• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Forrestiacids C and D, unprecedented triterpene-diterpene adducts from Pseudotsuga forrestii

    2022-09-15 03:11:02PngJunZhouYiZangCongLiLinYuanHuaqiangZngJiaLiJinFngHuJuanXiong
    Chinese Chemical Letters 2022年9期

    Png-Jun Zhou, Yi Zang, Cong Li, Lin Yuan, Huaqiang Zng, Jia Li, Jin-Fng Hu,?,Juan Xiong

    a Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China

    b School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Taizhou 318000, China

    c State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

    d College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China

    e Frontier Research Center for Multidisciplinary Sciences, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

    ABSTRACT Forrestiacids C (1) and D (2), a pair of C-25 epimeric triterpene–diterpene adducts were isolated from the needles and twigs of the vulnerable conifer Pseudotsuga forrestii.This unprecedented class of compounds might be generated via an intermolecular Michael addition reaction of a rearranged 6/6/5/5-fused spiro-lanostene with an abietene.Their structures were established by spectroscopic data and X-ray crystallography.The adducts showed inhibitory activities against the ATP-citrate lyase (ACL) and acetyl-CoA carboxylase 1 (ACC1), two rate-limiting enzymes in the de novo lipogenesis pathway.

    Keywords:Forrestiacid Pseudotsuga forrestii Pinaceae Michael adduct Lipogenesis inhibitor

    Pinaceae, the largest conifer family with 220 to 250 species assigned to 11 genera and are distinctive in being primarily trees rather than shrubs [1].Species of the Pinaceae are among the most valuable and commercially important plants (e.g., cedar, fir, larch,pine, and spruce).This family has also attracted great interest for higher potential in the field of natural products drug discovery.A survey unveiled that Pinaceae ranked among the top-20 privileged drug-prolific families that produced high numbers of approved drugs [2].

    Highly concerning is that 34% of the conifer species worldwide are currently threatened with extinction [3].As for Pinaceae, there are 39 species recorded in the first volume of the China Plant Red Data Book (CPRDB).This signifies that this family occupies a great proportion (ca.10%) of this reference,which listed a total of 388 species [4].Plant diversity loss significantly exacerbates the complications in the discovery of new natural products-derived drugs owing to the rare and endangered plants (REPs) being better botanical sources [2,5,6].An important goal for the conservation of the endangered plants is to provide key resources for researchers for new chemistry with utility in the control of new and emerging drug targets [7].Thus, there is an urgent need to prioritize protection and utilization of these fragile plant species.In recent years,we have paid special attention to rare and endangered coniferous plants native to China [8].In particular, REPs in the Pinaceae family have aroused an extra interest [9,10], due to their high potency in drug discovery, relatively other species diversity, and easier sample collections from the renewable needles and twigs from these large trees distributed and managed in the wild or cultivated in botanic gardens.

    As a small genus in Pinaceae,Pseudotsugacomprises only a few recognized species distributed in the northern hemisphere,demonstrating a typical eastern Asia and western North America disjunct distribution patterns [4,11].The type speciesP.menziesii,Douglas-fir, is one of the most economically important timbers in the world [11].In China, there are five endemicPseudotsugaspecies(i.e., Asian Douglas-fir) or varieties:P.forrestii,P.sinensis,P.brevifolia,P.gaussenii, andP.wilsoniana[1].All these species are recorded as vulnerable or endangered in CPRDB [4], and have also been nationally protected at the ‘second-grade’in China [12].

    Fig.1.A new class of terpenoid hetero-dimeric Michael adducts from Pseudotsuga forrestii.

    Fig.2.COSY and key HMBC correlations of 1 and 2.

    The relictPseudotsugaspeciesP.forrestiiis distributed within a total area ofca.5000 km2(mainly in the Lancang river basin and partly in the Jinsha river basin in south-western China) [1,4].Besides timber,P.forrestiihas a high ornamental value since its pinecones look like a blooming rose after ripening.In a preceding study onP.forrestii, two unique triterpene–diterpene adducts(forrestiacids A and B,m/z769 [M+H]+) featuring a novel carbon skeleton formed by intermolecular Diels-Alder cycloadditions between a spiro-lanostane triterpene unit and an abietadiene unit(Fig.S1 in Supporting information), were obtained by the implementation of HR-MS/MS-based molecular ion networking (MoIN)[13].Further purification of the minor metabolites with the same target pseudo-molecular ion [M+H]+atm/z769 by the guidance of MoIN (Fig.S2 in Supporting information) afforded another two unprecedented hetero-dimers (1 and 2) (Fig.1), but constructedviaan intermolecular Michael addition reaction of a rearranged 6/6/5/5-fused spiro-lanostene (C30-unit) with an abietene(C20-unit).The intriguing skeleton features a unique single C–C bond between C-25 (C30-unit) and C-13′ (C20-unit), which is quite different from those in the Diels-Alder adducts (forrestiacids A and B) [13].Herein, we describe their isolation and structural elucidation, together with the lipogenesis inhibitory activities.This work is the Part XXI in a series of “Phytochemical and biological studies on rare and endangered plants endemic to China” (for Part XX, see ref.[13]).

    Forrestiacid C (1), obtained as colorless needles from MeOH,was assigned the molecular formula C50H72O6as evidenced by the HR-ESI-MS ion atm/z791.5194 [M+Na]+(calcd.for C50H72O6Na,791.5221).In the up-field region of the1H NMR spectrum of 1,eight singlet methyls and one doublet methyl were observed atδH0.82 (s, 3H), 0.88 (s, 3H), 0.98 (d,J=6.5 Hz, 3H), 1.17 (s, 3H), 1.20 (s,6H), 1.43 (s, 3H), 1.73 (s, 3H), and 2.05 (s, 3H) (Table 1).Two pairs of olefinic proton resonances atδH4.86/4.65 and 5.28/5.12 (each 1H, br s) arose from two exomethylene groups.The13C NMR data(Table 1) of 1, with the aid of DEPT 135 and HSQC spectra, revealed 50 carbon resonances ascribable for nine methyls, 19 methylenes,five methines, 13 quaternary carbons, two carboxyls, and two ketocarbonyls.These data highlighted that 1 should be a (C30+C20)pentaterpene, similar to forrestiacids A and B [13].

    Fig.3.ROE correlations of 1 and 2.

    Comprehensive analyses of the 1D and 2D NMR spectroscopic data of 1 implied the presence of a spiro-lanostane-type tetracyclic triterpenoid and an abietadiene-type diterpenoid unit (Fig.2).For the triterpenoid part, the rearranged 6/6/5/5-fused spiro-lanostane nucleus bearing a 3-ketocarbonyl group (δC216.0) and the double allyl nodal [i.e., spiro[4.4]nona-8,14(30)-diene] motif was evidenced by the COSY and HMBC correlations as depicted in Fig.2.As for the abietane part, an exomethylene group was located at C-15′ based on the HMBC correlations from H2-16′ (δH5.28/5.12)to C-15′/C-13′, and from H3-17′ (δH2.05) to C-13′/C-15′/C-17′ (Fig.2).Another double bond, being a trisubstituted one [δH6.36, s (H-14′);δC138.6 (C-8′), 127.0 (C-14′)] was then elucidated to be sited between C-8′ and C-14′ by the HMBC correlations from H-14′ to C-7′, C-9′, and C-13′.In addition, the two carboxyl groups were assigned to attach to C-4′ and C-25, respectively, on the basis of HMBC cross peaks of H3-19′ with C-4′ and C-18′ (δC181.2), and of H3-26 with C-25 and C-27 (δC177.9).The remaining keto-carbonyl group atδC209.6 was placed at C-23 based on its HMBC correlations with the two pairs of deshielded methylene protons of H2-22(δH2.88/2.49) and H2-24 (δH3.60/2.89).

    Moreover, the spiro-lanostane fragment was connected with the abietadiene by the formation of a new carbon–carbon single bond between C-25 and C-13′.This was defined by the HMBC correlations from H3-26 (δH1.73) to C-24, C-25, C-27, and C-13′.

    Further inspection of the ROESY spectrum of 1 (Fig.3) confirmed that the relative configuration of the spiro-lanostane nucleus was consistent with those of structurally related compounds,such as neoabiestrine F and forrestiacids A and B [13].Concerning the abietene unit, its relative configuration could be readily assigned as shown in Fig.3 based on the ROE correlations of H3-19′/H3-20′ and H-5′/H-9′.The isopropenyl group at C-13′ wasβpositioned as evidenced by the diagnostic correlation between H3–17′ and H3–20′.However, determination of the stereochemistry at the quaternary carbon C-25 proved challenging due to the absence of available ROESY data for this flexible alkyl chain.

    Interestingly, accompanied with 1, its C-25 epimer, forrestiacid D (2), co-occurred in the same subfraction (for details, see Experimental in Supporting information).The molecular formula of 2 was determined to be identical with 1 from the positive-mode HR-ESI-MS ion atm/z791.5213 [M+Na]+(calcd.791.5221).Consistently, the1H and13C NMR spectroscopic data of 2 highly resembled those of 1 (Table 1).In terms of the13C chemical shifts,the largest difference between the two isolates was only 0.5 ppm(C-22,δC46.3vs.45.8).It was similar with the1H NMR data—there were just two positions where the proton resonances differed by 0.2 and 0.3 ppm (i.e., H-14′ and H-24b, respectively).The aforementioned data suggested that compound 2 should be a diastereoisomer of 1 with a different stereochemistry at C-25 and/or C-13′.This assumption was reinforced by further analyses of the1H–1H COSY and HMBC spectra, which revealed that 2 did possessthe same 2D structure as 1.Similar to 1, a key correlation between H3-17′ and H3-20′ was also observed in the ROESY spectrum of 2,assigning a same relative configuration at C-13′ in both 1 and 2.Taken together, compound 2 was undoubtedly deduced to be a C-25 epimer of 1.

    Table 1 1H (600 MHz) and 13C (150 MHz) NMR data (δ in ppm, J in Hz, in pyridine-d5) for 1 and 2.

    Table 2 Inhibitory activities of 1 and 2 against ACL and ACC1.

    Determination of the C-25 configurations in 1 and 2 was a difficult task.The electronic circular dichroism (ECD) spectra of the two epimers were overlaid with each other (Fig.S3 in Supporting information), precluding the application of ECD calculations.Moreover, the NMR shifts are very similar between 1 and 2, just as described above.The NMR calculations would thus most likely not be able to differentiate between the two epimers.In our experience, NMR calculations commonly produce deviations from13C NMR experimental values of 1 ppm or more, so the error associated with the calculations are greater than the difference in the NMR shifts between the different epimers.As expected, the results obtained from the preliminary GIAO NMR calculations with DP4+probability analysis predicted that, the two epimers both matched closely with the calculated data of (25S)-isomer with 100% probability, along with 0% probability for the (25R)-isomer.Hence, in the case of 1 and 2, the quantum NMR computational method also seems ineffectual and powerless.Actually, the limit of NMR calculations for the structural assignment of complex natural products has been well documented by Marcarinoet al.[14].

    Fig.4.OLEX2 drawing of compound 1 (more close-up views shown in Fig.S4 in Supporting information).

    Fortunately, after repeated attempts, a qualified crystal of 1 acquired in MeOH allowed a successful performance of single crystal X-ray diffraction [Flack parameter 0.02(18), Fig.4].This unambiguously confirmed the relative and absolute configurations of 1, especially the configuration at C-25 (25S).The whole structure of (5R,10S,13R,17S,20R,25S,4′R,5′R,9′S,10′R,13′S)-1, was thus unequivocally established as depicted.Accordingly, the absolute configuration of 2 was defined as(5R,10S,13R,17S,20R,25R,4′R,5′R,9′S,10′R,13′S).

    The structural features implied that 1 and 2 would be generatedviaa Michael addition between a unique spiro-lanostanetype triterpenoid precursor neoabiestrine F (co-occurring in the title plant [13]) and an abietadiene precursor (Scheme 1).The 24-en-23-one group in the side chain of neoabiestrine F would act as the ‘Michael acceptor’, whereas the diene motif in the diterpenoid would act as the ‘Michael donor’.

    Scheme 1.Proposed biosynthetic pathway for 1 and 2.

    Michael addition is one of the most important C–C bondforming reactions in synthetic organic chemistry.The natural product biosynthetic machinery also uses a Michael-type addition to synthesize structurally diverse bioactive compounds [15].So far,a number of naturally occurring Michael adducts (e.g., polyketides [16a], cytochalasin homodimer [16b], trimeric macrodiolide[16c], andent-kauranoid dimers [16d]) with interesting bioactivities have been reported.Among them, the terpenoid homo- or hetero-dimers are quite rare.To our knowledge, only a few have been encountered.For examples, three Michael adducts ofentkaurane-type diterpenoid homo-dimers from theIsodonspecies[16d,e].Forrestiacids C and D are the first two triterpene–diterpeneadducts formed by Michael addition and represent an unusual chemical class of terpenoid hetero-dimers.

    The efficacy of bempedoic acid [the first ATP-citrate lyase(ACL) inhibitor approved by Food and Drug Administration (FDA)]as a low-density lipoprotein cholesterol (LDL-C)-lowering agent,has validated ACL inhibition as a therapeutic strategy for glycolipid metabolic disorders (e.g., hyperlipidemia and hypercholesterolemia) [17,18].In our previous study, forrestiacids A and B, the two [4+2]-adducts exhibited potent inhibitory effects against ACL,and elicited dual inhibition on the fatty acid and cholesterol syntheses in HepG2 cells [13].Continuing our studies on the discovery of novel ACL and lipogenesis inhibitors from natural products,compounds 1 and 2 were evaluated for their ACL inhibitory effects.As illustrated in Table 2, they both displayed remarkable inhibition on ACL, with 50% inhibiting concentration (IC50) values of 10.99 and 22.78 μmol/L, respectively.BMS 303141 was used as the positive control (IC50: 0.46±0.13 μmol/L).Interestingly, bempedoic acid and forrestiacids A–D all are dicarboxylic acid derivatives.Compared with the Diels-Alder adducts forrestiacids A and B (IC50s<5 μmol/L) [13], the Michael adducts (1, 2), with the absence of a bridged-ring system (Fig.S1), showed relatively weaker inhibitory effects against ACL, although they have the same molecular weight.In addition, the 25S-isomer (1) demonstrated more potent inhibitory effect on ACL than its epimer (2).Interestingly, the 25Sisomer (1) also displayed significant inhibition (IC50: 7.84 μmol/L)against acetyl-CoA carboxylase 1 (ACC1), which is also one of the rate-limiting enzymes in fatty acid synthesis by converting acetyl-CoA to malonyl CoA [19].ACC1 has been considered as a potential drug target for glycolipid metabolic disorders (especially for hepatic steatosis).It is worth mentioning that, only slight inhibitory effects on ACL and ACC1 were found for the triterpene precursor neoabiestrine F, with IC50values of 24.33 and 24.40 μmol/L, respectively.Taken together, the above findings indicated that the chirality of C-25 in forrestiacids C and D might play an important role in the lipogenesis inhibition of these Michael adducts, which warrants further investigations.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by grants from the National Natural Science Foundation of China (Nos.21937002, 81773599, 21772025).The authors thank Prof.Mark T.Hamann (Medical University of South Carolina, USA) and Dr.Yike Zou (Department of Chemistry and Biochemistry, University of California, at Los Angeles, USA) for their kind suggestions and assistance with the NMR quantum computations.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.009.

    国产一区二区在线av高清观看| 欧美黄色片欧美黄色片| videosex国产| 黄色片一级片一级黄色片| 亚洲欧洲精品一区二区精品久久久| 搞女人的毛片| 亚洲自拍偷在线| 国产精品二区激情视频| 欧美色视频一区免费| 少妇的丰满在线观看| 国产激情欧美一区二区| 动漫黄色视频在线观看| 日本精品一区二区三区蜜桃| 久久性视频一级片| 人妻丰满熟妇av一区二区三区| 欧美精品亚洲一区二区| 成人欧美大片| 亚洲精品国产区一区二| 国产精品,欧美在线| 老鸭窝网址在线观看| 狂野欧美激情性xxxx| 亚洲国产日韩欧美精品在线观看 | 好男人电影高清在线观看| av欧美777| or卡值多少钱| 免费不卡黄色视频| 99久久99久久久精品蜜桃| 老汉色∧v一级毛片| 欧美老熟妇乱子伦牲交| 亚洲黑人精品在线| 国产精品久久电影中文字幕| 老熟妇乱子伦视频在线观看| 久久精品国产亚洲av香蕉五月| av在线天堂中文字幕| 国产欧美日韩一区二区精品| 99国产精品99久久久久| 亚洲 国产 在线| 国产午夜精品久久久久久| 制服诱惑二区| 成人精品一区二区免费| 男人舔女人的私密视频| 叶爱在线成人免费视频播放| 成熟少妇高潮喷水视频| 国产精品98久久久久久宅男小说| 国产精品久久久人人做人人爽| 夜夜爽天天搞| 精品久久久久久成人av| 国产精品免费视频内射| 99国产精品免费福利视频| 国产精品久久视频播放| 亚洲天堂国产精品一区在线| 国产一区二区三区视频了| 免费在线观看完整版高清| 这个男人来自地球电影免费观看| 国内精品久久久久精免费| 在线观看www视频免费| 亚洲成人国产一区在线观看| 亚洲人成电影免费在线| 在线观看舔阴道视频| 亚洲伊人色综图| 90打野战视频偷拍视频| 亚洲第一欧美日韩一区二区三区| 久久久久久久久中文| 亚洲三区欧美一区| 成年女人毛片免费观看观看9| 国产欧美日韩一区二区三| 国产一卡二卡三卡精品| 淫秽高清视频在线观看| 国产精华一区二区三区| 一级作爱视频免费观看| 久9热在线精品视频| aaaaa片日本免费| 人妻久久中文字幕网| 国产精品一区二区免费欧美| 国产成人精品久久二区二区免费| 曰老女人黄片| 麻豆久久精品国产亚洲av| 此物有八面人人有两片| 午夜福利18| 美女午夜性视频免费| 欧美黄色片欧美黄色片| 欧美日韩亚洲综合一区二区三区_| 亚洲精品久久国产高清桃花| 啦啦啦观看免费观看视频高清 | 亚洲七黄色美女视频| 久久久国产成人精品二区| 熟妇人妻久久中文字幕3abv| 国产在线观看jvid| 久久久久国内视频| av天堂久久9| 不卡一级毛片| 美女高潮喷水抽搐中文字幕| 可以在线观看的亚洲视频| 日日爽夜夜爽网站| 国产精品久久久久久亚洲av鲁大| 大陆偷拍与自拍| 国产区一区二久久| 亚洲色图av天堂| 一进一出好大好爽视频| 深夜精品福利| 变态另类丝袜制服| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品av在线| 欧美日本亚洲视频在线播放| 老鸭窝网址在线观看| 九色国产91popny在线| 久久久久久免费高清国产稀缺| 亚洲av美国av| 三级毛片av免费| 国产亚洲精品一区二区www| 国产成人系列免费观看| 久久性视频一级片| 一本大道久久a久久精品| 日本欧美视频一区| 欧美成人一区二区免费高清观看 | 国产一区二区激情短视频| 国产欧美日韩综合在线一区二区| 色婷婷久久久亚洲欧美| 日本精品一区二区三区蜜桃| 国产97色在线日韩免费| 国语自产精品视频在线第100页| 亚洲视频免费观看视频| 久久久精品国产亚洲av高清涩受| 国产精品国产高清国产av| 日本 av在线| 一级,二级,三级黄色视频| 91大片在线观看| 色哟哟哟哟哟哟| 成人免费观看视频高清| 欧美国产日韩亚洲一区| 成人国产一区最新在线观看| 色播亚洲综合网| 伦理电影免费视频| 亚洲成人久久性| 国产av精品麻豆| 精品日产1卡2卡| 亚洲欧美精品综合一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 日本一区二区免费在线视频| 久久国产精品人妻蜜桃| 一区二区三区激情视频| 欧美日韩亚洲综合一区二区三区_| www.精华液| 亚洲中文字幕日韩| 亚洲中文av在线| 女人被狂操c到高潮| 亚洲av五月六月丁香网| 国产亚洲欧美在线一区二区| 欧美中文综合在线视频| 伊人久久大香线蕉亚洲五| 亚洲精品中文字幕一二三四区| 国产精品 欧美亚洲| 国产成人欧美| 亚洲一码二码三码区别大吗| 国产精品野战在线观看| 成人三级黄色视频| 91国产中文字幕| 91精品国产国语对白视频| 亚洲美女黄片视频| 久久亚洲真实| 久久久久久久久中文| av在线播放免费不卡| 99riav亚洲国产免费| 丁香六月欧美| 久久婷婷人人爽人人干人人爱 | 久久欧美精品欧美久久欧美| 18禁裸乳无遮挡免费网站照片 | 少妇熟女aⅴ在线视频| 一进一出好大好爽视频| 国产精品亚洲av一区麻豆| 九色亚洲精品在线播放| 亚洲狠狠婷婷综合久久图片| 欧美国产日韩亚洲一区| 村上凉子中文字幕在线| 亚洲成av人片免费观看| 天天一区二区日本电影三级 | 一区二区三区国产精品乱码| 色综合亚洲欧美另类图片| 欧美日韩福利视频一区二区| 亚洲欧美精品综合一区二区三区| 久久中文字幕一级| 看免费av毛片| 亚洲欧美日韩无卡精品| 香蕉国产在线看| 亚洲午夜理论影院| 午夜福利,免费看| aaaaa片日本免费| 国产精品99久久99久久久不卡| 黄色视频不卡| 伦理电影免费视频| 男女午夜视频在线观看| 男人操女人黄网站| 亚洲欧美精品综合一区二区三区| av有码第一页| 久久午夜综合久久蜜桃| 国产又爽黄色视频| 极品人妻少妇av视频| 国语自产精品视频在线第100页| 在线天堂中文资源库| 亚洲欧美精品综合久久99| 亚洲电影在线观看av| 天天添夜夜摸| 夜夜躁狠狠躁天天躁| 村上凉子中文字幕在线| 国产精华一区二区三区| 亚洲色图av天堂| 国产一区二区激情短视频| 欧美另类亚洲清纯唯美| 女人高潮潮喷娇喘18禁视频| 一区在线观看完整版| 欧美 亚洲 国产 日韩一| 国产精品,欧美在线| 很黄的视频免费| 一级a爱视频在线免费观看| 女性生殖器流出的白浆| 亚洲av电影不卡..在线观看| 妹子高潮喷水视频| 18禁美女被吸乳视频| 国内精品久久久久精免费| 一级a爱片免费观看的视频| 欧美乱妇无乱码| 又黄又粗又硬又大视频| 亚洲精品粉嫩美女一区| 最近最新中文字幕大全电影3 | 黄色女人牲交| 亚洲人成电影免费在线| 精品少妇一区二区三区视频日本电影| 国产av精品麻豆| 黑人欧美特级aaaaaa片| 在线观看免费视频网站a站| 日韩有码中文字幕| 国产精品1区2区在线观看.| 一个人免费在线观看的高清视频| 人妻丰满熟妇av一区二区三区| 国产成人系列免费观看| 日韩一卡2卡3卡4卡2021年| 亚洲国产高清在线一区二区三 | 桃红色精品国产亚洲av| 9热在线视频观看99| 久久久国产精品麻豆| www.精华液| 午夜免费成人在线视频| av福利片在线| 97人妻天天添夜夜摸| 90打野战视频偷拍视频| 可以在线观看毛片的网站| avwww免费| 国产麻豆69| 动漫黄色视频在线观看| 最近最新免费中文字幕在线| 欧美日韩瑟瑟在线播放| 制服丝袜大香蕉在线| 淫妇啪啪啪对白视频| 丁香欧美五月| 十分钟在线观看高清视频www| 精品一区二区三区视频在线观看免费| 91麻豆av在线| 国产一区二区三区视频了| 69av精品久久久久久| 成人精品一区二区免费| 黄色视频不卡| 中文字幕久久专区| 岛国视频午夜一区免费看| 精品午夜福利视频在线观看一区| 自线自在国产av| 成人手机av| 色老头精品视频在线观看| 嫩草影院精品99| 精品久久久久久久久久免费视频| 他把我摸到了高潮在线观看| 午夜成年电影在线免费观看| 成人三级黄色视频| 十分钟在线观看高清视频www| 老司机靠b影院| av超薄肉色丝袜交足视频| 黑人操中国人逼视频| 国产精品久久久人人做人人爽| 狂野欧美激情性xxxx| 伊人久久大香线蕉亚洲五| 成人手机av| 国产乱人伦免费视频| 免费看美女性在线毛片视频| 精品国产国语对白av| 人人妻人人爽人人添夜夜欢视频| 天堂影院成人在线观看| 婷婷六月久久综合丁香| 成人三级做爰电影| 欧美av亚洲av综合av国产av| 在线av久久热| 色在线成人网| 性少妇av在线| av中文乱码字幕在线| 如日韩欧美国产精品一区二区三区| 777久久人妻少妇嫩草av网站| 黄色视频,在线免费观看| 窝窝影院91人妻| 国产精品免费一区二区三区在线| 级片在线观看| 国产欧美日韩一区二区三| 国产亚洲欧美精品永久| 美女免费视频网站| 18禁黄网站禁片午夜丰满| 欧美日韩黄片免| 在线观看午夜福利视频| 亚洲五月色婷婷综合| 51午夜福利影视在线观看| 精品卡一卡二卡四卡免费| 久久久水蜜桃国产精品网| 久久影院123| av在线播放免费不卡| 性欧美人与动物交配| 好男人电影高清在线观看| 波多野结衣一区麻豆| 黑人巨大精品欧美一区二区mp4| 亚洲av熟女| 国产成+人综合+亚洲专区| 女性生殖器流出的白浆| 男男h啪啪无遮挡| 国产一区二区三区综合在线观看| 成人18禁高潮啪啪吃奶动态图| 在线观看免费视频网站a站| 亚洲第一欧美日韩一区二区三区| 搡老岳熟女国产| 国产区一区二久久| 日韩成人在线观看一区二区三区| 少妇的丰满在线观看| 涩涩av久久男人的天堂| 成人国语在线视频| 国产精品久久久av美女十八| 最新在线观看一区二区三区| 国产亚洲精品第一综合不卡| e午夜精品久久久久久久| 男人舔女人的私密视频| 精品无人区乱码1区二区| 欧美一区二区精品小视频在线| 午夜福利视频1000在线观看 | 久久香蕉激情| 女人被躁到高潮嗷嗷叫费观| 99在线视频只有这里精品首页| 动漫黄色视频在线观看| 高清毛片免费观看视频网站| 亚洲电影在线观看av| 国产成人影院久久av| 777久久人妻少妇嫩草av网站| 国产成人精品久久二区二区91| 熟妇人妻久久中文字幕3abv| 久久精品国产亚洲av高清一级| 欧美乱色亚洲激情| 男女之事视频高清在线观看| 亚洲最大成人中文| av网站免费在线观看视频| 色婷婷久久久亚洲欧美| 久久久久久久久久久久大奶| 麻豆成人av在线观看| 免费搜索国产男女视频| 777久久人妻少妇嫩草av网站| 免费人成视频x8x8入口观看| 老熟妇乱子伦视频在线观看| 最近最新免费中文字幕在线| 亚洲人成网站在线播放欧美日韩| 青草久久国产| 999久久久精品免费观看国产| 十八禁人妻一区二区| 亚洲人成网站在线播放欧美日韩| 欧美成狂野欧美在线观看| 国产精品亚洲一级av第二区| 午夜免费激情av| 亚洲欧美激情在线| tocl精华| 18禁观看日本| 97超级碰碰碰精品色视频在线观看| 婷婷精品国产亚洲av在线| x7x7x7水蜜桃| 国产三级在线视频| 欧美成人免费av一区二区三区| 亚洲国产精品sss在线观看| 少妇的丰满在线观看| 美女免费视频网站| 国产精品 欧美亚洲| 少妇被粗大的猛进出69影院| 亚洲情色 制服丝袜| 88av欧美| 丁香六月欧美| 99国产综合亚洲精品| 久久精品亚洲精品国产色婷小说| 亚洲七黄色美女视频| 女性被躁到高潮视频| 男女下面插进去视频免费观看| 久久久久国产精品人妻aⅴ院| 69av精品久久久久久| 9热在线视频观看99| 最近最新免费中文字幕在线| 在线观看www视频免费| 后天国语完整版免费观看| 老司机靠b影院| 操出白浆在线播放| 国产精品影院久久| 国产成人欧美在线观看| 午夜a级毛片| 日本在线视频免费播放| 人人妻人人爽人人添夜夜欢视频| 一级毛片精品| 99国产综合亚洲精品| 亚洲自偷自拍图片 自拍| 日本a在线网址| 久久久久国产精品人妻aⅴ院| 久久久久久久久久久久大奶| 动漫黄色视频在线观看| bbb黄色大片| av天堂在线播放| 成人国语在线视频| 日本 av在线| 日韩欧美国产在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲精品av麻豆狂野| 午夜福利免费观看在线| 久久精品亚洲熟妇少妇任你| av超薄肉色丝袜交足视频| 一边摸一边做爽爽视频免费| 99精品久久久久人妻精品| 国产精品久久久久久亚洲av鲁大| 欧美一级毛片孕妇| 久久精品国产清高在天天线| 亚洲色图综合在线观看| 黑丝袜美女国产一区| 国产亚洲精品一区二区www| 日日干狠狠操夜夜爽| 亚洲色图av天堂| 午夜免费激情av| 国产高清视频在线播放一区| 久久久久久亚洲精品国产蜜桃av| 亚洲精品久久成人aⅴ小说| 国产aⅴ精品一区二区三区波| 亚洲av美国av| 亚洲av片天天在线观看| 亚洲av熟女| 在线观看免费视频日本深夜| 操出白浆在线播放| 在线视频色国产色| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看完整版高清| 中文字幕av电影在线播放| 国产av精品麻豆| 美女国产高潮福利片在线看| 国产色视频综合| 久久人人97超碰香蕉20202| 十分钟在线观看高清视频www| 青草久久国产| 亚洲人成网站在线播放欧美日韩| 免费在线观看黄色视频的| 午夜影院日韩av| 欧美中文综合在线视频| 国产欧美日韩精品亚洲av| 精品国产国语对白av| 制服丝袜大香蕉在线| 国产乱人伦免费视频| 成人手机av| 黑人巨大精品欧美一区二区蜜桃| 午夜福利成人在线免费观看| 黄片小视频在线播放| 中文字幕av电影在线播放| 精品国产乱码久久久久久男人| 精品福利观看| 国产av又大| 精品人妻1区二区| 亚洲avbb在线观看| 长腿黑丝高跟| 国产亚洲精品一区二区www| 免费搜索国产男女视频| 亚洲国产欧美日韩在线播放| 国产区一区二久久| 久久天堂一区二区三区四区| 成人精品一区二区免费| cao死你这个sao货| 亚洲精品中文字幕在线视频| 国产区一区二久久| 久久精品国产清高在天天线| 色综合婷婷激情| а√天堂www在线а√下载| 国产视频一区二区在线看| 在线观看日韩欧美| 国产野战对白在线观看| 黄色丝袜av网址大全| 欧美激情极品国产一区二区三区| 亚洲最大成人中文| 给我免费播放毛片高清在线观看| 免费看a级黄色片| 亚洲avbb在线观看| www.999成人在线观看| 一区二区三区国产精品乱码| 高清黄色对白视频在线免费看| 变态另类成人亚洲欧美熟女 | 一级a爱片免费观看的视频| 亚洲天堂国产精品一区在线| 亚洲av电影在线进入| 日韩精品中文字幕看吧| 一区在线观看完整版| 日韩成人在线观看一区二区三区| 国产日韩一区二区三区精品不卡| 免费高清在线观看日韩| 变态另类成人亚洲欧美熟女 | 久久狼人影院| 欧美最黄视频在线播放免费| 日本a在线网址| 精品一区二区三区视频在线观看免费| 久久久久久亚洲精品国产蜜桃av| 麻豆成人av在线观看| 18禁黄网站禁片午夜丰满| 男人舔女人下体高潮全视频| 99精品在免费线老司机午夜| 午夜亚洲福利在线播放| 久久香蕉精品热| aaaaa片日本免费| 婷婷六月久久综合丁香| 热re99久久国产66热| 老鸭窝网址在线观看| 国产欧美日韩一区二区三区在线| 欧美另类亚洲清纯唯美| 亚洲精品国产精品久久久不卡| 又黄又爽又免费观看的视频| 午夜精品久久久久久毛片777| 亚洲欧美日韩无卡精品| 亚洲在线自拍视频| 午夜亚洲福利在线播放| 亚洲精品国产区一区二| 精品欧美一区二区三区在线| 十八禁网站免费在线| 99国产精品一区二区三区| 香蕉国产在线看| 日韩成人在线观看一区二区三区| 久久人人爽av亚洲精品天堂| 90打野战视频偷拍视频| 亚洲五月色婷婷综合| aaaaa片日本免费| 欧美午夜高清在线| 亚洲国产日韩欧美精品在线观看 | 人人澡人人妻人| 免费观看人在逋| 黄网站色视频无遮挡免费观看| 两人在一起打扑克的视频| 亚洲激情在线av| 精品久久久精品久久久| 禁无遮挡网站| 亚洲第一av免费看| 日日夜夜操网爽| 欧美在线一区亚洲| 999久久久国产精品视频| 精品久久久久久成人av| 色综合站精品国产| 变态另类成人亚洲欧美熟女 | 国产av一区二区精品久久| 黄色毛片三级朝国网站| 电影成人av| 999久久久国产精品视频| 日本在线视频免费播放| 成在线人永久免费视频| 动漫黄色视频在线观看| 欧美成人免费av一区二区三区| 变态另类丝袜制服| 777久久人妻少妇嫩草av网站| 非洲黑人性xxxx精品又粗又长| 日韩欧美一区视频在线观看| 一级毛片高清免费大全| 丝袜人妻中文字幕| 国产亚洲精品第一综合不卡| 亚洲欧美日韩高清在线视频| 亚洲七黄色美女视频| 纯流量卡能插随身wifi吗| 老司机午夜福利在线观看视频| 亚洲熟妇熟女久久| 国产乱人伦免费视频| 国产精品秋霞免费鲁丝片| 亚洲视频免费观看视频| 国产亚洲精品av在线| 大香蕉久久成人网| 99re在线观看精品视频| 成人精品一区二区免费| 久久久久九九精品影院| 成人三级黄色视频| 国产激情欧美一区二区| 欧美成人一区二区免费高清观看 | 十分钟在线观看高清视频www| 亚洲久久久国产精品| 欧美不卡视频在线免费观看 | a级毛片在线看网站| 婷婷精品国产亚洲av在线| 久久久久久久久免费视频了| cao死你这个sao货| 波多野结衣高清无吗| 国产在线精品亚洲第一网站| 黄频高清免费视频| 男人舔女人的私密视频| 最近最新中文字幕大全电影3 | 国产精品久久久久久人妻精品电影| 999久久久国产精品视频| 国产精品一区二区在线不卡| 亚洲av第一区精品v没综合| 女人被躁到高潮嗷嗷叫费观| 久久久久国产一级毛片高清牌| 日本精品一区二区三区蜜桃| 手机成人av网站| 很黄的视频免费| 91精品三级在线观看| 国产精品1区2区在线观看.| 久久久久久亚洲精品国产蜜桃av| 欧美黑人欧美精品刺激| 国语自产精品视频在线第100页| 精品一区二区三区四区五区乱码| 日本精品一区二区三区蜜桃| 午夜激情av网站| 操美女的视频在线观看| 在线免费观看的www视频| 757午夜福利合集在线观看| 无人区码免费观看不卡| 免费在线观看完整版高清|