalline state (Fig.2c).When the mass ratios of PW12increase to 20% or above, no obvious crystallization and melting process can be observed, indicating that POMs fully inhibit the crystallization of PEG blocks, which is consistent with the WAXS results.Similar crystallization inhibition effect can be observed in VPBP nanocomposites except that higher mass ratios of V15is required for fully PEG crystallization inhibition (Fig.3c).

    The thermal stability of nanocomposites can be analyzed using TGA, and the TGA curves of nanocomposites with different POM contents are shown in Figs.2d and 3d.It is often customary to use a characteristic temperature to illustrate the thermal stability of a material.The temperature at which the TGA curve begins to fall is called the starting decomposition temperature, the temperature at which the weight loss rate reaches 5% is called the decomposition 5% temperature, and the temperature at which the TGA curve begins to deviate from the baseline is called the extrapolation starting temperature.Because these temperature points are best reproduced, so these key temperature points are often used to characterize the thermal stability of materials.The temperature of 5%mass reduction of PEG5k-b-P(S-co-DVB) block copolymers without POMs appears at 300 °C, and the extrapolation onset temperature is even closer to 400 °C, indicating the high heat resistance of this copolymers.The thermal stability of the nanocomposites is slightly reduced after doping PW12, but the temperature at 5% decomposition of the material and the extrapolation onset temperature are all above 200 °C, and the thermal stability is comparable to that of the phosphoric acid-doped benzimidazole high-temperature fuel cell electrolyte film [18].The first weight loss plateau occurs due to the decomposition of parts of PEG blocks in the nanocomposites,and the second one is caused by the simultaneous decomposition of the cross-linked PS blocks with PW12in the nanocomposites.At low PW12content, the stability of the materials increases as the PW12content increases.However, when the PW12content reaches a certain level, the excess PW12leads to a decrease in compatibility with the PEG blocks, resulting in a slight decrease in the overall stability of the material.Therefore, the doping content of nanomolecular clusters needs to be controlled in a suitable concentration range to achieve the optimal material properties.

    At the same time, the thermal stability of VPBP nanocomposites is also observed by TGA.As shown in Fig.3d, the addition of V15shifts the starting decomposition temperature of the materials to a lower temperature, but the temperature at 5% decomposition of the sample mass and the extrapolation starting temperature are above 200 °C, indicating that the prepared VPBP nanocomposites have good heat resistance.However, unlike the PPBP nanocomposites, the weight loss curves of the VPBP samples do not show two plateaus, which also indicates that the interaction between V15clusters and PEG blocks is greater than that between PW12and PEG blocks.V15clusters cause the decomposition of the entire block copolymers crosslinking network rather than decomposition of partial PEG decomposition first.

    To measure the conductivity of microphase separated hightemperature anhydrous proton conductive nanocomposites, the typical electrochemical impedance spectroscopy (EIS) method is used to determine the ion conductivity of PPBP with different PW12contents at different temperatures (Figs.4a–c).The EIS spectra is fitted by ZSimpWin and ZView2software, and the proton conductivity of the nanocomposites can be calculated by using equationσ=L/(RbS) in combination with the actual dimensions of the samples.The calculated conductivities are summarized in Fig.4d.With the increase of temperature, the increase of proton conductivity in the low temperature region (50–80 °C)is more obvious, because the crystallinity of PEG blocks in PPBP nanocomposites gradually decreases, and the chain movement of PEG blocks becomes fast, which promotes the proton conductivity.However, when the temperature rises to a high temperature above 100 °C, the dissociation of protons gradually reaches a maximum to the proton conductivity plateaus.The overall conductivity of PPBP nanocomposites is enhanced with the increase of PW12content, as the addition of PW12acts as an inhibitor to the crystallization of PEG blocks in this material, which in turn improves the proton conductivity of the prepared solid-state polymer electrolytes.The highest proton conductivity of 5.99×10-4S/cm is achieved when the PW12content is 35%, and the proton conductivity is maintained at a high level of 2.03 × 10-4S/cm at 30%PW12content under high temperature (150 °C) and anhydrous conditions, which confirms the ability of the nanocomposites in effectively proton transfer under extreme environments.

    Compared to the PPBP nanocomposites, VPBP have generally lower lithium ion conductivity (Fig.S4 in Supporting information),which is related to the size of Li+dissociated from V15and the electronegativity of V15.In the PEG conductive phase, the movement of Li+is more difficult than that of proton, so the conductivity is lower, but it can still indicate the feasibility and universality of this general approach to construct conductive nanocomposites using PEG, cross-linked PS block copolymers and POMs.At present, both positive and negative ions of lithium salts in PEGbased SSE materials can move, but this movement of negative ions in lithium ion batteries intensify the polarization within the materials, which will lead to an increase in the polarization voltage of the solid-state batteries.More severely, it will promote the growth of lithium crystal branches and pierce the battery to cause danger,so the lithium ion migration number (tLi+) is an important parameter used to evaluate the performance of SSEs [55].Hence, VPBP30 nanocomposite was selected and tested at 80 °C using the potentiodynamic polarization method, and the chronoamperometry profiles and EIS spectra before and after polarization are shown in Fig.S5 (Supporting information).ThetLi+of the nanocomposites is calculated to be 0.87 by equationtLi+=(Is(ΔV-I0R0))/(I0(ΔV-IsRs)) that is similar to many reported single ion SSEs, indicating that the movement of V15anion is restricted by strong electrostatic interactions with the PEG block, and the conductive process relies mainly on the movement of dissociated Li+.Meanwhile, previous studies have shown thattLi+of PEG-based SSEs doped with lithium salt is about 0.2–0.3 because both positive and negative ions in the lithium salt can move [56–58].Therefore, the doping of V15raises thetLi+of PEG-based SSEs, which closes to that of single ion conductivity.The VPBP nanocomposites is expected to be used in solid-state lithium-ion batteries.

    In summary, we present a facile, scalable, one-step synthetic protocol to fabricate high-temperature anhydrous conductive nanocomposites based on POMs and PEG5k-b-P(S-co-DVB)viapolymerization-induced microphase separation.The POMs-PEG5kb-P(S-co-DVB) nanocomposites exhibit a bi-continuous morphology, in which the POMs are uniformly dispersed in the PEG block(PEG/POM) to form a conducting pathway that successfully realizes the effective transportation of protons and lithium ions.The highly cross-linked PS domains (P(S-co-DVB)) serve as mechanical support and provide outstanding mechanical properties and thermal stability.The prepared nanocomposites overcome the safety and stability issues of conventional SSEs when working under high temperature conditions, and avoid the drawback that small molecules of acids in existing SSEs tend to leach out from the polymer matrix.Due to the broad availability of POMs and polymers with different functionalities, the SSE system can be facilely extended to a variety of functional electrolytes,e.g., sodium-ion conductive electrolytes,which can extend the design of multifunctional SSE materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The work is supported by National Natural Science Foundation of China (Nos.21961142018, 22101086 and 51873067) and Natural Science Foundation of Guangdong Province (Nos.2021A1515012024 and 2021A1515010271).We are grateful to BL16B1 of Shanghai Synchrotron Radiation Facility for the access to the synchrotronbased SAXS.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.031.

    女人被狂操c到高潮| 伦理电影大哥的女人| 午夜福利在线观看免费完整高清在| eeuss影院久久| 国产精品女同一区二区软件| 一本久久精品| 91久久精品国产一区二区三区| 人人妻人人看人人澡| 99久国产av精品| 晚上一个人看的免费电影| 国产综合懂色| 国产成人a区在线观看| 亚洲人成网站在线观看播放| 日本熟妇午夜| 最近中文字幕2019免费版| 亚洲中文字幕一区二区三区有码在线看| 亚洲真实伦在线观看| 精品人妻视频免费看| 亚洲怡红院男人天堂| АⅤ资源中文在线天堂| 一级二级三级毛片免费看| 最近中文字幕高清免费大全6| 99热全是精品| 国产伦在线观看视频一区| 日韩av在线免费看完整版不卡| 国产高清视频在线观看网站| 老司机影院成人| 日本一本二区三区精品| 天堂中文最新版在线下载 | 免费黄网站久久成人精品| 国产在线男女| 日韩人妻高清精品专区| 又粗又硬又长又爽又黄的视频| 一本久久精品| 成人美女网站在线观看视频| 乱码一卡2卡4卡精品| 久久精品熟女亚洲av麻豆精品 | 永久网站在线| 亚洲熟妇中文字幕五十中出| 99在线视频只有这里精品首页| 国产成人a区在线观看| 亚洲电影在线观看av| 99久久中文字幕三级久久日本| 性插视频无遮挡在线免费观看| 国产精品伦人一区二区| 国产成人一区二区在线| 国产 一区精品| 欧美一区二区亚洲| 亚洲欧美精品综合久久99| 两性午夜刺激爽爽歪歪视频在线观看| 免费观看a级毛片全部| 搡老妇女老女人老熟妇| 国产精品蜜桃在线观看| 国产精品一区二区三区四区免费观看| 久久亚洲精品不卡| 一级毛片我不卡| 国产乱人偷精品视频| av福利片在线观看| 丰满人妻一区二区三区视频av| 校园人妻丝袜中文字幕| 国产亚洲最大av| 精品不卡国产一区二区三区| 色网站视频免费| 日本一本二区三区精品| 亚洲精华国产精华液的使用体验| 永久免费av网站大全| 婷婷色综合大香蕉| 啦啦啦啦在线视频资源| 午夜精品一区二区三区免费看| 久久鲁丝午夜福利片| 亚洲第一区二区三区不卡| 美女国产视频在线观看| 国产高清有码在线观看视频| 中文字幕精品亚洲无线码一区| 中文在线观看免费www的网站| 少妇高潮的动态图| 村上凉子中文字幕在线| 有码 亚洲区| 亚洲五月天丁香| 美女高潮的动态| 久久久a久久爽久久v久久| 看免费成人av毛片| 亚洲欧美精品专区久久| 国产一区亚洲一区在线观看| 校园人妻丝袜中文字幕| 免费看美女性在线毛片视频| 久久久精品欧美日韩精品| 美女xxoo啪啪120秒动态图| 99在线视频只有这里精品首页| 国产91av在线免费观看| 99在线视频只有这里精品首页| 亚洲成人久久爱视频| 久久人妻av系列| 国产午夜精品论理片| 国产高潮美女av| 我的女老师完整版在线观看| 日本免费a在线| 亚洲国产精品成人久久小说| 99热这里只有是精品在线观看| 中文字幕久久专区| 少妇高潮的动态图| www日本黄色视频网| 综合色av麻豆| 久久久久九九精品影院| 精品久久久久久成人av| 99久久成人亚洲精品观看| 成人综合一区亚洲| 亚洲色图av天堂| 日本与韩国留学比较| 国产国拍精品亚洲av在线观看| 六月丁香七月| 99久国产av精品国产电影| 日韩亚洲欧美综合| 在线观看66精品国产| 国产极品精品免费视频能看的| 三级国产精品欧美在线观看| 婷婷色麻豆天堂久久 | 久久精品久久精品一区二区三区| 国产成人a∨麻豆精品| 久99久视频精品免费| 99久久人妻综合| 欧美激情国产日韩精品一区| 日韩欧美 国产精品| 精品久久久久久电影网 | 久久久久久久久久成人| 边亲边吃奶的免费视频| 精品一区二区免费观看| 综合色丁香网| 亚洲欧美一区二区三区国产| 观看免费一级毛片| 亚洲国产精品合色在线| 免费看a级黄色片| 亚洲国产欧美人成| 亚洲av不卡在线观看| 精品不卡国产一区二区三区| 国产精品电影一区二区三区| 神马国产精品三级电影在线观看| 91久久精品国产一区二区成人| 国产亚洲av片在线观看秒播厂 | 免费看a级黄色片| 欧美zozozo另类| 国产大屁股一区二区在线视频| 精品国产露脸久久av麻豆 | 精品免费久久久久久久清纯| 丝袜喷水一区| 国产极品天堂在线| 嫩草影院入口| 欧美变态另类bdsm刘玥| 五月伊人婷婷丁香| 春色校园在线视频观看| 尾随美女入室| 国产成人91sexporn| 亚洲国产色片| 伊人久久精品亚洲午夜| 免费不卡的大黄色大毛片视频在线观看 | av视频在线观看入口| 午夜久久久久精精品| 22中文网久久字幕| 一个人观看的视频www高清免费观看| 乱码一卡2卡4卡精品| av福利片在线观看| 精品国产露脸久久av麻豆 | 日韩av在线大香蕉| 少妇熟女欧美另类| 中文字幕久久专区| 黄色日韩在线| 你懂的网址亚洲精品在线观看 | 18+在线观看网站| 黄片wwwwww| 亚洲最大成人手机在线| 麻豆成人av视频| 精品久久久久久电影网 | 国产一区二区在线观看日韩| 成人性生交大片免费视频hd| 成年版毛片免费区| 九九热线精品视视频播放| 亚洲av电影不卡..在线观看| 我的老师免费观看完整版| 久久综合国产亚洲精品| 男女那种视频在线观看| 亚洲自拍偷在线| 亚洲综合精品二区| 亚洲无线观看免费| 精品久久久久久电影网 | 久久精品夜夜夜夜夜久久蜜豆| 日本欧美国产在线视频| 亚洲无线观看免费| 国产精品人妻久久久影院| 午夜激情福利司机影院| 亚洲色图av天堂| 有码 亚洲区| 中文字幕制服av| 国产极品精品免费视频能看的| 欧美性感艳星| 99久久成人亚洲精品观看| 亚洲精品自拍成人| 国产免费视频播放在线视频 | 91久久精品电影网| 亚洲aⅴ乱码一区二区在线播放| 国产成人精品一,二区| 村上凉子中文字幕在线| 99久久精品国产国产毛片| 麻豆成人av视频| 爱豆传媒免费全集在线观看| 中文字幕亚洲精品专区| 亚洲精品亚洲一区二区| av国产久精品久网站免费入址| 少妇的逼水好多| 精品国产三级普通话版| 久久99热6这里只有精品| 最近中文字幕2019免费版| 舔av片在线| 国产大屁股一区二区在线视频| 亚洲真实伦在线观看| 亚洲va在线va天堂va国产| 在线播放无遮挡| 高清日韩中文字幕在线| 蜜桃亚洲精品一区二区三区| 天天躁夜夜躁狠狠久久av| 六月丁香七月| 熟妇人妻久久中文字幕3abv| 国产亚洲午夜精品一区二区久久 | 嘟嘟电影网在线观看| 精品一区二区三区人妻视频| 卡戴珊不雅视频在线播放| 可以在线观看毛片的网站| 在线观看一区二区三区| 99热全是精品| 国产女主播在线喷水免费视频网站 | 欧美成人a在线观看| 免费一级毛片在线播放高清视频| 国产成人91sexporn| 成年免费大片在线观看| 国产女主播在线喷水免费视频网站 | 亚洲va在线va天堂va国产| 亚洲性久久影院| 国产成年人精品一区二区| 亚洲精品456在线播放app| 永久免费av网站大全| 卡戴珊不雅视频在线播放| 小蜜桃在线观看免费完整版高清| 99久久中文字幕三级久久日本| 久久久国产成人精品二区| 亚洲中文字幕一区二区三区有码在线看| 久久99热这里只频精品6学生 | 亚洲av男天堂| 中文字幕制服av| 亚洲av中文av极速乱| 一边摸一边抽搐一进一小说| 精品少妇黑人巨大在线播放 | 久久鲁丝午夜福利片| 国产一区二区在线av高清观看| 亚洲美女搞黄在线观看| 国产真实伦视频高清在线观看| 亚洲国产精品成人久久小说| 日本黄色视频三级网站网址| 天天躁日日操中文字幕| 内射极品少妇av片p| 国产一区二区在线av高清观看| 国产av一区在线观看免费| 国产午夜精品久久久久久一区二区三区| 老司机影院成人| 人人妻人人澡人人爽人人夜夜 | 丰满少妇做爰视频| 国产精品一区二区三区四区免费观看| 青青草视频在线视频观看| 大又大粗又爽又黄少妇毛片口| 久久久久精品久久久久真实原创| 成人二区视频| 久久99精品国语久久久| 久久久国产成人免费| 老司机影院毛片| 中文字幕av成人在线电影| 性插视频无遮挡在线免费观看| 久久久久免费精品人妻一区二区| 色哟哟·www| 国产又黄又爽又无遮挡在线| 久久久精品欧美日韩精品| 十八禁国产超污无遮挡网站| 久久精品夜夜夜夜夜久久蜜豆| a级毛色黄片| 国产女主播在线喷水免费视频网站 | 一级毛片我不卡| 人妻制服诱惑在线中文字幕| 国产黄色小视频在线观看| 亚洲丝袜综合中文字幕| 久久久久久久久大av| 亚洲av不卡在线观看| 日本五十路高清| 国产精品久久久久久精品电影小说 | 欧美一区二区亚洲| 91精品一卡2卡3卡4卡| 少妇的逼好多水| 久久人妻av系列| 免费播放大片免费观看视频在线观看 | 久久久欧美国产精品| 国产成年人精品一区二区| 久久精品国产亚洲av天美| 村上凉子中文字幕在线| 久久精品久久久久久久性| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 国产av码专区亚洲av| 久久6这里有精品| 久久亚洲国产成人精品v| 少妇的逼好多水| av在线老鸭窝| av免费在线看不卡| 又爽又黄a免费视频| 国产不卡一卡二| 韩国高清视频一区二区三区| 亚洲精品,欧美精品| 国产美女午夜福利| 91午夜精品亚洲一区二区三区| 99久国产av精品国产电影| 三级男女做爰猛烈吃奶摸视频| 日日干狠狠操夜夜爽| 久久久久免费精品人妻一区二区| av在线天堂中文字幕| 秋霞伦理黄片| 一级毛片电影观看 | 色综合亚洲欧美另类图片| 久久久久久久国产电影| 看非洲黑人一级黄片| 免费看日本二区| 只有这里有精品99| 国产精品一二三区在线看| 亚洲精品自拍成人| 国产精品国产三级国产专区5o | 内地一区二区视频在线| 久久精品国产自在天天线| 久久精品国产99精品国产亚洲性色| 午夜福利在线在线| 日韩一区二区三区影片| 亚洲乱码一区二区免费版| 亚洲人与动物交配视频| 日韩av在线免费看完整版不卡| 国产精品久久久久久精品电影小说 | 少妇猛男粗大的猛烈进出视频 | 国产伦理片在线播放av一区| 一级毛片久久久久久久久女| 熟妇人妻久久中文字幕3abv| 国产高清有码在线观看视频| 伦理电影大哥的女人| 成人午夜高清在线视频| 欧美不卡视频在线免费观看| 卡戴珊不雅视频在线播放| 欧美激情久久久久久爽电影| 免费搜索国产男女视频| 国产黄片美女视频| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜 | 能在线免费观看的黄片| 国产爱豆传媒在线观看| 久99久视频精品免费| 一区二区三区高清视频在线| 国产精品一区www在线观看| 亚洲中文字幕一区二区三区有码在线看| 禁无遮挡网站| 纵有疾风起免费观看全集完整版 | 99久国产av精品| 91av网一区二区| 久久精品国产99精品国产亚洲性色| 国产精品无大码| 成人鲁丝片一二三区免费| 黄片无遮挡物在线观看| 亚洲精品456在线播放app| 久久国产乱子免费精品| 亚洲av电影不卡..在线观看| 99久久精品热视频| 国产精品麻豆人妻色哟哟久久 | 国产精品嫩草影院av在线观看| 国产免费福利视频在线观看| 亚洲国产精品成人久久小说| 国内少妇人妻偷人精品xxx网站| 中文乱码字字幕精品一区二区三区 | 亚洲真实伦在线观看| 麻豆精品久久久久久蜜桃| 国产av在哪里看| 成年免费大片在线观看| 黄片wwwwww| 蜜桃久久精品国产亚洲av| 久久婷婷人人爽人人干人人爱| 久久精品国产鲁丝片午夜精品| 九九久久精品国产亚洲av麻豆| 免费黄网站久久成人精品| 九九久久精品国产亚洲av麻豆| 在线播放国产精品三级| av又黄又爽大尺度在线免费看 | 免费av毛片视频| av黄色大香蕉| 国产高清视频在线观看网站| 波多野结衣巨乳人妻| 激情 狠狠 欧美| 日日摸夜夜添夜夜添av毛片| 最近中文字幕高清免费大全6| 岛国毛片在线播放| 能在线免费看毛片的网站| 日本免费在线观看一区| 乱系列少妇在线播放| 在线观看av片永久免费下载| 久久精品久久久久久久性| 91av网一区二区| 成年av动漫网址| www.色视频.com| av黄色大香蕉| 国产av不卡久久| 亚洲丝袜综合中文字幕| 亚洲av电影在线观看一区二区三区 | 麻豆乱淫一区二区| 婷婷色综合大香蕉| 中文字幕人妻熟人妻熟丝袜美| 免费电影在线观看免费观看| 大又大粗又爽又黄少妇毛片口| 亚洲国产欧美人成| 国产精品99久久久久久久久| 免费搜索国产男女视频| 成年女人看的毛片在线观看| 最近的中文字幕免费完整| 久久99蜜桃精品久久| 特大巨黑吊av在线直播| 亚洲av男天堂| 99久久精品一区二区三区| 日韩强制内射视频| 岛国毛片在线播放| 禁无遮挡网站| 男人舔奶头视频| 国产视频内射| 久久精品夜夜夜夜夜久久蜜豆| 亚洲天堂国产精品一区在线| 一边亲一边摸免费视频| av在线亚洲专区| 一夜夜www| 国语自产精品视频在线第100页| 性色avwww在线观看| 精品一区二区三区人妻视频| 麻豆精品久久久久久蜜桃| 国产中年淑女户外野战色| 91久久精品电影网| 久久久国产成人精品二区| 久久精品夜夜夜夜夜久久蜜豆| 国产大屁股一区二区在线视频| АⅤ资源中文在线天堂| 麻豆成人av视频| 91精品伊人久久大香线蕉| 欧美日韩一区二区视频在线观看视频在线 | 国产精品国产三级专区第一集| 免费看日本二区| 日韩制服骚丝袜av| 午夜精品一区二区三区免费看| a级毛片免费高清观看在线播放| av专区在线播放| 18禁在线播放成人免费| 波野结衣二区三区在线| 亚洲欧美中文字幕日韩二区| 中文欧美无线码| 国产91av在线免费观看| 亚洲国产欧洲综合997久久,| av在线亚洲专区| 91精品伊人久久大香线蕉| 国产极品精品免费视频能看的| 少妇人妻精品综合一区二区| 男人舔女人下体高潮全视频| 国产日韩欧美在线精品| 一级二级三级毛片免费看| 白带黄色成豆腐渣| 久久久色成人| 国产午夜精品久久久久久一区二区三区| 亚洲久久久久久中文字幕| 日韩欧美三级三区| 亚洲欧美成人精品一区二区| av卡一久久| 永久网站在线| 亚洲一区高清亚洲精品| 免费av毛片视频| 免费一级毛片在线播放高清视频| 狠狠狠狠99中文字幕| 熟女电影av网| 久久精品国产亚洲网站| 亚洲怡红院男人天堂| 啦啦啦韩国在线观看视频| 我要搜黄色片| 亚洲中文字幕日韩| a级毛色黄片| 九九久久精品国产亚洲av麻豆| 青春草视频在线免费观看| 乱人视频在线观看| 在线a可以看的网站| 在线免费十八禁| 亚洲国产精品sss在线观看| 午夜久久久久精精品| 丰满乱子伦码专区| 黄色一级大片看看| 在线免费十八禁| 91av网一区二区| av在线老鸭窝| 我要搜黄色片| 日本黄色视频三级网站网址| 国产亚洲一区二区精品| 99久久中文字幕三级久久日本| 中文字幕av在线有码专区| 丝袜美腿在线中文| 1000部很黄的大片| 久热久热在线精品观看| 亚洲18禁久久av| 色5月婷婷丁香| 午夜老司机福利剧场| 男人舔奶头视频| 欧美高清性xxxxhd video| 国产黄a三级三级三级人| 精品少妇黑人巨大在线播放 | 久久99精品国语久久久| av黄色大香蕉| 成人漫画全彩无遮挡| 国产老妇女一区| 国产黄色视频一区二区在线观看 | 啦啦啦观看免费观看视频高清| 观看美女的网站| 欧美日韩一区二区视频在线观看视频在线 | 国产不卡一卡二| 黄色欧美视频在线观看| 91在线精品国自产拍蜜月| 免费观看在线日韩| 成人二区视频| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩东京热| 精品欧美国产一区二区三| 国产精品无大码| 亚洲在线自拍视频| 日韩成人av中文字幕在线观看| 午夜福利在线观看免费完整高清在| 美女高潮的动态| 日韩三级伦理在线观看| 国产探花极品一区二区| 亚洲最大成人手机在线| 成人三级黄色视频| 免费观看精品视频网站| 亚洲aⅴ乱码一区二区在线播放| 国产高潮美女av| 久久久久久久国产电影| 久久精品综合一区二区三区| 亚洲成色77777| 99热6这里只有精品| 国产精品久久久久久精品电影| 国产精品人妻久久久久久| 日韩欧美精品免费久久| 只有这里有精品99| 亚洲av成人精品一区久久| 少妇裸体淫交视频免费看高清| 亚洲中文字幕一区二区三区有码在线看| 国产单亲对白刺激| 国产国拍精品亚洲av在线观看| 亚洲国产精品合色在线| 精品人妻熟女av久视频| 日韩制服骚丝袜av| 亚洲无线观看免费| 男人和女人高潮做爰伦理| eeuss影院久久| 国产激情偷乱视频一区二区| 久久午夜福利片| 久久99精品国语久久久| 日韩欧美国产在线观看| 视频中文字幕在线观看| 纵有疾风起免费观看全集完整版 | 麻豆成人午夜福利视频| 精品国产三级普通话版| 久久久久久久久中文| 国产黄片视频在线免费观看| av福利片在线观看| 国产人妻一区二区三区在| 亚洲美女视频黄频| 中文资源天堂在线| 久久久色成人| 亚洲欧美成人综合另类久久久 | 嫩草影院入口| 只有这里有精品99| 国产免费又黄又爽又色| 男女视频在线观看网站免费| 国产av在哪里看| 久久久精品大字幕| 久久韩国三级中文字幕| 国产亚洲5aaaaa淫片| 一级爰片在线观看| 国产免费视频播放在线视频 | 青青草视频在线视频观看| 成人毛片60女人毛片免费| 九九爱精品视频在线观看| 嫩草影院精品99| 国产成人精品久久久久久| 特大巨黑吊av在线直播| a级毛片免费高清观看在线播放| 九九在线视频观看精品| 欧美成人精品欧美一级黄| 久久久精品94久久精品| 人体艺术视频欧美日本| 亚洲欧美精品综合久久99| 欧美性猛交黑人性爽| 精品国产露脸久久av麻豆 | 午夜精品一区二区三区免费看| 亚洲国产精品成人综合色| 欧美又色又爽又黄视频| 国产日韩欧美在线精品| 一个人观看的视频www高清免费观看| 蜜臀久久99精品久久宅男| 欧美一级a爱片免费观看看| 99国产精品一区二区蜜桃av| 亚洲精品日韩在线中文字幕| 国产成人a区在线观看| 毛片一级片免费看久久久久| 久久99蜜桃精品久久| 国产精品野战在线观看| 午夜免费激情av| 久久久久精品久久久久真实原创| 日韩成人伦理影院| 麻豆成人午夜福利视频|