• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An excimer ‘ON–OFF’switch based on telomeric G-quadruplex and rGO for trace thrombin detection

    2022-09-15 03:10:56LongZhoFridAhmedHiXiong
    Chinese Chemical Letters 2022年9期

    Long Zho, Frid Ahmed, Hi Xiong,?

    a Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China

    b College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

    ABSTRACT In the recent decade, GO has emerged as an amazing 2D nanomaterial for developing DNA-based biosensors due to its fluorescence quenching properties, whereas similar research based on rGO was reported rarely.Herein, a novel multi-pyrene functionalized G-rich DNA probe based on the screened rGO showed much higher fluorescence quenching efficiency and excimer emission than that of universal GO.Different from the universal thrombin detection of the G4-forming aptamer-TBA(GGTTGGTGTGGTTGG), the original telomeric sequence is used in this study.The excimer emission “ON-OFF” switch amplified the response of thrombin detection is as low as 50 units.Furthermore, for four pyrene moieties that are sited in a crowded steric circumstance, the melting temperature (Tm) values and molecular dynamics simulations showed a positive effect on duplex G-quadruplex or GDNA·cDNA stability, without disturbing its helix structure.

    Keywords:G-quadruplex rGO Multi-pyrene excimer Biosensor Thrombin detection

    Since the first demonstration of a fluorescent probe based on graphene oxide (GO) complexed with single-stranded DNA (ssDNA)to bind complementary oligonucleotide sequences in 2009 [1], ss-DNA/GO complexes, owing to their binding and quenching properties, have been widely applied to detect small molecules, metal ions, and biomolecules as well as for drug-delivery [2–5].Generally, negatively charged ssDNA is adsorbed on the GO surface by‘π-π’stacking between the DNA nucleobase moieties and GO carbon rings.Reduced graphene oxide (rGO) can be synthesized by the chemical reduction of GO, rGO possesses a high degree of aromaticity, which can facilitate a ‘π-π’stacking interface [6–9].As a result, the different oxygen contents of rGO have various quenching efficiencies for the fluorescence intensity of labeled ssDNA and aptamers, even if the examples are deficient [10,11].

    Furthermore, modified pyrene fluorophores exhibiting an emission excimer at red-shifted absorption are extensively being developed as desirable tools in diagnostics and nanomedicine [12].Compared to various fluorophores, the excimer emission of pyrene derivatives is especially generated from aπ-stack dimer between a pyrene unit in an electronically excited state and another in the ground state [13–15].In 1996, the Kool group first reported the direct attachment of pyrene to deoxyribose, as pyrene is a chromophore replacing nucleobases [16].Owing to dimer stacking with a tremendous overlap in theirπ-orbitals, the earliest pyrenecontaining multichromophores exhibit efficient excitation energy transfer and electron transfer [17,18].To detect complementary DNA/RNA and the multi-labeling of RNA or LNA, more pyrene chromophores with non-nucleoside linkers have been incorporated into DNA in the last two decades [19–23].

    G-quadruplexes are secondary structures of nucleic acids, which are composed of two or more stacked G-quartets with four guanine residues paired together through Hoogteen-like hydrogen bonds.Endogenous G-quadruplex models have been confirmed in the promoter regions of numerous oncogenes and the human telomeric sequence, and they have been regarded as potential targets for anticancer drugs at the telomeric level with the inhibition of telomerase activity overexpressed in tumor cells [24–26].Furthermore,the unique properties of G-quadruplexes have been investigated in some important reconstructions/reconfigurations and applications, including DNA origami, biosensing nanostructures, nanodevices, nanocarriers for disease therapeutics, and the detection of pathogens, including the causative agent of COVID-19 [27–32].

    In 2012, Xionget al.employed tripropargylated nucleosides to construct three-armed (Y-shaped) dendronized DNAviathe‘stepwise and double click’approach [33].In 2016, Kim and coworkers attached pyrene-modified monomers as dangling residues of the G-quadruplex.Red-shifted fluorescence emission was observed upon the addition of K+[34].Herein, oligonucleotides containing single or multiple residues of tripropargylated 2′-deoxyuridine were prepared by the solid-phase synthesis of its phosphoramidites.Thereafter, the artificial ssDNA incorporating multi-pyrene moieties at the center or terminal sites could be obtainedviathe ‘click’chemistry.Furthermore, the feasibility of using pyrene-functionalized G-rich human telomeric ssDNA as a fluorescence probe based on synthetic rGO was investigated.To optimize the sensitivity of the G-rich probe, the oxygen content of rGO was varied by analyzing the fluorescence quenching efficiency and excimer emission for multi-pyrene modification.Based on these results, various thrombin concentrations were detected.

    According to previous studies, the 5-[di(prop–2-ynl)amino]prop–1-ynyl derivative of 2′-deoxyuridine (2) was prepared from 5-iodo-2′-deoxyuridine (1) and 6-fold of tripropargylamine using the catalysts [Pd0(PPh3)4] and CuI.The Sonogashira cross-coupling reaction was performed to obtain nucleoside (2)in 71% yield.Further, the ‘double click’ reaction was carried out with nucleoside (2) containing two terminal triple bonds and 1-azidomethylpyrene (3) in the presence of CuSO4and sodium ascorbate (Scheme S1 in Supporting information).The corresponding phosphoramidite (5) was the final product, and all intermediates were characterized using1H and13C NMR spectroscopy (Scheme S2 in Supporting information).

    Scheme 1.‘Click’reactions were performed on oligonucleotides and 1-azidomethylpyrene (3).

    Modified oligonucleotides incorporating single or multiple residues of (2) were synthesized and constructed using standard solid-phase synthesis.The crude oligonucleotides were detritylated and purified by agarose gel electrophoresis or reversed-phase HPLC.To attach pyrene to the nucleobases on ssDNA, the ‘double click’reaction was also performed on the nucleoside moiety (2)and 1-azidomethylpyrene (3) (Scheme 1).Oligonucleotides incorporating artificial residues (4) were confirmed by LC-ESI-TOF mass spectrometry (Table S1 and Fig.S1 in Supporting information).

    The melting temperature (Tm) values of monomolecular Gquadruplexes or bimolecular duplexes incorporating single or multiple residues of (4) were measured by ultraviolet (UV) thermal denaturation (Figs.S2-S4 in Supporting information).Tmmeasurements showed that modifications with one or two moieties of(4), bearing oligonucleotides with two or four pyrene units, exhibited a positive effect on duplex or G-quadruplex stability.Indeed, an increase inTmvalues for the unmodified oligonucleotides(GDNA-1 for G4 andGDNA-1·CDNA for duplex) is shown in Table 1.As a comparison, the attachment to oligonucleotides of single or multiple residues of (2) demonstrated a negative effect on duplex stability, with a decrease in theTmvalues for the unmodified oligonucleotides (Table S2 in Supporting information).To determine whetherGDNA formed G-quadruplexes in the PBS buffer(20 mmol/L, pH 7.0),GDNA-10 was chosen for CD analysis.The CD spectrum with a maximum band at approximately 264 nm and a minimum at approximately 241 nm indicated a quadruplex with all the strands oriented parallel to each other (Fig.S5 in Supporting information) [35–38].

    Table 1 Tm values of G-quadruplexes and pyrene oligonucleotide duplexes with mono- or multi-pyrene residues.

    Molecular dynamics simulations at the MM+ force field (HyperChem 8.0 Professional; Hypercube Inc.) were conducted on the 27-mer duplexesGDNA-6·CDNA,GDNA-8·CDNA, andGDNA-11·CDNA containing one or two modification sites in the duplex (Fig.1).Fig.1A shows a duplex containing two dU residues displaced by the nucleoside (2) residue at the proximal position.Molecular modeling indicates that the proximal nucleoside (2) moieties bearing terminal alkynes seem to interfere with the DNA helix and arenot well adapted to the major groove.For the crowded steric situation, triazole rings of the modified derivative (4) at one or two proximal sites are not drawn while representing the stacking interactions of the nucleobase pairs (Figs.1B and C).Molecular modeling indicated that despite the presence of four pyrene moieties in the crowded steric circumstance, all residues were well accommodated in the major groove without disturbing the DNA helix.

    Fig.1.Molecular models of (A) duplex 5′-d(TTT T22 GGG TTA GGG TTA GGG TTA GGG) (GDNA-6) · 3′-d(AAA CCC AAT CCC AAT CCC AAT CCC) (CDNA), (B) duplex 5′-d(TTT TT4 GGG TTA GGG TTA GGG TTA GGG) (GDNA-8) · (CDNA) and (C) duplex 5′-d(TTT T44 GGG TTA GGG TTA GGG TTA GGG) (GDNA-11) · (CDNA).The molecular dynamics models were simulated by using energy minimized AMBER calculations.The green balls are diaplayed as the modification sites.

    The oxygen contents of GO and rGO were measured by X-ray photoelectron spectroscopy (XPS).The GO samples showed characteristic peaks for carboxyl groups and C–O single bonds.After reduction by NaBH4(different reduction times), the oxygen content of rGO gradually decreased, as shown in Figs.S6 and S7 (Supporting information).rGO with different oxygen contents has different water solubilities.Indeed, rGO-5 and rGO-6 demonstrated poor dispersion in water.The size of GO and rGO on the mica flakes was confirmed by AFM.The thickness of GO and rGO is approximately 1.0±0.2 nm.Considering the overestimation and the oxygen-containing group, the obtained thickness of approximately 1.0 nm for GO or rGO reasonably indicates a single-layer (Fig.S7B).

    Owing to the different aromatic structures and oxygen content, GO and rGO have different adsorption capacities for ssDNA.In 20 mmol/L PBS buffer (pH 7.0), ssDNA was adsorbed on the GO or rGO surface in the form of a G-quadruplex.To investigate the fluorescence quenching efficiency, various concentrations of GO and rGO (0–50 μg/mL) were treated withGDNA-10 (Fig.S8 in Supporting information).Upon interaction with GO or rGO, the fluorescence intensity ofGDNA-10 was substantially quenched.When 2 μg/mL GO or rGO was added to theGDNA-10 in the PBS buffer,fluorescence quenching efficiencies of GO, rGO-1, rGO-3, and rGO-4 were below 20%.With a gradual increase in the GO or rGO concentration, the fluorescence intensity was further reduced.The rGO samples with a less oxygen content, rGO-5 and rGO-6, could not disperse well in water and aggregated rapidly, and therefore, they could not be used to investigate the interaction withGDNA-10.

    Upon the addition of 30 μg/mL rGO-2 in 1 μmol/L solution ofGDNA-10, the fluorescence intensity was quenched by 94% within 5 min, whereas the quenching of the fluorescence intensity ofGDNA-10 (1 μmol/L) was approximately 84% by the addition of GO or other rGOs (Fig.2A).Upon increasing the concentration of rGO-2 over 30 μg/mL, the fluorescence intensity ofGDNA-10 (1 μmol/L)was quenched by more than 95% (Fig.2B).When the concentration of rGO-2 was increased to 50 μg/mL, the fluorescence quenching efficiency ofGDNA-10 reached 100%.The other rGO or GO samples did not show complete quenching even at higher concentrations(50 μg/mL).For comparison, the quenching efficiency ofGDNA with different amounts of GO or rGO was also tested in 75 mmol/L Tris–HCl buffer at pH 7.5 (Figs.S9 and S10 in Supporting information).The optimized rGO-2 concentration of 30 μg/mL was selected for fluorescence quenching withGDNA in subsequent assays.

    A series of fluorescent quenching assays was performed onGDNA with different pyrene-labeled nucleoside positions after adding rGO-2 (30 μg/mL) (Fig.2C).The fluorescence intensity ofGDNAs (GDNA-7,GDNA-8, andGDNA-11) incorporating nucleoside(4) on the exterior of a G-quadruplex core was stronger than that ofGDNAs containing the modified nucleosides inside the quadruplex region (GDNA-9 andGDNA-10).Usually, quenching effects are caused by guanine residues acting as the strongest quencher.When ssDNA forms a G-quadruplex structure in the PBS buffer,the pyrene moieties are rapidly involved in ‘π-πstacking’with the G-tetrads, and the fluorescence intensity ofGDNA with pyrenemodified nucleosides inside the G-quadruplex core decreases significantly.These findings are also in agreement with earlier observations of pyrene modifications in DNA duplexes [39–41].GDNA-11, incorporating two proximal derivatives, nucleoside 4 with four pyrene moieties in a crowded steric situation, triggered a redshifted fluorescence excimer emission (λem=478 nm).Upon the addition of 30 μg/mL rGO-2, the fluorescence quenching efficiency of allGDNAs was more than 90% (Fig.2D).The fluorescence quenching efficiency of differentGDNA adsorbed on rGO-2 was also tested in 75 mmol/L Tris–HCl buffer (pH 7.5, Fig.S9).In the Tris–HCl buffer, the fluorescence intensity ofGDNA-11 was 2-fold higher than that of GDNAs (fromGDNA-7 toGDNA-10).AsGDNAs assume a random-coil structure in the Tris–HCl buffer, the pyrene moieties cannot rapidly form the ‘π-πstack’with the G-tetrads.These results showed that rGO-2 had a good quenching efficiency forGDNA in the Tris–HCl buffer.

    Fig.2.(A) Fluorescence spectra of GDNA-10 before and after adding GO or rGO (30 μg/mL) in PBS buffer (20 mmol/L, pH 7.0).(B) Fluorescence quenching efficiency (F0-F)/F0 of GDNA-10 in terms of different concentrations of GO and rGO. F0 and F are the fluorescence intensity before and after the addition of GO or rGO (λex=340 nm, GDNA-10 concentration=1 μmol/L).(C) Fluorescence spectra of GDNA before and after adding rGO-2 (30 μg/mL) in PBS buffer (20 mmol/L, pH 7.0).(D) The fluorescence quenching efficiency (F0-F)/F0 at 340 nm of λex and concentration with 1 μmol/L of GDNA.

    Detecting the content of thrombin in tumor cells is of considerable significance for studying cancer cell proliferation and cancer diagnosis [42].In 2010, Liet al.reported a graphene FRET aptasensor for thrombin detection.FAM aptamers are suitable for commercial use [43].Using DNA intercalating dyes as FRET reporters,a quantum dot-aptamer beacon was successfully used for labelfree thrombin detection [43].Using a novel signal amplification strategy, Tanget al.developed a thrombin detection assay using a chiral supramolecular assembly with a physiological K+background in 2017 [44].In contrast to the universal thrombin detection of the G4-forming aptamer-TBA(GGTTGGTGTGGTTGG), an original telomeric sequence was used in this study.Herein, we developed a new pyrene-labeled G-quadruplex and rGO-based biosensing platform for thrombin detection.The fluorescence recovery of theGDNA-11 and rGO-2 complexes is depicted upon the addition of different amounts of thrombin (Figs.3A-C).Except for the fluorescence emissions at 381 nm and 395 nm, the excimer fluorescence at 478 nm also increased with the increasing concentration of thrombin.Compared with typical commercial dyes, these results can avoid the interference of many background signals for practical applications.The detection limit was 50 units of thrombin in a total volume of 1 mL.The addition of thrombin leads to fluorescence recovery owing to the formation of quadruplex-thrombin complexes, which have a weak affinity to rGO and push the dyes away from the rGO surface.

    Fig.3.(A) Fluorescence spectra of the GDNA-11 and rGO-2 via different concentrations of thrombin in 20 mmol/L of PBS buffer (pH 7.0, λex=340 nm, GDNA-11 concentration=1 μmol/L, rGO-2 concentration=30 μg/L).(B) The amplified fluorescence spectra of the GDNA-11 and rGO-2 after adding thrombin (from 0 to 500 units/mL).(C) Fluorescence intensity spectra of the GDNA-11 and rGO-2 after adding thrombin (from 0 to 500 units/mL,λex=340 nm, GDNA-11 concentration=1 μmol/L,rGO-2 concentration=30 μg/L).(D) AFM images including height profiles of GDNA-11 and rGO-2 senor.(E) The amplified images of GDNA-11 and rGO-2 senor.Scale size: 5 μm×5 μm.

    Atomic force microscopy (AFM) was performed to observe the structure of the rGO-GDNA sensor.The typical images (Fig.3D)displayed a few white areas on the rGO surface because of the presence ofGDNA, with a thickness of less than 10 nm, for the rGO-GDNA biosensor.TheGDNA sequences were uniformly distributed on the rGO surface without apparent selectivity, which is in good agreement with a previous report [45].Besides, the details ofGDNA-11 are magnified and shown in Fig.3E.

    In this study, a series of mono- and multi-pyrene-labeled Gquadruplex sequences in different buffers were constructed.The ssDNA absorbed on GO or rGO can be effectively protected against enzymatic degradation and biological interferencein vivo.Furthermore, the adsorption of ssDNA on GO or rGO surfaces results in the exposition of ssDNA nucleic digestion and desorption of dsDNA,desorbed from the (r)GO by a complementary strand, to nuclease digestionin vitro.In the G-quadruplex form, the fluorescence intensity of multi-pyrene functional DNA probes decreases owing to the fluorescence quenching of stacked pyrene moieties, whileTmvalues show increased stability.Importantly, the G-quadruplex form with consecutive pyrene modifications (GDNA-11) exhibited strong excimer emission.Further, the fluorescence quenching of DNA based on GO and rGO with different oxygen contents was investigated in PBS or Tris–HCl buffers.Furthermore, the morphology of the rGO-based aptasensor assembled with the pyrene-labeledGDNA was determined by AFM.

    In this study, negatively charged rGO demonstrated a better fluorescence quenching efficiency for DNA aptamer compared to GO.As an optimized result, the G-quadruplex form with consecutive pyrene modifications (GDNA-11) based on rGO-2 was selected as a biosensor to detect thrombin.Moreover, the application of such kind of optical or electrical G-quadruplex rGO-biosensor in cancer cell recognition will open the possibility of diagnostics and other diverse nano-medical applications.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work is supported by the Science and Technology Innovation Commission of Shenzhen, China (Nos.KQJSCX20180328095517269 and JCYJ20210324095607021), and Top Young Talent of the Pearl River Talent Recruitment Program,China.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.02.048.

    99久久综合精品五月天人人| 久久九九热精品免费| 99精品久久久久人妻精品| 精品久久蜜臀av无| 91在线观看av| 一区二区三区高清视频在线| 国产午夜精品久久久久久| 一级片免费观看大全| 99热6这里只有精品| 欧美一级a爱片免费观看看 | av视频在线观看入口| 亚洲成a人片在线一区二区| 欧美最黄视频在线播放免费| 精品国产超薄肉色丝袜足j| 国产av一区二区精品久久| 性色av乱码一区二区三区2| 美女 人体艺术 gogo| 脱女人内裤的视频| 成人av一区二区三区在线看| 欧美日韩中文字幕国产精品一区二区三区| 日韩有码中文字幕| 欧美高清成人免费视频www| 一区二区三区高清视频在线| 91成年电影在线观看| av福利片在线| 亚洲精品av麻豆狂野| 人妻夜夜爽99麻豆av| 99热只有精品国产| 十八禁人妻一区二区| 婷婷丁香在线五月| 两个人看的免费小视频| 麻豆av在线久日| 国产激情欧美一区二区| 黄色丝袜av网址大全| 99热这里只有是精品50| 欧美另类亚洲清纯唯美| 狂野欧美白嫩少妇大欣赏| 99久久国产精品久久久| 97超级碰碰碰精品色视频在线观看| 精品久久蜜臀av无| 欧美中文日本在线观看视频| 美女 人体艺术 gogo| 国产97色在线日韩免费| 欧美另类亚洲清纯唯美| 国内久久婷婷六月综合欲色啪| 久久久久精品国产欧美久久久| 淫妇啪啪啪对白视频| 国产1区2区3区精品| 精品国产亚洲在线| 视频区欧美日本亚洲| 操出白浆在线播放| 真人做人爱边吃奶动态| 午夜影院日韩av| 久久中文字幕一级| 欧美另类亚洲清纯唯美| 精品国产超薄肉色丝袜足j| 深夜精品福利| 无人区码免费观看不卡| 不卡av一区二区三区| 精品久久久久久,| 久久中文字幕人妻熟女| 欧美另类亚洲清纯唯美| 久久久久久免费高清国产稀缺| 亚洲av美国av| 美女 人体艺术 gogo| 91在线观看av| www日本黄色视频网| 成在线人永久免费视频| 99riav亚洲国产免费| 免费高清视频大片| 日本黄色视频三级网站网址| 天天躁夜夜躁狠狠躁躁| 中文字幕人成人乱码亚洲影| 深夜精品福利| 欧美日韩中文字幕国产精品一区二区三区| av视频在线观看入口| 欧美色视频一区免费| 国产真实乱freesex| 91国产中文字幕| e午夜精品久久久久久久| 亚洲第一电影网av| 国产成人av激情在线播放| 国产激情偷乱视频一区二区| 麻豆一二三区av精品| 韩国av一区二区三区四区| 国产精品亚洲一级av第二区| 人人妻人人澡欧美一区二区| 久久亚洲精品不卡| 久久中文看片网| 高清毛片免费观看视频网站| 制服人妻中文乱码| www.自偷自拍.com| 岛国在线免费视频观看| 久久热在线av| 神马国产精品三级电影在线观看 | 国产1区2区3区精品| 国产精品久久久久久亚洲av鲁大| 成人午夜高清在线视频| 黄色a级毛片大全视频| 少妇粗大呻吟视频| 黄频高清免费视频| 观看免费一级毛片| 精品人妻1区二区| 国产精品av久久久久免费| 亚洲一区高清亚洲精品| 757午夜福利合集在线观看| 一区福利在线观看| 麻豆成人午夜福利视频| 亚洲av成人一区二区三| 欧美在线黄色| 制服诱惑二区| 久久久久精品国产欧美久久久| 亚洲成av人片在线播放无| 久久欧美精品欧美久久欧美| 在线观看免费视频日本深夜| 亚洲成人久久性| 亚洲国产看品久久| 精品乱码久久久久久99久播| 久久久久久大精品| 日本免费a在线| 91国产中文字幕| 久久这里只有精品19| 无人区码免费观看不卡| 久久这里只有精品19| 欧美丝袜亚洲另类 | 一a级毛片在线观看| av有码第一页| 国产精品av久久久久免费| 又大又爽又粗| 国产区一区二久久| 国产又黄又爽又无遮挡在线| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久毛片微露脸| 国产单亲对白刺激| 三级男女做爰猛烈吃奶摸视频| 国产欧美日韩精品亚洲av| 亚洲人与动物交配视频| 国产精品1区2区在线观看.| 岛国视频午夜一区免费看| 国产真实乱freesex| 国产伦在线观看视频一区| av在线播放免费不卡| 一边摸一边抽搐一进一小说| 久久精品国产综合久久久| www日本黄色视频网| 国产成人影院久久av| 中文字幕熟女人妻在线| 午夜激情福利司机影院| 国产精品免费视频内射| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 国产高清视频在线播放一区| 亚洲性夜色夜夜综合| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美精品综合一区二区三区| 色综合站精品国产| 特大巨黑吊av在线直播| 国产精品综合久久久久久久免费| 国产精品久久久久久人妻精品电影| 91老司机精品| 亚洲美女黄片视频| a在线观看视频网站| 亚洲av中文字字幕乱码综合| 国产蜜桃级精品一区二区三区| 最近在线观看免费完整版| 韩国av一区二区三区四区| 日韩精品免费视频一区二区三区| 一进一出抽搐动态| 亚洲精品一卡2卡三卡4卡5卡| 久久久水蜜桃国产精品网| 狂野欧美白嫩少妇大欣赏| 少妇熟女aⅴ在线视频| 1024香蕉在线观看| 久久久国产成人精品二区| 欧美日韩精品网址| 亚洲精品色激情综合| 亚洲五月婷婷丁香| 在线十欧美十亚洲十日本专区| 国产精品一及| 成年女人毛片免费观看观看9| 国产精品久久久久久久电影 | 午夜免费观看网址| 欧美3d第一页| 我的老师免费观看完整版| 精品国产乱码久久久久久男人| 国产精品 欧美亚洲| 每晚都被弄得嗷嗷叫到高潮| 一夜夜www| 黑人欧美特级aaaaaa片| 久久人人精品亚洲av| 欧美成人一区二区免费高清观看 | 神马国产精品三级电影在线观看 | 天天躁夜夜躁狠狠躁躁| 十八禁人妻一区二区| 在线观看舔阴道视频| 免费av毛片视频| 99久久国产精品久久久| 精品一区二区三区视频在线观看免费| 日韩欧美免费精品| 成人一区二区视频在线观看| 两个人免费观看高清视频| 国产麻豆成人av免费视频| 国产精品一区二区三区四区免费观看 | 日日夜夜操网爽| 欧美在线黄色| 欧美色欧美亚洲另类二区| 一级黄色大片毛片| а√天堂www在线а√下载| 精品一区二区三区av网在线观看| 国内揄拍国产精品人妻在线| 欧美丝袜亚洲另类 | 国产主播在线观看一区二区| 欧美黄色淫秽网站| 男人舔女人的私密视频| 男插女下体视频免费在线播放| 一本综合久久免费| 琪琪午夜伦伦电影理论片6080| 亚洲国产中文字幕在线视频| 欧美一区二区精品小视频在线| 亚洲av熟女| 丁香六月欧美| 国产精品免费一区二区三区在线| 亚洲男人的天堂狠狠| 国产爱豆传媒在线观看 | 久久婷婷成人综合色麻豆| 最近最新中文字幕大全免费视频| 亚洲国产欧美网| 丰满的人妻完整版| 欧美一级毛片孕妇| 国产精品久久久久久亚洲av鲁大| 国产成人影院久久av| 成人永久免费在线观看视频| 久久久久久大精品| 看免费av毛片| 欧美黄色片欧美黄色片| 法律面前人人平等表现在哪些方面| 亚洲 国产 在线| a级毛片在线看网站| 中文字幕av在线有码专区| 草草在线视频免费看| 久久这里只有精品19| 一区二区三区激情视频| 色精品久久人妻99蜜桃| 欧美日韩瑟瑟在线播放| 日韩欧美免费精品| 99久久99久久久精品蜜桃| 免费电影在线观看免费观看| 校园春色视频在线观看| 97碰自拍视频| 亚洲欧美日韩高清专用| 成人特级黄色片久久久久久久| 一个人免费在线观看电影 | 免费在线观看影片大全网站| 国产精品久久视频播放| 国产精品乱码一区二三区的特点| 一个人免费在线观看的高清视频| 国产精品电影一区二区三区| 国产精品一区二区三区四区久久| 最新美女视频免费是黄的| 啦啦啦免费观看视频1| 日韩有码中文字幕| 我的老师免费观看完整版| 母亲3免费完整高清在线观看| 中文字幕av在线有码专区| 岛国视频午夜一区免费看| 校园春色视频在线观看| 五月伊人婷婷丁香| 欧美黄色淫秽网站| 人人妻人人澡欧美一区二区| 亚洲人成伊人成综合网2020| 久久精品人妻少妇| 午夜精品久久久久久毛片777| 国产精品免费视频内射| 一个人观看的视频www高清免费观看 | 国产高清videossex| 国产三级在线视频| 免费在线观看亚洲国产| 日本黄色视频三级网站网址| 99久久无色码亚洲精品果冻| 日本熟妇午夜| 男女之事视频高清在线观看| 亚洲一区二区三区不卡视频| 黄色视频,在线免费观看| 50天的宝宝边吃奶边哭怎么回事| 色综合亚洲欧美另类图片| 中出人妻视频一区二区| 亚洲成人精品中文字幕电影| 亚洲人成伊人成综合网2020| 男人舔奶头视频| 又大又爽又粗| av福利片在线观看| 亚洲aⅴ乱码一区二区在线播放 | 成年人黄色毛片网站| 手机成人av网站| 在线观看美女被高潮喷水网站 | 亚洲国产中文字幕在线视频| xxxwww97欧美| 久久人妻av系列| 又黄又爽又免费观看的视频| 18禁国产床啪视频网站| 欧美成狂野欧美在线观看| 黑人欧美特级aaaaaa片| 亚洲成人久久性| 亚洲精品国产精品久久久不卡| 欧美日韩一级在线毛片| 可以在线观看毛片的网站| 我的老师免费观看完整版| 精品免费久久久久久久清纯| 亚洲自偷自拍图片 自拍| 一二三四社区在线视频社区8| 天堂影院成人在线观看| 国产91精品成人一区二区三区| 精品午夜福利视频在线观看一区| 欧美日本亚洲视频在线播放| e午夜精品久久久久久久| 亚洲 国产 在线| 1024手机看黄色片| 亚洲一区二区三区色噜噜| 18美女黄网站色大片免费观看| 99国产精品一区二区三区| 听说在线观看完整版免费高清| 国产1区2区3区精品| 免费高清视频大片| 午夜精品一区二区三区免费看| 国产91精品成人一区二区三区| 国产久久久一区二区三区| 国产一区二区在线观看日韩 | 黄色女人牲交| 无人区码免费观看不卡| 一本大道久久a久久精品| 国产在线观看jvid| 俺也久久电影网| 国产探花在线观看一区二区| 国内少妇人妻偷人精品xxx网站 | 亚洲激情在线av| 成年人黄色毛片网站| 一本精品99久久精品77| 亚洲熟女毛片儿| 欧美黄色片欧美黄色片| 欧美日韩一级在线毛片| 亚洲av成人一区二区三| 国产精品一及| 亚洲欧美日韩高清专用| 女人爽到高潮嗷嗷叫在线视频| av国产免费在线观看| 欧美乱妇无乱码| 看片在线看免费视频| 一级a爱片免费观看的视频| 99国产精品一区二区蜜桃av| 黄色a级毛片大全视频| 欧美午夜高清在线| 亚洲天堂国产精品一区在线| 亚洲精品色激情综合| 日本一本二区三区精品| 国产精品一区二区三区四区久久| 日日夜夜操网爽| 日韩三级视频一区二区三区| 亚洲国产欧美网| 免费在线观看完整版高清| 最新美女视频免费是黄的| 午夜免费观看网址| 亚洲在线自拍视频| 哪里可以看免费的av片| 免费一级毛片在线播放高清视频| 午夜福利免费观看在线| 香蕉久久夜色| av视频在线观看入口| 欧美激情久久久久久爽电影| 亚洲一码二码三码区别大吗| 黄色成人免费大全| 日本 欧美在线| 亚洲精品一卡2卡三卡4卡5卡| av超薄肉色丝袜交足视频| 激情在线观看视频在线高清| 免费看十八禁软件| 一区二区三区激情视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av成人不卡在线观看播放网| 中文字幕精品亚洲无线码一区| 天天躁夜夜躁狠狠躁躁| 欧美色欧美亚洲另类二区| 亚洲乱码一区二区免费版| 夜夜夜夜夜久久久久| 婷婷精品国产亚洲av在线| 欧美色欧美亚洲另类二区| 欧美日本亚洲视频在线播放| 成熟少妇高潮喷水视频| 一a级毛片在线观看| √禁漫天堂资源中文www| 久久99热这里只有精品18| 国产人伦9x9x在线观看| 国产高清视频在线观看网站| 丁香六月欧美| 香蕉丝袜av| 又黄又粗又硬又大视频| 免费人成视频x8x8入口观看| 亚洲中文字幕日韩| 日韩有码中文字幕| 国产三级在线视频| 欧美日韩亚洲国产一区二区在线观看| 丰满的人妻完整版| 精品国产乱子伦一区二区三区| 九色成人免费人妻av| 日日夜夜操网爽| 久久久久久大精品| 老司机深夜福利视频在线观看| av视频在线观看入口| 午夜激情av网站| 18禁裸乳无遮挡免费网站照片| 夜夜看夜夜爽夜夜摸| 1024手机看黄色片| av天堂在线播放| 久久久久性生活片| 18禁黄网站禁片免费观看直播| 校园春色视频在线观看| 丰满人妻一区二区三区视频av | 国产av又大| 国内少妇人妻偷人精品xxx网站 | 久久久久国产精品人妻aⅴ院| 亚洲一码二码三码区别大吗| 国产亚洲精品久久久久久毛片| 国产av又大| 男人舔女人的私密视频| 狂野欧美激情性xxxx| 日韩 欧美 亚洲 中文字幕| 午夜成年电影在线免费观看| 日本精品一区二区三区蜜桃| 99国产精品99久久久久| 香蕉丝袜av| 欧美不卡视频在线免费观看 | 亚洲专区中文字幕在线| 少妇的丰满在线观看| 国产又色又爽无遮挡免费看| 天堂影院成人在线观看| 国产一区二区激情短视频| 国产午夜精品论理片| 日韩av在线大香蕉| 亚洲中文字幕一区二区三区有码在线看 | 色在线成人网| 精品熟女少妇八av免费久了| 亚洲专区国产一区二区| 欧美日韩乱码在线| 一级毛片精品| 老汉色av国产亚洲站长工具| 国产熟女xx| 亚洲国产精品成人综合色| 全区人妻精品视频| 午夜老司机福利片| 国产又色又爽无遮挡免费看| 久久热在线av| 国产黄a三级三级三级人| 欧美极品一区二区三区四区| 久久天堂一区二区三区四区| 国产99久久九九免费精品| 床上黄色一级片| 亚洲一区二区三区不卡视频| 国产精品久久视频播放| 国产爱豆传媒在线观看 | 欧美激情久久久久久爽电影| 久久性视频一级片| 欧美+亚洲+日韩+国产| 可以免费在线观看a视频的电影网站| 草草在线视频免费看| 观看免费一级毛片| 国产精品爽爽va在线观看网站| 超碰成人久久| 黄片大片在线免费观看| 每晚都被弄得嗷嗷叫到高潮| e午夜精品久久久久久久| 亚洲片人在线观看| 精品国内亚洲2022精品成人| 亚洲九九香蕉| 女同久久另类99精品国产91| av福利片在线| www日本黄色视频网| 一本精品99久久精品77| 午夜福利免费观看在线| 免费无遮挡裸体视频| 欧美成狂野欧美在线观看| 亚洲精品在线观看二区| √禁漫天堂资源中文www| 十八禁网站免费在线| 香蕉久久夜色| 99riav亚洲国产免费| 天天躁夜夜躁狠狠躁躁| 亚洲av电影不卡..在线观看| 亚洲av美国av| 搡老熟女国产l中国老女人| 男女之事视频高清在线观看| 亚洲电影在线观看av| 很黄的视频免费| 亚洲精品久久成人aⅴ小说| 高潮久久久久久久久久久不卡| av在线天堂中文字幕| 国产乱人伦免费视频| 麻豆国产av国片精品| 精品久久久久久,| 一本精品99久久精品77| 舔av片在线| 天天一区二区日本电影三级| 日韩欧美免费精品| 亚洲av片天天在线观看| 亚洲av日韩精品久久久久久密| 天堂av国产一区二区熟女人妻 | 中国美女看黄片| 久热爱精品视频在线9| 日韩有码中文字幕| 午夜福利欧美成人| 中文字幕最新亚洲高清| 精品久久久久久久毛片微露脸| 国产精品一区二区三区四区免费观看 | 国产av一区二区精品久久| 国产av麻豆久久久久久久| 亚洲av熟女| 免费在线观看影片大全网站| 老司机午夜福利在线观看视频| 亚洲av美国av| 欧美 亚洲 国产 日韩一| 丝袜人妻中文字幕| 波多野结衣高清无吗| 欧美国产日韩亚洲一区| 91成年电影在线观看| 欧美不卡视频在线免费观看 | 欧美在线黄色| 99精品在免费线老司机午夜| 亚洲av第一区精品v没综合| 亚洲国产高清在线一区二区三| 在线看三级毛片| 久久精品国产清高在天天线| 91在线观看av| 在线观看免费日韩欧美大片| 日韩成人在线观看一区二区三区| 久久人妻av系列| 欧美日韩亚洲综合一区二区三区_| 在线观看66精品国产| 热99re8久久精品国产| 国产精品av视频在线免费观看| 精品久久久久久久人妻蜜臀av| 99久久无色码亚洲精品果冻| 伊人久久大香线蕉亚洲五| 国产久久久一区二区三区| 亚洲无线在线观看| 国产精品1区2区在线观看.| 三级毛片av免费| 久久婷婷人人爽人人干人人爱| 久久 成人 亚洲| 老鸭窝网址在线观看| 日韩免费av在线播放| 亚洲国产精品久久男人天堂| 亚洲人成77777在线视频| 精品少妇一区二区三区视频日本电影| 97超级碰碰碰精品色视频在线观看| 18禁国产床啪视频网站| 又黄又粗又硬又大视频| 国产欧美日韩一区二区精品| 日韩精品免费视频一区二区三区| 看免费av毛片| 亚洲狠狠婷婷综合久久图片| 男人舔女人的私密视频| 国产精品美女特级片免费视频播放器 | 久久伊人香网站| 午夜a级毛片| 亚洲avbb在线观看| 国产精品香港三级国产av潘金莲| 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 91老司机精品| 变态另类丝袜制服| 精品久久久久久久人妻蜜臀av| 久久久久久国产a免费观看| 一级毛片女人18水好多| 久久精品影院6| 亚洲欧美日韩高清在线视频| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩高清在线视频| 麻豆国产97在线/欧美 | 女人高潮潮喷娇喘18禁视频| 少妇的丰满在线观看| 男人舔女人下体高潮全视频| 欧美中文综合在线视频| 亚洲精品久久成人aⅴ小说| 国产高清videossex| 亚洲18禁久久av| 99国产精品99久久久久| 欧美成人性av电影在线观看| 又粗又爽又猛毛片免费看| 国产aⅴ精品一区二区三区波| 国产黄色小视频在线观看| 午夜福利高清视频| 日韩欧美国产在线观看| 18禁美女被吸乳视频| 18禁观看日本| www.熟女人妻精品国产| 免费观看人在逋| 老熟妇仑乱视频hdxx| 亚洲欧洲精品一区二区精品久久久| 免费看美女性在线毛片视频| 少妇粗大呻吟视频| 正在播放国产对白刺激| 18禁美女被吸乳视频| 伊人久久大香线蕉亚洲五| 精品第一国产精品| 欧美在线一区亚洲| 国产av在哪里看| 精品一区二区三区av网在线观看| 国产精品久久久久久人妻精品电影| av天堂在线播放| 免费观看精品视频网站| 1024视频免费在线观看| 97人妻精品一区二区三区麻豆| 精品久久久久久久人妻蜜臀av| 黄片大片在线免费观看| 国产不卡一卡二| 女人爽到高潮嗷嗷叫在线视频| 一级作爱视频免费观看|