• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    中紅外波段As2S3 光子晶體光纖中受激布里淵散射的研究

    2022-09-07 06:55:06孫慧杰侯尚林雷景麗
    中國光學(xué) 2022年4期
    關(guān)鍵詞:布里淵理學(xué)院理工大學(xué)

    孫慧杰,侯尚林,雷景麗

    (蘭州理工大學(xué) 理學(xué)院, 甘肅 蘭州 730050)

    1 Introduction

    Capacity expansion through dense wavelength division multiplexing[1-3], frequency division multiplexing[4-5], time division multiplexing[6-7]and space division multiplexing[8-9]in the conventional 1.55 μm telecom band has been extensively investigated.These technologies utilize a limited spectrum to achieve high-speed, high-capacity information transmission, and they will be more efficient if their available spectrum can be further extended. For this reason, a series of studies have been conducted to find new communication windows outside the 1.55 μm telecommunication waveband[10-11]. In addition to communication purposes, optical fibers operating in the infrared band have many potential applications in chemistry, stress and temperature sensing[12-15]. Several commonly used materials for the fabrication of optical fibers operating in the m id-infrared spectrum range include chalcogenide[16-18], tellurite[19], high germania-doped[20]and fluoride[21]glasses. The main advantages of these glasses over the widely used silica glasses are that they have lower losses in the mid-infrared band, while chalcogenide glasses have higher nonlinear coefficients.

    Chalcogenide glass such as As2S3with low optical loss and high nonlinearity is a good candidate for optical communication and optical sensing in the m id-infrared waveband. As2S3bulk samples transmit light in the 0.6-12 μm spectrum range while the transparency window for As2S3fiber is significantly narrower at 1-6 μm[12]. The definition of the infrared wavelength range varies with the applicable discipline or application scenario. In this paper, we consider 0.7-2 μm as near-infrared, 2-15 μm as mid-infrared, and 15 μm-1 mm as far-infrared. To date, several studies of Stimulated Brillouin Scattering (SBS) based on As2S3materials have been reported where SBS in various As2S3fibers were explored experimentally and theoretically. Kentaet al.[22]studied SBS in a multimode As2S3fiber using a Nd:YAG pulsed laser operated at 1.064 μm.Xuet al.[17]numerically analyzed SBS in As2S3suspended-core Microstructured Optical Fibers (MOFs),then the circumstances when the holes of the MOFs were filled with trichloromethane, ethanol and water were further investigated. SBS-induced slow light in an As2S3fiber is also a promising application. Floreaet al.[18]demonstrated for the first time that by using a slow-light generation in single mode As2S3fiber, they could obtain a delay of 19 ns in 10 m of fiber with only 31 mW of launched power,then a temperature sensor using SBS-based slow light was proposed by Mbayeet al.[23]. Experimental characterization of SBS at 2 μm in an As2S3stepindex fiber was reported by Derohet al.[10]. When pumping at 2 μm, the Brillouin Frequency Shift(BFS) from the As2S3step-index fiber is around 6.2 GHz , which is almost the same as the BFS from the As2S3Photonic Crystal Fiber (PCF) proposed in this paper.

    We report novel As2S3PCFs with square arranged air holes. The SBS of the proposed fibers at mid-infrared waveband were theoretically investigated and their mode contributions were analyzed.The BFS, Brillouin threshold and Brillouin Gain Spectrum (BGS) were simulated by the finite element method. This work is of great significance for the design and fabrication of optical devices or optical sensors at the mid infrared waveband.

    2 Model and theory

    Fig. 1. shows the cross section of the proposed PCF which is made entirely of pure As2S3with square arranged air holes. The cladding consists of two layers of square air holes and three layers of regular octagonal air holes arranged in a square lattice across the cross section. There is an absence of square air holes in the center, which serves as the core of the PCF. Unlike the popular circular air holes, the use of square and octagonal air holes allows the fiber core to be square so that a square optical mode can be obtained. In Fig. 1,Ddescribes the circular diameter of the octagonal air holes,Λis the pitch of the air holes andAis the edge length of the square and octagonal air holes. In this work, the side lengths of the square air holes and the regular octagonal air holes are fixed to 3 μm and the diameter of the cladding is 125 μm. We define the factorD/Λas the Air Filling Fraction (AFF) to identify PCFs with different structural parameters.

    Fig. 1 The cross-section of the As2S3 PCF

    The refractive index of As2S3as a function of wavelength which is derived from the Sellmeier equation[24]as whereλis the wavelength in microns andnAs2S3is the refractive index of As2S3. The other material properties such as densityρ, Young’s modulusY,Poisson’s ratioνpand the Photo-elastic tensor of As2S3are shown in Table 1[25].

    Tab. 1 Material parameters of As2S3

    In our proposed PCF, because of the influence of air holes on the cladding, the cladding’s effective refractive index is lower than that of the core, which forms a total internal reflection waveguide structure.According to the optical waveguide theory, the normalized frequency is determined by[27]:

    whereλpis the pump wavelength,reffis the effective core radius andnFSMis the refractive index of the fundamental space filling mode (FSM). It is well known that the normalized frequency is an important parameter to determine the cut-off condition.When the normalized frequency is lower than 2.405,the high-order optical modes in the fiber are cut off.

    SBS is a typical third order nonlinear optical phenomenon. Its characteristic is that the energy of the pump wave is transferred to a Stokes wave through an acoustic wave. The acoustic wave is driven by the electrostrictive force generated by the beating between the pump and Stokes waves. The acoustic waves periodically modulate the refractive index of the medium to obtain characteristics similar to those of fiber Bragg gratings. However, unlike fiber Bragg gratings, since the acoustic wave moves along the fiber, the Doppler effect will creat a red shift in the reflected wave.

    The spatial distribution of acoustic modes can be obtained from the wave equation[28]

    whereu(x,y) is the spatial distribution of the acoustic mode andβadenotes the propagation constant of the acoustic wave. Here,βasatisfies the phase matching conditionβa=2β0for backward SBS,β0=2 πneあ/λ is the propagation constant of the optical mode,neffis the effective refractive index of the optical mode. The BFS of each acoustic mode corresponds to its acoustic frequencyfB. Since the longitudinal acoustic waves play a dominant role in PCF, the transverse acoustic waves are not taken into account. Therefore the simulation in this paper is valid only for longitudinal acoustic modes.

    When the attenuation of an acoustic wave with timetfollows exp(-t/τ), the BGS has a Lorentzian spectral profile which is expressed as[29]

    wheregB,iis the peak value of the Brillouin gain for each acoustic mode and ΔfBis the Full Width at Half Maximum (FWHM) of the gain spectrum which is related to the phonon lifetime τ by ΔfB=(2πτ)-1. For As2S3, the phonon lifetime is 1.33 ns at a pump wavelength of 1.064 μm, and the phonon lifetime of the acoustic wave in an SBS is proportional to the square of the pump wavelength[30]. The overlap integralIiis introduced to characterize the interaction strength between acoustic modes and optical modes.Iican be expressed by the integral on the fiber cross section as[29]

    whereE(x,y) andui(x,y) are the spatial distribution of the optical andith-order acoustic mode, respectively.

    In SBS, the effective optical mode area is another key factor. It has a significant effect on the Brillouin gain and Brillouin threshold. Both the core size andnFSMwill affectAeffsignificantly.Aeffis obtained using

    wherePthandLeffis the Brillouin threshold power and the effective fiber length, respectively. Note that,Cin Eq. (8) changes with different types of fiber, e.g. in standard single-mode fibersCequals 21[29]. However, in the As2S3PCF proposed in this paper, the value ofCneeds to be further explored.Nevertheless, we can compare the relative Brillouin thresholds for PCFs with different AFFs or at different pumping wavelengths.

    3 Results and discussion

    Five PCFs with different structures of varying air hole pitches were calculated, and their AFFs were 0.5, 0.6, 0.7, 0.8 and 0.9, respectively. Fig. 2 shows the simulated results of Fundamental Optical Modes (FOMs) with different AFFs at pump wavelengths of 2 μm, 4 μm and 6 μm, respectively.Since the PCF core is a square area, the distribution of the FOM approximates a square when the four regular octagonal air holes closest to the center are aligned.

    Fig. 2 Spatial distributions of FOMs with different AFFs at pump wavelengths of (a) 2 μm, (b) 4 μm and (c) 6 μm

    PCFs with larger AFFs have a better ability to confine optical waves and their optical fields are more concentrated. The core sizes of PCFs with different AFFs are significantly different. PCFs with larger AFFs have smaller core sizes, which has the largest impact on their effective mode areas. Their effective mode areas vary linearly with the pump wavelength due to the fact that light with a longer wavelength is less likely to be confined in the core and is negatively correlated with the AFF as shown in Fig. 3 (Color online).

    Fig. 3 The effective mode area of FOMs with different AFFs at pump wavelength from 2 μm to 6 μm.

    To determine the condition of single mode transmission, the refractive index of the FSM was also calculated to obtain the normalized frequency.Fig. 4(a) (Color online) is the spatial distribution of the FSM which is the fundamental solution of Maxwell’s wave equation in the cladding. Fig. 4(b) (Color online) is the refractive index of FSM with different AFFs versus the pump wavelength.

    Fig. 4 (a) The spatial distribution of the FSM. (b) The dispersion of the refractive index of FSMs with different AFFs

    Then, the normalized frequency can be obtained using Eq. (2) as shown in Fig. 5 (Color online). The dashed line in the figure corresponds to the normalized frequency of 2.405, which is the dividing line between single-mode operation and multimode operation. Only those below the dashed line,i.e. PCFs with AFFs less than 0.6, can maintain single-mode operation in the 2 μm to 6 μm waveband.

    Fig. 5 The normalized frequency V versus pump wavelengths at different AFFs

    The effective refractive index of FOMs with different AFFs is shown in Fig. 6 (Color online). As the pump wavelength increases, the effective refractive index of FOMs decreases, which is a joint effect of their waveguide properties and material dispersion. When the PCF has a large AFF, the effect of the PCF structure on the change in the effective refractive index is more obvious when the pump wavelength is changed.

    Fig. 6 The effective refractive index of FOMs with different AFFs at pump wavelengths from 2 μm to 6 μm.

    In single-mode fibers, the BGS will have multiple peaks due to their higher-order acoustic modes,but in multimode fibers, the BGS becomes more complex under the influence of higher-order optical modes. The mode composition of the pump and Stokes pair will also have an impact on the BGS.Therefore, in this paper, only SBS in single-mode PCF was discussed.

    The propagation constants of the acoustic modes are obtained using the phase-matching condition and Eq. (3) are solved by the finite element method. Fig. 7 (Color online) shows the spatial distributions of the acoustic modes at various pump wavelengths with AFFs of 0.5 and 0.6. For each situation, three acoustic modes with the largest overlap integral for different pump wavelengths and AFF are illustrated. All the acoustic modes shown in Fig. 7 belong to the symmetric L0m-like acoustic modes group since the overlap integrals between the antisymmetric acoustic modes and FOMs are almost zero and their contributions to SBS are negligible.

    Fig. 8 (Color online) illustrates the BGS of the PCF with an AFF of 0.5 at a pump wavelength of 6 μm. The primary peak of the BGS is mainly generated by the interaction between the acoustic mode and FOM while the higher-order acoustic modes have higher frequencies to bring some distortion to the edge of the primary peak. The Brillouin gain generated by the L01-like acoustic mode is 14.7 dB and 19.4 dB greater than that generated by the L02-like acoustic mode and L03-like acoustic mode, respectively. The FWHM of the BGS is 3.8 MHz and the BFS corresponding to the L01-like acoustic mode is 7.21 MHz and 16.6 MHz smaller than that corresponding to the L02-like and L03-like acoustic modes,respectively.

    When using shorter pump wavelength, for example, Fig. 9 (Color online) presents the BGS in PCF with an AFF of 0.5 at 2 μm pumping wavelength. The BFS generated by the L01-like acoustic mode are only 2.3 MHz and 4.1 MHz smaller than that generated by the L02-like and L03-like acoustic modes, and the frequency difference between them is too small to be separated in the BGS at an FWHM of 33.9 MHz for each gain peak. The Brillouin gain generated by the L01-like acoustic mode is 13.8 dB and 25.9 dB greater than that generated by the L02-like acoustic mode and L03-like acoustic mode, respectively. Therefore, the BGS in single-mode PCF is generated by the interaction between the L01-like acoustic mode and the FOM, while the effect of higher-order acoustic modes on the BGS is almost negligible.

    Fig. 7 Spatial distributions of acoustic modes with different AFFs and pump wavelengths. The acoustic modes in each case in the figure are L01-like, L02-like and L03-like modes from left to right

    Fig. 8 BGS at an AFF of 0.5 and a pump wavelength of 6 μm

    Fig. 9 BGS at an AFF of 0.5 and a pump wavelength of 2 μm

    The BGS of PCFs with AFFs of 0.5 and 0.6 at different pump wavelengths are shown in Fig. 10(a)(Color online) and Fig. 10(b) (Color online), respectively. Since the acoustic frequencies are lower and have higher phonon lifetimes when pumped with longer wavelengths, the gain spectra are correspondingly narrower, which is evident in Fig. 10.The FWHM of the BGS is nine times wider at a pump wavelength of 2 μm than that at a pump wavelength of 6 μm. Since the effect of structure on BFS is not very drastic, the BFSs differences of PCF with different AFFs are megahertz orders of magnitude at each pump wavelength which is relatively small. In the 2 μm to 6 μm waveband studied in this paper, the maximum Brillouin gain of PCFs with AFFs of 0.5 and 0.6 are 2.413×10-10m/W and 2.429×10-10m/W, respectively.

    Fig. 10 The BGS for interaction between the L01-like acoustic mode and the FOM as a function of pump wavelength for PCF with an AFF of (a) 0.5 and (b) 0.6. The 0 dB in (a) and (b) respectively correspond to 2.413×10-10 m/W and 2.429×10-10 m/W.

    The relative Brillouin threshold was estimated using Eq. (8) as shown in Fig. 11. The relative Brillouin thresholds obtained by normalization can be used to compare the Brillouin thresholds at PCFs with different AFFs or at different pump wavelengths. The PCF with an AFF of 0.6 has a significantly lower Brillouin threshold than the PCF with an AFF of 0.5 owing to its smaller area of optical modes. For a particular fiber structure, the Brillouin threshold is smaller when using shorter pump wavelengths than when using longer pump wavelengths. When the same effective length of fiber is available, the Brillouin thresholds are 27.8%and 19.6% larger at a pump wavelength of 6 μm than that at a pump wavelength of 2 μm in the proposed fibers with AFFs of 0.5 and 0.6, respectively.

    Fig. 11 The relative Brillouin threshold for PCFs with AFFs of 0.5 and 0.6 versus the pump wavelength.

    4 Conclusion

    In summary, an As2S3PCF was proposed. Its single-mode conditions were explored and its SBS properties including BFS, Brillouin gain coefficients, BGS and Brillouin threshold were investigated. According to our calculations, among our proposed fibers, only those with AFFs of 0.5 and 0.6 can realize single mode transmission in the 2 μm to 6 μm waveband. The contribution of higher-order acoustic modes to the BGS in single-mode PCF is weak, and only the L01-like acoustic mode is feasible. The maximum Brillouin gain coefficients in the PCFs with AFFs of 0.5 and 0.6 at the pump wavelengths of 2 μm to 6 μm are 2.413×10-10m/W and 2.429×10-10m/W, respectively. This work has implications for the design and fabrication of SBSbased all-optical devices in the mid-infrared waveband.

    猜你喜歡
    布里淵理學(xué)院理工大學(xué)
    昆明理工大學(xué)理學(xué)院學(xué)科簡介
    昆明理工大學(xué)理學(xué)院簡介
    昆明理工大學(xué)
    基于布里淵散射的光纖溫度和應(yīng)變快速感知
    光通信研究(2022年1期)2022-02-18 11:58:42
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    平行四邊形晶格結(jié)構(gòu)中布里淵區(qū)的研究
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    面心立方、體心立方晶格第一布里淵區(qū)的畫法
    免费播放大片免费观看视频在线观看| 日韩人妻高清精品专区| 看免费成人av毛片| 女人久久www免费人成看片| 尾随美女入室| 高清午夜精品一区二区三区| h日本视频在线播放| 国产成人精品福利久久| 精品人妻熟女av久视频| 亚洲不卡免费看| 中文字幕免费在线视频6| 如何舔出高潮| 国产日韩欧美亚洲二区| 久久久久久久久久久丰满| 联通29元200g的流量卡| 亚洲中文av在线| 波野结衣二区三区在线| 制服丝袜香蕉在线| 中文字幕av成人在线电影| 日韩人妻高清精品专区| 一区二区三区精品91| 国产精品成人在线| 哪个播放器可以免费观看大片| 久久久久精品久久久久真实原创| 成人黄色视频免费在线看| 久久久久精品久久久久真实原创| 亚洲一级一片aⅴ在线观看| 大片电影免费在线观看免费| 欧美另类一区| 在线观看美女被高潮喷水网站| 春色校园在线视频观看| 免费在线观看成人毛片| 日韩av不卡免费在线播放| 精品一区二区免费观看| 高清欧美精品videossex| 乱码一卡2卡4卡精品| 免费av不卡在线播放| 日韩制服骚丝袜av| 久久国内精品自在自线图片| 亚洲第一av免费看| 男的添女的下面高潮视频| 亚州av有码| 午夜福利影视在线免费观看| 美女中出高潮动态图| 夜夜看夜夜爽夜夜摸| 久久久久久伊人网av| 美女内射精品一级片tv| 纯流量卡能插随身wifi吗| 久久久久久久久久成人| 精品国产乱码久久久久久小说| 久久99热这里只频精品6学生| 欧美丝袜亚洲另类| 免费人成在线观看视频色| 人体艺术视频欧美日本| 国产精品av视频在线免费观看| 国产黄片视频在线免费观看| 亚洲图色成人| 天堂中文最新版在线下载| 亚洲精品日韩av片在线观看| 成人黄色视频免费在线看| 高清在线视频一区二区三区| 亚洲精品乱码久久久v下载方式| 丝袜喷水一区| 欧美一级a爱片免费观看看| 国产伦精品一区二区三区四那| 亚洲久久久国产精品| 亚洲av二区三区四区| 久久久久久九九精品二区国产| 亚洲成人中文字幕在线播放| 各种免费的搞黄视频| 噜噜噜噜噜久久久久久91| 少妇猛男粗大的猛烈进出视频| videossex国产| 国产乱来视频区| 国产在线一区二区三区精| 午夜免费观看性视频| 久久久久久九九精品二区国产| 免费av中文字幕在线| 日韩 亚洲 欧美在线| 少妇的逼水好多| 午夜日本视频在线| 一级毛片久久久久久久久女| 高清毛片免费看| 久久久久久久久久久免费av| 777米奇影视久久| 丝袜脚勾引网站| 日韩一区二区视频免费看| 久久久亚洲精品成人影院| 男女国产视频网站| a级毛色黄片| 色5月婷婷丁香| 亚洲成人中文字幕在线播放| 欧美xxxx黑人xx丫x性爽| 极品少妇高潮喷水抽搐| 男的添女的下面高潮视频| a级毛片免费高清观看在线播放| 在线免费观看不下载黄p国产| 蜜桃在线观看..| 国产精品偷伦视频观看了| 久久99热这里只频精品6学生| 中文字幕免费在线视频6| 亚洲成人av在线免费| 成人国产av品久久久| 日韩不卡一区二区三区视频在线| 国内精品宾馆在线| 国产精品人妻久久久久久| 国产精品国产三级专区第一集| 中国国产av一级| 青春草国产在线视频| 欧美人与善性xxx| 免费高清在线观看视频在线观看| 毛片一级片免费看久久久久| 成人综合一区亚洲| 国产高潮美女av| 一级毛片电影观看| 亚洲人成网站在线播| 精品国产露脸久久av麻豆| 国产欧美另类精品又又久久亚洲欧美| 国产精品一二三区在线看| 精品少妇黑人巨大在线播放| 搡女人真爽免费视频火全软件| 国产在视频线精品| 熟女av电影| 久久国产乱子免费精品| 中文字幕精品免费在线观看视频 | 人人妻人人添人人爽欧美一区卜 | freevideosex欧美| 色视频在线一区二区三区| 在线亚洲精品国产二区图片欧美 | 国产精品一区二区三区四区免费观看| www.色视频.com| 大香蕉97超碰在线| 国产伦在线观看视频一区| 少妇被粗大猛烈的视频| 日本欧美国产在线视频| 久久精品国产亚洲av涩爱| 日韩精品有码人妻一区| 亚洲欧美中文字幕日韩二区| 国产探花极品一区二区| 各种免费的搞黄视频| 久久精品夜色国产| 亚洲av二区三区四区| xxx大片免费视频| 免费在线观看成人毛片| 亚洲成人av在线免费| 国产国拍精品亚洲av在线观看| 狂野欧美白嫩少妇大欣赏| 伊人久久精品亚洲午夜| 丰满人妻一区二区三区视频av| 国产片特级美女逼逼视频| 蜜桃在线观看..| 少妇丰满av| 国内精品宾馆在线| 久久鲁丝午夜福利片| 少妇人妻久久综合中文| 乱系列少妇在线播放| 高清视频免费观看一区二区| 日韩三级伦理在线观看| 国产亚洲精品久久久com| 97在线人人人人妻| 另类亚洲欧美激情| 老司机影院成人| 国产成人精品一,二区| 十八禁网站网址无遮挡 | 国产一区二区三区综合在线观看 | 噜噜噜噜噜久久久久久91| 能在线免费看毛片的网站| 高清毛片免费看| av.在线天堂| 高清日韩中文字幕在线| 久久韩国三级中文字幕| 国产91av在线免费观看| 99re6热这里在线精品视频| 日韩av不卡免费在线播放| 国产精品国产三级国产av玫瑰| 在线观看免费高清a一片| 三级国产精品片| 成人美女网站在线观看视频| 久久国产精品大桥未久av | 精品久久久久久电影网| 国产黄片视频在线免费观看| 丝袜脚勾引网站| 日本欧美视频一区| 久久精品国产亚洲av天美| 国产亚洲av片在线观看秒播厂| 看免费成人av毛片| 亚洲成人中文字幕在线播放| 欧美日韩视频高清一区二区三区二| 久久精品国产亚洲网站| 人人妻人人看人人澡| 亚洲无线观看免费| 男人狂女人下面高潮的视频| h视频一区二区三区| 插逼视频在线观看| 看非洲黑人一级黄片| 亚洲欧洲日产国产| 中文字幕精品免费在线观看视频 | 亚洲av中文字字幕乱码综合| 久久99精品国语久久久| 99久久中文字幕三级久久日本| 视频中文字幕在线观看| 建设人人有责人人尽责人人享有的 | 国产深夜福利视频在线观看| 日韩av在线免费看完整版不卡| 91精品伊人久久大香线蕉| 精品视频人人做人人爽| 久久人妻熟女aⅴ| 国产视频首页在线观看| 一级爰片在线观看| 久久久久精品久久久久真实原创| 久久精品国产亚洲网站| 夜夜看夜夜爽夜夜摸| 久久人人爽av亚洲精品天堂 | 欧美少妇被猛烈插入视频| 国产久久久一区二区三区| 身体一侧抽搐| 一区二区三区四区激情视频| 日韩一区二区视频免费看| 国内揄拍国产精品人妻在线| 国产69精品久久久久777片| 久久女婷五月综合色啪小说| 美女xxoo啪啪120秒动态图| av黄色大香蕉| av国产免费在线观看| 国产精品久久久久成人av| 国产欧美日韩精品一区二区| 亚洲综合色惰| 美女视频免费永久观看网站| 亚洲精品日韩在线中文字幕| 中文乱码字字幕精品一区二区三区| 岛国毛片在线播放| 深爱激情五月婷婷| 精品一品国产午夜福利视频| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久久精品古装| 永久网站在线| 日本av手机在线免费观看| 国产精品麻豆人妻色哟哟久久| 日产精品乱码卡一卡2卡三| 好男人视频免费观看在线| 亚洲精华国产精华液的使用体验| 久久人人爽人人爽人人片va| 新久久久久国产一级毛片| 国产午夜精品久久久久久一区二区三区| 午夜福利影视在线免费观看| 亚洲经典国产精华液单| 一级毛片久久久久久久久女| 免费看不卡的av| 各种免费的搞黄视频| 欧美成人精品欧美一级黄| 国产永久视频网站| 六月丁香七月| 国产成人精品福利久久| 少妇裸体淫交视频免费看高清| 中文字幕久久专区| 各种免费的搞黄视频| 欧美日韩亚洲高清精品| 一区二区三区精品91| 女性被躁到高潮视频| 国产成人精品福利久久| 久久99热这里只频精品6学生| 在线观看免费视频网站a站| 国产伦精品一区二区三区视频9| 99热这里只有是精品在线观看| 你懂的网址亚洲精品在线观看| 校园人妻丝袜中文字幕| 欧美高清成人免费视频www| 日韩大片免费观看网站| 高清毛片免费看| 一区二区三区精品91| 国产片特级美女逼逼视频| 久久久久久久久久人人人人人人| 黄色怎么调成土黄色| 在线观看免费视频网站a站| 美女国产视频在线观看| 女的被弄到高潮叫床怎么办| 亚洲精品,欧美精品| 亚洲国产色片| 成人亚洲欧美一区二区av| 最近中文字幕高清免费大全6| 午夜免费观看性视频| 18禁裸乳无遮挡动漫免费视频| 18禁动态无遮挡网站| 国产精品国产三级专区第一集| 在线 av 中文字幕| 国产有黄有色有爽视频| 美女内射精品一级片tv| 看十八女毛片水多多多| 91精品国产国语对白视频| 国产成人一区二区在线| 国产精品一区二区在线不卡| 免费看不卡的av| 一级片'在线观看视频| 国产亚洲5aaaaa淫片| 国产精品久久久久久精品电影小说 | 成人特级av手机在线观看| 国产亚洲av片在线观看秒播厂| 看非洲黑人一级黄片| 青春草国产在线视频| av网站免费在线观看视频| 亚洲综合精品二区| 国产有黄有色有爽视频| 亚洲精品国产av成人精品| 国产黄片美女视频| 嫩草影院入口| 看十八女毛片水多多多| 欧美zozozo另类| 亚洲精华国产精华液的使用体验| 狂野欧美激情性xxxx在线观看| 国产色婷婷99| 一本色道久久久久久精品综合| 精品99又大又爽又粗少妇毛片| 亚洲真实伦在线观看| 人妻少妇偷人精品九色| 天天躁夜夜躁狠狠久久av| 久久国内精品自在自线图片| 成人亚洲欧美一区二区av| 久久国产亚洲av麻豆专区| 尾随美女入室| 国产综合精华液| 国产精品人妻久久久久久| 亚洲内射少妇av| 免费少妇av软件| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品国产精品| 久久久成人免费电影| 亚洲精品国产av蜜桃| 久久99蜜桃精品久久| 久久久久国产精品人妻一区二区| 日韩人妻高清精品专区| 午夜激情福利司机影院| 欧美精品人与动牲交sv欧美| a 毛片基地| 成人毛片60女人毛片免费| 日本欧美国产在线视频| 1000部很黄的大片| 乱系列少妇在线播放| 国产女主播在线喷水免费视频网站| 春色校园在线视频观看| 大话2 男鬼变身卡| 下体分泌物呈黄色| 亚洲av日韩在线播放| 国语对白做爰xxxⅹ性视频网站| 亚洲成色77777| 啦啦啦视频在线资源免费观看| 成人高潮视频无遮挡免费网站| 18禁在线播放成人免费| 国产毛片在线视频| 午夜免费鲁丝| 日本黄色日本黄色录像| 高清不卡的av网站| .国产精品久久| 亚洲婷婷狠狠爱综合网| 欧美区成人在线视频| 18禁在线无遮挡免费观看视频| 岛国毛片在线播放| 毛片一级片免费看久久久久| 一个人看的www免费观看视频| 亚洲aⅴ乱码一区二区在线播放| 成人高潮视频无遮挡免费网站| 最近中文字幕高清免费大全6| 久久精品国产亚洲av涩爱| 视频中文字幕在线观看| 大香蕉久久网| 精品久久久久久久末码| 精品国产露脸久久av麻豆| 日韩免费高清中文字幕av| 99视频精品全部免费 在线| 一级毛片我不卡| 亚洲成人av在线免费| 成人无遮挡网站| 人人妻人人澡人人爽人人夜夜| 精品久久久久久久末码| 亚洲电影在线观看av| 亚洲精品国产av成人精品| 一级毛片黄色毛片免费观看视频| 老司机影院成人| 国产免费一级a男人的天堂| 麻豆成人午夜福利视频| 亚洲av国产av综合av卡| 国产精品一二三区在线看| av播播在线观看一区| 男人狂女人下面高潮的视频| 亚洲欧洲国产日韩| 涩涩av久久男人的天堂| 大码成人一级视频| 久久这里有精品视频免费| 国产精品三级大全| 亚洲精品一二三| 搡老乐熟女国产| 中国美白少妇内射xxxbb| 免费大片18禁| 黄色配什么色好看| 亚洲高清免费不卡视频| 午夜福利在线观看免费完整高清在| 一本一本综合久久| 亚洲精品乱码久久久久久按摩| 亚洲精品成人av观看孕妇| 国产精品国产三级专区第一集| 热re99久久精品国产66热6| av播播在线观看一区| 蜜桃亚洲精品一区二区三区| 日韩精品有码人妻一区| av在线老鸭窝| 免费av中文字幕在线| 欧美日本视频| 最近中文字幕高清免费大全6| 五月开心婷婷网| 国产精品久久久久久av不卡| 插逼视频在线观看| 亚洲欧美中文字幕日韩二区| 在线观看免费日韩欧美大片 | 亚洲精品第二区| 国产黄色免费在线视频| 欧美成人精品欧美一级黄| 亚洲欧美成人综合另类久久久| 极品少妇高潮喷水抽搐| 九色成人免费人妻av| 国产欧美日韩精品一区二区| 欧美一区二区亚洲| 欧美激情极品国产一区二区三区 | 久久精品人妻少妇| 成人二区视频| 99久久精品热视频| 国产免费又黄又爽又色| 丰满乱子伦码专区| 亚洲最大成人中文| av国产久精品久网站免费入址| 插逼视频在线观看| 国产成人aa在线观看| 亚洲精品,欧美精品| 久久久久久久大尺度免费视频| 好男人视频免费观看在线| 十八禁网站网址无遮挡 | 高清在线视频一区二区三区| 又粗又硬又长又爽又黄的视频| 精品一品国产午夜福利视频| 天堂8中文在线网| 国产探花极品一区二区| 能在线免费看毛片的网站| 人妻夜夜爽99麻豆av| 蜜臀久久99精品久久宅男| 三级国产精品片| 欧美日韩精品成人综合77777| 直男gayav资源| 精品午夜福利在线看| 精品视频人人做人人爽| 一级毛片久久久久久久久女| 欧美最新免费一区二区三区| 国产老妇伦熟女老妇高清| 日韩av不卡免费在线播放| 亚洲av综合色区一区| 搡女人真爽免费视频火全软件| tube8黄色片| 久久久精品94久久精品| 亚洲国产日韩一区二区| 午夜老司机福利剧场| 亚洲av欧美aⅴ国产| 日本黄色片子视频| 精品国产三级普通话版| 亚洲三级黄色毛片| 少妇裸体淫交视频免费看高清| 人人妻人人澡人人爽人人夜夜| 国内精品宾馆在线| 亚洲精品,欧美精品| 久久久久久人妻| 亚洲伊人久久精品综合| 大又大粗又爽又黄少妇毛片口| 搡老乐熟女国产| 亚洲中文av在线| 亚洲av免费高清在线观看| 丝瓜视频免费看黄片| 最近最新中文字幕免费大全7| 青春草视频在线免费观看| 中国国产av一级| 看十八女毛片水多多多| 下体分泌物呈黄色| 五月伊人婷婷丁香| tube8黄色片| 精品一区在线观看国产| 看免费成人av毛片| 国内精品宾馆在线| 街头女战士在线观看网站| 久久久久久久国产电影| 国产国拍精品亚洲av在线观看| 91狼人影院| 成人无遮挡网站| 国产乱人视频| 亚洲av不卡在线观看| 高清日韩中文字幕在线| 蜜桃在线观看..| 男男h啪啪无遮挡| 制服丝袜香蕉在线| 亚洲精品中文字幕在线视频 | 多毛熟女@视频| 国产欧美亚洲国产| 亚洲精品日本国产第一区| 亚洲美女黄色视频免费看| 亚洲国产精品国产精品| 精品一区在线观看国产| 国产精品一区二区在线观看99| 成年人午夜在线观看视频| 国产精品成人在线| 熟妇人妻不卡中文字幕| 大片电影免费在线观看免费| 亚洲欧美日韩东京热| 国产免费一区二区三区四区乱码| 国产男女超爽视频在线观看| 美女福利国产在线 | 最新中文字幕久久久久| 欧美极品一区二区三区四区| 日产精品乱码卡一卡2卡三| 男女国产视频网站| 欧美精品亚洲一区二区| 成人毛片a级毛片在线播放| 美女cb高潮喷水在线观看| 夜夜看夜夜爽夜夜摸| 亚洲精品国产av成人精品| 欧美日韩一区二区视频在线观看视频在线| 最后的刺客免费高清国语| 最近中文字幕2019免费版| 成人无遮挡网站| 国产有黄有色有爽视频| 高清欧美精品videossex| 国产成人精品久久久久久| 亚洲精品日本国产第一区| 日韩欧美 国产精品| 国产精品一区www在线观看| 精品人妻偷拍中文字幕| 日韩亚洲欧美综合| 男女免费视频国产| av女优亚洲男人天堂| 国产高潮美女av| 欧美xxxx性猛交bbbb| 2022亚洲国产成人精品| 麻豆乱淫一区二区| 亚洲熟女精品中文字幕| 久久久久久人妻| 夫妻午夜视频| 成人免费观看视频高清| 久久久久国产精品人妻一区二区| 精品久久久久久电影网| 欧美日本视频| 高清欧美精品videossex| 91aial.com中文字幕在线观看| 最近最新中文字幕大全电影3| 偷拍熟女少妇极品色| av.在线天堂| 美女视频免费永久观看网站| 国产亚洲欧美精品永久| 女人久久www免费人成看片| 欧美精品亚洲一区二区| 亚洲国产av新网站| 国产精品人妻久久久久久| 性色avwww在线观看| 久久99蜜桃精品久久| 亚洲av成人精品一区久久| 亚洲精品久久午夜乱码| 欧美精品一区二区大全| 亚洲精品国产av蜜桃| 黑人猛操日本美女一级片| 久久久久久久久久人人人人人人| 国产精品一二三区在线看| 日韩三级伦理在线观看| 成人高潮视频无遮挡免费网站| 亚洲欧美中文字幕日韩二区| 亚洲美女视频黄频| 亚洲精华国产精华液的使用体验| 亚洲欧美清纯卡通| 深夜a级毛片| 欧美一级a爱片免费观看看| 女人十人毛片免费观看3o分钟| 中文字幕av成人在线电影| 伊人久久国产一区二区| 免费大片18禁| 午夜福利网站1000一区二区三区| 九九爱精品视频在线观看| 精品一区在线观看国产| 日本免费在线观看一区| 国产精品蜜桃在线观看| 777米奇影视久久| 五月开心婷婷网| 99热全是精品| 五月玫瑰六月丁香| 性高湖久久久久久久久免费观看| 一级黄片播放器| 18禁裸乳无遮挡动漫免费视频| 国产一区二区三区综合在线观看 | 成人黄色视频免费在线看| 久久精品熟女亚洲av麻豆精品| 少妇猛男粗大的猛烈进出视频| 亚洲av中文av极速乱| 亚洲国产毛片av蜜桃av| 久久精品久久精品一区二区三区| av网站免费在线观看视频| 精品人妻一区二区三区麻豆| 黄色怎么调成土黄色| 久久热精品热| 亚洲国产精品国产精品| 日韩成人av中文字幕在线观看| 午夜福利高清视频| 在线观看人妻少妇| 国精品久久久久久国模美| 亚洲精品日韩在线中文字幕| 久久久久久久亚洲中文字幕| 国产成人免费无遮挡视频| av在线观看视频网站免费| 精品一区二区三卡| 国模一区二区三区四区视频| 中文欧美无线码| 99久久精品一区二区三区| 最近手机中文字幕大全| 99热国产这里只有精品6| 日韩在线高清观看一区二区三区| 一本一本综合久久|