• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    雷體罩模態(tài)振型與激光散斑干涉信號(hào)的關(guān)系解析

    2022-09-07 06:54:48張小青李金輝羅欣宇于瀛潔
    中國(guó)光學(xué) 2022年4期
    關(guān)鍵詞:上海大學(xué)信息工程振型

    張小青,王 馳,李金輝,羅欣宇,于瀛潔

    (1. 上海大學(xué) 精密機(jī)械工程系, 上海200444;2. 同濟(jì)大學(xué)浙江學(xué)院 電子與信息工程系, 嘉興314000;3. 近地面探測(cè)技術(shù)重點(diǎn)實(shí)驗(yàn)室, 無(wú)錫214035)

    1 Introduction

    As a kind of low-cost defense weapon in wartime, landmines have been widely used in previous wars. Landmines have always been a severe threat to the people’s live of those mined countries or regions[1]. Therefore, eliminating hidden dangers caused by landmines has become a global problem that all countries in the world face. Landmine detection remains a worldwide problem to this day, especially for the detection of buried plastic landmines.The difference in electrical characteristics between plastic-cased landmines and the surrounding soil is relatively small, making it difficult for commonly used metal-cased landmine detectors to detect plastic-cased landmines. From the 1940s to the 1950s, a large number of plastic-cased landmines began to appear when the metal shells of landmines were gradually replaced by plastic shells[2]. Due to the limitation of these detection mechanisms, it is difficult to distinguish whether the buried objects are plastic-cased landmines or bricks, rocks, and other interfering objects. Using UAV-based Optical Data Fusion, landmine detection probability can be preliminarily estimated[3]. The methods of detecting the chemical composition of explosives such as hyperspectral images[4], Neutron challenge[5], and Raman spectroscopy[6]developed in recent years have strong identification capabilities, but the system is complicated and expensive, and the detected signal is extremely weak, leading to the problems relating to long detection (signal accumulation) time and a high misdetection rate. It is possible to overcome the difficulty of detecting plastic-cased landmines containing very low metal contents by improving the sensitivity of metal landmine detectors.However, many shrapnel, shell and other metal interferences in a minefield can cause high false positives. Biological mine detection methods, such as the passive method using Honeybee-based on-site explosive sampling, can only estimate the total explosive load in a certain area but cannot locate the mine’s location[7].

    Acoustic-to-seismic landmine detection technology based on the unique mechanical properties of landmines and the principle of acoustic-to-seismic coupling shows good application prospects, especially in the safe and effective detection of plastic-cased landmines. The acoustic-to-seismic coupling[8-10]refers to when sound waves propagating in the air are incident on the ground. In addition to most of the energy reflected into the air by the ground surface, a small proportion is coupled to propagate underground due to the influence of soil porosity. This forms seismic waves with different compositions such as transverse waves and fast and slow longitudinal waves. The air cavity and fuze in the landmine structure make its acoustic compliance (the deformation caused by per unit stress,commonly known as flexibility) much greater than the acoustic compliance of the surrounding soil. The"soil-landmine" system can produce the equivalent“Mass-spring" resonance phenomenon under the influence of seismic waves. Sabatier J. M and Donskoyet al.[11-13]successively established linear and nonlinear resonance models for acoustic-to-seismic landmine detection; Zagraiet al.[14-15]studied the multi-mode mechanism of landmine vibration response; Albertset al.[16]studied the impact of landmine burial depth on resonance frequency. These studies have indicated the feasibility of acoustic-toseismic landmine detection based on the mechanical properties of landmines and the principle of acoustic-to-seismic coupling. However, due to the low efficiency of acoustic-to-seismic coupling, the ground surface vibration excited by sound waves is still very weak even when the landmine resonates.Measuring the characteristic signals of landmines accurately and quickly has always been a key problem that limits the research of acoustic-to-seismic landmine detection systems.

    Laser interferometric vibration detection technology has a good application prospect in acousticto-seismic landmine detection due to its of highly precise and non-contact mechanism. Qiukun Zhanget al.[17]studied that the vibration measurement technology of high-performance optical coherence velocimeter can achieve nanometer-level accuracy; Xiang and Sabatier[18-19]used a single-beam laser Doppler vibrometer for acoustic-to-seismic landmine detection; Wang Chi research group[20-21]studied the landmine’s mode shape based on laser self-mixing vibrometer; Rajeshet al.[22]used the ultrasonic Doppler vibrometer array for landmine detection, which increased the vibration measurement rate to a certain extent, but the array had the disadvantages in its bulky size and high cost. In this paper, based on the multi-model resonance phenomenon of a landmine’s upper casing under the sound wave excitation, laser speckle interferometric vibration measurement technology based on a time average is used to study the relationship between the mode shapes of the landmine’s upper casing and the Bessel signals, providing theoretical evidence for realizing the rapid scanning technology of acoustic-optics landmine detection.

    2 Analysis of mode shapes of mine

    According to literatures [14-15], the main vibration mode characteristics of landmines are mainly determined by the upper surface of landmines, i.e., the landmine’s upper casing. To facilitate the analysis of the multi-mode vibration phenomena of landmines, the characteristics of the three-dimensional vibration mode shapes of landmines are simplified to the characteristics of the two-dimensional vibration mode shape of the plane structures where the burying depth is assumed to be 0 to remove the restriction of the soil above the landmine. As shown in Fig. 1, the landmine’s upper casing is equivalent to a cylindrical thin circular plate structure in polar coordinatesOrθ, with a radius ofaand a thickness ofh. Two continuous boundary constrained springs are arranged on the boundary of the plate structure atr=a, namely linear displacement springkand rotation constrained springK. For a circular planar structure, the (m,n) mode can be used to represent the vibration mode.

    Fig. 1 Analytical object and model of landmine’s multi-modal vibration characteristics. (a) Anti-tank plastic landmine; (b)equivalent cylindrical thin circular plate

    In a certain 1storder state, wheremrepresents the number of pitch diameters of the structure, andnrepresents the number of pitch circles of the structure. Theoretically, the point with a value of 0 in the mode shape is called a node, i.e., the intersection of the mode shape and the undeformed point in the original structure. The pitch diameter refers to the diameter with a value of 0 in the vibration mode,i.e., the lines composed of nodes. The pitch circle refers to the circle with a value of 0 in the vibration mode. As shown in Fig. 2 (Color online), when a landmine is excited by an external vibration with a certain frequency, the surface of its upper casing will produce a unique multi-modal vibration phenomenon. In Fig. 2, green represents pitch diameter,red represents pitch circle.

    Fig. 2 Contour diagrams of landmine mode shapes. (a) (0,1) mode; (b) (0,2) mode; (c) (1,1) mode

    The mode shapes of landmines are thoroughly analyzed according to literatures [14-15]. When the landmine’s upper casing is subjected to external forces, the vibration equation of the thin circular plate can be expressed as:

    whereTmnis a time function, andWmn(r,θ) is the mode shape function. Based on the mathematical model of the thin circular plate structure, its vibration function can be written as:

    where Jnand Inare the first kind and second kind Bessel functions, andais the radius of the thin circular plate. Let the modal shape function equal to zero, and the following equation can be obtained:

    According to equation (4), combined with the values of the points whose amplitudes are 0, whenr=r1,r2,r3,···rm, the value of the mode shape function is 0, andmis the number of pitch circles. When θ=θ1,θ2,θ3···θn, the value of the mode shape function is 0, andnis the number of pitch diameters.CmnandAmnare coefficients that depend onmandn, andλmnis theathpositive root of them-order Bessel function Jn=0.

    For elastic boundaries, the boundary conditions are:

    MrandVrare the bending moments at the corresponding positions. According to the plate and shell vibration theory, the following expressions apply:

    According to equations (7) and (8), equations(5) and (6) can be expressed in terms ofW(a,θ).Then the parametersCmnandAmncan be obtained by substituting equation (3) into equations (5) and (6).

    The parameterAmnof the mode shape function can be obtained by the following equation:

    where δ is the Kronecker number, and whenm=p,δmp= 1; whenm ≠ p,δmp=0.mMis the mass of the thin circular plate. According to the equation (9),Amncan be expressed as:

    The mode shape functionWmn(r,θ) can be obtained by substitutingCmn,Amnandλmninto equation(3). The complex "soil-mine" system can be described by a relatively simple and direct mathematical equation, which provides a theoretical basis for the analysis of the mode shapes of the landmine’s upper casing and its application in the acoustic-toseismic landmine detection system.

    3 Bessel fringe mapping method

    Electronic Speckle-Shearing Patten Interferometry (ESSPI) is a new technique for measuring displacement derivative developed after electronic speckle interference and is widely used in the field of non-destructive testing[23-25]. For the measurement of the deformation caused by the vibration of the object, laser shearing speckle interferometry is often combined with the time-average method of a CCD camera[26-27]. Consequently, the use of high-energy sound wave pulses or vibration exciters to excite the vibration energy close to the landmine location will cause abnormal changes in the ground surface vibration under the resonant movement of the landmine (Fig. 3). The laser beam is projected to the location where the landmine is buried, and the highresolution CCD camera system is used to record the speckle interference fringes containing the surface vibration information in real time. The interference fringes are analyzed and processed to obtain small vibration signals on the ground surface, and then the existence of buried landmines can be determined.

    Fig. 3 Vibration deformation schematic diagram of the soil surface with and without landmine under the excitation of sound waves

    The speckle interference fringe obtained by the time-average method of a CCD camera is modulated by the zero-order Bessel function, that is,Bessel fringe[28]. Thus, studying the mapping relationship between the mode shapes of the landmine’s upper casing and the Bessel fringes can further study the information such as the type and size of the landmine, as well as the rapid identification method. The following is the analysis of mapping relationship between the function of the mode shape of the landmine ’s upper casing and the Bessel fringes.

    To analyze the mapping relationship between the mode shape of the mine cover and the Bessel fringe, the optical path of laser speckle interferometry measurement on the mode shapes of the landmine’s upper casing is shown in Fig. 4(Color online). Assuming that the shearing direction is in thexdirection. LaserS(xs,ys,zs) irradiates on the measured landmine ’s upper casing. The two pointsP1(x,y,z) andP2(x+δx,y,z) on the surface of the landmine’s upper casing spaced apart byδxare imaged and interfered with each other at the same pointC(xc,yc,zc) on the CCD camera after passing through the shearing device, whereδxis the shear amount in thexdirection. After the landmine’s upper casing is excited by sound waves, pointP1(x,y,z) moves to(x+u,y+v,z+w) and pointP2(x+δx,y,z) moves to(x+δx+u+δu,y+v+δv,z+w+δw). The distance betweenandis(δu,δv,δw).

    Fig. 4 The optical path of laser speckle interferometry measurement on the mode shapes of the landmine’s upper casing

    Fig. 5 Vibration diagram under (0,1) mode. (a) Three-dimensional vibration mode diagram; (b) contour map

    Fig. 6 Vibration diagram under (0,2) mode. (a) Three-dimensional vibration mode diagram; (b) contour map

    Fig. 7 Vibration displacement gradient change under the (0,1) mode. (a) Three-dimensional diagram of the displacement gradient change; (b) contour map

    Fig. 8 Vibration displacement gradient change under the (0,2) mode. (a) Three-dimensional diagram of displacement gradient change; (b) contour map

    According to our preliminary research and analysis[28], it is assumed that the intensity of speckle interference obtained by the time averaging method based on a CCD camera isI(x,y), and its expression is as follows:

    In the formula, 2Re[g1(x,y)(x,y)] is random speckle noise, J0is the zero-order Bessel function of the first kind, and Δ φ(x,y) is the phase difference of the interference laser due to the vibration deformation of the landmine’s upper casing.

    In order to facilitate the correlation between the shear speckle interferometry theory and the multimodal vibration characteristics of mines, the vibration mode function is transformed from the polar coordinate system to the Cartesian coordinate systemxOy, that is:x=rcosθ,y=rsinθ .

    The equation of the mode shape function of the landmine’s upper casing in the Cartesian coordinate system can be obtained as equation (13) by substituting equation (12) into equation (3).

    According to literature [29], the relationship between the pure phase change caused by the outoff-plane displacement of the landmine’s upper casing and the derivative of the out-off-plane displacement is as follows:

    In the formula (11), since 1 -J0(Δφ(x,y)) is a value that changes in a period, the resulting speckle interferogram is a light and dark speckle fringe pattern produced by 1 -J0(Δφ(x,y)) modulation, that is Bessel fringe. It is possible to calculate the phase change caused by the vibration of the out-off-plane deformation through observing the obtained Bessel fringe. Then, the amount of change in the gradient of the out-off-plane displacement of the landmine’s upper casing can be obtained. As a result, the vibration deformation of the landmine’s upper casing can be determined. Where there is a constant shear amount, the Bessel fringe order increases as the displacement gradient is larger.

    4 Numerical analysis and discussion

    The landmine’s upper casing is equivalent to a thin circular plate structure with elastic supports and it has the mode functionWmn(x,y). The numerical analysis is based on the mapping relationship between the mode shapes of landmine and Bessel fringes, which is formula (13).

    The simulation parameter setting is shown in Table 1. The radius of the landmine’s upper casinga=13.5 cm, Poisson’s ratio υ=0.33, Young’s modulusE=17×1019Pa, and laser wavelength λ=658 nm. To clearly display the fringe series in the Bessel fringe pattern, the shear amount is set to 6 mm, and the Cartesian coordinate system is established with the center of the thin circular plate as the origin. The shearing direction of the laser speckle interference is in thexdirection. Assuming that there is a circle and 0 pitch diameters in the thin circular plate, i.e., the (0,1) order mode. The simulation results are shown in Fig 5, 7, 9(a) (Color online), while the mode simulation results for the (0,2)order mode are shown in Figs. 6, 8, 9(b) (Color online).

    Tab. 1 Simulation parameter setting

    Figs. 5 and 6 show the (0,1) and (0,2) order landmine vibration patterns, respectively. The vibration amplitude of the (0,1) order mode decreases from the center to the surroundings with a maximum value of 2.157 3 mm at the center of the mine.Due to the existence of two pitch circles in the (0,2)order mode, the vibration amplitude changes suddenly at the first pitch circle line then increases from there to the center. Its amplitude reaches a maximum of 2.809 9 mm at the center of the mine, which is an increase of 0.652 6 mm compared to the maximum amplitude of the (0,1) order mode.

    Figs. 7 and 8 show the (0,1) and (0,2) order modes’ vibration displacement gradient changes, respectively. Since the shear direction of the laser speckle interference is set to thexdirection, the vibration displacement gradient is obtained by calculating the first-order partial derivative of the landmine vibration mode function with respect tox.Since the mode shapes of landmines are evenly symmetric abouty=0, the displacement gradient change of the (0,1) order mode shape obtained by calculating the first-order partial derivative with respect toxis oddly symmetric abouty=0. The maximum absolute value of the gradient change is 0.228 5. It is obvious from the contour map in Fig. 7(b) that aty=0, the displacement gradient change is always zero regardless of any change inx. The two displacement gradients with odd symmetry increase or decrease from the point where ofx=0 cm andy=±7.752 cm to the surroundings, respectively. As shown in Fig. 8, the first section circular vibration mode of the (0,2) order is evenly symmetrical abouty=0, and its displacement gradient change is oddly symmetrical at that same point. The maximum absolute value of the gradient change is 0.706 4, an increase of approximately 0.477 9 compared to the maximum absolute displacement gradient of the(0,1) order mode. Similarly, aty=0, the displacement gradient change is constantly 0 for any change ofx. The two displacement gradients with odd symmetry increase or decrease from the point with the coordinate wherex=0 cm andy=±4.377 cm to the surroundings, respectively. Compared with the center position of the (0,1) order, theycoordinate of the(0,2) order is offset by 3.375 cm toward the center.

    Fig.9 shows the mode shapes of the landmine based on speckle interference fringes of the (0,1)and (0,2) order modes, respectively. It can be seen from Fig. 7 that the displacement gradient generated before and after the interference laser vibration in the (0,1) order mode is oddly symmetrical abouty=0. Aty= 0, with the change ofx, the displacement gradient change is always 0. Therefore, Fig. 9(a)shows symmetrical butterfly-shaped interference fringes with dark fringes aty=0. Since the maximum displacement gradient is 0.228 5 , the Bessel fringe order is about 2. Similarly, the Bessel fringe at the first pitch circle in Fig.9(b) is symmetrically butterfly-shaped wherey=0 with the dark fringe appearing aty=0. Since the maximum displacement gradient is 0.706 4, which is approximately 3 times the maximum displacement gradient of the (0, 1) order mode, the Bessel fringe order is about 6.

    Fig. 9 Mine modal shapes based on speckle interference fringes. (a) Under the (0,1) mode; (b) under the (0,2) mode

    5 Experiment verification analysis

    According to the literatures [14-15], landmines will produce different resonance phenomena in different soil environments, different buried depths,different frequencies, and different decibel levels of sound wave excitation, leading to different degrees of vibration and deformation of the soil surface above buried landmines, i.e., different displacement gradient changes. The order of Bessel fringe series is related to the displacement gradient and the shear amount. Therefore, when using laser speckle interferometry to carry out mine detection experiments,the order of interference fringes such as the (0,1) order mode will change based on the actual measurement situation, but the overall shape should be symmetrically butterfly-shaped interference fringes.

    For the purpose of carrying out experimental verification analysis, a landmine detection experimental system based on laser speckle measurement was built up as shown in Fig. 10. The sound source excitation system composed of a function signal generator, a speaker and a power amplifier were used to excite high-intensity low-frequency sound waves. The laser speckle interference detection system was used for speckle interference detection of surface vibrations. The decibel meter was used to measure the sound pressure level of the sound wave.The interference laser wavelength was 658 nm. The type-69 plastic case coach mine, the type-72 antipersonnel coach mine and the Brick were taken as the sample to be tested. The samples were buried in dry or wet sand at a depth of 2 cm. The shear amountδxwas set to 12.122 mm in thexdirection in all experiments, except for the experiment of the type-69 plastic case coach mine buried in wet sand wherein the shear amount was 10.935 mm. The frequencies of the sound were 110 Hz for the type-69 plastic case coach mine and 145 Hz for the type-72 anti-personnel coach mine and brick. The test results are shown in Fig. 11~15 (Color online).

    Fig. 10 Acousto-optic mine detection experimental system based on laser speckle measurement

    Fig. 11 (a) The type-69 plastic case coach mine in dry sand. Bessel fringes obtained with different excitation sound frequencies and different sound pressure levels. (b) 110 Hz, 100 dB; (c) 110 Hz, 95 dB; (d) 110 Hz, 90 dB

    Fig. 12 Bessel fringes of the type-69 plastic case coach mine in wet sand with different excitation sound frequencies and different sound pressure levels. (a) 110 Hz, 100 dB; (b) 110 Hz, 95 dB; (c) 110 Hz, 90 dB

    Fig. 13 (a) Type 72 anti-personnel coach mine, and it’s Bessel fringes obtained with different excitation sound frequencies and different sound pressure levels. (b) 145 Hz, 100 dB; (c) 145 Hz, 98 dB; (d) 145 Hz, 95 dB

    Fig. 14 (a) Brick in dry sand and (b) it’s speckle interferometer detection results obtained with the excitation sound frequency of 145 Hz and the sound pressure level of 100 dB

    Fig. 15 Vibration amplitude of the type-69 plastic case coach mine in dry sand with the excitation sound frequency of 110 Hz and the sound pressure level of 100 dB. (a) Three-dimensional vibration; (b)contour map

    As shown in Fig.11, the dotted circle indicates the mine burial area, and no Bessel fringe appears on the ground surface of the area where no landmine is buried. The Bessel fringes are symmetrical butterfly-shaped, which is quantitatively consistent with the theoretical analysis in Section 4. In addition, as the decibel value of the sound pressure level decreases, the deformation amplitude of the ground vibration decreases, the magnitude of change in the displacement gradient decreases, and the number of Bessel fringe levels decreases. The shape and change trend of the Bessel fringes in Fig.12 are consistent with those in Fig.11. In Fig.13, the fringe profile is gossip-like, and the number of Bessel fringe levels also decreases as the decibel value of the sound pressure level decreases. There is no fringe in the area where the brick was buried simultaneously(Fig.14). Therefore, Bessel fringes can reflect the mode shapes of landmines and the displacement gradient changes, which shows the feasibility of using laser speckle interference technology for coupled acoustic-to-seismic landmine detection. The detailed experimental steps and results can be seen in our previous research (Ref. [28]). A three-dimensional vibration mode diagram and contour map are recovered for the type-69 plastic case coach mine in dry sand after performing phase unwrapping(Fig.15). The black dotted line area is the likely location of the landmine. From Fig.15, we can see that the acoustic-to-seismic coupling vibration deformation occurs in the buried landmine area, which is consistent with the theory in Section 3. However,the experimental results only qualitatively verify the relationship between the modal vibration mode and the laser speckle interference signal, the mapping relationship between the mode shape and the Bessel fringe signal under the complex environment is the focus of the next research work.

    6 Conclusion

    In this paper, the mapping relationship of laser speckle interference fringes is preliminarily established by analyzing landmine mode shapes. The derived mapping relationship shows that the different mode shapes of landmines correspond to the unique Bessel fringes. The Bessel fringes of two modes are simulated. It is verified by simulations that the displacement gradient change caused by mine vibration can generate Bessel fringes. The Bessel fringe series reflects the maximum displacement gradient generated by the vibration deformation. The maximum displacement gradient is increased by 0.477 9 after changing from the (0,1) order mode to the(0,2) order mode, and the Bessel fringe order is increased from 2 to 6. The Bessel fringe shape reflects the entire vibration model. Due to the increase in pitch circle number from the order (0,1)mode to the order (0,2) mode, the Bessel fringe pattern changes from a simple pair of butterfly shapes to a combination of a symmetrical butterfly shape on the first pitch circle, and a circular looped stripe on the second pitch circle. Furthermore, experiments were carried out. Both the numerical and experimental results illustrate the theoretical conclusions, providing theoretical evidence for realizing the rapid scanning technology of acoustic-optics landmine detection. Thus, the Bessel fringe database corresponding to the mode shapes of different mines in different environments can be established,and it is feasible to realize the rapid scanning technology of acoustic-optics landmine detection.

    猜你喜歡
    上海大學(xué)信息工程振型
    關(guān)于模態(tài)綜合法的注記
    縱向激勵(lì)下大跨鋼桁拱橋高階振型效應(yīng)分析
    江蘇高速公路信息工程有限公司
    《上海大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    上海大學(xué)學(xué)報(bào)(自然科學(xué)版)征稿簡(jiǎn)則
    《上海大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    塔腿加過(guò)渡段輸電塔動(dòng)力特性分析
    信息工程技術(shù)的應(yīng)用與發(fā)展
    計(jì)算機(jī)網(wǎng)絡(luò)在電子信息工程中的應(yīng)用
    結(jié)構(gòu)振型幾何辨識(shí)及應(yīng)用研究
    山西建筑(2015年14期)2015-06-05 09:37:07
    男人和女人高潮做爰伦理| 久久精品国产鲁丝片午夜精品 | 综合色av麻豆| 乱系列少妇在线播放| 九色国产91popny在线| 日本熟妇午夜| 日本与韩国留学比较| 天堂√8在线中文| videossex国产| 日韩 亚洲 欧美在线| 国产色爽女视频免费观看| 婷婷亚洲欧美| avwww免费| 一个人免费在线观看电影| 国产美女午夜福利| 久久久久久久久中文| 不卡一级毛片| 精品乱码久久久久久99久播| 成年人黄色毛片网站| 久久精品国产亚洲av天美| 国产探花极品一区二区| 亚洲乱码一区二区免费版| 久久久久久久午夜电影| 1024手机看黄色片| 精品久久久噜噜| 日本成人三级电影网站| 久久中文看片网| 两个人视频免费观看高清| 免费看av在线观看网站| 亚洲无线观看免费| 无遮挡黄片免费观看| 国产亚洲91精品色在线| 国产真实乱freesex| 国产色爽女视频免费观看| 又紧又爽又黄一区二区| 特级一级黄色大片| h日本视频在线播放| 亚洲第一区二区三区不卡| 精品不卡国产一区二区三区| 国产老妇女一区| 免费在线观看影片大全网站| 日韩人妻高清精品专区| 欧美一区二区精品小视频在线| 国产精品久久久久久亚洲av鲁大| 午夜影院日韩av| 五月伊人婷婷丁香| 国产免费av片在线观看野外av| 国产精品人妻久久久影院| 日韩高清综合在线| 免费在线观看日本一区| 一级黄色大片毛片| 久久久成人免费电影| 岛国在线免费视频观看| 久久久久久久久久久丰满 | 麻豆国产97在线/欧美| 高清毛片免费观看视频网站| 国产色婷婷99| 亚洲专区中文字幕在线| 国产成人福利小说| 亚洲欧美激情综合另类| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲成人精品中文字幕电影| 女人十人毛片免费观看3o分钟| 老司机午夜福利在线观看视频| 日韩大尺度精品在线看网址| 国产亚洲精品av在线| 小蜜桃在线观看免费完整版高清| 国产欧美日韩精品一区二区| 在线国产一区二区在线| av在线老鸭窝| 国产在线精品亚洲第一网站| 大又大粗又爽又黄少妇毛片口| 日韩欧美在线乱码| 韩国av一区二区三区四区| 欧美+亚洲+日韩+国产| 国产一区二区在线av高清观看| 精品一区二区三区视频在线| 亚洲成av人片在线播放无| 午夜福利在线在线| 精品午夜福利在线看| 我要看日韩黄色一级片| 九色成人免费人妻av| 国产男人的电影天堂91| 91久久精品国产一区二区三区| 免费搜索国产男女视频| 99在线视频只有这里精品首页| 久久久国产成人精品二区| 亚洲图色成人| av黄色大香蕉| 久久久久久久久中文| 亚洲性久久影院| 国产伦在线观看视频一区| 欧美日韩瑟瑟在线播放| 日本黄色视频三级网站网址| 自拍偷自拍亚洲精品老妇| 亚洲美女视频黄频| 亚洲av日韩精品久久久久久密| 精品人妻熟女av久视频| 少妇熟女aⅴ在线视频| 国产不卡一卡二| 欧美激情在线99| 黄色丝袜av网址大全| 成人特级黄色片久久久久久久| 亚洲自偷自拍三级| 久久久久性生活片| 成年版毛片免费区| 美女黄网站色视频| 国产视频内射| 一级黄色大片毛片| 91久久精品国产一区二区三区| 国产亚洲欧美98| 特级一级黄色大片| 97超视频在线观看视频| 桃色一区二区三区在线观看| 黄色日韩在线| 亚洲国产欧美人成| 人妻久久中文字幕网| 精品福利观看| 哪里可以看免费的av片| 蜜桃亚洲精品一区二区三区| 国产精品乱码一区二三区的特点| 在线免费观看的www视频| 国产欧美日韩一区二区精品| 亚洲性久久影院| 少妇丰满av| 最后的刺客免费高清国语| 日韩大尺度精品在线看网址| 欧美日韩精品成人综合77777| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久久丰满 | 黄色视频,在线免费观看| 如何舔出高潮| 不卡一级毛片| 国产精品爽爽va在线观看网站| 最新在线观看一区二区三区| 国产老妇女一区| aaaaa片日本免费| 美女被艹到高潮喷水动态| 神马国产精品三级电影在线观看| 免费搜索国产男女视频| 亚洲在线观看片| 神马国产精品三级电影在线观看| а√天堂www在线а√下载| 久久久久久久久久久丰满 | 午夜福利在线观看吧| 精品久久久噜噜| 久久久午夜欧美精品| 欧美激情在线99| 尤物成人国产欧美一区二区三区| 国产精品98久久久久久宅男小说| 国产精品,欧美在线| 午夜福利视频1000在线观看| 国产午夜精品论理片| 国产高清视频在线播放一区| 国产av不卡久久| 亚洲欧美激情综合另类| 在线观看舔阴道视频| 国产三级在线视频| 高清毛片免费观看视频网站| 久久久久久久久久成人| 亚洲自偷自拍三级| 久久精品国产亚洲网站| 国产精品乱码一区二三区的特点| 天堂√8在线中文| 国产亚洲欧美98| av福利片在线观看| 久久久精品欧美日韩精品| 午夜福利成人在线免费观看| 成人毛片a级毛片在线播放| 国产精品自产拍在线观看55亚洲| 乱码一卡2卡4卡精品| 免费在线观看影片大全网站| 男女视频在线观看网站免费| 国产精品不卡视频一区二区| 99久久中文字幕三级久久日本| 一进一出抽搐动态| 又紧又爽又黄一区二区| 国内毛片毛片毛片毛片毛片| 亚洲三级黄色毛片| 国产精品无大码| 日韩高清综合在线| 国产激情偷乱视频一区二区| 丰满的人妻完整版| 麻豆av噜噜一区二区三区| 亚洲色图av天堂| 十八禁网站免费在线| 日本黄色片子视频| 日本黄大片高清| 美女xxoo啪啪120秒动态图| 精品久久久久久成人av| 亚洲第一区二区三区不卡| 黄色视频,在线免费观看| 国内久久婷婷六月综合欲色啪| 一进一出抽搐gif免费好疼| 搡老妇女老女人老熟妇| 国产av麻豆久久久久久久| 3wmmmm亚洲av在线观看| 麻豆成人午夜福利视频| 中文字幕久久专区| 国产精品久久久久久久电影| 色在线成人网| 日本精品一区二区三区蜜桃| 欧美成人a在线观看| 极品教师在线视频| 91狼人影院| av中文乱码字幕在线| 亚洲精品国产成人久久av| 人妻少妇偷人精品九色| 国产成人a区在线观看| 三级男女做爰猛烈吃奶摸视频| 18禁黄网站禁片免费观看直播| 俄罗斯特黄特色一大片| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩精品一区二区| 国内精品美女久久久久久| 国产91精品成人一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 婷婷丁香在线五月| 国产探花极品一区二区| 最好的美女福利视频网| 成年女人永久免费观看视频| 狂野欧美白嫩少妇大欣赏| h日本视频在线播放| a级毛片免费高清观看在线播放| 亚洲美女搞黄在线观看 | 九色成人免费人妻av| 午夜福利成人在线免费观看| 免费看a级黄色片| 久久久久国内视频| 国产午夜精品论理片| 久久久久久久久久黄片| 欧美成人免费av一区二区三区| 国产一区二区三区视频了| 日本爱情动作片www.在线观看 | 久久久久久九九精品二区国产| 亚洲欧美日韩卡通动漫| netflix在线观看网站| 国产精品国产三级国产av玫瑰| 女人被狂操c到高潮| 亚洲一区二区三区色噜噜| 搡老妇女老女人老熟妇| 欧美潮喷喷水| 香蕉av资源在线| 桃色一区二区三区在线观看| 日韩一本色道免费dvd| 一边摸一边抽搐一进一小说| 成人国产综合亚洲| 欧美一区二区亚洲| 看片在线看免费视频| 免费av毛片视频| 99热这里只有是精品在线观看| 在线观看免费视频日本深夜| 免费搜索国产男女视频| 国产探花极品一区二区| 听说在线观看完整版免费高清| 99热这里只有是精品50| 最新中文字幕久久久久| 老司机午夜福利在线观看视频| 国产高清视频在线播放一区| 久久九九热精品免费| 婷婷亚洲欧美| 男女之事视频高清在线观看| 亚洲成av人片在线播放无| 亚洲精品色激情综合| 亚洲av电影不卡..在线观看| 日韩精品青青久久久久久| 午夜老司机福利剧场| 成人永久免费在线观看视频| 成人特级av手机在线观看| 级片在线观看| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 亚洲av中文av极速乱 | 久久欧美精品欧美久久欧美| 别揉我奶头~嗯~啊~动态视频| 国产乱人伦免费视频| av在线天堂中文字幕| 免费在线观看日本一区| 国产精品人妻久久久影院| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩精品成人综合77777| 无人区码免费观看不卡| 两个人的视频大全免费| 美女cb高潮喷水在线观看| 国产精品一区二区三区四区免费观看 | 国产午夜精品久久久久久一区二区三区 | 亚洲av熟女| 波多野结衣巨乳人妻| 久久中文看片网| 特大巨黑吊av在线直播| 深夜a级毛片| 能在线免费观看的黄片| 国产高潮美女av| 性色avwww在线观看| 国产精品国产高清国产av| 亚洲狠狠婷婷综合久久图片| 日日摸夜夜添夜夜添小说| 日韩欧美一区二区三区在线观看| 九九爱精品视频在线观看| 国产精品无大码| 狂野欧美白嫩少妇大欣赏| 国产极品精品免费视频能看的| 天天躁日日操中文字幕| 国产毛片a区久久久久| 乱人视频在线观看| 日韩一区二区视频免费看| 久久精品国产清高在天天线| 校园春色视频在线观看| av国产免费在线观看| а√天堂www在线а√下载| 国产激情偷乱视频一区二区| 精品久久久久久久久av| 欧美潮喷喷水| 男女边吃奶边做爰视频| 看片在线看免费视频| 国产精品一区二区三区四区久久| 亚洲在线自拍视频| 亚洲精品日韩av片在线观看| 91久久精品国产一区二区成人| 黄色丝袜av网址大全| av在线蜜桃| 一个人免费在线观看电影| 欧美极品一区二区三区四区| 国产精品1区2区在线观看.| 欧美精品国产亚洲| 在线看三级毛片| 欧美日韩瑟瑟在线播放| 男女做爰动态图高潮gif福利片| 亚洲av免费高清在线观看| 午夜日韩欧美国产| 精华霜和精华液先用哪个| 啪啪无遮挡十八禁网站| 久久久久久久亚洲中文字幕| 日韩精品青青久久久久久| 久久6这里有精品| 人妻丰满熟妇av一区二区三区| 精品人妻1区二区| 免费搜索国产男女视频| 窝窝影院91人妻| 国产一区二区三区av在线 | 国产亚洲av嫩草精品影院| 久久香蕉精品热| 毛片一级片免费看久久久久 | 欧美性猛交黑人性爽| 国产探花在线观看一区二区| 国产一区二区在线av高清观看| 啦啦啦观看免费观看视频高清| 国产私拍福利视频在线观看| 又黄又爽又刺激的免费视频.| 草草在线视频免费看| 免费看日本二区| 亚洲自拍偷在线| 国内精品久久久久久久电影| 婷婷精品国产亚洲av在线| 热99re8久久精品国产| 成人av一区二区三区在线看| 简卡轻食公司| 日韩欧美国产一区二区入口| 两人在一起打扑克的视频| 亚洲av中文av极速乱 | 午夜a级毛片| 99久国产av精品| 亚洲真实伦在线观看| 三级毛片av免费| 国产爱豆传媒在线观看| 国产中年淑女户外野战色| 嫩草影视91久久| 国产成人aa在线观看| 老熟妇仑乱视频hdxx| 露出奶头的视频| 黄色丝袜av网址大全| 99久久精品热视频| 国产 一区 欧美 日韩| 免费电影在线观看免费观看| 又黄又爽又刺激的免费视频.| 99热只有精品国产| 国产探花在线观看一区二区| 欧美性猛交黑人性爽| 中文字幕av在线有码专区| 九九热线精品视视频播放| 亚洲中文日韩欧美视频| 亚洲狠狠婷婷综合久久图片| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久av不卡| 欧美日韩综合久久久久久 | 欧美日本视频| 在线观看美女被高潮喷水网站| 少妇的逼水好多| 亚洲最大成人av| 国产亚洲精品久久久com| netflix在线观看网站| 亚洲狠狠婷婷综合久久图片| 真人做人爱边吃奶动态| 色哟哟·www| 中文字幕av在线有码专区| 中文字幕熟女人妻在线| 天天一区二区日本电影三级| 日本 欧美在线| 精品不卡国产一区二区三区| 久久国内精品自在自线图片| 91久久精品电影网| aaaaa片日本免费| 国产午夜精品久久久久久一区二区三区 | 欧美成人性av电影在线观看| 婷婷精品国产亚洲av| 午夜老司机福利剧场| 日本黄色视频三级网站网址| 久99久视频精品免费| 日韩欧美国产一区二区入口| 久久草成人影院| 日韩中字成人| av黄色大香蕉| 床上黄色一级片| 久久久久久久久中文| 国产精品精品国产色婷婷| 欧美绝顶高潮抽搐喷水| 最近最新免费中文字幕在线| 日本黄大片高清| 一进一出抽搐动态| 深夜a级毛片| 精品99又大又爽又粗少妇毛片 | 久久人妻av系列| 最新中文字幕久久久久| 午夜激情欧美在线| 老熟妇乱子伦视频在线观看| 精品久久国产蜜桃| 国内久久婷婷六月综合欲色啪| 99国产极品粉嫩在线观看| 久久天躁狠狠躁夜夜2o2o| 日韩欧美在线乱码| 国产成年人精品一区二区| 麻豆av噜噜一区二区三区| 欧美日韩国产亚洲二区| 久久国产乱子免费精品| 亚洲五月天丁香| 天堂影院成人在线观看| 一区二区三区激情视频| 国产伦精品一区二区三区视频9| 欧美激情在线99| 老司机午夜福利在线观看视频| 日韩精品中文字幕看吧| 久久这里只有精品中国| 欧美黑人巨大hd| 亚洲精品乱码久久久v下载方式| 国产高清不卡午夜福利| 男女下面进入的视频免费午夜| 欧美成人a在线观看| 午夜久久久久精精品| 不卡一级毛片| 变态另类丝袜制服| av女优亚洲男人天堂| 免费一级毛片在线播放高清视频| 哪里可以看免费的av片| 色5月婷婷丁香| 一级毛片久久久久久久久女| 伦理电影大哥的女人| a在线观看视频网站| 日韩欧美 国产精品| 日本撒尿小便嘘嘘汇集6| 深夜a级毛片| 色尼玛亚洲综合影院| 精品午夜福利在线看| 午夜免费男女啪啪视频观看 | 日韩 亚洲 欧美在线| 日韩欧美精品v在线| 国产久久久一区二区三区| 国产91精品成人一区二区三区| 免费人成在线观看视频色| 欧美性猛交╳xxx乱大交人| 国产毛片a区久久久久| 夜夜爽天天搞| 伊人久久精品亚洲午夜| 99九九线精品视频在线观看视频| 波多野结衣巨乳人妻| 国产成年人精品一区二区| 亚洲图色成人| 欧美bdsm另类| 最新在线观看一区二区三区| 波多野结衣高清无吗| 亚洲四区av| 小说图片视频综合网站| 免费搜索国产男女视频| 免费搜索国产男女视频| 国产精品不卡视频一区二区| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 亚洲18禁久久av| 亚洲天堂国产精品一区在线| 亚洲美女视频黄频| 欧美色欧美亚洲另类二区| 我的老师免费观看完整版| 乱系列少妇在线播放| 又粗又爽又猛毛片免费看| 国内精品宾馆在线| 欧美日韩综合久久久久久 | 亚洲人成伊人成综合网2020| 亚洲av中文av极速乱 | 村上凉子中文字幕在线| 亚洲一区高清亚洲精品| 亚洲精品亚洲一区二区| 别揉我奶头~嗯~啊~动态视频| 永久网站在线| 精品人妻熟女av久视频| 22中文网久久字幕| 一夜夜www| 亚洲最大成人中文| 狂野欧美激情性xxxx在线观看| 免费一级毛片在线播放高清视频| 男女边吃奶边做爰视频| 波多野结衣巨乳人妻| 亚洲狠狠婷婷综合久久图片| 国产伦在线观看视频一区| 国产精品自产拍在线观看55亚洲| 免费av观看视频| 欧美性猛交╳xxx乱大交人| 91狼人影院| 亚洲七黄色美女视频| 人妻制服诱惑在线中文字幕| 美女xxoo啪啪120秒动态图| 伦精品一区二区三区| 一夜夜www| 色综合色国产| 最近视频中文字幕2019在线8| 国产又黄又爽又无遮挡在线| 黄片wwwwww| 国产中年淑女户外野战色| 国产av在哪里看| 特大巨黑吊av在线直播| 国产免费av片在线观看野外av| 国产av一区在线观看免费| 亚州av有码| 美女被艹到高潮喷水动态| 狂野欧美激情性xxxx在线观看| 欧美日韩国产亚洲二区| 亚洲欧美日韩卡通动漫| 亚洲av二区三区四区| 午夜免费激情av| 国产一区二区三区视频了| 能在线免费观看的黄片| av中文乱码字幕在线| 特大巨黑吊av在线直播| 久久亚洲精品不卡| 亚洲国产精品久久男人天堂| 久久久久久久久大av| 极品教师在线视频| 午夜免费成人在线视频| 人妻少妇偷人精品九色| 亚洲国产高清在线一区二区三| 亚洲国产精品成人综合色| 亚洲无线观看免费| 91久久精品国产一区二区三区| 18+在线观看网站| 国产高清有码在线观看视频| 久久久久国产精品人妻aⅴ院| 亚洲黑人精品在线| 久久香蕉精品热| 简卡轻食公司| 欧美三级亚洲精品| а√天堂www在线а√下载| 99热精品在线国产| 国产主播在线观看一区二区| 日韩 亚洲 欧美在线| 国产精品1区2区在线观看.| 久久久久久大精品| av黄色大香蕉| 亚洲美女黄片视频| 一本一本综合久久| 日韩国内少妇激情av| 哪里可以看免费的av片| 亚洲人成网站在线播| ponron亚洲| 亚洲五月天丁香| 色5月婷婷丁香| 天堂动漫精品| 亚洲男人的天堂狠狠| 此物有八面人人有两片| 国产精品久久久久久av不卡| 亚洲午夜理论影院| 日本精品一区二区三区蜜桃| 欧美成人免费av一区二区三区| 三级国产精品欧美在线观看| 91在线精品国自产拍蜜月| av专区在线播放| 国内揄拍国产精品人妻在线| 欧美xxxx性猛交bbbb| 亚洲电影在线观看av| 欧美激情在线99| 小蜜桃在线观看免费完整版高清| 久久精品国产清高在天天线| 久久精品国产99精品国产亚洲性色| 色哟哟哟哟哟哟| 毛片一级片免费看久久久久 | 中文字幕高清在线视频| 国产精品免费一区二区三区在线| 亚洲欧美精品综合久久99| 大型黄色视频在线免费观看| 禁无遮挡网站| 欧美最新免费一区二区三区| 校园人妻丝袜中文字幕| 少妇的逼水好多| 久久精品影院6| 一本精品99久久精品77| 18禁黄网站禁片免费观看直播| 麻豆av噜噜一区二区三区| 久久精品国产亚洲av香蕉五月| 国产又黄又爽又无遮挡在线| 亚洲精品粉嫩美女一区| 窝窝影院91人妻| 淫秽高清视频在线观看| 啦啦啦观看免费观看视频高清| 99热网站在线观看| 色av中文字幕| 免费看美女性在线毛片视频| 老司机深夜福利视频在线观看| 亚洲精品国产成人久久av|