• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    400~1 300 nm 波段的鹵鎢燈光譜輻照度衰減模型

    2022-09-07 06:54:56張亞超夏志偉
    中國光學(xué) 2022年4期
    關(guān)鍵詞:精密機(jī)械輻照度中國科學(xué)院

    張亞超,葉 新,夏志偉,隋 龍,方 偉

    (中國科學(xué)院 長春光學(xué)精密機(jī)械與物理研究所, 吉林 長春 130033)

    1 Introduction

    In the 21st century, climate change has became a topic of global concern. Global climate change research has put forward unprecedented requirements for the radiation measurement uncertainty of remote sensing satellites. The ASIC3(Achieving Satellite International Corporation for Climate Change) states that the measurement uncertainty of the remote sensing satellites has to remain better than 0.3% at the reflected solar wavebands to accurately predict global climate change[1].

    However, the radiometric calibration of the satellite optical remote sensors at reflected solar wavebands is usually performed by the standard halogen tungsten lamp, the solar-diffuser calibrator or vicarious calibration. At present, the minimum and maximum spectral irradiance uncertainty of standard halogen tungsten lamp is 0.47% at wavebands of 1 600 nm (k=2) and 1.16% at wavebands of 400 nm (k=2) during its lifetime[2]. Therefore, standard halogen tungsten lamps cannot satisfy a measurement uncertainty of 1% (k=2) at whole reflected solar wavebands. Moreover, radiometric calibration uncertainty is only about 5% at reflected solar wavebands by solar-diffuser calibrator and vicarious calibration[3-7]. Therefore, the current radiometric calibration methods hardly satisfy the high-precision radiometric calibration requirements in the field of climate research.

    An alternative method to improve the accuracy of radiometric calibration is to trace the spectral radiance of the lamp-diffuser calibrator to the onboard space cryogenic absolute radiometer.However, it is impossible to do this at each operating waveband of the remote sensor in orbit. Therefore, it is necessary to reconstruct the spectral radiance of the entire operating waveband range from the spectral radiances of several operating wavebands. In addition, the reconstruction uncertainty must be better than 0.3% to realize the target measurement uncertainty of 1% of reflected solar spectral radiation.

    At present, the spectral radiance (irradiance) of the light source is reconstructed according to its spectral radiance (irradiance) model. For example,the spectral irradiance of a halogen tungsten lamp can be reconstructed with an uncertainty of approximately 0.25% according to its spectral irradiance model[8]. However, the spectral radiance of the lamp-diffuser calibrator cannot be described by a simple but precise model, as such a model has not yet been reconstructed for the diffuser reflector.Therefore, it is difficult to reconstruct the spectral radiance of the lamp-diffuser calibrator with an uncertainty of 0.3% using the present reconstruction method.

    It is well known that the degradation characteristics of the diffuser reflectors in the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS)can be described by an analytical model[9]. Therefore, it is reasonable to believe that the degradation characteristics of the other on-board diffuser reflectors can also be described in this way. The spectral radiance degradation characteristics of the lampdiffuser calibrator can correspondingly be described by an analytical model if the spectral irradiance degradation characteristics of the halogen tungsten lamp can be described by an analytical model. In addition, the spectral radiance degradation curve of the lamp-diffuser calibrator can be reconstructed with high accuracy according to its spectral radiance degradation model. The high-precision spectral radiance of the lamp-diffuser calibrator can subsequently be calculated by the product of the reconstructed spectral radiance degradation curve and the spectral radiance calibrated before launch.

    In summary, it is necessary to research the high-precision spectral irradiance degradation model of a halogen tungsten lamp to reconstruct the spectral radiance of the on-board lamp-diffuser calibrator with an uncertainty better than 0.3%. In this paper, the following work was performed to construct the spectral irradiance degradation model of a halogen tungsten lamp from the Chinese Radiometric Benchmark of Reflected Solar Band project.First, the spectral irradiance degradation model of a halogen tungsten lamp with undetermined order was derived according to the blackbody radiation law and Weierstrass theorem in Section 2. Next, the spectral irradiance degradation curve was measured and the criterion to determine the model order was given, according to which the model order was determined in Section 3. The conclusion is presented in Section 4.

    2 Derivation of spectral irradiance degradation model

    Because the spectral irradiance degradation curve of a halogen tungsten lamp is the ratio of its spectral irradiances at different moments, the spectral irradiance degradation model is closely related to its spectral irradiance model. The physical model of the halogen tungsten lamp irradiance is expressed in Eq.(1):

    whereB(T) is a geometrical factor of the lamp filament that takes into account the measurement distance and the dimensions of the filament; λ is the wavelength in a vacuum;Tis the temperature of the filament; εW(λ,T) is the nominal spectral emissivity of tungsten; εΔ(λ) is the spectral emissivity correction factor for the emissivity of the lamp;hˉ is the Planck constant;cis the velocity of light in a vacuum; andkis the Boltzmann constant[10]. The residual correction factor accounts for the effects of all factors in addition to the nominal spectral emissivity of tungsten. These include the transmittance of the quartz bulb, the transmittance of the filling gas,the difference in the properties of tungsten used in the lamp filament and in the nominal emissivity determination, and the light recycling effect in the coiled filament[11-12].

    In this paper, the product of the geometric factorB(T), the nominal spectral emissivity of tungsten εW(λ,T), and the spectral emissivity correction factor εΔ(λ) is referred to as the spectral emissivity of the halogen tungsten lamp ε(λ,T). Therefore, the spectral irradiance of the halogen tungsten lamp can be expressed as the product of the Planck functionH(λ,T)and the spectral emissivity, as shown in Eq.(2):

    If the increments of the Planck function and spectral emissivity are expressed as ΔH(λ,T) and Δε(λ,T), respectively, when the filament temperature changes fromTtoT+ΔT, the spectral irradiance degradation model of the halogen tungsten lamp can be expressed as Eq. (3):

    When λ is less than 1300 nm,the P(lanc)k functionH(λ,T)is reduced to Eq.(4)as exp?1 is satisfied:

    whereC1andC2are the first and second radiation constants, respectively. The increment of the Planck function can be expressed as Eq. (5) derived from Eq. (4) by the differential operation.

    Because the spectral emissivity degradation model of a halogen tungsten lamp is affected by the spectral emissivity of tungsten, the spectral transmittance of the quartz lamp shell, the spectral transmittance of the halogen gas, and the filament morphology, it is difficult to achieve the analytical expression through theoretical derivation. However,any continuous function can be approximated by an algebraic polynomial function according to the Weierstrass theorem. Therefore, the spectral emissivity degradation model of a halogen tungsten lamp can be approximated by the polynomial function shown in Eq. (6):

    whereaiis an undetermined coefficient. Therefore,the spectral irradiance degradation model of the halogen tungsten lamp can be expressed as Eq. (7)according to Eqs.(4)-(6).

    Since the temperatureTand temperature difference ΔTwere contained in the undetermined coefficients ξ0,ξ1,η1,η2,η3···, Eq.(7) can be simplified to be Eq.(8).

    There may be several different orders of the model that satisfy the reconstruction uncertainty required by the spectral radiance of the lamp-diffuser calibrator. However, the model order should be determined as the lowest order that satisfies the spectral radiance reconstruction uncertainty of the onboard lamp-diffuser calibrator, which is referred to as the model-order-determination criterion in this study. The lowest-order model requires the fewest wavebands to reconstruct from the spectral radiance of the on-board lamp-diffuser calibrator, which incurs the lowest cost to the on-board spectral radiometric calibration. Therefore, the model order of Eq.(7) should be determined experimentally.

    3 Model order determined by experiment method

    3.1 Measurement of the spectral irradiance degradation curve

    Because the spectral irradiance degradation characteristics of halogen tungsten lamps are closely related to their manufacturing process, it is reasonable to believe that halogen spectral irradiance degradation characteristics of the same type of the halogen tungsten lamp can be described by the same analytic model. In other words, the model order of one type of halogen tungsten lamp can be determined from the spectral irradiance degradation curves of samples. The spectral irradiance degradation curve of the halogen tungsten lamp is the ratio of its spectral irradiances at different moments, which can be expressed by Eq.(9) whereEo(λ) andEj(λ) are the initial and the spectral irradiance after thejthaging interval, respectively.

    Therefore, the spectral irradiance degradation curve can be measured by the scheme shown in Fig.1, which is composed of a halogen tungsten lamp, diffuser reflection plate, and spectrometer.Two Osram 64610HLX lamps have been measured to investigate the spectral irradiance degradation model of the halogen tungsten lamp, whose rated voltage and power are 12 V and 50 V, respectively.Therefore, the operating current at which the halogen tungsten lamp operates is set to a constant 4 amperes which is the same as the operating current of the halogen tungsten lamp for on-board calibration during the test.

    Fig. 1 Measurement scheme of the spectral irradiance degradation curve of the halogen tungsten lamp

    Fig. 2 (a) Extra-atmospheric solar spectral irradiance and(b) spectral irradiance of tested halogen tungsten lamp

    The diffuser plate was made of spectralon (one kind of PTFE supplied with Labsphere). The spectral reflectance degradation of the spectralon diffuser was caused by exposure to radiation at wavebands of 200 nm-400 nm according to J.E.Leland[13]. Fig.2 shows the spectral irradiance of the tested halogen tungsten lamp and the extra-atmospheric solar spectral irradiance calculated by MODTRAN[14], the ratio of which at wavebands of 250 nm to 400 nm was shown in Fig.3. According to Fig.3, the averaged ratio at wavebands of 250-400 nm was calculated to be about 0.86%.Moreover, the radiation of the halogen tungsten lamp at wavebands of 200-250 nm was so low that it can be neglected. Therefore, the diffuser equals to be exposure to the extra-atmospheric solar radiation for about one hour when it is irradiated by the halogen tungsten lamp for 160 hours. According to the technical guide of Labsphere, the reflectance of the diffuser decreases at wavelength of 250 nm to about 0.04%, when the irradiation is equivalent to one extra-hour of atmospheric solar irradiation. Moreover,the diffuser reflectance returned to near original values when it returned to atmospheric conditions, presumably due to oxidation and the loss of the surface contaminants that caused the discoloration[15]. Therefore, it was reasonable to infer that the reflectance degradation of the diffuser reflector was much smaller than 0.04%, which was much smaller than the degradation of the halogen tungsten lamp. That is to say that the reflectance degradation of the diffuser reflector can be neglected in researching the degradation of the halogen tungsten lamp.

    Fig. 3 Ratio of the spectral irradiance of the tested halogen tungsten lamp to the sun

    The spectrometer was an HR-1024i, supplied by SVC (Spectra Vista Corporation, US), that operates at wavebands of 350-2 500 nm and has 1 024 spectral channels. The detector assembly of the HR-1024i spectrometer was composed of three linear array detectors: a 512 CCD detector for wavebands from 350-990 nm, a 256 InGaAs detector for wavebands from 990-1 900 nm and a 256 extended In-GaAs detector for wavebands from 1 900-2 500 nm. The temperature stability of the laboratory and the three detectors in the spectrometer were kept within ± 1°C and ± 0.1°C, respectively. Besides,the lamp, the spectrometer and the diffuser plate had never been moved or replaced during the 7-day measurement. Therefore, the responsivity of the HR-1024i spectrometer can be assumed to remain unchanged during the 7-day measurement.

    Additionally, the dark current had been removed from the measuring results during the measurement, which means that the spectral irradiance decay curve only contains the random noise. The method to remove dark current from the measuring results was shown in the following. First, the dark current is measured by closing the shutter, and then,the reflected light from the diffuser is measured by opening the shutter. The dark current is removed by reducing the closed shutter measurement results from the final opened shutter measurement results.To make the two unused new lamps remain stable,they were aged for 20 hours in the same experimental setting before the measurement.

    To sum up, the spectral irradiance degradation curve shown in Eq. (9) can be simplified as Eq.(10),whereDNo(λ) andDNj(λ) are the initial andjthoutput of the spectrometer with the dark current removed, respectively.

    According to Eq.(10), the measurement uncertainty of the spectral irradiance degradation curve is simplified to its measurement repeatability, when the measurement setup is not touched and the dark current is removed during the measurement. The calculation of the measurement uncertainty is shown in chapter 3.2 in this paper.

    To simulate the on-orbit operation, the lamp is turned on for one hour and then turned off for five minutes, and the above procedure is repeated 160 times during the measurement to ensure the lamp can satisfy the on-orbit calibration requirements.The measured spectral irradiance degradation curves of the two halogen tungsten lamps are shown in Fig.4 (Color online).

    Fig. 4 Spectral irradiance degradation curves of (a) 1# and(b) 2# halogen tungsten lamps

    3.2 Measurement uncertainty of the spectral irradiance degradation curve

    According to Eq.(10), the measurement uncertainty of the spectral irradiance degradation curve can be expressed by Eq. (11).

    Therefore, the measurement uncertainty of the spectral irradiance degradation curve is simplified to Eq. (13):

    Eq.(13) shows that the uncertainty of the spectral irradiance degradation curve can be determined by the measurement repeatability ofDNthat stands for the spectral irradiance. However, the repeatability of theDNis determined by the spectral irradiance of the light source and the signal to noise ratio of the HR-1024i spectrometer, which can be calculated according to the measured spectral irradiance expressed byDN. To summarize, the measurement uncertainty of the spectral irradiance degradation curve can be calculated by the measured spectral irradiance according to Eq.(13).

    The measurement uncertainty of the spectral irradiance degradation curve shown in Fig.4 was calculated and shown in Fig.5 (Color online) according to Eq.(13). The standard deviations of the measurement uncertainty of the two lamps were calculated to be approximately 0.038% according to the measurement uncertainty curves shown in Fig.5,both of which were significantly less than the spectral radiance reconstruction uncertainty of 0.3% required by the on-board lamp-diffuser calibrator.Therefore, it is reasonable to construct a spectral irradiance degradation model that satisfies the spectral radiance reconstruction uncertainty of the onboard lamp-diffuser calibrator according to the measured spectral irradiance degradation curve.

    Fig. 5 Measurement uncertainty of the spectral irradiance degradation curve for (a) 1# and (b) 2# halogen tungsten lamps

    3.3 Determination of the model order

    The spectral irradiance degradation curves of the two lamps were fitted by Eq. (7) with the model order ranging from one to four using the leastsquares method. Fig.6 showed the measured spectral irradiance degradation curves and fitted results with the two-order model of the two halogen tungsten lamps. Because the fitting results of the models almost coincide, only the fitting results of the second-order model are shown in Fig.6 as an example. The relative standard deviations are expressed in Eq.(14):

    Fig. 6 Measured spectral irradiance degradation curves and fitted results with the second-order model of (a) 1#and (b) 2# halogen tungsten lamps

    where ζf, ζm,Nandn+1 are the fitted data, measured data, number of measuring wavebands, and number of fitting parameters, respectively. The relative standard deviations were calculated and is shown in Fig.7 (Color online) according to Eq.(14).

    Fig. 7 Relative standard deviations of the spectral irradiance degradation curves of (a) 1# and (b) 2# halogen tungsten lamps

    Fig.7(a) shows that the relative standard deviations of the first-order model increase from about 0.03% to about 0.11% and from about 0.03% to about 0.04% for the model orders from two to four during the burning time for 1# lamp. Fig.7(b) shows that the relative standard deviations of the first-order model increase from about 0.02% to about 0.16% and from about 0.02% to about 0.04% for the model orders from two to four during the burning time for 2# lamp. That is to say that the relative standard deviation of the first-order model increases much faster than the higher order model,which indicates that first-order model cannot describe the degradation characterization of the halogen tungsten lamp accurately enough during the burning life.

    Moreover, Fig.7(a) and Fig.7(b) show that the relative standard deviations are better than 0.05%and very similar for the model orders from two to four during the burning time for the two lamps.Therefore, the model order of the two halogen tungsten lamps are determined to be two since it obtains the least fitting parameters in this paper.

    The model precisions are estimated by relative errors between the fitted and measured spectral irradiance degradation curve. The relative errors of the two lamps are calculated to be better than 0.25% at wavebands from 400 nm to 1 300 nm as shown in Fig.8(a) (Color online) and Fig.8(b) (Color online),respectively. Therefore, the proposed spectral irradiance degradation model of halogen tungsten lamps can satisfy the spectral radiance reconstruction uncertainty of the on-board lamp-diffuser calibrator.

    Fig. 8 Relative errors between the fitted and measured spectral irradiance degradation curve of the two halogen tungsten lamps fitted by the second-order model. (a) 1# and (b) 2# halogen tungsten lamp

    Hence, the spectral irradiance degradation model of the two halogen tungsten lamps can be expressed by Eq. (15):

    The proposed spectral irradiance degradation model may not be suitable for other types of lamps;however, the method used to construct the spectral irradiance degradation model is still valid for other types of halogen tungsten lamp.

    4 Conclusions

    In this paper, a hemi-empirical spectral irradiance degradation model of a halogen tungsten lamp with an undetermined model order at wavelengths from 400 nm to 1 300 nm was derived based on the blackbody radiation law and the Weierstrass theorem, and the model order was subsequently determined to be two by the proposed model-order-determination criterion. The proposed spectral irradiance degradation model may not be suitable for other types of lamps. However, the method used to construct the spectral irradiance degradation model is still valid for other types of halogen tungsten lamps.The uncertainty of the proposed model is approximately 0.25%, which satisfies the spectral radiance reconstruction uncertainty of the on-board lampdiffuser calibrator at wavelengths from 400 nm to 1 300 nm and lays a theoretical foundation to realize a measurement uncertainty of 0.3% at reflected solar wavebands. The spectral irradiance degradation model of halogen tungsten lamps at wavelengths from 1 300 nm to 2 350 nm will be researched, subsequently.

    Acknowledgements

    The author thanks Dr. Lei kai-chao from Chang Chun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, for his valuable suggestions and selfless help that have helped improve this manuscript substantially.

    猜你喜歡
    精密機(jī)械輻照度中國科學(xué)院
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    昆山邁晟科精密機(jī)械有限公司
    模具制造(2022年1期)2022-02-23 01:13:34
    昆山邁晟科精密機(jī)械有限公司
    模具制造(2021年7期)2021-09-14 00:28:20
    昆山邁晟科精密機(jī)械有限公司
    模具制造(2021年6期)2021-08-06 01:07:54
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    昆山邁晟科精密機(jī)械有限公司
    模具制造(2020年12期)2020-02-06 08:05:18
    中國典型地區(qū)水平總輻射輻照度頻次特征*
    風(fēng)能(2016年8期)2016-12-12 07:28:48
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    太陽模擬器輻照度修正方法的研究
    国产v大片淫在线免费观看| 免费观看无遮挡的男女| 人体艺术视频欧美日本| 成年av动漫网址| 91久久精品国产一区二区成人| 日韩伦理黄色片| 在线a可以看的网站| 午夜精品一区二区三区免费看| 久久久久国产精品人妻一区二区| 一二三四中文在线观看免费高清| 99热国产这里只有精品6| 51国产日韩欧美| 国产精品三级大全| av在线观看视频网站免费| 特级一级黄色大片| 亚洲成人一二三区av| 国产精品嫩草影院av在线观看| 国产男人的电影天堂91| 日韩欧美精品v在线| 一本色道久久久久久精品综合| 国产高清不卡午夜福利| 91狼人影院| 亚洲欧美日韩另类电影网站 | 亚洲综合精品二区| 一级毛片黄色毛片免费观看视频| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩卡通动漫| 日韩制服骚丝袜av| 精品人妻偷拍中文字幕| 日韩,欧美,国产一区二区三区| 日本三级黄在线观看| 一本一本综合久久| 一级毛片电影观看| 男女下面进入的视频免费午夜| 全区人妻精品视频| 三级国产精品片| 久久99热这里只频精品6学生| 亚洲在久久综合| 国产日韩欧美在线精品| 99热这里只有是精品在线观看| 视频中文字幕在线观看| 免费电影在线观看免费观看| 神马国产精品三级电影在线观看| 亚洲经典国产精华液单| 久热这里只有精品99| 国产69精品久久久久777片| 午夜福利视频精品| 久久99蜜桃精品久久| 中文资源天堂在线| 伊人久久国产一区二区| 亚洲av免费高清在线观看| 建设人人有责人人尽责人人享有的 | 永久免费av网站大全| 亚洲精华国产精华液的使用体验| 狠狠精品人妻久久久久久综合| 久久精品夜色国产| 高清av免费在线| 黄片wwwwww| 尾随美女入室| av在线app专区| 欧美成人午夜免费资源| 免费黄网站久久成人精品| 又爽又黄a免费视频| 少妇 在线观看| 高清日韩中文字幕在线| 国产一区二区三区av在线| 亚洲在久久综合| 色综合色国产| 亚洲国产精品999| 日韩国内少妇激情av| 亚洲av电影在线观看一区二区三区 | 一区二区三区四区激情视频| 人妻制服诱惑在线中文字幕| 亚洲精品日本国产第一区| 国产成人91sexporn| 天天躁夜夜躁狠狠久久av| 亚洲在久久综合| 国产在线男女| 亚洲不卡免费看| 国产免费一区二区三区四区乱码| 男女国产视频网站| 少妇人妻久久综合中文| 成人亚洲欧美一区二区av| 成年免费大片在线观看| 欧美成人a在线观看| 夫妻午夜视频| 日韩三级伦理在线观看| 九九久久精品国产亚洲av麻豆| 蜜臀久久99精品久久宅男| 最近中文字幕2019免费版| 网址你懂的国产日韩在线| 观看免费一级毛片| 成年人午夜在线观看视频| 青青草视频在线视频观看| 日韩三级伦理在线观看| 久久99热这里只有精品18| 2021天堂中文幕一二区在线观| www.av在线官网国产| 夜夜爽夜夜爽视频| 亚洲精品456在线播放app| 国产黄色免费在线视频| 五月伊人婷婷丁香| 哪个播放器可以免费观看大片| 18+在线观看网站| 新久久久久国产一级毛片| 国产爽快片一区二区三区| 亚洲欧美中文字幕日韩二区| 少妇猛男粗大的猛烈进出视频 | 下体分泌物呈黄色| 听说在线观看完整版免费高清| 久久精品久久久久久噜噜老黄| 91aial.com中文字幕在线观看| 午夜福利在线在线| 搞女人的毛片| 亚洲图色成人| 在线免费十八禁| 在线免费十八禁| 日韩,欧美,国产一区二区三区| 亚洲人成网站在线观看播放| av在线老鸭窝| 国产日韩欧美在线精品| 亚洲人成网站高清观看| 国产色婷婷99| 精品少妇黑人巨大在线播放| 国产伦在线观看视频一区| 中文字幕久久专区| 免费少妇av软件| 美女高潮的动态| 国产一级毛片在线| 人妻系列 视频| 六月丁香七月| 免费不卡的大黄色大毛片视频在线观看| 午夜日本视频在线| 蜜臀久久99精品久久宅男| av播播在线观看一区| 国产精品偷伦视频观看了| av在线观看视频网站免费| 深夜a级毛片| 精品国产三级普通话版| 在线观看一区二区三区| 日本猛色少妇xxxxx猛交久久| 午夜免费鲁丝| 国产人妻一区二区三区在| 国产乱来视频区| 少妇人妻精品综合一区二区| 午夜激情福利司机影院| 少妇 在线观看| 中文字幕亚洲精品专区| 欧美潮喷喷水| 欧美潮喷喷水| 日日啪夜夜撸| 中国三级夫妇交换| 亚洲国产精品成人久久小说| 观看免费一级毛片| 伊人久久精品亚洲午夜| 少妇人妻 视频| 最近中文字幕高清免费大全6| 18禁裸乳无遮挡免费网站照片| 亚洲精品乱码久久久v下载方式| 国产探花在线观看一区二区| 永久免费av网站大全| 日韩中字成人| av国产精品久久久久影院| 性色av一级| 日韩一区二区视频免费看| 大陆偷拍与自拍| 少妇人妻 视频| 免费观看性生交大片5| 麻豆成人午夜福利视频| 大又大粗又爽又黄少妇毛片口| 国产成人精品久久久久久| 一级毛片 在线播放| 午夜福利视频精品| av黄色大香蕉| 我的老师免费观看完整版| 日本色播在线视频| 亚洲欧美中文字幕日韩二区| 美女被艹到高潮喷水动态| 制服丝袜香蕉在线| 亚洲内射少妇av| 国产精品一区www在线观看| 亚洲精品456在线播放app| 精品人妻一区二区三区麻豆| 女人久久www免费人成看片| 亚洲欧美精品自产自拍| 黑人高潮一二区| 欧美xxxx性猛交bbbb| 国产伦精品一区二区三区四那| av在线蜜桃| 国产黄a三级三级三级人| 中文乱码字字幕精品一区二区三区| 男人狂女人下面高潮的视频| 天天一区二区日本电影三级| 欧美日韩视频精品一区| 王馨瑶露胸无遮挡在线观看| 乱码一卡2卡4卡精品| 十八禁网站网址无遮挡 | 国产亚洲av片在线观看秒播厂| av天堂中文字幕网| 美女主播在线视频| 亚洲色图综合在线观看| 97在线人人人人妻| 免费大片黄手机在线观看| 久久久久久久久久人人人人人人| 国产一区二区三区av在线| 午夜亚洲福利在线播放| 国产乱来视频区| 欧美+日韩+精品| 少妇人妻一区二区三区视频| 大片免费播放器 马上看| 亚洲av在线观看美女高潮| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久 | 五月开心婷婷网| 亚洲欧美成人综合另类久久久| 18禁在线无遮挡免费观看视频| 男人狂女人下面高潮的视频| 欧美最新免费一区二区三区| 欧美少妇被猛烈插入视频| 97精品久久久久久久久久精品| 国产午夜精品一二区理论片| 日本午夜av视频| 国精品久久久久久国模美| 国产成人a区在线观看| 女人久久www免费人成看片| 五月伊人婷婷丁香| 久久韩国三级中文字幕| 新久久久久国产一级毛片| 久久久久久久久久久免费av| 黑人高潮一二区| 久久综合国产亚洲精品| 建设人人有责人人尽责人人享有的 | 免费少妇av软件| 国产精品一区二区在线观看99| av国产免费在线观看| 青青草视频在线视频观看| 美女高潮的动态| 尾随美女入室| 日产精品乱码卡一卡2卡三| 欧美成人a在线观看| 国产乱人偷精品视频| 肉色欧美久久久久久久蜜桃 | 亚洲欧美日韩另类电影网站 | 精品视频人人做人人爽| 国产精品无大码| 欧美激情在线99| 免费在线观看成人毛片| 真实男女啪啪啪动态图| 男人舔奶头视频| 天天躁日日操中文字幕| 老师上课跳d突然被开到最大视频| 亚洲欧美日韩东京热| 亚洲精品日韩av片在线观看| 毛片女人毛片| 久热这里只有精品99| 91午夜精品亚洲一区二区三区| 欧美另类一区| 国产成人a∨麻豆精品| 久久久a久久爽久久v久久| 日韩人妻高清精品专区| 听说在线观看完整版免费高清| 一级爰片在线观看| 日日啪夜夜撸| 国产精品久久久久久av不卡| 国产乱人偷精品视频| 亚洲欧美精品专区久久| 在线观看免费高清a一片| 最近最新中文字幕大全电影3| 日韩欧美 国产精品| 亚洲最大成人av| 久久99热6这里只有精品| 男女无遮挡免费网站观看| 哪个播放器可以免费观看大片| 日本av手机在线免费观看| 精品亚洲乱码少妇综合久久| 亚洲精品aⅴ在线观看| 成人特级av手机在线观看| 一级av片app| 黄色一级大片看看| www.色视频.com| 亚洲成人一二三区av| 三级男女做爰猛烈吃奶摸视频| 大码成人一级视频| 国产一级毛片在线| av福利片在线观看| 国产av国产精品国产| 热re99久久精品国产66热6| 亚洲经典国产精华液单| 国产亚洲91精品色在线| 美女视频免费永久观看网站| 熟女电影av网| 超碰av人人做人人爽久久| 午夜精品一区二区三区免费看| 久久99精品国语久久久| 插阴视频在线观看视频| 在线播放无遮挡| 免费观看av网站的网址| 国模一区二区三区四区视频| 午夜视频国产福利| 看非洲黑人一级黄片| 免费观看的影片在线观看| 欧美老熟妇乱子伦牲交| 少妇被粗大猛烈的视频| 成人二区视频| 免费观看av网站的网址| 嫩草影院新地址| 国产久久久一区二区三区| av网站免费在线观看视频| 国产免费视频播放在线视频| 99久久精品一区二区三区| 亚洲天堂av无毛| 精品久久久久久久末码| 91精品一卡2卡3卡4卡| 亚洲av成人精品一二三区| 99久国产av精品国产电影| 久久亚洲国产成人精品v| www.色视频.com| 秋霞在线观看毛片| 成人高潮视频无遮挡免费网站| 亚洲精品色激情综合| 韩国av在线不卡| 国产成人精品福利久久| 国产一区二区在线观看日韩| 91精品国产九色| 日本-黄色视频高清免费观看| 青青草视频在线视频观看| 女的被弄到高潮叫床怎么办| 80岁老熟妇乱子伦牲交| 国产精品偷伦视频观看了| 亚洲欧美一区二区三区黑人 | 亚洲欧洲日产国产| 看免费成人av毛片| 夫妻性生交免费视频一级片| 久久人人爽人人片av| 成人无遮挡网站| 少妇丰满av| videos熟女内射| 大香蕉97超碰在线| 亚洲国产精品成人久久小说| 国产精品麻豆人妻色哟哟久久| 成人二区视频| 免费少妇av软件| 久久女婷五月综合色啪小说 | 久久综合国产亚洲精品| 在现免费观看毛片| 欧美xxxx性猛交bbbb| 国产精品精品国产色婷婷| 色视频在线一区二区三区| 黄色怎么调成土黄色| 大片电影免费在线观看免费| 高清av免费在线| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久精品古装| 69人妻影院| 日本午夜av视频| 亚洲欧美日韩无卡精品| 欧美+日韩+精品| 亚洲av二区三区四区| 亚洲在久久综合| 嘟嘟电影网在线观看| 久久久久性生活片| 久久精品久久久久久久性| 亚洲不卡免费看| 最近最新中文字幕大全电影3| 亚洲人成网站高清观看| 成人毛片60女人毛片免费| 国产女主播在线喷水免费视频网站| 久久久成人免费电影| 国产精品嫩草影院av在线观看| 性色av一级| 亚洲人成网站在线播| 精品一区二区三区视频在线| 丝瓜视频免费看黄片| 亚洲丝袜综合中文字幕| h日本视频在线播放| 欧美xxⅹ黑人| 在线观看av片永久免费下载| 2018国产大陆天天弄谢| 99九九线精品视频在线观看视频| 亚洲熟女精品中文字幕| 国国产精品蜜臀av免费| 丝袜美腿在线中文| 久热久热在线精品观看| 中文字幕久久专区| 搡女人真爽免费视频火全软件| 一级片'在线观看视频| 精品久久国产蜜桃| 深爱激情五月婷婷| 亚洲av国产av综合av卡| 国产成人精品久久久久久| 日本熟妇午夜| 免费看光身美女| 成人毛片60女人毛片免费| 亚洲经典国产精华液单| 亚洲人成网站高清观看| 亚洲国产日韩一区二区| 亚洲国产av新网站| 22中文网久久字幕| 波多野结衣巨乳人妻| 能在线免费看毛片的网站| 美女cb高潮喷水在线观看| 黄色视频在线播放观看不卡| 熟妇人妻不卡中文字幕| 一级爰片在线观看| 日日啪夜夜撸| 夫妻午夜视频| 18禁在线无遮挡免费观看视频| 成人黄色视频免费在线看| 欧美高清性xxxxhd video| videos熟女内射| 日韩在线高清观看一区二区三区| 1000部很黄的大片| 男女下面进入的视频免费午夜| 在线观看国产h片| 亚洲国产成人一精品久久久| 看十八女毛片水多多多| www.av在线官网国产| 久久这里有精品视频免费| 内射极品少妇av片p| 黄片wwwwww| 最近的中文字幕免费完整| 久久精品国产亚洲网站| 日本免费在线观看一区| 有码 亚洲区| 麻豆乱淫一区二区| 亚洲丝袜综合中文字幕| 天天躁夜夜躁狠狠久久av| 亚洲av电影在线观看一区二区三区 | 2021天堂中文幕一二区在线观| av国产精品久久久久影院| 中文字幕亚洲精品专区| 国产大屁股一区二区在线视频| 岛国毛片在线播放| 91久久精品电影网| 国产亚洲午夜精品一区二区久久 | 嫩草影院入口| 亚洲精品一区蜜桃| 国产人妻一区二区三区在| 亚洲在线观看片| 国产欧美亚洲国产| 一本色道久久久久久精品综合| 极品少妇高潮喷水抽搐| 亚洲av日韩在线播放| 日本wwww免费看| 91精品国产九色| 久久久亚洲精品成人影院| 黄色怎么调成土黄色| 中国美白少妇内射xxxbb| 国产黄片视频在线免费观看| 欧美日韩亚洲高清精品| 久久久久久伊人网av| 日韩制服骚丝袜av| 午夜亚洲福利在线播放| 国产av不卡久久| 久久久成人免费电影| 成人特级av手机在线观看| 联通29元200g的流量卡| 亚洲一区二区三区欧美精品 | 18禁在线播放成人免费| 99久久人妻综合| 中国三级夫妇交换| 亚洲欧美日韩东京热| 午夜免费男女啪啪视频观看| 丝瓜视频免费看黄片| 亚洲欧美一区二区三区黑人 | 天堂俺去俺来也www色官网| 午夜福利视频精品| 高清欧美精品videossex| 久热这里只有精品99| 日本wwww免费看| 最新中文字幕久久久久| 久久久久网色| 免费av不卡在线播放| 国产男女内射视频| 国产乱来视频区| 午夜免费男女啪啪视频观看| 国产黄色免费在线视频| 2022亚洲国产成人精品| 欧美日韩视频高清一区二区三区二| 最近2019中文字幕mv第一页| 中文字幕免费在线视频6| 午夜福利在线观看免费完整高清在| 亚洲自拍偷在线| 亚洲综合精品二区| 岛国毛片在线播放| 五月玫瑰六月丁香| 极品少妇高潮喷水抽搐| 久久久久性生活片| 国产淫语在线视频| 久久久久久久久久久免费av| 久久久精品94久久精品| 国产在线一区二区三区精| 国产精品国产av在线观看| 国内精品美女久久久久久| 欧美日韩在线观看h| 国产一区二区三区av在线| 久久精品人妻少妇| 看免费成人av毛片| 亚洲精品乱久久久久久| 少妇的逼水好多| 一区二区三区四区激情视频| 3wmmmm亚洲av在线观看| 久久久久久久久久久免费av| 国产永久视频网站| 岛国毛片在线播放| 国产成人freesex在线| 国产淫语在线视频| 亚洲av在线观看美女高潮| 尤物成人国产欧美一区二区三区| 免费在线观看成人毛片| www.色视频.com| 22中文网久久字幕| 免费观看在线日韩| 国产伦理片在线播放av一区| 欧美97在线视频| 麻豆精品久久久久久蜜桃| 国产精品久久久久久av不卡| 午夜精品国产一区二区电影 | 久久久欧美国产精品| 少妇的逼水好多| 亚洲成人一二三区av| 中文字幕av成人在线电影| 插逼视频在线观看| 久久精品人妻少妇| 久久人人爽av亚洲精品天堂 | 久久久精品欧美日韩精品| 亚洲国产精品专区欧美| 午夜激情久久久久久久| 最近手机中文字幕大全| 亚洲欧美清纯卡通| 免费黄频网站在线观看国产| 内射极品少妇av片p| 免费人成在线观看视频色| 久久6这里有精品| 免费av毛片视频| 国产精品.久久久| 狂野欧美白嫩少妇大欣赏| 免费看日本二区| av线在线观看网站| 国产在线男女| 亚洲自拍偷在线| 国产精品成人在线| 黄色日韩在线| 视频中文字幕在线观看| 天堂网av新在线| 欧美日韩一区二区视频在线观看视频在线 | 国产欧美日韩一区二区三区在线 | 亚洲丝袜综合中文字幕| 国产精品99久久99久久久不卡 | av卡一久久| 黄色日韩在线| av在线亚洲专区| 国产大屁股一区二区在线视频| 大陆偷拍与自拍| 高清欧美精品videossex| 丰满乱子伦码专区| 亚洲激情五月婷婷啪啪| 人人妻人人看人人澡| 免费观看在线日韩| 免费av不卡在线播放| 三级经典国产精品| 国产老妇女一区| 91久久精品国产一区二区三区| 乱码一卡2卡4卡精品| 2022亚洲国产成人精品| 插阴视频在线观看视频| 久久久久国产网址| 搡老乐熟女国产| 小蜜桃在线观看免费完整版高清| 国产一区二区亚洲精品在线观看| 国产欧美日韩一区二区三区在线 | 久久久久久久久久人人人人人人| 人妻夜夜爽99麻豆av| 日日撸夜夜添| 久久精品熟女亚洲av麻豆精品| 国精品久久久久久国模美| 99久久人妻综合| 日韩伦理黄色片| 熟妇人妻不卡中文字幕| 亚洲国产av新网站| 国产精品国产av在线观看| 18禁在线播放成人免费| 国产成人精品久久久久久| 丰满少妇做爰视频| 一级毛片黄色毛片免费观看视频| 免费观看无遮挡的男女| 国产精品一区二区三区四区免费观看| 简卡轻食公司| 成年av动漫网址| 日本熟妇午夜| 色播亚洲综合网| 国产有黄有色有爽视频| 国内揄拍国产精品人妻在线| 高清在线视频一区二区三区| 午夜免费男女啪啪视频观看| 日本一二三区视频观看| 纵有疾风起免费观看全集完整版| 美女xxoo啪啪120秒动态图| 亚洲国产精品999| 亚洲激情五月婷婷啪啪| 真实男女啪啪啪动态图| 久久人人爽人人爽人人片va| 日本一本二区三区精品| 欧美激情在线99| 亚洲,欧美,日韩| av国产精品久久久久影院| 色综合色国产| 91久久精品国产一区二区成人| 在线观看av片永久免费下载| 干丝袜人妻中文字幕| 精华霜和精华液先用哪个| 乱码一卡2卡4卡精品| 久久6这里有精品| 在线亚洲精品国产二区图片欧美 | 少妇 在线观看|