• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanistic investigation of zwitterionic MOF-catalyzed enyne annulation using UNLPF-14-MnIII as catalyst

    2022-09-15 03:11:04TotoLiuRuihongDunYnynWngShijunLiLingboQuJinshuiSongQingLiuYuLn
    Chinese Chemical Letters 2022年9期

    Toto Liu, Ruihong Dun, Ynyn Wng, Shijun Li, Lingbo Qu, Jinshui Song,?,Qing Liu, Yu Ln,d,?

    a Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

    b Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China

    c College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China

    d School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University,Chongqing 400030, China

    ABSTRACT Hybrid quantum mechanics/molecular mechanics calculations were performed to elucidate how[MnIIIporphyrin]+X?-based metal-organic frameworks (MOFs) catalyze the [2 + 1] cycloisomerization of enynes and why zwitterionic MOFs exhibit strong activity in Lewis acid catalysis.The calculations showed that zwitterionic MOFs have a “pure cationic active center” leading to a concerted nucleophilic attack pathway with lower barriers.In contrast, metals with coordinating anions have reduced electrophilicity,resulting in a stepwise radical-type pathway with much higher barriers.Further calculations showed the nature of catalysis was strongly depended on the charge on the anion ligand.A good linear relationship between the NPA charge and barrier was found, and verified by 73 anions with small derivations, which presents a universal adaptive character for various coordinated anions.

    Keywords:ONIOM QM/MM Zwitterionic MOF[MnIIIporphyrin]+X?Enyne annulation Mechanism Anion effect

    Transition-metal catalysis is a powerful tool for the sustainable development of organic synthesis [1], and has been widely used in pharmaceutical [2], materials [3], life sciences [4], and other fields[5].In transition-metal catalysis, as the metal center is usually in a positive oxidative state, electrophilicity is often exhibited.Therefore, the charge density of the central metal atom often affects the catalytic activity.In homogeneous transition-metal catalysis,the type of counterion usually plays a vital role in determining the strength of interaction with the central metal atom, and will affect its charge distribution [6,7].Generally, strongly coordinating anions(SCAs), such as Cl?and OAc?, are widely used owing to their ready availability [8,9].Although less common, weakly coordinating anions (WCAs, such as PF6?, BF4?and SbF6?), which have larger volumes or stronger electron attracting effects, can be employed as counter anions in complexes to enhance the positive charge of the cationic metal center [10–12].This strategy can be used to obtain a more positively charged transition-metal center for further transformations by binding with nucleophilic substrates.Furthermore, the use of zwitterionic metal complexes, which, instead of a common anion, contain a negatively charged ancillary ligand covalently bonded to the cationic metal fragment to achieve formal separation of the positive and negative charges, is an attractive alternative approach.These zwitterionic metal complexes with neutral internal charge and tunable electrophilicity have proven to be promising catalysts for various organic reactions, and are considered effective alternatives to the corresponding complexes with WCAs [13,14].However, electrostatic interaction between two zwitterionic molecules in the reaction system, which is difficult to be avoid in homogeneous catalysis (Scheme 1), would significantly reduce the catalytic activity [15].Furthermore, difficulties in the synthesis and recycling of zwitterionic metal complexes restrict their further application.Therefore, the design of zwitterionic catalysts that can realize the separation and fixation of anions and cations,and be preparedviasimple synthetic steps and recycled by simple post-processing operations are needed for further catalytic studies and practical applications.

    Scheme 1.(a) Development of zwitterionic metal–organic frameworks from zwitterionic metal complexes; (b) Crystal structure of the cation ([MnIIIporphyrin]+)and anion ([In(CO2)4]?) in completely separated zwitterionic MOF UNLPF-14-MnIII;(c) Shortest distance between [MnIIIporphyrin]+ and [In(CO2)4]?in UNLPF-14-MnIII;(d) [2 + 1] Cycloisomerization of enynes catalyzed by zwitterionic MOF UNLPF-14-MnIII.

    Metal–organic frameworks (MOFs) are emerging as excellent catalyst platforms owing to their tunable structure, high porosity, and crystalline properties [16–20].Benefitting from a bottomup synthesis strategy, both vital structural components of MOFs,namely, organic linkers and inorganic secondary building units(SBUs), can be synthesized with either net-positive or net-negative charge.Furthermore, MOFs prepared by the assembly of cationic organometallic complex-based organic linkers with anionic inorganic SBUs can be considered potential heterogeneous zwitterionic catalyst candidates [21,22].It is foreseeable that such zwitterionic MOFs poccess enhanced electrophilicity because the anionic SBUs have no coordination effect with the cationic metal center in the organic linker.More importantly, the strategy can avoid the electrostatic interactions between two zwitterionic molecules in the reaction system, which is difficult to avoid in molecular zwitterionic transition-metal complexes catalysis (Scheme 1a), would significantly increase the catalytic activity.

    Recently, Zhang reported a synthesis of zwitterionic MOFs (UNLPF-14-MnIII, Scheme 1b) composed of cationic[MIIIporphyrin]+(M = Mn, Fe) linkers and anionic SBUs([In(RCO2)4]?, Scheme 1c), which showed considerable catalytic activity in the [3 + 2] cycloaddition of aziridines and alkenes,[4 + 2] hetero-Diels–Alder cycloaddition of aldehydes with dienes, and [2 + 1] cycloisomerization of enynes (Scheme 1d).In comparison, the corresponding catalytic activity of another MOF comprising neutral [MIIIporphyrin]+X?(X?= SbF6?, BF4?, Cl?)linkers and neutral Zr6(μ3–OH)4(OH)4(COO)12SBUs and their corresponding molecular catalysts was significantly lower [23].For[2 + 1] cycloisomerization of enynes, zwitterionic MOF UNLPF-14-MnIIIshowed the highest catalytic activity (95% yield and 99%selectivity for target product in 8 h), MOF PCN-223-MnIII[SbF6]with WCAs gave moderate catalytic activity (63% yield and 67%selectivity for target product in 24 h), and almost no reaction was observed when MOF PCN-223-MnIIICl with SCAs was used as catalyst.

    Fig.1.QM/MM calculation model of zwitterionic MOF UNLPF-14-MnIII, QM region(one [MnIIIporphyrin]+ complex, ball-and-stick models), active MM region (entire[MnIIIporphyrin]+ complex with eight adjacent In(CO2)3 atomic groups, stick models), and the remaining fixed MM region (wireframe models).

    As part of a continuing effort to gain indepth knowledge of zwitterionic MOF, we intend to reveal the reason of its high catalytic activity using DFT method.In our opinion, the “pure cationic active center” obtaining from charge separation would contribute to high catalytic performance.We think the “pure cationic active center” can reduce the activation energy of nucleophilic attack and lead to concerted nucleophilic attack pathway.

    MOFs exhibit remarkably complicated connectivity and high dimensionality in their structures.Therefore, hybrid quantum mechanics and molecular mechanics (QM/MM) calculations or multiscale models would be necessary for the theoretical investigation of MOF catalysis [24–27].Although QM/MM calculations [28] have more commonly been applied to the computational study of enzymes catalysis, they have great potential for application to the theoretical study of MOF catalysis, despite this being rare [29–32].

    Herein, the [2 + 1] cycloisomerization of 1,6-enynescatalyzed by MOFs containing [MnIIIporphyrin]+X?(X?= none, SbF6?, Cl?)was selected as the model reaction for theoretical calculations.

    Reported crystal structures for UNLPF-14-MnIII, PCN-223-MnIII[SbF6], and PCN-223-MnIIICl were used to build QM/MM calculation models (Fig.1 and Fig.S1 in Supporting information for UNLPF-14-MnIII; Figs.S2 and S3 in Supporting information for PCN-223-MnIII[SbF6] and PCN-223-MnIIICl, respectively).One[MnIIIporphyrin]+X?(X?= none, SbF6?, Cl?) unit was selected in the QM regions.The MM region of UNLPF-14-MnIIIcontained eight [In(RCO2)4]?SBUs and eight [MnIIIporphyrin]+linkers to balance charge.To balence the distortion of [MnIIIporphyrin]+X?(X?= none) in the reaction pathway, a complete organic ligand,which contains the QM region, together with parts of MM regioneight adjacent In(RCO2)3atomic groups, were set as active atoms during geometry optimization,while all remaining atoms were kept fixed.Correspondingly, for PCN-223-MnIII[SbF6] and PCN-223-MnIIICl in catalytic cycles, QM regions containing organic ligands were set as active atoms during geometry optimization, while all remaining atoms were kept fixed.QM/MM calculations were conducted using the ONIOM method [33,34] implemented in Gaussian 16 [35] with G09 default key word.The B3LYP [36–38] hybrid functional with D3BJ [39] dispersion correction cooperated with def2-SVP [40] basis set was used for QM calculations, and the universal force field (UFF) [41] was used for MM calculations.Furthermore,the charge equilibration method (QEq) was used to calculate the potential charge on the MM region atoms, and the electronic embedding scheme was used to deal with electrostatic interactions between QM and MM regions.The def2-TZVPP basis set with the same density functional was used for single-pointenergy calculations to provide more accurate relative energies.

    Scheme 2 shows the proposed mechanism, containing two possible pathways, of the MOF-catalyzed [2 + 1] cycloisomerization of 1,6-enynes, where [MnIIIporphyrin]+X?was considered as the active center.The catalytic cycleis initiated by coordination of the enyne substrate to MnIII, affording intermediate 1 with a metalactivated alkyne.In pathway A, the alkyne moiety is considered to be activated by the cationic metal, facilitating intramolecular nucleophilic attack by the alkene moiety to achieve [2 + 1] cycloaddition through a concerted process, affording [4.1.0]-bicyclic intermediate 3 bearing a Mn–carbene moiety.Alternatively, Mn also exhibited high-spin character, allowing the coordinated alkyne moiety to react with the alkene moiety through a radical-type addition to afford radical intermediate 2.A sequential radical coupling then provides the same intermediate 3.In either pathway, the subsequent 1,2-hydride shift of complex 3 yields a [4.1.0]-bicyclic enamine product with regeneration of a MnIIIspecies.Pathway A is a much simpler process than pathway B, involving the direct conversion of intermediate 1 to intermediate 3.

    Scheme 2.Proposed mechanism for the [2 + 1] cycloisomerization of enynes.

    Fig.2.Potential energy diagrams (kcal/mol) for [2 + 1] cycloisomerization reactions of enynes catalyzed by UNLPF-14-MnIII, PCN-223-MnIII[SbF6] and PCN-223-MnIIICl as determined at the ONIOM(B3LYP-D3BJ/def2-SVP:UFF) level.

    Fig.3.Potential energy diagrams (kcal/mol) for the [2 + 1] cycloisomerization of enynes catalyzed by [MnIIIporphyrin]+, [MnIIIporphyrin]+SbF6?, and [MnIIIporphyrin]+Cl?.

    Commutated free energy profiles for the catalytic cycle of UNLPF-14-MnIII-catalyzed [2 + 1] cycloisomerization of 1,6-enynes are shown in Fig.2, in which the real MOF catalyst was considered using the aforementioned QM/MM method.Enyne coordination to UNLPF-14-MnIIIforms intermediate 1, which has a relative energy set to zero in the free energy profiles.The alkyne moiety can be activated by coordination to the MnIIIcenter.Therefore, 6-endocyclizationcanoccur by nucleophilic attackviatransition state 2-ts, with an activation energy of 16.9 kcal/mol, affording [4.1.0]-bicyclic ring intermediate 3, with a relative energy only 5.9 kcal/mol higher than that of intermediate 1.In this process,two C–C bonds are formed simultaneously without any intermediates.A rapid 1,2-hydride shift then occursviatransition state 4-ts, with an energy barrier of only 1.5 kcal/mol.Subsequently,an enamine-coordinated MnIIIMOF is formed irreversibly in an exothermic process (34.4 kcal/mol).Finally, the free enamine target product is released from the metal center by coordination with a new substrate, affording a new intermediate 1 for the next catalytic cycle.QM/MM calculations clearly indicated that the ratedetermining step was 6-endonucleophilic attack of the alkene moiety in the metal-activated alkyne.Therefore, the electron density of the metal center plays a critical role in determining the reactivity.Accordingly, the activation energy of 6-endonucleophilic attack using PCN-223-MnIII[SbF6] or PCN-223-MnIIICl-type MOF catalysts was also studied theoretically.QM/MM calculation results(Fig.2) showed that, when PCN-223-MnIII[SbF6] was used as catalyst, the calculated activation energy for the first 6-endonucleophilic attack was 27.3 kcal/mol, which was 10.4 kcal/mol higher than that using UNLPF-14-MnIIIas catalyst.Interestingly, a stepwise process was observed in this case.Radical intermediate 8 was observed, with a relative free energy 1.4 kcal/mol lower than that of transition state 7-ts.Meanwhile, the formation of intermediate 10 occurredviaradical-coupling transition state 9-ts with a free energy barrier of 1.7 kcal/mol.Geometry information for transition state 7-ts clearly showed that the WCA ([SbF6]?) was close to Mn,which would partially decrease the positive charge of Mn, leading to lower catalytical activity in an ionic pathway.Furthermore,when a PCN-223-MnIIICl-type MOF with SCA Cl?was used, the calculated activation energy further increased to 37.3 kcal/mol (Fig.2).A radical intermediate was also found in a stepwise [2 + 1] cycloaddition process.The high activation energy and stepwise process was attributed to the SCA (Cl?) further decreasing the positive charge of Mn, which is unfavorable for alkyne activation.The computational results for the catalytic abilities of various MOFs were consistent with the experimental observations reported by the Zhang group.

    To further understand the reactivity of zwitterionic MOFcatalyzed [2 + 1] cycloisomerization of 1,6-enynes, the catalytic active species comprising [MnIIIporphyrin]+was extracted and selected as a model catalyst for QM calculations using the B3LYPD3BJ/def2-SVP method, as shown in Fig.3.Furthermore, the def2-TZVPP basis set with B3LYP-D3BJ/PCM approach was used for single-pointenergy calculations.[MnIIIporphyrin]+catalysts with WCA [SbF6]?and SCA Cl?were also selected to explore and compare the catalytic activity.QM calculations found that, when[MnIIIporphyrin]+was used as catalyst, the activation energy for the first 6-endocyclization was 16.9 kcal/molviatransition state 21-ts, affording a carbocation intermediate 22.This intermediate then undergoes a barrierless processviatransition state 23-ts to achieve [2 + 1] cycloaddition.The entire [2 + 1] cycloaddition can be considered aquasi-concerted process.A 1,2-hydride shiftviatransition state 25-ts can then result in enamine-coordinated MnIIIspecies 26.The QM-calculated activation energy for 6-endocyclization using the [MnIIIporphyrin]+model catalyst (16.9 kcal/mol)was close to that of UNLPF-14-MnIIIMOF catalyst obtained using the QM/MM method.Therefore, the active center was considered a free cationic species [MnIIIporphyrin]+when UNLPF-14-MnIIIMOF was used as catalyst.To further elucidate the coordinated anion effect, [MnIIIporphyrin]+catalysts with WCA [SbF6]?and SCA Cl?were also considered by QM calculations, giving calculated activation energies for 6-endocyclization of 25.4 and 33.0 kcal/mol,respectively.DFT calculations also clearly showed that a stepwise process occurred in both cases.These results were consistent with the cases using PCN-223-MnIII[SbF6] or PCN-223-MnIIICl MOFs as catalyst.

    Fig.4..(a) Linear relationship between energy barrier of 35-ts (kcal/mol) and NPA charge of Cl in intermediate 34.(b) The error distribution of barrier obtained from the linear-fitting formula for 73 anions coordinating complexes used as catalyst.

    Fig.5.Spin density map of intermediate (a) 22, (b) 29 and (c) 36.

    Both QM and QM/MM results highlighted the high catalytic efficiency of zwitterionic MOFs or [MnIIIporphyrin]+complexcatalyzed [2 + 1] cycloisomerization reactions.Based on these results, we want to reveal the advantage of zwitterionic MOFs by explaining the reason of its lowest energy barrier of transition state among selected MOFs and the direct conversion of intermediate 1 to intermediate 3 (Scheme 2).To better understand the dependence of catalytic activity on catalyst ability, a restricted bond length model was constructed for [MnIIIporphyrin]+Cl?, in which the coordinates of Mn and Cl, and Mn–Cl distance was set to fixed values in both the reaction intermediate and transition state of the first 6-endocyclization step.As shown in Fig.S4 (Supporting information), the calculated negative NPA charge of Cl in intermediate 34 increased as the fixed Mn–Cl distance increased.The computed results showed that an increasing Mn–Cl distance decreased the interaction between SCA Cl?and the metal center.An excellent linear effect between the NPA charge of Cl and the activation energy of 6-endocyclization was observed, with anR2value of 0.961 (Fig.4a).Interestingly, when ?1 charge of Cl in [MnIIIporphyrin]+was used in the equation, the obtained barrier is 16.5 kcal/mol which is consistent with that of previous computed result (15.9 kcal/mol).In addition, when ?1 charge of hypothetical anion in UNLPF-14-MnIII, ?0.82 charge of SbF6?in QM region of PCN-223-MnIII[SbF6] calculation model and?0.48 charge of Cl in QM region of PCN-223-MnIIICl calculation model were substituted into the equation, the obtained barrier were 16.5, 23.1 and 35.3 kcal/mol, respectively, which are closed to that of zwitterionic MOF (16.9 kcal/mol), PCN-223-MnIII[SbF6](27.3 kcal/mol) and PCN-223-MnIIICl (37.3 kcal/mol).To verify the adaptation of this formula, 73 more coordinated anions (Fig.4b)were tested and found the mean unsigned error (MUE) of the barriers is 1.3 kcal/mol (Table S1 in Supporting information).The correlation of metal center’s charge and activation free energy indicates that interaction of the coordinated anion with the metal leads to poor reactivity.Therefore, the high catalytic activity of the UNLPF-14-MnIIIMOF could be attributed to charge separation providing a “pure cationic active center” for cationic [MnIIIporphyrin]+active center.

    For the direct conversion of intermediate 1 to intermediate 3 when UNLPF-14-MnIIIused as catalyst, spin density analysis was conducted for intermates 22, 29 and 36.As shown in Fig.5, the calculated spin density of C1 was 0.53 in 22, which was much lower than those of 29 (0.88) and 36 (0.95) proving that 29 and 36 have stronger radical character.Furthermore, nature population analysis (NPA) showed that the positive charge of C1 in 22 was 0.25, which was much higher than those in 29 (0.12)and 36 (0.09), indicating rapid annulation process was relied on the net positive charge of C1 [42].Obviously, “pure cationic active center”in zwitterionic MOF could lead to one-step concerted nucleophilic attack pathway and then accelerate reaction progress.

    In summary, this DFT study clearly showed that zwitterionic MOFs have much higher catalytic activity than MOFs with WCAs or SCAs.The zwitterionic MOFs, which use [MnIIIporphyrin]+without a counterion as the organic ligand, lower the barrier of the rate-determining step in the [2 + 1] cycloisomerization of enynes,owing to its “pure cationic active center” of [MnIIIporphyrin]+.Nucleophilic attack pathway was observed when cationic metal catalysts without WCAs or SCAs were used.Meanwhile, the WCA or SCA coordination decreased the electrophilicity, resulting in a stepwise radical-type pathway.Charge control calculations based on Mn–Cl distance were conducted, further confirming the contribution of “pure cationic active center” to the catalytic performance of zwitterionic MOFs.It exhibits high reliability when examing the linear relationship between the NPA charge and barrier of 6-endocyclization by massive anions, revealing a universal adaptive character for various coordinated anions.Thus, the NPA charge could be used as an effective descriptor to predict the catalytic reactivity of Lewis acid.This work provides insight into theoretical design of porous catalysts.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21822303 21772020 22173083), Program for Science Technology Innovation Talents in Universities of Henan Province (No.20HASTIT004).The authors thank the support from the Henan Province Supercomputing Center.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.041.

    亚洲国产欧美人成| 久久这里只有精品中国| 12—13女人毛片做爰片一| 国产白丝娇喘喷水9色精品| 亚洲三级黄色毛片| 欧美成人精品欧美一级黄| 韩国av在线不卡| 一本一本综合久久| 午夜亚洲福利在线播放| 18禁在线播放成人免费| 亚洲内射少妇av| 精品一区二区免费观看| 人人妻人人澡欧美一区二区| 亚洲人成网站在线播放欧美日韩| 国产精品99久久久久久久久| 一级毛片aaaaaa免费看小| 亚洲不卡免费看| 亚洲欧美精品综合久久99| 欧美xxxx黑人xx丫x性爽| www.色视频.com| 一a级毛片在线观看| 国产精品无大码| 亚洲欧美日韩无卡精品| 国产精品无大码| 午夜福利在线在线| 成人av一区二区三区在线看| 夜夜看夜夜爽夜夜摸| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久久人妻蜜臀av| 淫妇啪啪啪对白视频| 特大巨黑吊av在线直播| 99热全是精品| 麻豆国产av国片精品| 久久午夜亚洲精品久久| 亚洲婷婷狠狠爱综合网| 在线观看美女被高潮喷水网站| 男女边吃奶边做爰视频| 久久中文看片网| 国产午夜精品久久久久久一区二区三区 | 国产亚洲av嫩草精品影院| 在线观看美女被高潮喷水网站| 少妇裸体淫交视频免费看高清| 国产精品爽爽va在线观看网站| 国产国拍精品亚洲av在线观看| 香蕉av资源在线| 菩萨蛮人人尽说江南好唐韦庄 | 最近视频中文字幕2019在线8| 国产一区二区激情短视频| 免费高清视频大片| 色吧在线观看| 亚洲av美国av| 久久中文看片网| 香蕉av资源在线| 亚洲av.av天堂| 国产私拍福利视频在线观看| 九九久久精品国产亚洲av麻豆| 日本与韩国留学比较| 国产三级中文精品| 老熟妇仑乱视频hdxx| 1000部很黄的大片| 国产一级毛片七仙女欲春2| 国产一级毛片七仙女欲春2| 在线天堂最新版资源| 亚洲经典国产精华液单| 亚洲专区国产一区二区| 在线观看免费视频日本深夜| 身体一侧抽搐| 人妻夜夜爽99麻豆av| 国产免费一级a男人的天堂| 国产午夜福利久久久久久| 国产成人精品久久久久久| 精品一区二区三区人妻视频| 夜夜看夜夜爽夜夜摸| 18禁在线播放成人免费| 欧美在线一区亚洲| 午夜免费激情av| 国产成人影院久久av| 国产精华一区二区三区| 99久久无色码亚洲精品果冻| 日韩欧美免费精品| 国产av不卡久久| 国产精品人妻久久久影院| 黑人高潮一二区| 亚洲av.av天堂| 亚州av有码| 国产精品,欧美在线| 亚洲av第一区精品v没综合| 久久精品综合一区二区三区| 97在线视频观看| 女生性感内裤真人,穿戴方法视频| a级毛片免费高清观看在线播放| 国产一区二区亚洲精品在线观看| 中国国产av一级| 亚洲国产欧美人成| 我要看日韩黄色一级片| 日日干狠狠操夜夜爽| 毛片一级片免费看久久久久| 亚洲精品影视一区二区三区av| 丝袜美腿在线中文| 精品久久久久久久末码| 男人的好看免费观看在线视频| 亚洲四区av| 三级毛片av免费| 色视频www国产| 99热这里只有精品一区| 在线播放国产精品三级| 久久久久久久亚洲中文字幕| 精品久久久久久久人妻蜜臀av| 中国美白少妇内射xxxbb| 看十八女毛片水多多多| 亚洲国产高清在线一区二区三| ponron亚洲| 久久人人精品亚洲av| 一级a爱片免费观看的视频| 日韩欧美一区二区三区在线观看| 国产成年人精品一区二区| 国产欧美日韩精品亚洲av| 综合色av麻豆| 免费观看人在逋| av卡一久久| 亚洲av免费高清在线观看| 亚洲国产欧美人成| 欧美性感艳星| 亚洲精品久久国产高清桃花| 春色校园在线视频观看| 免费观看的影片在线观看| 国产人妻一区二区三区在| 麻豆av噜噜一区二区三区| 国产精品久久电影中文字幕| av黄色大香蕉| 99久久精品一区二区三区| 日韩成人伦理影院| 国产探花极品一区二区| 国产精品1区2区在线观看.| 精品一区二区三区人妻视频| 亚洲成人精品中文字幕电影| eeuss影院久久| 亚洲精品色激情综合| 91麻豆精品激情在线观看国产| 亚洲自偷自拍三级| 激情 狠狠 欧美| 91在线精品国自产拍蜜月| 国模一区二区三区四区视频| 麻豆成人午夜福利视频| 麻豆国产av国片精品| 成年免费大片在线观看| 精品99又大又爽又粗少妇毛片| 国产色爽女视频免费观看| 免费人成在线观看视频色| 尾随美女入室| 亚洲精品一卡2卡三卡4卡5卡| 22中文网久久字幕| 美女大奶头视频| 亚洲av.av天堂| 九色成人免费人妻av| 欧美性猛交黑人性爽| 日韩亚洲欧美综合| 亚洲av熟女| videossex国产| 国产人妻一区二区三区在| 干丝袜人妻中文字幕| 国产精品永久免费网站| 成人一区二区视频在线观看| 久久久久久久久久成人| 在线观看66精品国产| 成人毛片a级毛片在线播放| 婷婷色综合大香蕉| 国产成年人精品一区二区| a级毛片a级免费在线| 欧美成人一区二区免费高清观看| 国产精品一区www在线观看| 日本三级黄在线观看| 成人综合一区亚洲| 尾随美女入室| 成人av一区二区三区在线看| 久久精品夜夜夜夜夜久久蜜豆| 变态另类丝袜制服| 欧美激情在线99| 日本欧美国产在线视频| 老司机福利观看| 国产欧美日韩精品一区二区| 国产免费男女视频| 国产爱豆传媒在线观看| 午夜a级毛片| 久久精品综合一区二区三区| 亚洲欧美日韩卡通动漫| 能在线免费观看的黄片| 日本三级黄在线观看| 日日摸夜夜添夜夜添小说| 白带黄色成豆腐渣| 亚洲精品亚洲一区二区| 热99在线观看视频| 噜噜噜噜噜久久久久久91| 国产亚洲精品久久久com| 在线看三级毛片| 精品一区二区三区av网在线观看| 日日摸夜夜添夜夜添av毛片| 国产毛片a区久久久久| 国产高清视频在线播放一区| 成人三级黄色视频| 天堂√8在线中文| 一夜夜www| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av天美| 亚洲中文日韩欧美视频| 在线天堂最新版资源| 欧美日韩在线观看h| 国产黄a三级三级三级人| 18禁在线无遮挡免费观看视频 | 熟妇人妻久久中文字幕3abv| 婷婷精品国产亚洲av| av中文乱码字幕在线| 国产成年人精品一区二区| 亚洲七黄色美女视频| 午夜激情欧美在线| 久久精品国产鲁丝片午夜精品| 精品少妇黑人巨大在线播放 | av卡一久久| 国产精品一二三区在线看| 国产在线精品亚洲第一网站| 久久久久免费精品人妻一区二区| 欧美一区二区精品小视频在线| 午夜a级毛片| av在线天堂中文字幕| 精品一区二区三区视频在线| 国产精品永久免费网站| 熟妇人妻久久中文字幕3abv| 12—13女人毛片做爰片一| 久久久久久伊人网av| a级毛片a级免费在线| 久久久久久久久大av| 亚洲最大成人av| 国产片特级美女逼逼视频| 亚洲图色成人| 成人永久免费在线观看视频| 两个人的视频大全免费| 一进一出好大好爽视频| 亚洲性夜色夜夜综合| 国内精品宾馆在线| 日本在线视频免费播放| 免费看光身美女| 国产精品久久久久久亚洲av鲁大| 久久精品国产清高在天天线| 日本a在线网址| 秋霞在线观看毛片| 久久久精品大字幕| 亚洲专区国产一区二区| 亚洲成人中文字幕在线播放| 观看美女的网站| 韩国av在线不卡| 午夜视频国产福利| 日本黄大片高清| 久久99热这里只有精品18| 免费搜索国产男女视频| 老司机午夜福利在线观看视频| 日韩在线高清观看一区二区三区| 不卡一级毛片| 亚洲av美国av| 国产成人影院久久av| 免费黄网站久久成人精品| 国产精品亚洲美女久久久| 大型黄色视频在线免费观看| 国产男人的电影天堂91| 美女内射精品一级片tv| 99久国产av精品| 麻豆一二三区av精品| 日本黄大片高清| 久久中文看片网| 久久午夜福利片| 成熟少妇高潮喷水视频| 熟妇人妻久久中文字幕3abv| 亚洲精品亚洲一区二区| 精品久久国产蜜桃| 男插女下体视频免费在线播放| 欧洲精品卡2卡3卡4卡5卡区| 日日摸夜夜添夜夜添av毛片| 久久欧美精品欧美久久欧美| 精品久久久久久久久av| 男插女下体视频免费在线播放| 亚洲天堂国产精品一区在线| 人人妻人人澡人人爽人人夜夜 | 成人高潮视频无遮挡免费网站| 亚洲精品一区av在线观看| 国产一区二区亚洲精品在线观看| 欧美色视频一区免费| 成人综合一区亚洲| 精品熟女少妇av免费看| 丰满的人妻完整版| 欧美成人一区二区免费高清观看| 欧美国产日韩亚洲一区| 国产免费一级a男人的天堂| 欧美日韩在线观看h| 日本免费a在线| 一级av片app| 国产精品亚洲美女久久久| 日韩精品青青久久久久久| 色综合站精品国产| 精品无人区乱码1区二区| 亚洲中文日韩欧美视频| 又粗又爽又猛毛片免费看| 国产男人的电影天堂91| 老司机影院成人| 欧美最黄视频在线播放免费| 在线天堂最新版资源| 国产私拍福利视频在线观看| 午夜福利在线观看吧| 国产av一区在线观看免费| 99视频精品全部免费 在线| 九九久久精品国产亚洲av麻豆| 一个人观看的视频www高清免费观看| 最近最新中文字幕大全电影3| 欧美区成人在线视频| 99久久中文字幕三级久久日本| 男插女下体视频免费在线播放| 亚洲在线观看片| 午夜福利在线观看免费完整高清在 | 国产91av在线免费观看| 真实男女啪啪啪动态图| 国产熟女欧美一区二区| 精品人妻偷拍中文字幕| 国产精品国产三级国产av玫瑰| 18禁裸乳无遮挡免费网站照片| 亚洲在线观看片| 99久久久亚洲精品蜜臀av| 久久久久久国产a免费观看| 国产日本99.免费观看| 91狼人影院| 亚洲成人精品中文字幕电影| 欧美一区二区亚洲| 美女高潮的动态| 黄色配什么色好看| 久久精品国产亚洲av香蕉五月| 成人无遮挡网站| 久久久久久久亚洲中文字幕| 我的老师免费观看完整版| 成人特级av手机在线观看| 精品无人区乱码1区二区| 尾随美女入室| 97人妻精品一区二区三区麻豆| 日日干狠狠操夜夜爽| 精品久久久久久久久久久久久| 熟女电影av网| 国产一区二区在线av高清观看| 99热6这里只有精品| 国产免费男女视频| 久久精品久久久久久噜噜老黄 | 欧美激情久久久久久爽电影| avwww免费| 99riav亚洲国产免费| av在线老鸭窝| 日韩欧美 国产精品| 国国产精品蜜臀av免费| 国产精品久久久久久久久免| 日本成人三级电影网站| 国产精品精品国产色婷婷| 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 少妇人妻精品综合一区二区 | 一个人看视频在线观看www免费| 黑人高潮一二区| 免费黄网站久久成人精品| 国产男靠女视频免费网站| 最近手机中文字幕大全| 成人一区二区视频在线观看| 日韩欧美一区二区三区在线观看| 午夜老司机福利剧场| 欧美最黄视频在线播放免费| 国产av在哪里看| 国产黄色小视频在线观看| 欧美另类亚洲清纯唯美| 国产精品1区2区在线观看.| 国产成年人精品一区二区| 亚洲欧美中文字幕日韩二区| 亚洲av中文字字幕乱码综合| 国产三级在线视频| 少妇猛男粗大的猛烈进出视频 | АⅤ资源中文在线天堂| 美女 人体艺术 gogo| 欧美绝顶高潮抽搐喷水| 久久久久久久午夜电影| 午夜福利在线观看吧| 国产av麻豆久久久久久久| 色在线成人网| 嫩草影院入口| 真实男女啪啪啪动态图| 大型黄色视频在线免费观看| 一个人免费在线观看电影| 亚洲人成网站在线播| 三级男女做爰猛烈吃奶摸视频| 国产av不卡久久| 欧美中文日本在线观看视频| 99视频精品全部免费 在线| 变态另类丝袜制服| 亚洲欧美精品综合久久99| 欧美日韩一区二区视频在线观看视频在线 | 十八禁网站免费在线| 少妇熟女欧美另类| 国产白丝娇喘喷水9色精品| АⅤ资源中文在线天堂| 亚洲一区高清亚洲精品| 女同久久另类99精品国产91| 国国产精品蜜臀av免费| 欧美中文日本在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 波多野结衣高清作品| 久久精品国产99精品国产亚洲性色| 一级黄色大片毛片| 成人特级av手机在线观看| 精品99又大又爽又粗少妇毛片| 三级国产精品欧美在线观看| 在线观看美女被高潮喷水网站| 别揉我奶头 嗯啊视频| 欧美三级亚洲精品| av在线天堂中文字幕| 亚洲国产精品国产精品| 又粗又爽又猛毛片免费看| 日本a在线网址| 国产成人a区在线观看| 国产三级在线视频| 最后的刺客免费高清国语| a级一级毛片免费在线观看| 国产一区二区在线观看日韩| 国产欧美日韩一区二区精品| 日韩成人伦理影院| 久久精品国产亚洲av香蕉五月| 久99久视频精品免费| 成人高潮视频无遮挡免费网站| 国产亚洲91精品色在线| 性欧美人与动物交配| 插逼视频在线观看| 噜噜噜噜噜久久久久久91| av黄色大香蕉| 日韩一本色道免费dvd| 毛片一级片免费看久久久久| 国产伦精品一区二区三区四那| 色噜噜av男人的天堂激情| 久久久色成人| 国产精品99久久久久久久久| 日韩三级伦理在线观看| 日本黄色片子视频| 亚洲国产高清在线一区二区三| 伦精品一区二区三区| 久久久久久九九精品二区国产| 九九久久精品国产亚洲av麻豆| 国产黄色小视频在线观看| 麻豆av噜噜一区二区三区| 美女被艹到高潮喷水动态| 不卡视频在线观看欧美| 国产午夜福利久久久久久| 午夜a级毛片| 69人妻影院| 亚洲欧美精品综合久久99| 91狼人影院| 免费看a级黄色片| 精品久久国产蜜桃| av女优亚洲男人天堂| 淫妇啪啪啪对白视频| 在线a可以看的网站| 日韩精品有码人妻一区| 91在线精品国自产拍蜜月| 女人被狂操c到高潮| 伦精品一区二区三区| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 亚洲欧美日韩高清在线视频| 2021天堂中文幕一二区在线观| 性色avwww在线观看| 国产伦一二天堂av在线观看| 国产一区亚洲一区在线观看| 久久草成人影院| 午夜福利高清视频| 嫩草影院入口| 国产成人一区二区在线| 久久人人爽人人爽人人片va| 热99在线观看视频| 97超级碰碰碰精品色视频在线观看| 高清午夜精品一区二区三区 | 国国产精品蜜臀av免费| 直男gayav资源| 人人妻,人人澡人人爽秒播| 好男人在线观看高清免费视频| 色综合色国产| 欧美性感艳星| 午夜精品一区二区三区免费看| 国内揄拍国产精品人妻在线| 国产视频内射| 麻豆久久精品国产亚洲av| 嫩草影院入口| 熟妇人妻久久中文字幕3abv| 国产成人福利小说| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区三区av在线 | 春色校园在线视频观看| 久久久久久久久久成人| 亚洲熟妇熟女久久| 国产在视频线在精品| 国产精品无大码| 精品无人区乱码1区二区| 国产熟女欧美一区二区| 亚洲欧美日韩卡通动漫| 久久久久久久久中文| 久久中文看片网| 麻豆av噜噜一区二区三区| 男女啪啪激烈高潮av片| 男人的好看免费观看在线视频| 久久久久国产精品人妻aⅴ院| 久久久久久大精品| 丝袜喷水一区| 九九久久精品国产亚洲av麻豆| 少妇熟女欧美另类| 22中文网久久字幕| 亚洲精品国产av成人精品 | 中文字幕熟女人妻在线| 国产在视频线在精品| 久久精品夜夜夜夜夜久久蜜豆| 免费在线观看成人毛片| 亚洲欧美精品自产自拍| 亚洲精品影视一区二区三区av| av在线亚洲专区| 成年女人永久免费观看视频| 真实男女啪啪啪动态图| 日本 av在线| 啦啦啦啦在线视频资源| 又黄又爽又免费观看的视频| 久久久久久久久大av| 久久久国产成人免费| 亚洲人成网站在线观看播放| 国产真实伦视频高清在线观看| 一区二区三区四区激情视频 | 岛国在线免费视频观看| 日本三级黄在线观看| 一进一出抽搐gif免费好疼| or卡值多少钱| 极品教师在线视频| 精品熟女少妇av免费看| 国产一区二区三区在线臀色熟女| 老司机午夜福利在线观看视频| 亚洲国产精品合色在线| 国产三级在线视频| 六月丁香七月| 成人综合一区亚洲| 国产真实伦视频高清在线观看| 一个人观看的视频www高清免费观看| 黄色欧美视频在线观看| 人人妻人人澡欧美一区二区| 欧美在线一区亚洲| 久久久精品大字幕| 18禁黄网站禁片免费观看直播| 夜夜夜夜夜久久久久| 国产爱豆传媒在线观看| 麻豆成人午夜福利视频| 身体一侧抽搐| 日本一二三区视频观看| av福利片在线观看| 成人无遮挡网站| 在线观看66精品国产| 嫩草影院入口| 国内精品一区二区在线观看| 狠狠狠狠99中文字幕| 精品少妇黑人巨大在线播放 | 亚洲精华国产精华液的使用体验 | 十八禁网站免费在线| 精品久久久久久久久久免费视频| 国产精品国产三级国产av玫瑰| 天堂影院成人在线观看| 久久久久久久久大av| 国产aⅴ精品一区二区三区波| 国产精品免费一区二区三区在线| 老师上课跳d突然被开到最大视频| 久久婷婷人人爽人人干人人爱| 午夜福利成人在线免费观看| 精华霜和精华液先用哪个| 国产精品伦人一区二区| 搡老岳熟女国产| 成人二区视频| 亚洲精品成人久久久久久| 特大巨黑吊av在线直播| 看非洲黑人一级黄片| 九九爱精品视频在线观看| 久久婷婷人人爽人人干人人爱| 亚洲第一电影网av| 亚洲av.av天堂| 级片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲aⅴ乱码一区二区在线播放| 又黄又爽又免费观看的视频| 卡戴珊不雅视频在线播放| 免费无遮挡裸体视频| 男女视频在线观看网站免费| 少妇高潮的动态图| 性插视频无遮挡在线免费观看| 亚洲专区国产一区二区| 性色avwww在线观看| 欧美三级亚洲精品| 好男人在线观看高清免费视频| 日韩欧美 国产精品| 少妇人妻精品综合一区二区 | 国产探花在线观看一区二区| 床上黄色一级片| 赤兔流量卡办理| 欧美性感艳星| 少妇熟女aⅴ在线视频| 夜夜爽天天搞| 成人亚洲欧美一区二区av| 国产精华一区二区三区| 国产免费一级a男人的天堂| 久99久视频精品免费| 99国产极品粉嫩在线观看| 美女高潮的动态| eeuss影院久久| 直男gayav资源| 亚洲av美国av| 99精品在免费线老司机午夜| 欧美性猛交黑人性爽| 国产午夜精品论理片|