• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanistic investigation of zwitterionic MOF-catalyzed enyne annulation using UNLPF-14-MnIII as catalyst

    2022-09-15 03:11:04TotoLiuRuihongDunYnynWngShijunLiLingboQuJinshuiSongQingLiuYuLn
    Chinese Chemical Letters 2022年9期

    Toto Liu, Ruihong Dun, Ynyn Wng, Shijun Li, Lingbo Qu, Jinshui Song,?,Qing Liu, Yu Ln,d,?

    a Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

    b Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China

    c College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China

    d School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University,Chongqing 400030, China

    ABSTRACT Hybrid quantum mechanics/molecular mechanics calculations were performed to elucidate how[MnIIIporphyrin]+X?-based metal-organic frameworks (MOFs) catalyze the [2 + 1] cycloisomerization of enynes and why zwitterionic MOFs exhibit strong activity in Lewis acid catalysis.The calculations showed that zwitterionic MOFs have a “pure cationic active center” leading to a concerted nucleophilic attack pathway with lower barriers.In contrast, metals with coordinating anions have reduced electrophilicity,resulting in a stepwise radical-type pathway with much higher barriers.Further calculations showed the nature of catalysis was strongly depended on the charge on the anion ligand.A good linear relationship between the NPA charge and barrier was found, and verified by 73 anions with small derivations, which presents a universal adaptive character for various coordinated anions.

    Keywords:ONIOM QM/MM Zwitterionic MOF[MnIIIporphyrin]+X?Enyne annulation Mechanism Anion effect

    Transition-metal catalysis is a powerful tool for the sustainable development of organic synthesis [1], and has been widely used in pharmaceutical [2], materials [3], life sciences [4], and other fields[5].In transition-metal catalysis, as the metal center is usually in a positive oxidative state, electrophilicity is often exhibited.Therefore, the charge density of the central metal atom often affects the catalytic activity.In homogeneous transition-metal catalysis,the type of counterion usually plays a vital role in determining the strength of interaction with the central metal atom, and will affect its charge distribution [6,7].Generally, strongly coordinating anions(SCAs), such as Cl?and OAc?, are widely used owing to their ready availability [8,9].Although less common, weakly coordinating anions (WCAs, such as PF6?, BF4?and SbF6?), which have larger volumes or stronger electron attracting effects, can be employed as counter anions in complexes to enhance the positive charge of the cationic metal center [10–12].This strategy can be used to obtain a more positively charged transition-metal center for further transformations by binding with nucleophilic substrates.Furthermore, the use of zwitterionic metal complexes, which, instead of a common anion, contain a negatively charged ancillary ligand covalently bonded to the cationic metal fragment to achieve formal separation of the positive and negative charges, is an attractive alternative approach.These zwitterionic metal complexes with neutral internal charge and tunable electrophilicity have proven to be promising catalysts for various organic reactions, and are considered effective alternatives to the corresponding complexes with WCAs [13,14].However, electrostatic interaction between two zwitterionic molecules in the reaction system, which is difficult to be avoid in homogeneous catalysis (Scheme 1), would significantly reduce the catalytic activity [15].Furthermore, difficulties in the synthesis and recycling of zwitterionic metal complexes restrict their further application.Therefore, the design of zwitterionic catalysts that can realize the separation and fixation of anions and cations,and be preparedviasimple synthetic steps and recycled by simple post-processing operations are needed for further catalytic studies and practical applications.

    Scheme 1.(a) Development of zwitterionic metal–organic frameworks from zwitterionic metal complexes; (b) Crystal structure of the cation ([MnIIIporphyrin]+)and anion ([In(CO2)4]?) in completely separated zwitterionic MOF UNLPF-14-MnIII;(c) Shortest distance between [MnIIIporphyrin]+ and [In(CO2)4]?in UNLPF-14-MnIII;(d) [2 + 1] Cycloisomerization of enynes catalyzed by zwitterionic MOF UNLPF-14-MnIII.

    Metal–organic frameworks (MOFs) are emerging as excellent catalyst platforms owing to their tunable structure, high porosity, and crystalline properties [16–20].Benefitting from a bottomup synthesis strategy, both vital structural components of MOFs,namely, organic linkers and inorganic secondary building units(SBUs), can be synthesized with either net-positive or net-negative charge.Furthermore, MOFs prepared by the assembly of cationic organometallic complex-based organic linkers with anionic inorganic SBUs can be considered potential heterogeneous zwitterionic catalyst candidates [21,22].It is foreseeable that such zwitterionic MOFs poccess enhanced electrophilicity because the anionic SBUs have no coordination effect with the cationic metal center in the organic linker.More importantly, the strategy can avoid the electrostatic interactions between two zwitterionic molecules in the reaction system, which is difficult to avoid in molecular zwitterionic transition-metal complexes catalysis (Scheme 1a), would significantly increase the catalytic activity.

    Recently, Zhang reported a synthesis of zwitterionic MOFs (UNLPF-14-MnIII, Scheme 1b) composed of cationic[MIIIporphyrin]+(M = Mn, Fe) linkers and anionic SBUs([In(RCO2)4]?, Scheme 1c), which showed considerable catalytic activity in the [3 + 2] cycloaddition of aziridines and alkenes,[4 + 2] hetero-Diels–Alder cycloaddition of aldehydes with dienes, and [2 + 1] cycloisomerization of enynes (Scheme 1d).In comparison, the corresponding catalytic activity of another MOF comprising neutral [MIIIporphyrin]+X?(X?= SbF6?, BF4?, Cl?)linkers and neutral Zr6(μ3–OH)4(OH)4(COO)12SBUs and their corresponding molecular catalysts was significantly lower [23].For[2 + 1] cycloisomerization of enynes, zwitterionic MOF UNLPF-14-MnIIIshowed the highest catalytic activity (95% yield and 99%selectivity for target product in 8 h), MOF PCN-223-MnIII[SbF6]with WCAs gave moderate catalytic activity (63% yield and 67%selectivity for target product in 24 h), and almost no reaction was observed when MOF PCN-223-MnIIICl with SCAs was used as catalyst.

    Fig.1.QM/MM calculation model of zwitterionic MOF UNLPF-14-MnIII, QM region(one [MnIIIporphyrin]+ complex, ball-and-stick models), active MM region (entire[MnIIIporphyrin]+ complex with eight adjacent In(CO2)3 atomic groups, stick models), and the remaining fixed MM region (wireframe models).

    As part of a continuing effort to gain indepth knowledge of zwitterionic MOF, we intend to reveal the reason of its high catalytic activity using DFT method.In our opinion, the “pure cationic active center” obtaining from charge separation would contribute to high catalytic performance.We think the “pure cationic active center” can reduce the activation energy of nucleophilic attack and lead to concerted nucleophilic attack pathway.

    MOFs exhibit remarkably complicated connectivity and high dimensionality in their structures.Therefore, hybrid quantum mechanics and molecular mechanics (QM/MM) calculations or multiscale models would be necessary for the theoretical investigation of MOF catalysis [24–27].Although QM/MM calculations [28] have more commonly been applied to the computational study of enzymes catalysis, they have great potential for application to the theoretical study of MOF catalysis, despite this being rare [29–32].

    Herein, the [2 + 1] cycloisomerization of 1,6-enynescatalyzed by MOFs containing [MnIIIporphyrin]+X?(X?= none, SbF6?, Cl?)was selected as the model reaction for theoretical calculations.

    Reported crystal structures for UNLPF-14-MnIII, PCN-223-MnIII[SbF6], and PCN-223-MnIIICl were used to build QM/MM calculation models (Fig.1 and Fig.S1 in Supporting information for UNLPF-14-MnIII; Figs.S2 and S3 in Supporting information for PCN-223-MnIII[SbF6] and PCN-223-MnIIICl, respectively).One[MnIIIporphyrin]+X?(X?= none, SbF6?, Cl?) unit was selected in the QM regions.The MM region of UNLPF-14-MnIIIcontained eight [In(RCO2)4]?SBUs and eight [MnIIIporphyrin]+linkers to balance charge.To balence the distortion of [MnIIIporphyrin]+X?(X?= none) in the reaction pathway, a complete organic ligand,which contains the QM region, together with parts of MM regioneight adjacent In(RCO2)3atomic groups, were set as active atoms during geometry optimization,while all remaining atoms were kept fixed.Correspondingly, for PCN-223-MnIII[SbF6] and PCN-223-MnIIICl in catalytic cycles, QM regions containing organic ligands were set as active atoms during geometry optimization, while all remaining atoms were kept fixed.QM/MM calculations were conducted using the ONIOM method [33,34] implemented in Gaussian 16 [35] with G09 default key word.The B3LYP [36–38] hybrid functional with D3BJ [39] dispersion correction cooperated with def2-SVP [40] basis set was used for QM calculations, and the universal force field (UFF) [41] was used for MM calculations.Furthermore,the charge equilibration method (QEq) was used to calculate the potential charge on the MM region atoms, and the electronic embedding scheme was used to deal with electrostatic interactions between QM and MM regions.The def2-TZVPP basis set with the same density functional was used for single-pointenergy calculations to provide more accurate relative energies.

    Scheme 2 shows the proposed mechanism, containing two possible pathways, of the MOF-catalyzed [2 + 1] cycloisomerization of 1,6-enynes, where [MnIIIporphyrin]+X?was considered as the active center.The catalytic cycleis initiated by coordination of the enyne substrate to MnIII, affording intermediate 1 with a metalactivated alkyne.In pathway A, the alkyne moiety is considered to be activated by the cationic metal, facilitating intramolecular nucleophilic attack by the alkene moiety to achieve [2 + 1] cycloaddition through a concerted process, affording [4.1.0]-bicyclic intermediate 3 bearing a Mn–carbene moiety.Alternatively, Mn also exhibited high-spin character, allowing the coordinated alkyne moiety to react with the alkene moiety through a radical-type addition to afford radical intermediate 2.A sequential radical coupling then provides the same intermediate 3.In either pathway, the subsequent 1,2-hydride shift of complex 3 yields a [4.1.0]-bicyclic enamine product with regeneration of a MnIIIspecies.Pathway A is a much simpler process than pathway B, involving the direct conversion of intermediate 1 to intermediate 3.

    Scheme 2.Proposed mechanism for the [2 + 1] cycloisomerization of enynes.

    Fig.2.Potential energy diagrams (kcal/mol) for [2 + 1] cycloisomerization reactions of enynes catalyzed by UNLPF-14-MnIII, PCN-223-MnIII[SbF6] and PCN-223-MnIIICl as determined at the ONIOM(B3LYP-D3BJ/def2-SVP:UFF) level.

    Fig.3.Potential energy diagrams (kcal/mol) for the [2 + 1] cycloisomerization of enynes catalyzed by [MnIIIporphyrin]+, [MnIIIporphyrin]+SbF6?, and [MnIIIporphyrin]+Cl?.

    Commutated free energy profiles for the catalytic cycle of UNLPF-14-MnIII-catalyzed [2 + 1] cycloisomerization of 1,6-enynes are shown in Fig.2, in which the real MOF catalyst was considered using the aforementioned QM/MM method.Enyne coordination to UNLPF-14-MnIIIforms intermediate 1, which has a relative energy set to zero in the free energy profiles.The alkyne moiety can be activated by coordination to the MnIIIcenter.Therefore, 6-endocyclizationcanoccur by nucleophilic attackviatransition state 2-ts, with an activation energy of 16.9 kcal/mol, affording [4.1.0]-bicyclic ring intermediate 3, with a relative energy only 5.9 kcal/mol higher than that of intermediate 1.In this process,two C–C bonds are formed simultaneously without any intermediates.A rapid 1,2-hydride shift then occursviatransition state 4-ts, with an energy barrier of only 1.5 kcal/mol.Subsequently,an enamine-coordinated MnIIIMOF is formed irreversibly in an exothermic process (34.4 kcal/mol).Finally, the free enamine target product is released from the metal center by coordination with a new substrate, affording a new intermediate 1 for the next catalytic cycle.QM/MM calculations clearly indicated that the ratedetermining step was 6-endonucleophilic attack of the alkene moiety in the metal-activated alkyne.Therefore, the electron density of the metal center plays a critical role in determining the reactivity.Accordingly, the activation energy of 6-endonucleophilic attack using PCN-223-MnIII[SbF6] or PCN-223-MnIIICl-type MOF catalysts was also studied theoretically.QM/MM calculation results(Fig.2) showed that, when PCN-223-MnIII[SbF6] was used as catalyst, the calculated activation energy for the first 6-endonucleophilic attack was 27.3 kcal/mol, which was 10.4 kcal/mol higher than that using UNLPF-14-MnIIIas catalyst.Interestingly, a stepwise process was observed in this case.Radical intermediate 8 was observed, with a relative free energy 1.4 kcal/mol lower than that of transition state 7-ts.Meanwhile, the formation of intermediate 10 occurredviaradical-coupling transition state 9-ts with a free energy barrier of 1.7 kcal/mol.Geometry information for transition state 7-ts clearly showed that the WCA ([SbF6]?) was close to Mn,which would partially decrease the positive charge of Mn, leading to lower catalytical activity in an ionic pathway.Furthermore,when a PCN-223-MnIIICl-type MOF with SCA Cl?was used, the calculated activation energy further increased to 37.3 kcal/mol (Fig.2).A radical intermediate was also found in a stepwise [2 + 1] cycloaddition process.The high activation energy and stepwise process was attributed to the SCA (Cl?) further decreasing the positive charge of Mn, which is unfavorable for alkyne activation.The computational results for the catalytic abilities of various MOFs were consistent with the experimental observations reported by the Zhang group.

    To further understand the reactivity of zwitterionic MOFcatalyzed [2 + 1] cycloisomerization of 1,6-enynes, the catalytic active species comprising [MnIIIporphyrin]+was extracted and selected as a model catalyst for QM calculations using the B3LYPD3BJ/def2-SVP method, as shown in Fig.3.Furthermore, the def2-TZVPP basis set with B3LYP-D3BJ/PCM approach was used for single-pointenergy calculations.[MnIIIporphyrin]+catalysts with WCA [SbF6]?and SCA Cl?were also selected to explore and compare the catalytic activity.QM calculations found that, when[MnIIIporphyrin]+was used as catalyst, the activation energy for the first 6-endocyclization was 16.9 kcal/molviatransition state 21-ts, affording a carbocation intermediate 22.This intermediate then undergoes a barrierless processviatransition state 23-ts to achieve [2 + 1] cycloaddition.The entire [2 + 1] cycloaddition can be considered aquasi-concerted process.A 1,2-hydride shiftviatransition state 25-ts can then result in enamine-coordinated MnIIIspecies 26.The QM-calculated activation energy for 6-endocyclization using the [MnIIIporphyrin]+model catalyst (16.9 kcal/mol)was close to that of UNLPF-14-MnIIIMOF catalyst obtained using the QM/MM method.Therefore, the active center was considered a free cationic species [MnIIIporphyrin]+when UNLPF-14-MnIIIMOF was used as catalyst.To further elucidate the coordinated anion effect, [MnIIIporphyrin]+catalysts with WCA [SbF6]?and SCA Cl?were also considered by QM calculations, giving calculated activation energies for 6-endocyclization of 25.4 and 33.0 kcal/mol,respectively.DFT calculations also clearly showed that a stepwise process occurred in both cases.These results were consistent with the cases using PCN-223-MnIII[SbF6] or PCN-223-MnIIICl MOFs as catalyst.

    Fig.4..(a) Linear relationship between energy barrier of 35-ts (kcal/mol) and NPA charge of Cl in intermediate 34.(b) The error distribution of barrier obtained from the linear-fitting formula for 73 anions coordinating complexes used as catalyst.

    Fig.5.Spin density map of intermediate (a) 22, (b) 29 and (c) 36.

    Both QM and QM/MM results highlighted the high catalytic efficiency of zwitterionic MOFs or [MnIIIporphyrin]+complexcatalyzed [2 + 1] cycloisomerization reactions.Based on these results, we want to reveal the advantage of zwitterionic MOFs by explaining the reason of its lowest energy barrier of transition state among selected MOFs and the direct conversion of intermediate 1 to intermediate 3 (Scheme 2).To better understand the dependence of catalytic activity on catalyst ability, a restricted bond length model was constructed for [MnIIIporphyrin]+Cl?, in which the coordinates of Mn and Cl, and Mn–Cl distance was set to fixed values in both the reaction intermediate and transition state of the first 6-endocyclization step.As shown in Fig.S4 (Supporting information), the calculated negative NPA charge of Cl in intermediate 34 increased as the fixed Mn–Cl distance increased.The computed results showed that an increasing Mn–Cl distance decreased the interaction between SCA Cl?and the metal center.An excellent linear effect between the NPA charge of Cl and the activation energy of 6-endocyclization was observed, with anR2value of 0.961 (Fig.4a).Interestingly, when ?1 charge of Cl in [MnIIIporphyrin]+was used in the equation, the obtained barrier is 16.5 kcal/mol which is consistent with that of previous computed result (15.9 kcal/mol).In addition, when ?1 charge of hypothetical anion in UNLPF-14-MnIII, ?0.82 charge of SbF6?in QM region of PCN-223-MnIII[SbF6] calculation model and?0.48 charge of Cl in QM region of PCN-223-MnIIICl calculation model were substituted into the equation, the obtained barrier were 16.5, 23.1 and 35.3 kcal/mol, respectively, which are closed to that of zwitterionic MOF (16.9 kcal/mol), PCN-223-MnIII[SbF6](27.3 kcal/mol) and PCN-223-MnIIICl (37.3 kcal/mol).To verify the adaptation of this formula, 73 more coordinated anions (Fig.4b)were tested and found the mean unsigned error (MUE) of the barriers is 1.3 kcal/mol (Table S1 in Supporting information).The correlation of metal center’s charge and activation free energy indicates that interaction of the coordinated anion with the metal leads to poor reactivity.Therefore, the high catalytic activity of the UNLPF-14-MnIIIMOF could be attributed to charge separation providing a “pure cationic active center” for cationic [MnIIIporphyrin]+active center.

    For the direct conversion of intermediate 1 to intermediate 3 when UNLPF-14-MnIIIused as catalyst, spin density analysis was conducted for intermates 22, 29 and 36.As shown in Fig.5, the calculated spin density of C1 was 0.53 in 22, which was much lower than those of 29 (0.88) and 36 (0.95) proving that 29 and 36 have stronger radical character.Furthermore, nature population analysis (NPA) showed that the positive charge of C1 in 22 was 0.25, which was much higher than those in 29 (0.12)and 36 (0.09), indicating rapid annulation process was relied on the net positive charge of C1 [42].Obviously, “pure cationic active center”in zwitterionic MOF could lead to one-step concerted nucleophilic attack pathway and then accelerate reaction progress.

    In summary, this DFT study clearly showed that zwitterionic MOFs have much higher catalytic activity than MOFs with WCAs or SCAs.The zwitterionic MOFs, which use [MnIIIporphyrin]+without a counterion as the organic ligand, lower the barrier of the rate-determining step in the [2 + 1] cycloisomerization of enynes,owing to its “pure cationic active center” of [MnIIIporphyrin]+.Nucleophilic attack pathway was observed when cationic metal catalysts without WCAs or SCAs were used.Meanwhile, the WCA or SCA coordination decreased the electrophilicity, resulting in a stepwise radical-type pathway.Charge control calculations based on Mn–Cl distance were conducted, further confirming the contribution of “pure cationic active center” to the catalytic performance of zwitterionic MOFs.It exhibits high reliability when examing the linear relationship between the NPA charge and barrier of 6-endocyclization by massive anions, revealing a universal adaptive character for various coordinated anions.Thus, the NPA charge could be used as an effective descriptor to predict the catalytic reactivity of Lewis acid.This work provides insight into theoretical design of porous catalysts.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21822303 21772020 22173083), Program for Science Technology Innovation Talents in Universities of Henan Province (No.20HASTIT004).The authors thank the support from the Henan Province Supercomputing Center.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.041.

    一级片免费观看大全| 国产精品久久久久久精品古装| 一区在线观看完整版| 中文字幕另类日韩欧美亚洲嫩草| 九草在线视频观看| 极品少妇高潮喷水抽搐| 国产亚洲av高清不卡| 免费在线观看视频国产中文字幕亚洲 | 成人国语在线视频| 亚洲情色 制服丝袜| 久久久久精品性色| 在线观看免费视频网站a站| 黄频高清免费视频| 爱豆传媒免费全集在线观看| 热99国产精品久久久久久7| 久久精品国产a三级三级三级| 日本黄色日本黄色录像| 国产国语露脸激情在线看| 亚洲精品久久午夜乱码| 亚洲av综合色区一区| 18禁国产床啪视频网站| 日本色播在线视频| 男男h啪啪无遮挡| 18禁动态无遮挡网站| 国产精品二区激情视频| 如日韩欧美国产精品一区二区三区| 久久久久精品久久久久真实原创| 一本色道久久久久久精品综合| 一级片'在线观看视频| 一区二区三区精品91| 成年美女黄网站色视频大全免费| 一级毛片黄色毛片免费观看视频| 看十八女毛片水多多多| 九草在线视频观看| 性高湖久久久久久久久免费观看| 尾随美女入室| h视频一区二区三区| 久久狼人影院| 老熟女久久久| 欧美 日韩 精品 国产| 亚洲一区中文字幕在线| 日日爽夜夜爽网站| 99九九在线精品视频| 黄色 视频免费看| 国产探花极品一区二区| 欧美日韩一级在线毛片| 午夜91福利影院| 国产伦理片在线播放av一区| 国产精品.久久久| 99精品久久久久人妻精品| 91老司机精品| 亚洲图色成人| 丝袜美腿诱惑在线| 一边亲一边摸免费视频| 韩国高清视频一区二区三区| 在线天堂中文资源库| 69精品国产乱码久久久| 国产免费一区二区三区四区乱码| av在线老鸭窝| 中文字幕人妻丝袜制服| 欧美少妇被猛烈插入视频| 国产 精品1| 日韩精品免费视频一区二区三区| 天天躁夜夜躁狠狠久久av| 免费久久久久久久精品成人欧美视频| 亚洲三区欧美一区| 国产伦理片在线播放av一区| 99国产综合亚洲精品| 久久久久久久国产电影| 黄色毛片三级朝国网站| 最近中文字幕高清免费大全6| 99九九在线精品视频| av不卡在线播放| 免费黄色在线免费观看| 女性被躁到高潮视频| 国产精品99久久99久久久不卡 | 久久精品国产a三级三级三级| 日日爽夜夜爽网站| 亚洲欧洲日产国产| 人人妻人人爽人人添夜夜欢视频| 高清视频免费观看一区二区| 亚洲精品第二区| 午夜激情av网站| 久久久久久久大尺度免费视频| 伊人久久大香线蕉亚洲五| 精品国产一区二区三区四区第35| 一区二区三区精品91| 午夜激情久久久久久久| 国产一区二区 视频在线| 热re99久久国产66热| 亚洲综合精品二区| 在现免费观看毛片| 久久久久久久大尺度免费视频| 美女视频免费永久观看网站| av在线app专区| 18禁国产床啪视频网站| 亚洲精华国产精华液的使用体验| 在线精品无人区一区二区三| 操出白浆在线播放| 日本欧美国产在线视频| 热99久久久久精品小说推荐| 91国产中文字幕| 日韩大片免费观看网站| 精品午夜福利在线看| 搡老乐熟女国产| 一区二区三区四区激情视频| 婷婷色综合www| 一级黄片播放器| 国产亚洲av片在线观看秒播厂| 黄色一级大片看看| 天堂中文最新版在线下载| 黑丝袜美女国产一区| 欧美日韩一区二区视频在线观看视频在线| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久人妻精品电影 | 亚洲欧美清纯卡通| 9热在线视频观看99| 亚洲欧美清纯卡通| 免费黄色在线免费观看| 日日啪夜夜爽| 熟女av电影| 精品国产乱码久久久久久男人| 国产成人精品久久二区二区91 | 波多野结衣一区麻豆| 日韩伦理黄色片| 一级毛片 在线播放| 大码成人一级视频| www.精华液| 看免费av毛片| 欧美 亚洲 国产 日韩一| www.自偷自拍.com| 老汉色av国产亚洲站长工具| 一级片免费观看大全| 一区在线观看完整版| 国产精品人妻久久久影院| 激情五月婷婷亚洲| 搡老乐熟女国产| 亚洲国产最新在线播放| 欧美日韩av久久| 麻豆乱淫一区二区| 亚洲少妇的诱惑av| kizo精华| 精品国产一区二区三区久久久樱花| 久久99精品国语久久久| 精品一区二区三区四区五区乱码 | 国产成人一区二区在线| 91精品三级在线观看| 欧美日韩亚洲综合一区二区三区_| 十八禁人妻一区二区| 亚洲欧洲国产日韩| 亚洲欧洲精品一区二区精品久久久 | 69精品国产乱码久久久| 久久 成人 亚洲| 无遮挡黄片免费观看| 美女大奶头黄色视频| 亚洲精品国产色婷婷电影| 婷婷成人精品国产| 欧美日韩一区二区视频在线观看视频在线| 人人澡人人妻人| 中文字幕制服av| 欧美日韩亚洲综合一区二区三区_| 麻豆精品久久久久久蜜桃| 国产精品一区二区精品视频观看| 一边亲一边摸免费视频| 99九九在线精品视频| 777久久人妻少妇嫩草av网站| 18禁观看日本| 蜜桃在线观看..| 午夜av观看不卡| 亚洲综合精品二区| 亚洲精品美女久久久久99蜜臀 | 国产精品三级大全| 国产成人欧美| 欧美精品人与动牲交sv欧美| 午夜福利视频精品| 久久天堂一区二区三区四区| 国产97色在线日韩免费| 丝袜在线中文字幕| 亚洲av欧美aⅴ国产| 综合色丁香网| 日韩 欧美 亚洲 中文字幕| 欧美亚洲 丝袜 人妻 在线| 黄色毛片三级朝国网站| 1024香蕉在线观看| 色综合欧美亚洲国产小说| 热re99久久精品国产66热6| 美女脱内裤让男人舔精品视频| 久久久久精品国产欧美久久久 | 亚洲成人手机| 国产伦理片在线播放av一区| 亚洲综合色网址| 老司机靠b影院| 天堂中文最新版在线下载| 黑人欧美特级aaaaaa片| 久久精品熟女亚洲av麻豆精品| 日韩大码丰满熟妇| 国产精品熟女久久久久浪| 亚洲国产看品久久| 成年美女黄网站色视频大全免费| 亚洲精品国产区一区二| 日韩精品免费视频一区二区三区| 久久久久久久久久久免费av| 亚洲精品,欧美精品| 国产精品亚洲av一区麻豆 | 免费少妇av软件| 99re6热这里在线精品视频| 狠狠婷婷综合久久久久久88av| 亚洲av成人精品一二三区| 国产毛片在线视频| 黄频高清免费视频| 免费观看a级毛片全部| 少妇的丰满在线观看| 久久ye,这里只有精品| 欧美国产精品va在线观看不卡| 日日啪夜夜爽| 免费观看a级毛片全部| 在线 av 中文字幕| 老司机影院毛片| 国产精品一区二区在线不卡| 欧美97在线视频| 日本午夜av视频| 国产精品嫩草影院av在线观看| 深夜精品福利| 欧美另类一区| 美女午夜性视频免费| 69精品国产乱码久久久| 亚洲熟女毛片儿| 香蕉丝袜av| 人人澡人人妻人| 久久国产精品男人的天堂亚洲| 国产 一区精品| 亚洲精品日本国产第一区| 欧美日本中文国产一区发布| 成人漫画全彩无遮挡| 日本91视频免费播放| 香蕉国产在线看| 欧美 亚洲 国产 日韩一| 不卡视频在线观看欧美| 国产亚洲最大av| 无遮挡黄片免费观看| 亚洲色图 男人天堂 中文字幕| 五月天丁香电影| 在线天堂中文资源库| 亚洲欧洲日产国产| 九九爱精品视频在线观看| 亚洲精品自拍成人| 午夜福利影视在线免费观看| 久久久久久久久久久免费av| 久久精品久久精品一区二区三区| 久久亚洲国产成人精品v| av又黄又爽大尺度在线免费看| 久久久久久人人人人人| 国产黄频视频在线观看| 国产精品免费视频内射| 在线看a的网站| 啦啦啦视频在线资源免费观看| 国产av一区二区精品久久| 一区二区av电影网| 国产欧美日韩一区二区三区在线| 日本av免费视频播放| 久久久久精品性色| 中文字幕另类日韩欧美亚洲嫩草| 91精品伊人久久大香线蕉| 国产成人午夜福利电影在线观看| 免费久久久久久久精品成人欧美视频| 在线观看一区二区三区激情| av片东京热男人的天堂| 99久久人妻综合| 在线观看免费日韩欧美大片| 久热爱精品视频在线9| 国产精品av久久久久免费| 日本av手机在线免费观看| 久久精品熟女亚洲av麻豆精品| 日本vs欧美在线观看视频| 国产精品久久久久久精品古装| 亚洲av欧美aⅴ国产| 美国免费a级毛片| 九草在线视频观看| av国产精品久久久久影院| 午夜福利一区二区在线看| av片东京热男人的天堂| 欧美 日韩 精品 国产| 亚洲av中文av极速乱| 中文字幕精品免费在线观看视频| 黑丝袜美女国产一区| 国产99久久九九免费精品| 亚洲人成网站在线观看播放| svipshipincom国产片| 欧美精品高潮呻吟av久久| 成人国产麻豆网| 免费看av在线观看网站| 麻豆av在线久日| av不卡在线播放| 国产男女超爽视频在线观看| 99久久综合免费| 精品人妻熟女毛片av久久网站| 国产亚洲最大av| 男女无遮挡免费网站观看| 一级毛片 在线播放| 成年av动漫网址| av国产精品久久久久影院| 国产成人午夜福利电影在线观看| av一本久久久久| 国产亚洲av片在线观看秒播厂| 汤姆久久久久久久影院中文字幕| 久久97久久精品| 亚洲伊人久久精品综合| 亚洲精品av麻豆狂野| 国产爽快片一区二区三区| 久久久国产精品麻豆| 亚洲伊人久久精品综合| 2021少妇久久久久久久久久久| 亚洲av成人精品一二三区| 久久99热这里只频精品6学生| 丝袜脚勾引网站| 久久毛片免费看一区二区三区| 18在线观看网站| 丰满迷人的少妇在线观看| 在线亚洲精品国产二区图片欧美| 国产女主播在线喷水免费视频网站| 天美传媒精品一区二区| 国产精品麻豆人妻色哟哟久久| 91国产中文字幕| av国产精品久久久久影院| 国产野战对白在线观看| 女人久久www免费人成看片| 精品一区二区三区四区五区乱码 | 香蕉丝袜av| av又黄又爽大尺度在线免费看| 老司机深夜福利视频在线观看 | 我的亚洲天堂| 亚洲伊人色综图| 伊人亚洲综合成人网| 色视频在线一区二区三区| 丁香六月天网| 婷婷色麻豆天堂久久| 男男h啪啪无遮挡| 免费少妇av软件| 女人被躁到高潮嗷嗷叫费观| 免费看不卡的av| 青草久久国产| 美国免费a级毛片| 午夜免费观看性视频| 哪个播放器可以免费观看大片| 丰满少妇做爰视频| 国产淫语在线视频| 免费观看a级毛片全部| 免费久久久久久久精品成人欧美视频| 亚洲欧美精品综合一区二区三区| 久久天躁狠狠躁夜夜2o2o | 丰满饥渴人妻一区二区三| 麻豆av在线久日| 亚洲精品日本国产第一区| 免费观看人在逋| 美国免费a级毛片| 叶爱在线成人免费视频播放| 欧美人与性动交α欧美软件| 国产成人精品无人区| 亚洲精品日本国产第一区| 亚洲国产精品一区二区三区在线| 老司机在亚洲福利影院| 这个男人来自地球电影免费观看 | 午夜老司机福利片| 国产乱人偷精品视频| 极品人妻少妇av视频| 美女视频免费永久观看网站| 亚洲av欧美aⅴ国产| 久久久久国产一级毛片高清牌| 午夜老司机福利片| 一级毛片我不卡| 亚洲成人免费av在线播放| 国产福利在线免费观看视频| 国产高清国产精品国产三级| 亚洲专区中文字幕在线 | 中文乱码字字幕精品一区二区三区| 亚洲第一区二区三区不卡| 又黄又粗又硬又大视频| 亚洲精品aⅴ在线观看| 丝袜脚勾引网站| 久久免费观看电影| 亚洲熟女毛片儿| 中文欧美无线码| 婷婷成人精品国产| 精品国产一区二区久久| 在线观看人妻少妇| 一级片'在线观看视频| 一区福利在线观看| 青春草亚洲视频在线观看| 久久av网站| 看免费av毛片| 黑丝袜美女国产一区| 婷婷色综合www| 亚洲七黄色美女视频| 亚洲国产精品成人久久小说| 又大又爽又粗| 婷婷色av中文字幕| 亚洲国产av新网站| 午夜福利视频在线观看免费| 色综合欧美亚洲国产小说| 成年动漫av网址| www.熟女人妻精品国产| 国产一卡二卡三卡精品 | avwww免费| 精品一区在线观看国产| 亚洲精品美女久久久久99蜜臀 | 亚洲av在线观看美女高潮| 七月丁香在线播放| 精品视频人人做人人爽| 中国国产av一级| 亚洲久久久国产精品| 一区二区三区四区激情视频| 大陆偷拍与自拍| 不卡av一区二区三区| 满18在线观看网站| 一边摸一边做爽爽视频免费| 99香蕉大伊视频| 乱人伦中国视频| 各种免费的搞黄视频| 日韩精品免费视频一区二区三区| 成人漫画全彩无遮挡| 国产在线视频一区二区| 好男人视频免费观看在线| 精品国产乱码久久久久久男人| 色婷婷久久久亚洲欧美| 国产黄色免费在线视频| 国产一级毛片在线| 精品一区二区免费观看| 美女中出高潮动态图| 激情五月婷婷亚洲| 日韩,欧美,国产一区二区三区| 卡戴珊不雅视频在线播放| 欧美日韩亚洲综合一区二区三区_| 国产精品嫩草影院av在线观看| 亚洲激情五月婷婷啪啪| 如何舔出高潮| e午夜精品久久久久久久| 一级爰片在线观看| 亚洲精品国产色婷婷电影| 在线精品无人区一区二区三| netflix在线观看网站| 亚洲第一区二区三区不卡| 国产精品99久久99久久久不卡 | 亚洲国产精品国产精品| 国产亚洲欧美精品永久| 熟女av电影| 日日爽夜夜爽网站| 51午夜福利影视在线观看| 老司机在亚洲福利影院| 亚洲色图 男人天堂 中文字幕| 九九爱精品视频在线观看| 国产成人欧美在线观看 | 亚洲精品久久久久久婷婷小说| 国产成人欧美| 成人国语在线视频| 亚洲视频免费观看视频| 国产av国产精品国产| 欧美日韩亚洲综合一区二区三区_| av女优亚洲男人天堂| 如日韩欧美国产精品一区二区三区| 妹子高潮喷水视频| 日韩一卡2卡3卡4卡2021年| 免费少妇av软件| 伦理电影免费视频| 日韩,欧美,国产一区二区三区| 亚洲国产最新在线播放| 色精品久久人妻99蜜桃| 悠悠久久av| 最新在线观看一区二区三区 | 成年人免费黄色播放视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲一码二码三码区别大吗| 久久久精品区二区三区| 日韩一卡2卡3卡4卡2021年| 美女中出高潮动态图| 两个人看的免费小视频| 午夜福利在线免费观看网站| 777久久人妻少妇嫩草av网站| 国产一区二区三区av在线| 高清在线视频一区二区三区| svipshipincom国产片| 日本黄色日本黄色录像| 超碰成人久久| 中文欧美无线码| 十八禁高潮呻吟视频| 国产精品三级大全| 国产在线免费精品| 中文乱码字字幕精品一区二区三区| 久久性视频一级片| 国产在线一区二区三区精| 国产男女内射视频| 久久久久精品人妻al黑| 久久精品亚洲熟妇少妇任你| 亚洲美女黄色视频免费看| 国产日韩欧美亚洲二区| 中文字幕最新亚洲高清| 人人妻人人澡人人爽人人夜夜| 老司机影院成人| 中文欧美无线码| 男女午夜视频在线观看| 欧美精品av麻豆av| 天天添夜夜摸| 亚洲欧美日韩另类电影网站| 亚洲国产av新网站| 男女无遮挡免费网站观看| 夫妻午夜视频| 另类亚洲欧美激情| 国产亚洲最大av| 久久青草综合色| 午夜影院在线不卡| 日韩中文字幕视频在线看片| 亚洲国产毛片av蜜桃av| av女优亚洲男人天堂| 波多野结衣av一区二区av| 亚洲av国产av综合av卡| 亚洲五月色婷婷综合| 日韩av不卡免费在线播放| 丝袜脚勾引网站| 国产精品久久久久久人妻精品电影 | 自拍欧美九色日韩亚洲蝌蚪91| 国产又爽黄色视频| 又粗又硬又长又爽又黄的视频| 女人被躁到高潮嗷嗷叫费观| av视频免费观看在线观看| 日韩中文字幕视频在线看片| 国产精品久久久av美女十八| 日韩中文字幕视频在线看片| 精品亚洲成a人片在线观看| 国产成人91sexporn| 十八禁高潮呻吟视频| e午夜精品久久久久久久| 日本91视频免费播放| 性少妇av在线| tube8黄色片| 亚洲综合色网址| 精品人妻熟女毛片av久久网站| 日本欧美国产在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 男女无遮挡免费网站观看| 啦啦啦在线免费观看视频4| 天天操日日干夜夜撸| 国产精品蜜桃在线观看| 久久久国产一区二区| 欧美激情极品国产一区二区三区| 国产 精品1| 国产精品秋霞免费鲁丝片| 亚洲人成网站在线观看播放| 一级毛片我不卡| 成人手机av| 免费少妇av软件| 亚洲色图综合在线观看| 母亲3免费完整高清在线观看| 久久久久久久大尺度免费视频| 美女扒开内裤让男人捅视频| 美女高潮到喷水免费观看| 欧美日韩av久久| 人人妻人人澡人人看| 国产精品久久久人人做人人爽| 99久久99久久久精品蜜桃| 国产极品天堂在线| 免费黄频网站在线观看国产| 久久人人爽av亚洲精品天堂| 欧美xxⅹ黑人| 亚洲专区中文字幕在线 | 秋霞伦理黄片| netflix在线观看网站| 亚洲精品,欧美精品| 午夜影院在线不卡| 高清不卡的av网站| 日韩av不卡免费在线播放| 97在线人人人人妻| 91老司机精品| 天天操日日干夜夜撸| 亚洲图色成人| 9色porny在线观看| 国产成人精品久久久久久| 午夜精品国产一区二区电影| 久久久精品94久久精品| 国产一区二区激情短视频 | 九色亚洲精品在线播放| 人成视频在线观看免费观看| 中文乱码字字幕精品一区二区三区| 亚洲欧美精品自产自拍| 亚洲精品国产av成人精品| 国产免费福利视频在线观看| 亚洲欧美中文字幕日韩二区| 男女边摸边吃奶| 热re99久久精品国产66热6| 中文字幕人妻熟女乱码| 男女午夜视频在线观看| 国产精品亚洲av一区麻豆 | 大码成人一级视频| 一区二区日韩欧美中文字幕| 中文字幕最新亚洲高清| 欧美日韩亚洲综合一区二区三区_| 国产一级毛片在线| 黑人猛操日本美女一级片| 丝袜美腿诱惑在线| 欧美 日韩 精品 国产| 男女高潮啪啪啪动态图| av.在线天堂| 女的被弄到高潮叫床怎么办| 国产亚洲最大av| 欧美xxⅹ黑人| 韩国精品一区二区三区| 精品第一国产精品| 人成视频在线观看免费观看| 新久久久久国产一级毛片| 久久精品久久精品一区二区三区| 亚洲精品自拍成人| 天天影视国产精品| 精品少妇内射三级| 两性夫妻黄色片| 两个人免费观看高清视频| 中文字幕精品免费在线观看视频| 日韩伦理黄色片|