• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanistic investigation of zwitterionic MOF-catalyzed enyne annulation using UNLPF-14-MnIII as catalyst

    2022-09-15 03:11:04TotoLiuRuihongDunYnynWngShijunLiLingboQuJinshuiSongQingLiuYuLn
    Chinese Chemical Letters 2022年9期

    Toto Liu, Ruihong Dun, Ynyn Wng, Shijun Li, Lingbo Qu, Jinshui Song,?,Qing Liu, Yu Ln,d,?

    a Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

    b Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China

    c College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China

    d School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University,Chongqing 400030, China

    ABSTRACT Hybrid quantum mechanics/molecular mechanics calculations were performed to elucidate how[MnIIIporphyrin]+X?-based metal-organic frameworks (MOFs) catalyze the [2 + 1] cycloisomerization of enynes and why zwitterionic MOFs exhibit strong activity in Lewis acid catalysis.The calculations showed that zwitterionic MOFs have a “pure cationic active center” leading to a concerted nucleophilic attack pathway with lower barriers.In contrast, metals with coordinating anions have reduced electrophilicity,resulting in a stepwise radical-type pathway with much higher barriers.Further calculations showed the nature of catalysis was strongly depended on the charge on the anion ligand.A good linear relationship between the NPA charge and barrier was found, and verified by 73 anions with small derivations, which presents a universal adaptive character for various coordinated anions.

    Keywords:ONIOM QM/MM Zwitterionic MOF[MnIIIporphyrin]+X?Enyne annulation Mechanism Anion effect

    Transition-metal catalysis is a powerful tool for the sustainable development of organic synthesis [1], and has been widely used in pharmaceutical [2], materials [3], life sciences [4], and other fields[5].In transition-metal catalysis, as the metal center is usually in a positive oxidative state, electrophilicity is often exhibited.Therefore, the charge density of the central metal atom often affects the catalytic activity.In homogeneous transition-metal catalysis,the type of counterion usually plays a vital role in determining the strength of interaction with the central metal atom, and will affect its charge distribution [6,7].Generally, strongly coordinating anions(SCAs), such as Cl?and OAc?, are widely used owing to their ready availability [8,9].Although less common, weakly coordinating anions (WCAs, such as PF6?, BF4?and SbF6?), which have larger volumes or stronger electron attracting effects, can be employed as counter anions in complexes to enhance the positive charge of the cationic metal center [10–12].This strategy can be used to obtain a more positively charged transition-metal center for further transformations by binding with nucleophilic substrates.Furthermore, the use of zwitterionic metal complexes, which, instead of a common anion, contain a negatively charged ancillary ligand covalently bonded to the cationic metal fragment to achieve formal separation of the positive and negative charges, is an attractive alternative approach.These zwitterionic metal complexes with neutral internal charge and tunable electrophilicity have proven to be promising catalysts for various organic reactions, and are considered effective alternatives to the corresponding complexes with WCAs [13,14].However, electrostatic interaction between two zwitterionic molecules in the reaction system, which is difficult to be avoid in homogeneous catalysis (Scheme 1), would significantly reduce the catalytic activity [15].Furthermore, difficulties in the synthesis and recycling of zwitterionic metal complexes restrict their further application.Therefore, the design of zwitterionic catalysts that can realize the separation and fixation of anions and cations,and be preparedviasimple synthetic steps and recycled by simple post-processing operations are needed for further catalytic studies and practical applications.

    Scheme 1.(a) Development of zwitterionic metal–organic frameworks from zwitterionic metal complexes; (b) Crystal structure of the cation ([MnIIIporphyrin]+)and anion ([In(CO2)4]?) in completely separated zwitterionic MOF UNLPF-14-MnIII;(c) Shortest distance between [MnIIIporphyrin]+ and [In(CO2)4]?in UNLPF-14-MnIII;(d) [2 + 1] Cycloisomerization of enynes catalyzed by zwitterionic MOF UNLPF-14-MnIII.

    Metal–organic frameworks (MOFs) are emerging as excellent catalyst platforms owing to their tunable structure, high porosity, and crystalline properties [16–20].Benefitting from a bottomup synthesis strategy, both vital structural components of MOFs,namely, organic linkers and inorganic secondary building units(SBUs), can be synthesized with either net-positive or net-negative charge.Furthermore, MOFs prepared by the assembly of cationic organometallic complex-based organic linkers with anionic inorganic SBUs can be considered potential heterogeneous zwitterionic catalyst candidates [21,22].It is foreseeable that such zwitterionic MOFs poccess enhanced electrophilicity because the anionic SBUs have no coordination effect with the cationic metal center in the organic linker.More importantly, the strategy can avoid the electrostatic interactions between two zwitterionic molecules in the reaction system, which is difficult to avoid in molecular zwitterionic transition-metal complexes catalysis (Scheme 1a), would significantly increase the catalytic activity.

    Recently, Zhang reported a synthesis of zwitterionic MOFs (UNLPF-14-MnIII, Scheme 1b) composed of cationic[MIIIporphyrin]+(M = Mn, Fe) linkers and anionic SBUs([In(RCO2)4]?, Scheme 1c), which showed considerable catalytic activity in the [3 + 2] cycloaddition of aziridines and alkenes,[4 + 2] hetero-Diels–Alder cycloaddition of aldehydes with dienes, and [2 + 1] cycloisomerization of enynes (Scheme 1d).In comparison, the corresponding catalytic activity of another MOF comprising neutral [MIIIporphyrin]+X?(X?= SbF6?, BF4?, Cl?)linkers and neutral Zr6(μ3–OH)4(OH)4(COO)12SBUs and their corresponding molecular catalysts was significantly lower [23].For[2 + 1] cycloisomerization of enynes, zwitterionic MOF UNLPF-14-MnIIIshowed the highest catalytic activity (95% yield and 99%selectivity for target product in 8 h), MOF PCN-223-MnIII[SbF6]with WCAs gave moderate catalytic activity (63% yield and 67%selectivity for target product in 24 h), and almost no reaction was observed when MOF PCN-223-MnIIICl with SCAs was used as catalyst.

    Fig.1.QM/MM calculation model of zwitterionic MOF UNLPF-14-MnIII, QM region(one [MnIIIporphyrin]+ complex, ball-and-stick models), active MM region (entire[MnIIIporphyrin]+ complex with eight adjacent In(CO2)3 atomic groups, stick models), and the remaining fixed MM region (wireframe models).

    As part of a continuing effort to gain indepth knowledge of zwitterionic MOF, we intend to reveal the reason of its high catalytic activity using DFT method.In our opinion, the “pure cationic active center” obtaining from charge separation would contribute to high catalytic performance.We think the “pure cationic active center” can reduce the activation energy of nucleophilic attack and lead to concerted nucleophilic attack pathway.

    MOFs exhibit remarkably complicated connectivity and high dimensionality in their structures.Therefore, hybrid quantum mechanics and molecular mechanics (QM/MM) calculations or multiscale models would be necessary for the theoretical investigation of MOF catalysis [24–27].Although QM/MM calculations [28] have more commonly been applied to the computational study of enzymes catalysis, they have great potential for application to the theoretical study of MOF catalysis, despite this being rare [29–32].

    Herein, the [2 + 1] cycloisomerization of 1,6-enynescatalyzed by MOFs containing [MnIIIporphyrin]+X?(X?= none, SbF6?, Cl?)was selected as the model reaction for theoretical calculations.

    Reported crystal structures for UNLPF-14-MnIII, PCN-223-MnIII[SbF6], and PCN-223-MnIIICl were used to build QM/MM calculation models (Fig.1 and Fig.S1 in Supporting information for UNLPF-14-MnIII; Figs.S2 and S3 in Supporting information for PCN-223-MnIII[SbF6] and PCN-223-MnIIICl, respectively).One[MnIIIporphyrin]+X?(X?= none, SbF6?, Cl?) unit was selected in the QM regions.The MM region of UNLPF-14-MnIIIcontained eight [In(RCO2)4]?SBUs and eight [MnIIIporphyrin]+linkers to balance charge.To balence the distortion of [MnIIIporphyrin]+X?(X?= none) in the reaction pathway, a complete organic ligand,which contains the QM region, together with parts of MM regioneight adjacent In(RCO2)3atomic groups, were set as active atoms during geometry optimization,while all remaining atoms were kept fixed.Correspondingly, for PCN-223-MnIII[SbF6] and PCN-223-MnIIICl in catalytic cycles, QM regions containing organic ligands were set as active atoms during geometry optimization, while all remaining atoms were kept fixed.QM/MM calculations were conducted using the ONIOM method [33,34] implemented in Gaussian 16 [35] with G09 default key word.The B3LYP [36–38] hybrid functional with D3BJ [39] dispersion correction cooperated with def2-SVP [40] basis set was used for QM calculations, and the universal force field (UFF) [41] was used for MM calculations.Furthermore,the charge equilibration method (QEq) was used to calculate the potential charge on the MM region atoms, and the electronic embedding scheme was used to deal with electrostatic interactions between QM and MM regions.The def2-TZVPP basis set with the same density functional was used for single-pointenergy calculations to provide more accurate relative energies.

    Scheme 2 shows the proposed mechanism, containing two possible pathways, of the MOF-catalyzed [2 + 1] cycloisomerization of 1,6-enynes, where [MnIIIporphyrin]+X?was considered as the active center.The catalytic cycleis initiated by coordination of the enyne substrate to MnIII, affording intermediate 1 with a metalactivated alkyne.In pathway A, the alkyne moiety is considered to be activated by the cationic metal, facilitating intramolecular nucleophilic attack by the alkene moiety to achieve [2 + 1] cycloaddition through a concerted process, affording [4.1.0]-bicyclic intermediate 3 bearing a Mn–carbene moiety.Alternatively, Mn also exhibited high-spin character, allowing the coordinated alkyne moiety to react with the alkene moiety through a radical-type addition to afford radical intermediate 2.A sequential radical coupling then provides the same intermediate 3.In either pathway, the subsequent 1,2-hydride shift of complex 3 yields a [4.1.0]-bicyclic enamine product with regeneration of a MnIIIspecies.Pathway A is a much simpler process than pathway B, involving the direct conversion of intermediate 1 to intermediate 3.

    Scheme 2.Proposed mechanism for the [2 + 1] cycloisomerization of enynes.

    Fig.2.Potential energy diagrams (kcal/mol) for [2 + 1] cycloisomerization reactions of enynes catalyzed by UNLPF-14-MnIII, PCN-223-MnIII[SbF6] and PCN-223-MnIIICl as determined at the ONIOM(B3LYP-D3BJ/def2-SVP:UFF) level.

    Fig.3.Potential energy diagrams (kcal/mol) for the [2 + 1] cycloisomerization of enynes catalyzed by [MnIIIporphyrin]+, [MnIIIporphyrin]+SbF6?, and [MnIIIporphyrin]+Cl?.

    Commutated free energy profiles for the catalytic cycle of UNLPF-14-MnIII-catalyzed [2 + 1] cycloisomerization of 1,6-enynes are shown in Fig.2, in which the real MOF catalyst was considered using the aforementioned QM/MM method.Enyne coordination to UNLPF-14-MnIIIforms intermediate 1, which has a relative energy set to zero in the free energy profiles.The alkyne moiety can be activated by coordination to the MnIIIcenter.Therefore, 6-endocyclizationcanoccur by nucleophilic attackviatransition state 2-ts, with an activation energy of 16.9 kcal/mol, affording [4.1.0]-bicyclic ring intermediate 3, with a relative energy only 5.9 kcal/mol higher than that of intermediate 1.In this process,two C–C bonds are formed simultaneously without any intermediates.A rapid 1,2-hydride shift then occursviatransition state 4-ts, with an energy barrier of only 1.5 kcal/mol.Subsequently,an enamine-coordinated MnIIIMOF is formed irreversibly in an exothermic process (34.4 kcal/mol).Finally, the free enamine target product is released from the metal center by coordination with a new substrate, affording a new intermediate 1 for the next catalytic cycle.QM/MM calculations clearly indicated that the ratedetermining step was 6-endonucleophilic attack of the alkene moiety in the metal-activated alkyne.Therefore, the electron density of the metal center plays a critical role in determining the reactivity.Accordingly, the activation energy of 6-endonucleophilic attack using PCN-223-MnIII[SbF6] or PCN-223-MnIIICl-type MOF catalysts was also studied theoretically.QM/MM calculation results(Fig.2) showed that, when PCN-223-MnIII[SbF6] was used as catalyst, the calculated activation energy for the first 6-endonucleophilic attack was 27.3 kcal/mol, which was 10.4 kcal/mol higher than that using UNLPF-14-MnIIIas catalyst.Interestingly, a stepwise process was observed in this case.Radical intermediate 8 was observed, with a relative free energy 1.4 kcal/mol lower than that of transition state 7-ts.Meanwhile, the formation of intermediate 10 occurredviaradical-coupling transition state 9-ts with a free energy barrier of 1.7 kcal/mol.Geometry information for transition state 7-ts clearly showed that the WCA ([SbF6]?) was close to Mn,which would partially decrease the positive charge of Mn, leading to lower catalytical activity in an ionic pathway.Furthermore,when a PCN-223-MnIIICl-type MOF with SCA Cl?was used, the calculated activation energy further increased to 37.3 kcal/mol (Fig.2).A radical intermediate was also found in a stepwise [2 + 1] cycloaddition process.The high activation energy and stepwise process was attributed to the SCA (Cl?) further decreasing the positive charge of Mn, which is unfavorable for alkyne activation.The computational results for the catalytic abilities of various MOFs were consistent with the experimental observations reported by the Zhang group.

    To further understand the reactivity of zwitterionic MOFcatalyzed [2 + 1] cycloisomerization of 1,6-enynes, the catalytic active species comprising [MnIIIporphyrin]+was extracted and selected as a model catalyst for QM calculations using the B3LYPD3BJ/def2-SVP method, as shown in Fig.3.Furthermore, the def2-TZVPP basis set with B3LYP-D3BJ/PCM approach was used for single-pointenergy calculations.[MnIIIporphyrin]+catalysts with WCA [SbF6]?and SCA Cl?were also selected to explore and compare the catalytic activity.QM calculations found that, when[MnIIIporphyrin]+was used as catalyst, the activation energy for the first 6-endocyclization was 16.9 kcal/molviatransition state 21-ts, affording a carbocation intermediate 22.This intermediate then undergoes a barrierless processviatransition state 23-ts to achieve [2 + 1] cycloaddition.The entire [2 + 1] cycloaddition can be considered aquasi-concerted process.A 1,2-hydride shiftviatransition state 25-ts can then result in enamine-coordinated MnIIIspecies 26.The QM-calculated activation energy for 6-endocyclization using the [MnIIIporphyrin]+model catalyst (16.9 kcal/mol)was close to that of UNLPF-14-MnIIIMOF catalyst obtained using the QM/MM method.Therefore, the active center was considered a free cationic species [MnIIIporphyrin]+when UNLPF-14-MnIIIMOF was used as catalyst.To further elucidate the coordinated anion effect, [MnIIIporphyrin]+catalysts with WCA [SbF6]?and SCA Cl?were also considered by QM calculations, giving calculated activation energies for 6-endocyclization of 25.4 and 33.0 kcal/mol,respectively.DFT calculations also clearly showed that a stepwise process occurred in both cases.These results were consistent with the cases using PCN-223-MnIII[SbF6] or PCN-223-MnIIICl MOFs as catalyst.

    Fig.4..(a) Linear relationship between energy barrier of 35-ts (kcal/mol) and NPA charge of Cl in intermediate 34.(b) The error distribution of barrier obtained from the linear-fitting formula for 73 anions coordinating complexes used as catalyst.

    Fig.5.Spin density map of intermediate (a) 22, (b) 29 and (c) 36.

    Both QM and QM/MM results highlighted the high catalytic efficiency of zwitterionic MOFs or [MnIIIporphyrin]+complexcatalyzed [2 + 1] cycloisomerization reactions.Based on these results, we want to reveal the advantage of zwitterionic MOFs by explaining the reason of its lowest energy barrier of transition state among selected MOFs and the direct conversion of intermediate 1 to intermediate 3 (Scheme 2).To better understand the dependence of catalytic activity on catalyst ability, a restricted bond length model was constructed for [MnIIIporphyrin]+Cl?, in which the coordinates of Mn and Cl, and Mn–Cl distance was set to fixed values in both the reaction intermediate and transition state of the first 6-endocyclization step.As shown in Fig.S4 (Supporting information), the calculated negative NPA charge of Cl in intermediate 34 increased as the fixed Mn–Cl distance increased.The computed results showed that an increasing Mn–Cl distance decreased the interaction between SCA Cl?and the metal center.An excellent linear effect between the NPA charge of Cl and the activation energy of 6-endocyclization was observed, with anR2value of 0.961 (Fig.4a).Interestingly, when ?1 charge of Cl in [MnIIIporphyrin]+was used in the equation, the obtained barrier is 16.5 kcal/mol which is consistent with that of previous computed result (15.9 kcal/mol).In addition, when ?1 charge of hypothetical anion in UNLPF-14-MnIII, ?0.82 charge of SbF6?in QM region of PCN-223-MnIII[SbF6] calculation model and?0.48 charge of Cl in QM region of PCN-223-MnIIICl calculation model were substituted into the equation, the obtained barrier were 16.5, 23.1 and 35.3 kcal/mol, respectively, which are closed to that of zwitterionic MOF (16.9 kcal/mol), PCN-223-MnIII[SbF6](27.3 kcal/mol) and PCN-223-MnIIICl (37.3 kcal/mol).To verify the adaptation of this formula, 73 more coordinated anions (Fig.4b)were tested and found the mean unsigned error (MUE) of the barriers is 1.3 kcal/mol (Table S1 in Supporting information).The correlation of metal center’s charge and activation free energy indicates that interaction of the coordinated anion with the metal leads to poor reactivity.Therefore, the high catalytic activity of the UNLPF-14-MnIIIMOF could be attributed to charge separation providing a “pure cationic active center” for cationic [MnIIIporphyrin]+active center.

    For the direct conversion of intermediate 1 to intermediate 3 when UNLPF-14-MnIIIused as catalyst, spin density analysis was conducted for intermates 22, 29 and 36.As shown in Fig.5, the calculated spin density of C1 was 0.53 in 22, which was much lower than those of 29 (0.88) and 36 (0.95) proving that 29 and 36 have stronger radical character.Furthermore, nature population analysis (NPA) showed that the positive charge of C1 in 22 was 0.25, which was much higher than those in 29 (0.12)and 36 (0.09), indicating rapid annulation process was relied on the net positive charge of C1 [42].Obviously, “pure cationic active center”in zwitterionic MOF could lead to one-step concerted nucleophilic attack pathway and then accelerate reaction progress.

    In summary, this DFT study clearly showed that zwitterionic MOFs have much higher catalytic activity than MOFs with WCAs or SCAs.The zwitterionic MOFs, which use [MnIIIporphyrin]+without a counterion as the organic ligand, lower the barrier of the rate-determining step in the [2 + 1] cycloisomerization of enynes,owing to its “pure cationic active center” of [MnIIIporphyrin]+.Nucleophilic attack pathway was observed when cationic metal catalysts without WCAs or SCAs were used.Meanwhile, the WCA or SCA coordination decreased the electrophilicity, resulting in a stepwise radical-type pathway.Charge control calculations based on Mn–Cl distance were conducted, further confirming the contribution of “pure cationic active center” to the catalytic performance of zwitterionic MOFs.It exhibits high reliability when examing the linear relationship between the NPA charge and barrier of 6-endocyclization by massive anions, revealing a universal adaptive character for various coordinated anions.Thus, the NPA charge could be used as an effective descriptor to predict the catalytic reactivity of Lewis acid.This work provides insight into theoretical design of porous catalysts.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21822303 21772020 22173083), Program for Science Technology Innovation Talents in Universities of Henan Province (No.20HASTIT004).The authors thank the support from the Henan Province Supercomputing Center.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.041.

    久久久国产一区二区| 日韩精品免费视频一区二区三区 | 老司机影院毛片| 亚洲精品日本国产第一区| 一级毛片 在线播放| 99国产精品免费福利视频| 韩国高清视频一区二区三区| 亚洲内射少妇av| 制服丝袜香蕉在线| 欧美精品高潮呻吟av久久| av女优亚洲男人天堂| 黑人猛操日本美女一级片| 国产有黄有色有爽视频| 特大巨黑吊av在线直播| 国产精品欧美亚洲77777| 亚洲国产精品一区二区三区在线| 特大巨黑吊av在线直播| 成人漫画全彩无遮挡| 久久久亚洲精品成人影院| 国产在线男女| 欧美日韩av久久| 九色成人免费人妻av| 中文字幕人妻丝袜制服| 十八禁高潮呻吟视频 | 男人狂女人下面高潮的视频| 91久久精品国产一区二区三区| av免费在线看不卡| 91精品国产九色| 国产精品秋霞免费鲁丝片| 免费看光身美女| 丝袜脚勾引网站| 最近最新中文字幕免费大全7| 国产成人精品福利久久| 热re99久久精品国产66热6| 777米奇影视久久| 纵有疾风起免费观看全集完整版| 一个人免费看片子| 久久久久人妻精品一区果冻| 永久免费av网站大全| 日日啪夜夜爽| 日韩亚洲欧美综合| 国产精品三级大全| 亚洲激情五月婷婷啪啪| 国产又色又爽无遮挡免| 日本黄色片子视频| 亚洲精品久久午夜乱码| 日韩av不卡免费在线播放| 赤兔流量卡办理| 自线自在国产av| 亚洲,一卡二卡三卡| 国产一区二区在线观看日韩| 一区在线观看完整版| 久久婷婷青草| 一本一本综合久久| 国产精品国产三级国产av玫瑰| 亚洲一区二区三区欧美精品| 国产色婷婷99| 欧美xxxx性猛交bbbb| 一级二级三级毛片免费看| av福利片在线| 性高湖久久久久久久久免费观看| 老女人水多毛片| 日日爽夜夜爽网站| 久久国产乱子免费精品| 永久网站在线| 久久毛片免费看一区二区三区| 久久精品国产亚洲网站| 国产高清国产精品国产三级| 五月伊人婷婷丁香| 国产有黄有色有爽视频| 欧美变态另类bdsm刘玥| 亚洲国产欧美日韩在线播放 | 亚洲精品中文字幕在线视频 | 亚洲国产精品一区三区| 街头女战士在线观看网站| 人人妻人人看人人澡| 色视频www国产| 午夜91福利影院| a级毛片免费高清观看在线播放| 九草在线视频观看| 高清毛片免费看| 麻豆乱淫一区二区| 99久久综合免费| 精品午夜福利在线看| 欧美日韩一区二区视频在线观看视频在线| 国产淫语在线视频| 国产91av在线免费观看| 麻豆成人午夜福利视频| 人人澡人人妻人| 爱豆传媒免费全集在线观看| 久久久久久久久久久久大奶| 国产成人freesex在线| 国产色婷婷99| 99热这里只有是精品在线观看| 黄色毛片三级朝国网站 | 久久久久国产精品人妻一区二区| 国产av国产精品国产| 黑人高潮一二区| 深夜a级毛片| 亚洲激情五月婷婷啪啪| 亚洲成人av在线免费| 伦精品一区二区三区| 乱码一卡2卡4卡精品| 久久人人爽人人片av| 色视频在线一区二区三区| 一区二区av电影网| 日日摸夜夜添夜夜爱| 男的添女的下面高潮视频| 极品少妇高潮喷水抽搐| 国产免费视频播放在线视频| 菩萨蛮人人尽说江南好唐韦庄| 日本-黄色视频高清免费观看| 少妇被粗大的猛进出69影院 | 在线观看www视频免费| 色视频在线一区二区三区| 亚洲av福利一区| 汤姆久久久久久久影院中文字幕| 不卡视频在线观看欧美| 丝袜喷水一区| 日本黄色片子视频| av国产久精品久网站免费入址| 中国国产av一级| 久久久久精品久久久久真实原创| 人妻夜夜爽99麻豆av| 熟女av电影| 日韩电影二区| 免费黄网站久久成人精品| 久久久久精品性色| av天堂久久9| 精品国产乱码久久久久久小说| 天天躁夜夜躁狠狠久久av| 亚洲精品一二三| 欧美日韩亚洲高清精品| 自线自在国产av| 精品卡一卡二卡四卡免费| 最近最新中文字幕免费大全7| 日韩av在线免费看完整版不卡| 成人亚洲精品一区在线观看| 高清在线视频一区二区三区| 国产在视频线精品| 国产亚洲欧美精品永久| 男女免费视频国产| 国产精品99久久久久久久久| 亚洲不卡免费看| 大香蕉97超碰在线| 各种免费的搞黄视频| 2022亚洲国产成人精品| 免费看不卡的av| 十八禁高潮呻吟视频 | 亚洲性久久影院| 国产精品蜜桃在线观看| 午夜视频国产福利| 亚洲国产精品成人久久小说| 欧美+日韩+精品| a级毛片在线看网站| 久久亚洲国产成人精品v| 精品99又大又爽又粗少妇毛片| 亚洲欧美中文字幕日韩二区| 中文字幕av电影在线播放| 国产欧美另类精品又又久久亚洲欧美| 成年人免费黄色播放视频 | 黄色毛片三级朝国网站 | 中文精品一卡2卡3卡4更新| 国产精品一区二区三区四区免费观看| 国产美女午夜福利| 一区二区av电影网| 日韩电影二区| 91久久精品国产一区二区成人| 91久久精品电影网| 久久精品国产a三级三级三级| 欧美另类一区| 熟女电影av网| 亚洲国产欧美日韩在线播放 | 国产精品一区www在线观看| 深夜a级毛片| 久久精品熟女亚洲av麻豆精品| 水蜜桃什么品种好| 久久国产亚洲av麻豆专区| 亚洲国产精品一区三区| 少妇丰满av| 午夜av观看不卡| 国内少妇人妻偷人精品xxx网站| 大话2 男鬼变身卡| av国产久精品久网站免费入址| 日本vs欧美在线观看视频 | 一本久久精品| 99久久综合免费| 偷拍熟女少妇极品色| 久久久久人妻精品一区果冻| 久久ye,这里只有精品| 色哟哟·www| 国国产精品蜜臀av免费| 亚洲精品色激情综合| 少妇人妻久久综合中文| 99热国产这里只有精品6| 99久久精品热视频| 亚洲国产av新网站| 成人国产麻豆网| 美女国产视频在线观看| 久久久久视频综合| 五月玫瑰六月丁香| 久久久久久伊人网av| 高清av免费在线| 男女国产视频网站| 人人妻人人添人人爽欧美一区卜| 一二三四中文在线观看免费高清| 亚洲成人手机| 国产精品久久久久久av不卡| 日日爽夜夜爽网站| 久久 成人 亚洲| 中文字幕av电影在线播放| 国产精品一区二区在线不卡| 亚洲内射少妇av| 91久久精品国产一区二区三区| 精品久久久精品久久久| 日本黄色片子视频| 如何舔出高潮| 极品教师在线视频| 亚洲人成网站在线播| 极品教师在线视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲av二区三区四区| 国产精品一区二区三区四区免费观看| 成人免费观看视频高清| 黄色配什么色好看| 五月开心婷婷网| 亚洲欧美日韩东京热| 免费av不卡在线播放| 不卡视频在线观看欧美| 久久久久久久久久人人人人人人| 永久网站在线| 亚洲天堂av无毛| 国产成人免费观看mmmm| 亚洲av福利一区| 国产一区二区三区av在线| 国产av码专区亚洲av| 一级毛片aaaaaa免费看小| 免费在线观看成人毛片| 久久青草综合色| 菩萨蛮人人尽说江南好唐韦庄| 人人妻人人澡人人爽人人夜夜| 国产精品蜜桃在线观看| 久久 成人 亚洲| 国产伦精品一区二区三区视频9| 大香蕉久久网| 久久久久久久亚洲中文字幕| 亚洲国产欧美日韩在线播放 | 丁香六月天网| 高清欧美精品videossex| 亚洲精品久久午夜乱码| 高清欧美精品videossex| 99热这里只有是精品在线观看| 91精品国产九色| 久久精品国产a三级三级三级| 日韩精品免费视频一区二区三区 | 国产成人精品无人区| 男人舔奶头视频| 26uuu在线亚洲综合色| 日本猛色少妇xxxxx猛交久久| 少妇裸体淫交视频免费看高清| 美女福利国产在线| 欧美xxxx性猛交bbbb| 99久久人妻综合| 久久av网站| 三级国产精品欧美在线观看| 日本午夜av视频| 777米奇影视久久| 亚洲精品久久午夜乱码| 午夜福利影视在线免费观看| 99热全是精品| av线在线观看网站| 一级毛片aaaaaa免费看小| 久久久久国产网址| 国产熟女欧美一区二区| 亚洲精品,欧美精品| 少妇人妻一区二区三区视频| 搡女人真爽免费视频火全软件| 啦啦啦在线观看免费高清www| 日韩不卡一区二区三区视频在线| 国产午夜精品久久久久久一区二区三区| 一区在线观看完整版| 亚洲精品乱久久久久久| 亚洲,一卡二卡三卡| 日韩欧美精品免费久久| 午夜激情福利司机影院| 欧美成人午夜免费资源| 午夜视频国产福利| 欧美日韩一区二区视频在线观看视频在线| 国产一区二区三区av在线| 亚洲av男天堂| 国产亚洲最大av| 最近中文字幕高清免费大全6| 免费观看性生交大片5| 校园人妻丝袜中文字幕| 亚洲高清免费不卡视频| 欧美xxxx性猛交bbbb| 国产爽快片一区二区三区| 日韩视频在线欧美| 尾随美女入室| av天堂中文字幕网| 欧美精品人与动牲交sv欧美| 亚洲国产av新网站| 在线观看国产h片| 99久久综合免费| 夜夜骑夜夜射夜夜干| 久久久久网色| 狠狠精品人妻久久久久久综合| 丰满少妇做爰视频| 少妇精品久久久久久久| 2022亚洲国产成人精品| 一级片'在线观看视频| 日本av手机在线免费观看| 国产成人免费无遮挡视频| 日韩亚洲欧美综合| 午夜精品国产一区二区电影| 国产深夜福利视频在线观看| 人妻 亚洲 视频| 午夜福利,免费看| √禁漫天堂资源中文www| 中国国产av一级| 国产精品蜜桃在线观看| 国内精品宾馆在线| 午夜福利影视在线免费观看| 成人影院久久| 亚洲精品色激情综合| 爱豆传媒免费全集在线观看| 99热网站在线观看| 亚洲欧洲国产日韩| 观看av在线不卡| 日本与韩国留学比较| 精品少妇黑人巨大在线播放| 不卡视频在线观看欧美| www.av在线官网国产| av天堂中文字幕网| 国产成人精品福利久久| 久久av网站| 亚洲在久久综合| 日本免费在线观看一区| 国产男女超爽视频在线观看| 欧美日韩综合久久久久久| 国产永久视频网站| 亚洲激情五月婷婷啪啪| 不卡视频在线观看欧美| 国产av一区二区精品久久| 80岁老熟妇乱子伦牲交| 大陆偷拍与自拍| 亚洲欧美中文字幕日韩二区| 国产精品人妻久久久久久| 欧美亚洲 丝袜 人妻 在线| 秋霞在线观看毛片| 亚洲成人av在线免费| 午夜福利,免费看| 精品酒店卫生间| 一区在线观看完整版| 自拍偷自拍亚洲精品老妇| 亚洲欧洲国产日韩| 日本猛色少妇xxxxx猛交久久| 黄色怎么调成土黄色| 插阴视频在线观看视频| 国产日韩欧美视频二区| 中文字幕免费在线视频6| 久久久久久久亚洲中文字幕| 男人添女人高潮全过程视频| 亚洲在久久综合| 国产成人精品无人区| 国产一区二区三区av在线| 亚洲怡红院男人天堂| 我要看日韩黄色一级片| 美女内射精品一级片tv| 国产亚洲精品久久久com| 久久精品国产亚洲网站| 自线自在国产av| 国产深夜福利视频在线观看| 十八禁高潮呻吟视频 | 精品久久久精品久久久| 好男人视频免费观看在线| 国产片特级美女逼逼视频| 日韩 亚洲 欧美在线| 国产在线一区二区三区精| av在线app专区| 国产高清三级在线| 91精品一卡2卡3卡4卡| 亚洲成人av在线免费| 久久免费观看电影| 少妇人妻久久综合中文| 免费久久久久久久精品成人欧美视频 | 国产精品免费大片| 最近中文字幕高清免费大全6| 一本久久精品| 嘟嘟电影网在线观看| 美女中出高潮动态图| 日韩,欧美,国产一区二区三区| 交换朋友夫妻互换小说| www.色视频.com| 在线观看国产h片| 婷婷色综合www| 女的被弄到高潮叫床怎么办| 少妇被粗大的猛进出69影院 | 午夜免费观看性视频| 性高湖久久久久久久久免费观看| 亚洲精品亚洲一区二区| 各种免费的搞黄视频| 久久久久久久精品精品| 曰老女人黄片| 蜜桃久久精品国产亚洲av| 久久亚洲国产成人精品v| 全区人妻精品视频| 日日啪夜夜撸| 亚洲欧洲精品一区二区精品久久久 | 天天操日日干夜夜撸| 国产午夜精品久久久久久一区二区三区| 黑人高潮一二区| 日日爽夜夜爽网站| 女的被弄到高潮叫床怎么办| 不卡视频在线观看欧美| 免费高清在线观看视频在线观看| 亚洲精品国产色婷婷电影| 久久人人爽人人片av| 日日摸夜夜添夜夜添av毛片| 在线观看av片永久免费下载| 一本—道久久a久久精品蜜桃钙片| 美女cb高潮喷水在线观看| 国产高清三级在线| 在线看a的网站| 大码成人一级视频| av不卡在线播放| 久久久久久久亚洲中文字幕| 永久网站在线| 久久精品国产自在天天线| 精品少妇内射三级| 久久久久久久大尺度免费视频| 十八禁网站网址无遮挡 | 国精品久久久久久国模美| 中文字幕亚洲精品专区| 国产伦在线观看视频一区| 国产永久视频网站| 我要看日韩黄色一级片| 极品教师在线视频| 国产在线视频一区二区| 国产一区二区三区av在线| 啦啦啦视频在线资源免费观看| 丝瓜视频免费看黄片| 夜夜看夜夜爽夜夜摸| 嫩草影院新地址| 亚洲av综合色区一区| 精品国产露脸久久av麻豆| 国产国拍精品亚洲av在线观看| 国产精品久久久久成人av| 国产成人精品一,二区| 日韩人妻高清精品专区| 在线观看美女被高潮喷水网站| 亚洲av综合色区一区| 不卡视频在线观看欧美| 又大又黄又爽视频免费| 插阴视频在线观看视频| 男人添女人高潮全过程视频| 国产极品天堂在线| 久久综合国产亚洲精品| 美女视频免费永久观看网站| 九草在线视频观看| 久久久久精品久久久久真实原创| 午夜91福利影院| 如何舔出高潮| 少妇精品久久久久久久| 男女边摸边吃奶| 天美传媒精品一区二区| 成年av动漫网址| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲欧美精品永久| 国产乱来视频区| 国产精品.久久久| 黑人高潮一二区| 一级黄片播放器| www.av在线官网国产| 丰满人妻一区二区三区视频av| 欧美 亚洲 国产 日韩一| 日韩一区二区视频免费看| 只有这里有精品99| 亚洲成人手机| 精品久久久噜噜| 国产黄色免费在线视频| 国产成人免费无遮挡视频| 精品亚洲成a人片在线观看| 男女免费视频国产| 亚洲av电影在线观看一区二区三区| 欧美日韩亚洲高清精品| 黑丝袜美女国产一区| 成人国产av品久久久| 午夜福利网站1000一区二区三区| 高清av免费在线| 日本黄色片子视频| 免费大片黄手机在线观看| 少妇人妻久久综合中文| 国产精品一区www在线观看| 日韩视频在线欧美| 亚洲精品日韩在线中文字幕| 激情五月婷婷亚洲| 秋霞在线观看毛片| 性高湖久久久久久久久免费观看| 日韩中文字幕视频在线看片| 韩国高清视频一区二区三区| 久久久久国产网址| 成人国产av品久久久| 爱豆传媒免费全集在线观看| 国产精品熟女久久久久浪| 日韩欧美一区视频在线观看 | 2021少妇久久久久久久久久久| 亚洲精品一二三| 日本午夜av视频| 一本一本综合久久| 熟女av电影| 少妇人妻久久综合中文| 久久精品国产亚洲网站| 国产白丝娇喘喷水9色精品| 久久久国产一区二区| 婷婷色av中文字幕| 黑丝袜美女国产一区| 男女边吃奶边做爰视频| 亚洲av不卡在线观看| 午夜福利在线观看免费完整高清在| 日韩强制内射视频| 亚洲美女搞黄在线观看| 天天躁夜夜躁狠狠久久av| 久久精品久久精品一区二区三区| 亚洲第一av免费看| 欧美日韩在线观看h| 熟女人妻精品中文字幕| 亚洲经典国产精华液单| 国国产精品蜜臀av免费| 亚洲av在线观看美女高潮| 男人舔奶头视频| 99九九在线精品视频 | 一本—道久久a久久精品蜜桃钙片| a级毛色黄片| 亚洲欧美一区二区三区黑人 | a级毛片免费高清观看在线播放| 亚洲av在线观看美女高潮| 自拍偷自拍亚洲精品老妇| 大香蕉97超碰在线| www.av在线官网国产| 黑人猛操日本美女一级片| 又爽又黄a免费视频| 黄片无遮挡物在线观看| 男人和女人高潮做爰伦理| 欧美激情极品国产一区二区三区 | 老女人水多毛片| 亚洲美女视频黄频| 狂野欧美激情性xxxx在线观看| 两个人免费观看高清视频 | 久久99热6这里只有精品| 高清黄色对白视频在线免费看 | 日日摸夜夜添夜夜添av毛片| 欧美国产精品一级二级三级 | 又大又黄又爽视频免费| 亚洲精品成人av观看孕妇| 全区人妻精品视频| 久久97久久精品| a级一级毛片免费在线观看| 极品人妻少妇av视频| 晚上一个人看的免费电影| 国产精品国产三级专区第一集| 99久国产av精品国产电影| www.av在线官网国产| 中国国产av一级| 美女中出高潮动态图| 日韩,欧美,国产一区二区三区| 亚洲欧洲日产国产| 在线观看人妻少妇| 极品人妻少妇av视频| 在线观看www视频免费| 国内少妇人妻偷人精品xxx网站| 春色校园在线视频观看| 亚洲av二区三区四区| 久久97久久精品| 国产伦在线观看视频一区| 青春草亚洲视频在线观看| 精品一品国产午夜福利视频| 免费不卡的大黄色大毛片视频在线观看| 午夜精品国产一区二区电影| 91aial.com中文字幕在线观看| 最近2019中文字幕mv第一页| 日本-黄色视频高清免费观看| 久久午夜福利片| 黑丝袜美女国产一区| 日日爽夜夜爽网站| 国产成人freesex在线| 狂野欧美激情性xxxx在线观看| h视频一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 内地一区二区视频在线| 久久精品国产自在天天线| 久久精品国产亚洲网站| 久久免费观看电影| 亚洲国产色片| 午夜福利在线观看免费完整高清在| 午夜福利影视在线免费观看| www.av在线官网国产| 综合色丁香网| 国产伦在线观看视频一区| 丰满乱子伦码专区| 国产av一区二区精品久久| 亚洲内射少妇av| 大又大粗又爽又黄少妇毛片口| 草草在线视频免费看| 三上悠亚av全集在线观看 | av女优亚洲男人天堂| 一级毛片黄色毛片免费观看视频| 一二三四中文在线观看免费高清| 欧美+日韩+精品| 久久午夜综合久久蜜桃| 熟女av电影| 午夜免费鲁丝| 亚洲欧美日韩东京热| 久久精品久久精品一区二区三区| 看免费成人av毛片|