• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)

    2022-08-31 09:55:36QingrongShao邵傾蓉JingMeng孟婧XiaoyanZhu朱曉艷YaliXie謝亞麗WenjuanCheng程文娟DongmeiJiang蔣冬梅YangXu徐楊TianShang商恬andQingfengZhan詹清峰
    Chinese Physics B 2022年8期
    關(guān)鍵詞:程文

    Qingrong Shao(邵傾蓉) Jing Meng(孟婧) Xiaoyan Zhu(朱曉艷)Yali Xie(謝亞麗) Wenjuan Cheng(程文娟) Dongmei Jiang(蔣冬梅)Yang Xu(徐楊) Tian Shang(商恬) and Qingfeng Zhan(詹清峰)

    1Key Laboratory of Polar Materials and Devices(MOE),School of Physics and Electronic Science,East China Normal University,Shanghai 200241,China

    2Key Laboratory of Magnetic Materials and Devices,Ningbo Institute of Material Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China

    Keywords: magnetic anisotropy,phase transition,CoFeB/FeRh,exchange coupling

    1. Introduction

    Magnetic anisotropy is a very important parameter in the application of magnetic thin film devices, which has intrinsic and extrinsic origins. When magnetic materials with cubic structure is epitaxially grown on single crystal substrates,an in-plane fourfold magnetic anisotropy can be observed due to its intrinsic cubic magnetocrystalline anisotropy, such as Fe/MgO(001)[1]and Fe3O4/GaAs(100).[2]In contrast, an amorphous magnetic film cannot show the intrinsic magnetocrystalline anisotropy due to the absence of long-range order in the crystal lattice.Extrinsic magnetic anisotropies can be resulted from various origins,such as shape of materials,[3]mechanical stress,[4,5]and interfacial exchange coupling.[6,7]The last case is prevalent in designing and fabricating magnetic materials and devices. When a ferromagnetic (FM) layer is exchange coupled to an antiferromagnetic(AFM)layer,a hysteresis loop shift and a coercivity enhancement are often observed. This kind of exchange bias(EB)coupling can induce a unidirectional anisotropy and an extra uniaxial anisotropy,for which reason the AFM materials are widely used in spintronic devices as a pinning layer.[8–12]When a soft FM layer with high saturation magnetization is exchange coupled to a hard FM layer with high coercivity, the composite materials may display a high magnetic energy product. This kind of exchange spring coupling is usually employed to design the next generation of permanent magnet materials.[13–15]Although the fourfold magnetic anisotropy is often obtained through the epitaxial growth of an FM layer with cubic structure,it cannot be induced by the interfacial exchange coupling regardless at the FM/AFM or FM/FM interfaces. Different from the exchangecoupling-induced magnetic anisotropy, the fourfold magnetic anisotropy of epitaxial magnetic films is not easy to be tuned due to its intrinsic nature.

    The CsCl-type FeRh alloy is AFM at room temperature,undergoes a first-order phase transition to FM as the temperature rises around 370 K,[16–19]and shows a coexistence of AFM and FM phases during the transition. The peculiar magnetic transition gives FeRh film potential application in thermally assisted magnetic recording storage.[20]When an AFM FeRh layer is proximate to a hard FM media of FePt layer,the exchange bias coupling occurring at the interface can increase the coercivity of FePt, thus improve the stability of magnetic information storage. After the occurrence of magnetic transition of FeRh at an elevated temperature, the exchange spring coupling between the FM FeRh and the FePt layer can significantly reduce the coercivity of FePt,thus enable the information writing with a low magnetic field.

    Soft FM material of CoFeB displays the excellent magnetic properties such as high spin polarization, high permeability, low coercivity, and low magnetic damping[21–23]due to the unique amorphous structure with the absence of dislocations and grain boundaries.[24,25]Consequently, CoFeB in the form of thin film has been widely used in spintronic devices.[22,23,26–29]Due to the lack of crystal structure,amorphous CoFeB film has no magnetocrystalline anisotropy, but usually reveals a weak uniaxial anisotropy.[30]In this paper,we realized an unusual fourfold magnetic anisotropy in amorphous CoFeB layer by means of exchange coupling to an adjacent FeRh layer which is epitaxially grown on SrTiO3(001)substrate. As the temperature increases, FeRh transfers from AFM to FM states, the induced fourfold magnetic anisotropy of the CoFeB layer switches the orientation from FeRh〈100〉to FeRh〈100〉directions, and the strength is obviously reduced.

    2. Experiment

    CoFeB(15 nm)/FeRh(50 nm) bilayer was grown onto(001) oriented SrTiO3(STO) substrate by using an ultrahigh vacuum magnetron sputtering system with a base pressure lower than 1.0×10?8Torr (1 Torr=1.33322×102Pa). The STO substrate was pre-annealed at 700?C for an hour and held at 750?C during deposition. FeRh layer was sputtered from a stoichiometric Fe50Rh50target in an argon atmosphere of 3 mTorr,and then was subjected toin situannealing at 780?C for 90 min to promote the atomic ordering. After naturally cooled to room temperature,Co40Fe40B20(CoFeB)layer was deposited on top of the FeRh layer. Reference FeRh(50 nm)and CoFeB(15 nm) single layers were grown on STO(001)by using the same growth parameters. All the samples were coated with a 3-nm Ta layer at room temperature to avoid oxidation before being taken out of the vacuum chamber. X-ray diffraction(XRD)θ–2θandΦ-scans were performed to characterize the crystalline structure and the epitaxial nature.Magnetic property measurement system (MPMS, Quantum Design) was used to characterize the magnetic phase transition.Magneto-optical Kerr effect(MOKE)setup was used to characterize the hysteresis loops at various in-plane orientations of magnetic field. Ferromagnetic resonance(FMR)measurements were carried out to obtain the magnetic anisotropy and the magnetic damping parameters.

    3. Result and discussion

    Figure 1(a) shows the x-ray diffractionθ–2θpattern of the CoFeB/FeRh bilayer grown on STO(001) substrate. The FeRh(001) and (002) diffraction peaks are clearly seen, indicating the formation of CsCl-type ordered structure with a(001)-preferential growth orientation. No CoFeB peak is detected due to the amorphous structure. The x-rayΦ-scan pattern displays four peaks separated by 90?for both STO substrate and FeRh layer, as shown in Fig. 1(b). The two sets of peaks have a 45?deviation, thus the epitaxial relationship is known to be STO(001)[010]||FeRh(001)[110],as shown in Fig.1(c). Before the subsequent temperature-dependent magnetization (M–T) measurement, a 1-T field cooling process was performed along the STO[100] orientation. The saturation magnetization of the bilayer increases from 415 emu/cc at 300 K to 1075 emu/cc at 400 K, which confirms the presence of antiferromagnetic(AFM)to ferromagnetic(FM)phase transition of FeRh,[17,31]as shown in Fig. 1(d). The reference CoFeB single layer was measured to show a magnetization of 996 emu/cc at 300 K and a slightly reduced value of 964 emu/cc at 400 K. The magnetization of FeRh layer is 143 emu/cc at 300 K and 898 emu/cc at 400 K. The residual magnetization in the AFM state is often observed to be located within 6 nm–8 nm near the top and bottom interfaces of FeRh layer,[32–36]because the presence of antisite defects at the interfaces results in some neighboring Fe–Fe atom pairs changing to FM coupling.[32]The residual magnetization of FeRh grown on STO(001)is slightly larger than that on MgO(001).[32,35]According to the lattice parametersαFeRh= 0.2995 nm,αSTO= 0.3905 nm, andαMgO=0.4216 nm, FeRh film is subjected to a compressive strain of 0.53%when epitaxially grown on MgO(001)substrate,while the compressive strain remarkably increases to 7.8%for FeRh on STO(001).[37]This epitaxial strain can be relaxed through the formation of structural defects.

    Fig. 1. X-ray (a) θ–2θ scan and (b) Φ scan of the CoFeB/FeRh bilayer grown on STO(001)substrate. The S and F marked on the diffraction peaks indicate STO and FeRh,respectively.(c)Schematic diagram of the epitaxial relationship between FeRh and STO lattices. A 1-T field cooling process was performed along STO[100],then an in-plane external field was applied in subsequent measurements at different angles ? with respect to STO[100].(d) Temperature dependence of magnetization of the CoFeB/FeRh bilayer.The critical temperatures of phase transition in the heating and cooling branches are indicated as well.

    Consequently,the large epitaxial strain imposed by STO substrate may lead to a large residual magnetization of FeRh in the AFM state. By taking a derivative of theM–Tcurves,the AFM–FM transition temperatures in the heating and cooling branches are extracted asTAFM→FM=375K andTFM→AFM=359 K, respectively. The thermal hysteresis,i.e., the difference betweenTAFM→FMandTFM→AFM, clearly indicates the first-order of phase transition of FeRh.

    Fig.2. Hysteresis loops of the CoFeB/FeRh bilayer obtained with an external magnetic field applied along the easy axis(EA)and the hard axis(HA)at(a)300 K and(b)400 K.Angular dependence of normalized Mr/Ms and Hc of the bilayer measured at(c)300 K and(d)400 K.

    Figures 2(b) shows the hysteresis loops measured at the same two magnetic field orientations at 400 K. The hysteresis loop at?=0?changes to a relatively sheared one withMr/Ms= 0.85 andHc= 40 Oe. Meanwhile, the hysteresis loop at?=45?changes to a relatively square one withMr/Ms=0.94 andHc=42 Oe. Figures 2(c) and 2(d) show the angular dependence ofMr/MsandHcextracted from the hysteresis loops obtained at 300 K and 400 K, respectively.BothMr/MsandHcreveal an in-plane fourfold symmetry. At 300 K when FeRh is in the AFM state, the maximum values appear at?=0?, 90?, 180?, and 270?,i.e., the in-plane FeRh〈110〉directions. While the minimum values are located at?=45?,135?,225?,and 315?,i.e.,the in-plane FeRh〈100〉directions. Because the angular dependence ofMr/MsandHcare direct consequence of magnetic anisotropy, the symmetry ofMr/MsandHcindicates that when exchange coupling to an AFM FeRh layer, the amorphous CoFeB layer displays a fourfold magnetic anisotropy with the easy axes orienting along the FeRh〈110〉direction and the hard axes along the FeRh〈100〉direction. At 400 K when FeRh enters into the FM state,the maximum values of bothMr/MsandHcchange to appear at?=45?,135?,225?,and 315?.The minimum values are located at?=0?,90?,180?,and 270?. Thus,the easy and hard axes of the fourfold magnetic anisotropy in CoFeB layer change to orient along the FeRh〈100〉and〈110〉directions, respectively. In contrast, the reference CoFeB single film grown on STO(001) displays a clear uniaxial magnetic anisotropy and the reference FeRh single film in the FM state reveals a fourfold magnetic anisotropy.

    Figures 3(a)and 3(b)show the typical MOKE loops measured along the easy and hard axes for the CoFeB single film at 300 K and the FeRh single film at 400 K,respectively. Figures 3(c)and 3(d)show the corresponding angular dependence ofMr/MsandHcfor the CoFeB and FeRh single films,respectively. The induced fourfold magnetic anisotropy indicates that the cubic magnetocrystalline anisotropy of the epitaxial FeRh layer either in the AFM or FM states can be imprinted into the amorphous CoFeB layer through the AFM/FM and FM/FM interfacial exchange coupling between them.Because the magnetocrystalline anisotropy of FeRh changes from the〈110〉directions in the AFM state to the〈100〉directions in the FM state,[39]the easy and hard axes of the induced fourfold anisotropy in the CoFeB layer are swapped with each other after the occurrence of phase transition of FeRh. Comparing the difference inMr/Msmeasured along the easy and hard axes,it is found that the fourfold magnetic anisotropy of the CoFeB layer induced by the AFM FeRh at 300 K is obviously higher than that by the FM FeRh at 400 K. The coercivities for the reference CoFeB/STO(001)film measured along the easy and hard axes are only 8 Oe and 3 Oe,respectively.It is clearly that the exchange coupling to FeRh layer leads to a remarkable enhancement in the coercivity of CoFeB layer. It is well known that the most common phenomena for an AFM/FM bilayer are exchange bias behaviors with the shift in its hysteresis loop and an increasement of its coercivity.[11,12,40]Although we have observed a fourfold magnetic anisotropy and obviously enhanced coercivities in the CoFeB/FeRh bilayer caused by the interfacial exchange coupling regardless of FeRh in the AFM or FM states, there is no shift in hysteresis loops when FeRh is in the AFM state even after a field cooling process.In previously well-studied AFM/FM bilayers,the pinning and rotatable uncompensated moments in the AFM surface may couple to the FM moments across the interface, respectively leading to the exchange bias field and the increasement of coercivity.The rotatable uncompensated moments can rotate following the FM moments under a magnetic field due to the exchange coupling. The pinned moments have been observed mostly below the rotatable ones. Both kinds of moments are very rare in the commonly used AFM layers, such as IrMn,CoO,etc. Synchrotron methods, such as x-ray magnetic circular dichroism,are usually required to detect them.[41,42]Different from these AFM layers,when FeRh is in the AFM state,a great number of residual FM moments can still be observed to be mostly located at the upper and bottom interfaces.[32]They actually can be viewed as the rotatable uncompensated moments distributed in the AFM matrix and well separate the exchange coupling between the below pinned uncompensated moments and the CoFeB moments. Consequently,only the increase of coercivity but no exchange bias is observed in our CoFeB/FeRh bilayer. It should be noted that the residual FM FeRh phase is different from the FM FeRh phase at an elevated temperature. It may display a magnetocrystalline anisotropy collinear with the AFM matrix, but the strength may reduce due to surface defects. Consequently, the fourfold magnetic anisotropy in the CoFeB layer is imprinted from the AFM FeRh surface with a mixture of the residual FM phase and the AFM matrix.

    Fig. 3. Hysteresis loops of (a) CoFeB/STO single film at 300 K and (b)FeRh/STO single film at 400 K obtained with an external magnetic field applied along the easy axis (EA) and the hard axis (HA). The corresponding angular dependence of normalized Mr/Ms and Hc of (c) CoFeB/STO film and(d)FeRh/STO film.

    wherefis the microwave frequency fixed at 9.3 GHz in the measurements,γis the gyromagnetic ratio.KuandK1are the in-plane uniaxial and fourfold anisotropy constants, respectively. Figure 4(c) shows the temperature dependence ofK1/MandKu/Mof the bilayer.TheK1/Mhas a small value of 2.7 Oe at 300 K. It significantly increases when crossing the AFM–FM phase transition temperature and reaches a maximum value of 19.3 Oe at 400 K.TheKu/Mhas a small value lower than 2 Oe over the entire measuring temperature range.When FeRh is in the AFM state at 300 K, theK1andKuobtained by FMR are the anisotropies of the CoFeB layer. However, when the temperature rises from 300 K to 400 K, the AFM FeRh gradually transfers to FM,which contributes to the FMR signal.Thus,the obtainedK1andKuare the anisotropies of the coupled FM bilayers.TheK1/Mof the FeRh single film is also measured as 38.4 Oe at 400 K by FMR, which is significantly larger than the value of the bilayer. Obviously, the exchange coupling to the CoFeB layer can significantly reduce theK1/M. The orientation ofKushows a complicated dependence on temperature, which is because of the competition between the different sources. The CoFeB layer itself possesses a uniaxial magnetic anisotropyKuCFB. The ferromagnetic FeRh phase also displays a uniaxial magnetic anisotropyKuFeRh. The exchange coupling between CoFeB and FeRh can additionally induce a uniaxial magnetic anisotropyKuex.When FeRh starts to transfer from AFM to FM,the three components may change with temperatures,resulting in the variation ofKu.

    Fig. 4. (a) Representative FMR spectrum (open dots) for the CoFeB/FeRh bilayer measured along FeRh1ˉ10at 300 K. The corresponding fitting result (black line) consists of the symmetric (red line) and antisymmetric (blue line) parts. (b) The extracted resonance field Hr as a function of the in-plane magnetic field orientation ? at different temperatures. The solid lines are the fitting to Eq. (2). (c) Temperature dependence of the fitting parameters of K1/M and Ku/M.

    whereΓ0,Γ2, andΓ4are the parameters of the constant,twofold, and fourfold terms in the TMS contribution, respectively. The Gilbert damping together with the TMS constant term forms the effective damping and is expressed asαeff=α+Γ0/2M, which does not vary with the orientations of applied magnetic field. As shown in Fig.5(a), the angular dependent linewidth can be well fitted to Eq.(3).

    Figure 5(b)shows the fitting parameter ofαeffas a function of temperature. When FeRh is in the AFM state, theαeffof the CoFeB/FeRh bilayer is as small as 2.9×10?2at 300 K.When FeRh enters into the FM state,theαeffincreases to 5.0×10?2at 400 K.For comparison,theαeffof the CoFeB single film is 1.0×10?2at 300 K, and theαeffof the FeRh single film decreases from 7.9×10?2at 360 K to 5.8×10?2at 400 K. The FMR signal of the nominally AFM FeRh is too weak to be detected when the temperature is below 360 K.It is obviously that the interfacial exchange coupling in the CoFeB/FeRh bilayer can increase the magnetic damping of the soft CoFeB layer and pull down that of the FM FeRh layer, which is consistent with many previous reports on the enhancement ofαeffin FM/AFM systems.[53–56]Theαeffdisplays an anomalously large value of 6.5×10?2at 380 K during the regime of phase transition,which is probably because the AFM FeRh moments stay in an unstable state and can rotates following the FM FeRh moments. This feature is similar to the phenomenon occurred in the FM/AFM exchange biased bilayers,the coercivity displays a peak value when the AFM moments become unstable with reducing the thickness to a critical value.[57]

    The fourfold TMS coefficientΓ4is as small as 11.9 Oe at 300 K. As FeRh transfers from the AFM to FM states,theΓ4remarkably increases to 202.2 Oe at 400 K, as show in Fig. 5(c). The change of the fourfold symmetry of ?Hat 360 K indicates that the direction of the maximum scattering changes from FeRh〈100〉to FeRh〈110〉with the occurrence of the AFM–FM phase transition of FeRh. The twofold TMS coefficientΓ2keeps a small value around 6.2 Oe before 340 K and sharply increases to 54.2 Oe at 400 K.Similar to theαeff,theΓ2also displays an anomalously large value of 105.5 Oe at 380 K when FeRh stays in a mixed AFM–FM state.

    Fig.5. (a)The linewidth ?H as a function of the in-plane magnetic field orientation ? at different temperatures for the CoFeB/FeRh bilayer.The solid lines are the fitting to Eq.(3). Temperature dependence of(b)the effective damping coefficients αeff and(c)the TMS coefficients of Γ4 and Γ2 for the bilayer. The αeff for the reference CoFeB and FeRh single layers are presented as well.

    4. Conclusion

    In summary, we fabricated amorphous CoFeB/epitaxial FeRh bilayer on STO(001) substrate. The MOKE measurements indicate that when exchange coupling to the epitaxial FeRh layer, the angular dependence of bothMr/MsandHcof CoFeB layer display a fourfold symmetry which both changes with the magnetic phase transition of FeRh layer.The exchange-coupling-induced fourfold magnetic anisotropy of CoFeB layer changes from FeRh〈110〉to FeRh〈100〉directions with a remarkably reduced strength when FeRh transfers from AFM to FM states upon heating. The anisotropic FMR linewidths obtained at different temperatures demonstrate an obviously enhanced effective magnetic damping and the twomagnon scattering as the magnetic phase transition of FeRh occurs. No shift of hysteresis loop or unidirectional magnetic anisotropy was observed the CoFeB/FeRh bilayer even when FeRh is in the AFM state,which is probably because the residual FM FeRh moments located at the interface can well separate the coupling between the pinned FeRh moments and the CoFeB moments.

    Acknowledgements

    A portion of this work was performed on the Steady High Magnetic Field Facilities, High Magnetic Field Laboratory,Chinese Academy of Sciences.

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11874150, 51871233, and 12174103) and the Natural Science Foundation of Shanghai(Grant Nos.21ZR1420500 and 21JC1402300).

    猜你喜歡
    程文
    為糖屈膝
    為糖屈膝
    《室內(nèi)空間設(shè)計》
    為糖屈膝
    獻(xiàn)給綠化合肥的圓夢者
    安徽園林(2018年3期)2018-10-09 05:36:24
    CRE Solvability,Nonlocal Symmetry and Exact Interaction Solutions of the Fifth-Order Modi fied Korteweg-de Vries Equation?
    男子接連犯罪,只為離婚
    中外文摘(2016年5期)2016-10-21 10:08:14
    “軟男”的奇葩選擇,5次犯罪為離婚
    “軟男”的奇葩選擇,5次犯罪為離婚
    Mechanical Behavior of Bistable Bump Surface for Morphing Inlet
    日韩伦理黄色片| 国产黄频视频在线观看| 欧美日韩在线观看h| 五月玫瑰六月丁香| 人妻人人澡人人爽人人| 一个人免费看片子| 寂寞人妻少妇视频99o| 亚洲综合色惰| 久久 成人 亚洲| 热re99久久精品国产66热6| 日韩视频在线欧美| 插逼视频在线观看| 日韩精品有码人妻一区| 亚洲成人手机| 高清在线视频一区二区三区| 在线精品无人区一区二区三| 婷婷色综合大香蕉| 精品久久国产蜜桃| 日韩免费高清中文字幕av| 蜜桃久久精品国产亚洲av| 内射极品少妇av片p| 日产精品乱码卡一卡2卡三| 日本猛色少妇xxxxx猛交久久| 我要看黄色一级片免费的| 久久精品国产鲁丝片午夜精品| 黄色配什么色好看| 亚洲欧美成人综合另类久久久| 精品国产乱码久久久久久小说| 有码 亚洲区| 男女国产视频网站| 国产av精品麻豆| 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区黑人 | 午夜视频国产福利| 麻豆成人av视频| 女性生殖器流出的白浆| 国产有黄有色有爽视频| 男人舔奶头视频| 亚洲av男天堂| 精品一区在线观看国产| 高清不卡的av网站| 国内精品宾馆在线| 建设人人有责人人尽责人人享有的| 熟妇人妻不卡中文字幕| 秋霞伦理黄片| 尾随美女入室| 免费人妻精品一区二区三区视频| 久久综合国产亚洲精品| 国产无遮挡羞羞视频在线观看| 久久av网站| 只有这里有精品99| 啦啦啦中文免费视频观看日本| 成人二区视频| 波野结衣二区三区在线| 精品午夜福利在线看| 日本欧美国产在线视频| 久久精品熟女亚洲av麻豆精品| 在线看a的网站| 国产精品人妻久久久影院| 夜夜骑夜夜射夜夜干| 久久久a久久爽久久v久久| 国产有黄有色有爽视频| 亚洲内射少妇av| 亚洲国产色片| 另类亚洲欧美激情| 亚洲精品日韩av片在线观看| 嫩草影院入口| 国产精品麻豆人妻色哟哟久久| 一级毛片黄色毛片免费观看视频| 国产亚洲欧美精品永久| 国产精品久久久久久精品电影小说| 日韩电影二区| 街头女战士在线观看网站| 97在线视频观看| 狂野欧美白嫩少妇大欣赏| 国产在线男女| 婷婷色综合大香蕉| 一本大道久久a久久精品| 久久久久久久亚洲中文字幕| 两个人的视频大全免费| 美女xxoo啪啪120秒动态图| 韩国高清视频一区二区三区| 欧美+日韩+精品| 亚洲天堂av无毛| 国产免费视频播放在线视频| tube8黄色片| 免费观看av网站的网址| 国产视频首页在线观看| 中文字幕免费在线视频6| 成人免费观看视频高清| 色婷婷av一区二区三区视频| 亚洲国产精品成人久久小说| 麻豆成人av视频| 精品久久久久久久久亚洲| 卡戴珊不雅视频在线播放| 欧美成人午夜免费资源| 夜夜看夜夜爽夜夜摸| 各种免费的搞黄视频| 男人和女人高潮做爰伦理| 国产淫语在线视频| av播播在线观看一区| 人人妻人人添人人爽欧美一区卜| 国产精品伦人一区二区| 国产精品一区二区在线观看99| 日日撸夜夜添| 大香蕉97超碰在线| 国产精品不卡视频一区二区| 久久精品久久久久久噜噜老黄| 91精品伊人久久大香线蕉| 97在线人人人人妻| 你懂的网址亚洲精品在线观看| 女人精品久久久久毛片| 五月天丁香电影| 性色av一级| 人人妻人人爽人人添夜夜欢视频 | 精品久久久久久久久av| 国产中年淑女户外野战色| 亚洲国产精品999| 亚洲熟女精品中文字幕| 日韩免费高清中文字幕av| 久久精品熟女亚洲av麻豆精品| 国产极品天堂在线| 18禁在线无遮挡免费观看视频| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久久久大奶| 免费观看性生交大片5| 国产欧美日韩一区二区三区在线 | 99热网站在线观看| 欧美 亚洲 国产 日韩一| 国产免费又黄又爽又色| 一区二区三区精品91| 一区二区三区四区激情视频| 精品亚洲乱码少妇综合久久| 热re99久久精品国产66热6| 看十八女毛片水多多多| 精品久久国产蜜桃| 久久久久久久大尺度免费视频| 最近中文字幕2019免费版| 啦啦啦在线观看免费高清www| 欧美xxxx性猛交bbbb| 人人妻人人爽人人添夜夜欢视频 | 99热这里只有是精品在线观看| 久久鲁丝午夜福利片| 亚洲伊人久久精品综合| 黄色视频在线播放观看不卡| 久久久久久久久久成人| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩在线观看h| 亚洲高清免费不卡视频| 午夜视频国产福利| 少妇人妻久久综合中文| 少妇熟女欧美另类| 三级经典国产精品| 久久久精品94久久精品| 久久精品国产亚洲av天美| 国产av精品麻豆| 亚洲av不卡在线观看| av天堂中文字幕网| 成人18禁高潮啪啪吃奶动态图 | 一个人免费看片子| 国产真实伦视频高清在线观看| 好男人视频免费观看在线| 国产精品麻豆人妻色哟哟久久| 亚洲激情五月婷婷啪啪| 日日爽夜夜爽网站| 大又大粗又爽又黄少妇毛片口| 蜜臀久久99精品久久宅男| 日日爽夜夜爽网站| 久久久精品免费免费高清| 少妇人妻一区二区三区视频| 亚洲成人手机| 国产毛片在线视频| 久久久久久伊人网av| 国产片特级美女逼逼视频| 熟女av电影| 精品国产一区二区久久| 少妇 在线观看| 五月开心婷婷网| 国产一区亚洲一区在线观看| 晚上一个人看的免费电影| 色网站视频免费| 一级a做视频免费观看| 亚洲欧美日韩另类电影网站| 国产黄片美女视频| 高清av免费在线| 国产精品久久久久久精品古装| 美女脱内裤让男人舔精品视频| 伦理电影免费视频| 观看免费一级毛片| 3wmmmm亚洲av在线观看| 欧美xxxx性猛交bbbb| 日本黄色日本黄色录像| 我的女老师完整版在线观看| 如何舔出高潮| 九九在线视频观看精品| 综合色丁香网| 久久久久久久亚洲中文字幕| 成人国产麻豆网| 国产精品一区www在线观看| 亚洲国产日韩一区二区| 亚洲av福利一区| 丝袜在线中文字幕| 三级国产精品欧美在线观看| 久久青草综合色| 亚洲av成人精品一区久久| 亚洲精品,欧美精品| 插阴视频在线观看视频| 日韩,欧美,国产一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 国产乱来视频区| 老司机影院毛片| 91久久精品国产一区二区三区| 久久久久久久国产电影| 国产极品天堂在线| 国产淫片久久久久久久久| 亚洲性久久影院| 久久久久精品久久久久真实原创| 热99国产精品久久久久久7| 一个人看视频在线观看www免费| 中国三级夫妇交换| 纯流量卡能插随身wifi吗| 国产女主播在线喷水免费视频网站| 亚洲,一卡二卡三卡| 精品视频人人做人人爽| 美女国产视频在线观看| 免费在线观看成人毛片| 国产精品一区二区性色av| 嫩草影院新地址| 一级爰片在线观看| 精品久久久久久电影网| 三级国产精品片| 欧美区成人在线视频| 免费大片18禁| 国产又色又爽无遮挡免| 在线观看三级黄色| 日日啪夜夜爽| 最黄视频免费看| 曰老女人黄片| 亚洲电影在线观看av| 人人澡人人妻人| 99热这里只有是精品50| 成人国产麻豆网| 久久精品国产亚洲网站| 国内少妇人妻偷人精品xxx网站| 最近中文字幕高清免费大全6| 国产欧美日韩精品一区二区| 一本—道久久a久久精品蜜桃钙片| 免费看日本二区| 交换朋友夫妻互换小说| 插阴视频在线观看视频| 久久女婷五月综合色啪小说| 中国国产av一级| 丝袜喷水一区| 少妇丰满av| 99热6这里只有精品| 成人亚洲欧美一区二区av| 成人18禁高潮啪啪吃奶动态图 | 中文资源天堂在线| 午夜久久久在线观看| 亚洲图色成人| 国产熟女午夜一区二区三区 | 日韩电影二区| 国产一区亚洲一区在线观看| 国产日韩欧美亚洲二区| 最新中文字幕久久久久| 一级av片app| 天天躁夜夜躁狠狠久久av| 一区二区三区免费毛片| 国产成人精品福利久久| 青青草视频在线视频观看| 一级毛片aaaaaa免费看小| 亚洲av成人精品一二三区| 麻豆精品久久久久久蜜桃| 午夜福利在线观看免费完整高清在| 亚洲色图综合在线观看| 国产探花极品一区二区| 97在线视频观看| 国产精品麻豆人妻色哟哟久久| 国产欧美日韩综合在线一区二区 | 亚洲av日韩在线播放| 亚洲成人手机| 成人免费观看视频高清| 一二三四中文在线观看免费高清| 午夜福利,免费看| 一级a做视频免费观看| 国产亚洲av片在线观看秒播厂| 一区在线观看完整版| 欧美精品亚洲一区二区| 男的添女的下面高潮视频| 能在线免费看毛片的网站| 日本黄色日本黄色录像| 天美传媒精品一区二区| 麻豆成人av视频| 久久久精品94久久精品| 两个人免费观看高清视频 | 午夜免费男女啪啪视频观看| 九色成人免费人妻av| 精品亚洲乱码少妇综合久久| 九九久久精品国产亚洲av麻豆| 亚洲av综合色区一区| 精品人妻偷拍中文字幕| 精品一区二区三区视频在线| 两个人的视频大全免费| 国产精品久久久久久精品电影小说| 一级毛片黄色毛片免费观看视频| 亚洲va在线va天堂va国产| 日韩熟女老妇一区二区性免费视频| 成人18禁高潮啪啪吃奶动态图 | 九草在线视频观看| 欧美日韩视频高清一区二区三区二| 亚洲丝袜综合中文字幕| 2018国产大陆天天弄谢| 美女中出高潮动态图| 亚洲一级一片aⅴ在线观看| 中文字幕制服av| 街头女战士在线观看网站| 少妇人妻精品综合一区二区| 男女啪啪激烈高潮av片| 97精品久久久久久久久久精品| 欧美成人午夜免费资源| 视频区图区小说| 在线观看www视频免费| 男女啪啪激烈高潮av片| 97精品久久久久久久久久精品| 我的老师免费观看完整版| 国语对白做爰xxxⅹ性视频网站| 看十八女毛片水多多多| 99久久综合免费| 精品人妻熟女毛片av久久网站| 亚洲精品国产色婷婷电影| av专区在线播放| 午夜激情久久久久久久| 成年女人在线观看亚洲视频| 夫妻午夜视频| 少妇的逼水好多| 一级片'在线观看视频| 丝袜喷水一区| 大码成人一级视频| 国产免费又黄又爽又色| 免费久久久久久久精品成人欧美视频 | 日本与韩国留学比较| 曰老女人黄片| 一级,二级,三级黄色视频| 精品一区二区三区视频在线| 久久热精品热| 99热全是精品| 国产精品无大码| 国产美女午夜福利| 亚洲一区二区三区欧美精品| 国产日韩欧美视频二区| 只有这里有精品99| 一级av片app| 国产午夜精品久久久久久一区二区三区| 少妇 在线观看| a级毛片在线看网站| 乱系列少妇在线播放| 欧美精品人与动牲交sv欧美| 狂野欧美激情性bbbbbb| 婷婷色麻豆天堂久久| 亚洲四区av| 亚洲电影在线观看av| 春色校园在线视频观看| 高清视频免费观看一区二区| av免费在线看不卡| 亚洲国产av新网站| 国产熟女午夜一区二区三区 | 亚洲伊人久久精品综合| 久久国内精品自在自线图片| 日韩视频在线欧美| 久久久午夜欧美精品| 视频中文字幕在线观看| 乱人伦中国视频| 午夜福利网站1000一区二区三区| 少妇裸体淫交视频免费看高清| 十八禁高潮呻吟视频 | 在线免费观看不下载黄p国产| 久久久国产精品麻豆| 高清av免费在线| 亚洲不卡免费看| 亚洲av国产av综合av卡| 王馨瑶露胸无遮挡在线观看| 国产精品不卡视频一区二区| 国产精品国产三级国产av玫瑰| 国产精品久久久久久久久免| 纵有疾风起免费观看全集完整版| 亚洲欧美日韩卡通动漫| 少妇的逼水好多| 一本色道久久久久久精品综合| 在线观看www视频免费| 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 日本-黄色视频高清免费观看| 一本大道久久a久久精品| 精品熟女少妇av免费看| 精品人妻熟女av久视频| 欧美亚洲 丝袜 人妻 在线| 日本黄色片子视频| 自拍偷自拍亚洲精品老妇| 亚洲av综合色区一区| 国产亚洲5aaaaa淫片| 国产亚洲精品久久久com| 在线亚洲精品国产二区图片欧美 | 久久久久久久精品精品| 国产精品蜜桃在线观看| 日本免费在线观看一区| 国产日韩一区二区三区精品不卡 | 国产深夜福利视频在线观看| 桃花免费在线播放| 黄色欧美视频在线观看| 伦理电影免费视频| 伊人久久精品亚洲午夜| 99九九在线精品视频 | 久久人人爽人人片av| 日本与韩国留学比较| 亚洲国产欧美日韩在线播放 | 一级毛片aaaaaa免费看小| 免费av中文字幕在线| 18+在线观看网站| 9色porny在线观看| 国产精品一区二区三区四区免费观看| 亚洲国产最新在线播放| 纵有疾风起免费观看全集完整版| 国产视频内射| 日韩伦理黄色片| 乱人伦中国视频| 各种免费的搞黄视频| 一级毛片aaaaaa免费看小| 狂野欧美激情性xxxx在线观看| 尾随美女入室| 国产成人a∨麻豆精品| 欧美区成人在线视频| 女性被躁到高潮视频| 精品人妻偷拍中文字幕| 国产一级毛片在线| 久久久久久伊人网av| 夜夜爽夜夜爽视频| 久久久久人妻精品一区果冻| 欧美日本中文国产一区发布| 一区二区三区乱码不卡18| 亚洲欧美一区二区三区黑人 | 少妇丰满av| 丁香六月天网| 丰满乱子伦码专区| 看免费成人av毛片| 一级毛片我不卡| 国产女主播在线喷水免费视频网站| 少妇 在线观看| 日本色播在线视频| 久久久久久久久久久丰满| 777米奇影视久久| 亚洲人成网站在线观看播放| av在线播放精品| 九九在线视频观看精品| 狂野欧美激情性bbbbbb| 婷婷色综合大香蕉| 欧美精品高潮呻吟av久久| 一边亲一边摸免费视频| 免费看不卡的av| 丰满迷人的少妇在线观看| 亚洲人成网站在线观看播放| 日韩av免费高清视频| 热re99久久国产66热| 99热全是精品| 日韩中文字幕视频在线看片| 热re99久久精品国产66热6| 亚洲精品自拍成人| 亚洲国产色片| 制服丝袜香蕉在线| 最近手机中文字幕大全| 欧美最新免费一区二区三区| 高清不卡的av网站| 国产成人freesex在线| 人人妻人人添人人爽欧美一区卜| 日韩成人伦理影院| 免费av中文字幕在线| 成年女人在线观看亚洲视频| 亚洲自偷自拍三级| 精品亚洲成国产av| 日韩制服骚丝袜av| 丝瓜视频免费看黄片| 免费播放大片免费观看视频在线观看| 亚洲第一av免费看| 天堂8中文在线网| 精品一区二区三区视频在线| 在线观看av片永久免费下载| 水蜜桃什么品种好| 免费观看在线日韩| 自拍偷自拍亚洲精品老妇| 久久ye,这里只有精品| 中文字幕久久专区| 亚洲自偷自拍三级| 黑人巨大精品欧美一区二区蜜桃 | 少妇熟女欧美另类| 日韩人妻高清精品专区| 在线 av 中文字幕| av.在线天堂| 精品国产国语对白av| 色94色欧美一区二区| 国产精品久久久久久av不卡| 色94色欧美一区二区| 六月丁香七月| av福利片在线观看| 午夜91福利影院| 色网站视频免费| 亚洲va在线va天堂va国产| 国产有黄有色有爽视频| 夜夜骑夜夜射夜夜干| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 日本黄大片高清| 国产淫片久久久久久久久| 日本黄大片高清| 99热全是精品| 日日撸夜夜添| 中文资源天堂在线| 一本久久精品| 日本与韩国留学比较| 国产日韩欧美亚洲二区| 久久影院123| .国产精品久久| 亚洲人与动物交配视频| 日本wwww免费看| 午夜视频国产福利| 美女内射精品一级片tv| 在线观看av片永久免费下载| 欧美成人午夜免费资源| 成人特级av手机在线观看| 国产白丝娇喘喷水9色精品| 下体分泌物呈黄色| 精品久久久久久久久亚洲| 精品一区二区三卡| 最近中文字幕高清免费大全6| 寂寞人妻少妇视频99o| 免费看日本二区| 在线观看三级黄色| 成年人免费黄色播放视频 | 久久久久久久久久人人人人人人| 亚洲欧美一区二区三区国产| 视频区图区小说| 成人午夜精彩视频在线观看| 精品少妇内射三级| 亚洲av中文av极速乱| 亚洲国产精品国产精品| 日韩强制内射视频| 欧美日韩综合久久久久久| 午夜激情福利司机影院| 九九久久精品国产亚洲av麻豆| 午夜免费男女啪啪视频观看| 能在线免费看毛片的网站| 一区二区三区精品91| 丝袜喷水一区| 久久久久久久精品精品| 天天操日日干夜夜撸| 中文字幕免费在线视频6| 国产精品欧美亚洲77777| 久久女婷五月综合色啪小说| 日韩一区二区三区影片| 免费不卡的大黄色大毛片视频在线观看| 国产伦在线观看视频一区| 2021少妇久久久久久久久久久| 久久国产乱子免费精品| 日韩精品免费视频一区二区三区 | 亚洲国产av新网站| 在线播放无遮挡| 免费观看的影片在线观看| 国产真实伦视频高清在线观看| 成人综合一区亚洲| 91精品伊人久久大香线蕉| 这个男人来自地球电影免费观看 | 中文字幕人妻丝袜制服| 久久精品久久久久久久性| 亚洲av福利一区| 伦理电影大哥的女人| 少妇 在线观看| 七月丁香在线播放| 精品少妇黑人巨大在线播放| 国产 精品1| 亚洲欧洲国产日韩| 欧美老熟妇乱子伦牲交| 大香蕉97超碰在线| 少妇丰满av| 国产成人午夜福利电影在线观看| 亚洲欧美清纯卡通| 欧美日韩精品成人综合77777| a级一级毛片免费在线观看| 能在线免费看毛片的网站| 如日韩欧美国产精品一区二区三区 | 国产亚洲一区二区精品| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产色片| 99久久精品热视频| 亚洲,欧美,日韩| 下体分泌物呈黄色| 99热网站在线观看| 国产探花极品一区二区| 国产黄色视频一区二区在线观看| av免费在线看不卡| 亚洲国产日韩一区二区| 免费黄色在线免费观看| 最近最新中文字幕免费大全7| 亚洲国产日韩一区二区| 亚洲精品第二区| 亚洲一级一片aⅴ在线观看| 岛国毛片在线播放| 秋霞在线观看毛片| 亚洲av福利一区| 波野结衣二区三区在线| 成人二区视频| 黑人猛操日本美女一级片| 精品国产一区二区三区久久久樱花| 美女视频免费永久观看网站| 男女国产视频网站| 亚洲欧美精品自产自拍| 99久久人妻综合| 亚洲精品久久午夜乱码|