• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain

    2022-08-31 09:55:36XiaoChenNa那小晨NanSi司楠FengGeZhang張鳳閣andWeiJiang姜偉
    Chinese Physics B 2022年8期
    關(guān)鍵詞:姜偉

    Xiao-Chen Na(那小晨) Nan Si(司楠) Feng-Ge Zhang(張鳳閣) and Wei Jiang(姜偉)

    1School of Science,Shenyang University of Technology,Shenyang 110870,China

    2School of Environmental and Chemical Engineering,Shenyang University of Technology,Shenyang 110870,China

    3School of Electric Engineering,Shenyang University of Technology,Shenyang 110870,China

    Keywords: octahedral chain,magnetization plateaus,hysteresis loops,blocking temperature

    1. Introduction

    At low temperatures,the magnetic and electronic behavior of some chains may exhibit dependence on the value of the spin.[1,2]This phenomenon has garnered tremendous attention as differing behaviors were demonstrated when compared to the bulk matter of the same element.[3,4]Specifically,the focus has been on one-dimensional (1D) magnetic spin chains with transition metal ions due to their inherent magnetic anisotropies and potential application for information storage at the molecular scale.[5–11]Galisovaet al.investigated the orthogonal-dimer chain using the classical transfermatrix approach.[12]The results suggested that various ground states lead to six-type magnetization depending on three exchange couplings.

    Additionally, the ferromagnetic phase and frustrated ferrimagnetic phase have both been discovered. Based on the Markov property of the dilute Ising chain, Panov obtained an explicit expression for the probability of any finite sequence.[13]He pointed out that the disordered dilute Ising chain with the regular Markov chain, while the ordering gives rise to the irregular Markov chain. Fabrelliet al.investigated the spin-1 field-induced antiferromagnet using a combination of experimental and theoretical techniques and delimited the quasi-1D region using quantum Monte Carlo calculations.[14]Daset al.synthesized the 1D spin-chain compound Ca3Co2?xFexO6and examined its magnetic properties.Some of the low-spin Co3+ions were converted into Co2+ions or, occasionally, both spin states experienced crossover due to the Fe-doping levelx.[15]By employing the transfermatrix method, the ground state phase diagram of spin-1/2 orthogonal-dimer chains has been investigated.[16]Magnetic properties of the quasi-1D spin-1 diamond chain with singleion anisotropy have also been discussed. The ground state phases exhibited an interesting frustrated state,with the magnetization forming different plateaus.[17]With Monte Carlo simulations, the magnetic properties of the mixed spins-5/2 and 3/2 Ising octahedral chains were investigated.[18]The ground state phase diagrams were determined and the magnetization and magnetic susceptibilities were obtained for this system with several typical anisotropies. If the system is chosen to mixed spins with integer(2)and half-integer(3/2)spins,will the magnetic properties differ from those of only mixed spins with half-integer(5/2,3/2)spins? In this study,we adopt the octahedral chain illustrated in Fig. 1. The blue and purple balls represent the spin-3/2 and 2 magnetic atoms,respectively. The solid and dotted lines depict the nearest neighbor ferromagneticJ(<0) and ferrimagneticJ1(<0) exchange couplings,respectively. The mixed spin-3/2 and 2 Ising model is employed to introduce the octahedral chain, as this is one of the most effective models for solving one-,two-and threedimensional problems.[19–22]

    To examine this model, an effective field theory (EFT)was employed to analyze the magnetism.[23–26]In our previous studies, we have successfully employed an EFT to study magnetic characteristics of nano-systems.[27–35]The purpose of this study is to investigate the magnetic properties of the octahedral chain described by the mixed spin Ising model based on the EFT.This method takes into account the correlation of spin itself and is therefore superior to mean field theory. In Section 2,the Hamiltonian and a phase transition formula are derived for an octahedral chain using the EFT.In Section 3,the magnetization plateaus, hysteresis loops, and phase diagrams are calculated,while the final section presents some concluding remarks.

    2. Calculation method

    An octahedral chain with two types of magnetic atoms is depicted in Fig.1. The initial spins of the blue balls along the magnetic field(h)are anti-parallel to those of the purple balls.The ferromagnetic exchange couplingJis set to unity(J=1).Using the EFT,the Hamiltonian for the octahedral chain is

    Fig.1. Schematic of the mixed spin octahedral chain.

    3. Numerical results and discussion

    In this section,some typical results based on the magnetic properties of the octahedral chain described by the ferrimagnetic mixed Ising model are investigated. Suppose that the spin-3/2 at the blue sites is parallel to the magnetic field (h),while the spin-2 at the purple sites is anti-parallel and the ferromagnetic exchange coupling is set to unity.

    3.1. Magnetization plateaus and hysteresis loops of the octahedral chain

    The step effects exhibited at low temperatures by the magnetization of the system with an increasing magnetic field are known as magnetization plateaus. Generally, the number of plateaus depends on the values of spin and other parameters. The effects of the exchange couplingJ1and anisotropiesD1andD2on the octahedral chain are examined in Figs.2–4 at a fixed temperature ofT=0.06. The solid,dashed,and dotdashed lines denote the total average(M),A(Ma)and B(Mb)sublattice magnetizations,respectively.

    The magnetization versus the magnetic field for the octahedral chain withD1=?0.5,D2=?3.5 and various values ofJ1are depicted in Figs.2(a)and 2(b). In these figures,magnetization plateaus are observed at the curves. The critical magnetic fieldhcis defined as the smallest magnetic field required for the magnetization to transition from one plateau to another,while that of the last plateau is known as the saturated magnetic fieldhs. In Fig. 2(a), three magnetization plateaus are observed atM=6/5, 7/5, and 8/5 withJ1=?0.2, corresponding tohc1=6.26 andhs=13.36, respectively. The sublatticeMaremains constant for the spin 3/2 state,whileMbmoves from a 0 to a +2 spin state ashincreases. The magnetization plateaus are sensitive to sublattice plateaus, such asM=[4×(3/2)+0]/5=6/5. In Fig. 2(b), four magnetization plateaus are observed atM= 1, 6/5, 7/5, and 8/5 withJ1=?0.7, corresponding tohc1= 5.26,hc2= 12.26,andhs= 19.36, respectively. The spin ofMbmoves from a?1 to a +2 state ashincreases, which differs from the previous example. An additional plateau was observed due toM=[4×(3/2)+(?1)]/5=1. Comparing Fig. 2(a) and Fig.2(b),the values ofhcandhsfor the same plateau increase with the increasing|J1|.

    Fig.2. Magnetization plateaus of the octahedral chain with various J1:(a)?0.2 and(b)?0.7.

    The magnetization against magnetic field for the octahedral chain withJ1=?0.7 andD2=?3.5 for variousD1are presented in Figs. 3(a) and 3(b). In Fig. 3(a), four magnetization plateaus are observed atM=1, 6/5, 7/5, and 8/5 withD1=?1.5, corresponding tohc1=5.26,hc2=12.26,andhs=19.36, respectively. In Fig. 3(b), six magnetization plateaus are observed atM=?2/5, 2/5, 3/5, 6/5, 7/5, and 8/5 withD1=?4.5, corresponding tohc1=0.54,hc2=6.8,hc3=9.1,hc4=12.26,andhs=19.26,respectively. Interestingly,Mbis inverted from 1 to 0,whileMamoves from spin 1/2 to spin 3/2 athc3. This phenomenon arises due to the opposite directions of the initial spins of the two types of sublattices(MaandMb) owing to the ferrimagnetic exchange coupling(J1<0). To retain this ferrimagnetic exchange coupling,they must change simultaneously. That is,MaandMbsimultaneously move up and down, respectively. Comparing the two cases,the critical magnetic fields increase with the increasing|D1|for the same plateau under lower magnetic fields. However, the saturated magnetic fieldhsretains the same value.The corresponding plateaus are similar for both the cases,for example,M=(4×3/2?0)/5=6/5 for bothD1=?1.5 and?4.5.

    Fig.3. Magnetization plateaus of the octahedral chain for various D1:(a)?1.5 and(b)?4.5.

    The magnetization versus magnetic field for the octahedral chain withJ1=?0.7 andD1=?0.5 for various values ofD2is illustrated in Figs.4(a)and 4(b). In Fig.4(a),five magnetization plateaus are observed from five spin states,?2,?1,

    Fig.4. Magnetization plateaus of the octahedral chain for various D2:(a)?1.5,(b)?3.5.

    0,1,and 2 forMb.They are observed atM=4/5,5/5,6/5,7/5,and 8/5 forD2=?1.5,corresponding tohc1=4.4,hc2=7.26,hc3=10.26, andhs=13.26, respectively. In Fig. 4(b), four magnetization plateaus are observed atM=5/5,6/5,7/5,and 8/5 forD2=?3.5,corresponding tohc1=5.26,hc2=12.26,andhs=19.26,respectively. Comparing the two figures,one of the lowered plateaus is due to the absence of the?2 spin state inMb. The multi-spin states of the system are sensitive to various parameters, stronger anisotropy makes the system in a low spin state, whereas weaker one makes it in a high spin state. This results in a different number of magnetization plateaus.

    Figures 5(a)–5(d)demonstrate the effect of the ferrimagnetic exchange couplingJ1on the magnetic hysteresis loops and the coercivity of the octahedral chain withD1=?0.5 andD2=?3.5 at a fixed temperatureT=0.06.With increasingh,the curve saturates atMs=8/5 in Fig.5(a),whereJ1=?0.2.The coercivity and the remanence areHc=2.16 andMr=6/5,respectively. To explain the origin of the overall hysteresis loops,the magnetic hysteresis loops of the sublattices are plotted in Fig. 5(b) with the same parameters.MaandMbexhibit different dependencies for various values ofh,which determines the shape of the overall hysteresis loop. They also account for the source ofMs= (4×3/2+2)/5 = 8/5. In Fig.5(c),whereJ1=?0.7,the coercivity and the remanence areHc=2.26 andMr=5/5, respectively. In comparison of the two cases,Hcis observed to increase when the absolute value ofJ1increased from 0.2 to 0.7. Additionally, the coercivityHcversusJ1in Fig. 5(d) further confirms the above result.

    Fig. 5. Hysteresis loops of the octahedral chain for (a) J1 =?0.2, (b)J1 =?0.2 for the sublattices, (c)J1 =?0.7, and(d)the coercivity Hc versus J1.

    Fig. 6. Hysteresis loops for (a) D2 =?3.5, D1 =?1.5 and ?4.5, (b) D1 =?0.5, D2 =?1.5 and ?3.5, and the coercivity Hc, and (c) the three-dimensional space(Hc,D2,D1)of the octahedral chain.

    The graphs in Figs. 6(a)–6(c) explain the effects of the anisotropies on the magnetic hysteresis loops and the coercivity of the octahedral chain forJ1=?0.7 andT= 0.06.In Fig. 6(a), the coercivity and the remanence areHc=1.2 and 0.58,andMr=5/5 and 2/5 forD1=?1.5 and?4.5,respectively, for a fixed anisotropy ofD2=?3.5. Moreover,three loops are found on the curve whereD1=?4.5, which is due to all possible spin states appearing with the increasing magnetic field. In Fig. 6(b), the coercivity and the remanence areHc=2.26 and 4.56, andMr=5/5 and 4/5 forD2=?3.5 and?1.5, respectively, for a fixed anisotropy ofD1=?0.5.The steps are observed on the hysteresis loops due to all possible spin states appearing with the increasing magnetic field. The effects of the anisotropies on the coercivity in the three-dimensional space(Hc,D2,D1)of the octahedral chain are given in Fig. 6(c). The hysteresis loop and magnetization plateaus are mainly caused by the multi-spin states of 1D ferrimagnetic system due to the anisotropy,which may have potential applications in magnetic memory devices.

    3.2. Magnetization and blocking temperature of the octahedral chain

    The curves in Figs.7(a)–7(c)depict the effects of the ferrimagnetic exchangeJ1on the magnetizations and the susceptibility of the octahedral chain forD1=?0.5 andD2=?3.5.In Fig.7(a),the temperature dependence of the magnetization is plotted for some typical values ofJ1. The depressed saturation magnetization is observed on the curves labeledJ1=?0.4,as the thermal agitation releases the saturation magnetization from the frustration. In Fig.7(b),three saturation magnetizations(Ms)at zero temperature are detected atMs=6/5,5/5, and 4/5, which arise fromMs=(4×3/2?0)/5=6/5,(4×3/2?1)/5=5/5, and(4×3/2?2)/5=4/5. The saturation sublattice magnetization labeledJ1=?0.9,?0.7 at zero temperature showed smaller than the absolute value of the maximumMbdue to its released from the frustration through thermal agitation. In Fig. 7(c), the temperature dependence of the susceptibility of the octahedral chain is analyzed using the same parameters as shown in Fig. 7(a). The temperature at maximum susceptibility is defined as the blocking temperature (TB), and we observe that with increasing|J1|,TBalso increases. For example,Tc=2.35, 2.7, 3.7, 4.5, and 6.1 forJ1=?0.2,?0.4,?0.7,?0.9, and?1.2, respectively. The blocking temperature (TB) as a function of the ferrimagnetic exchange couplingJ1is presented in Fig.7(d)forD1=?0.5 andD2=2.5. It is observed thatTBdecreases with decreasing|J1|,which agrees with the previous analysis.

    The curves in Figs. 8(a)–8(c) depict the effects of the anisotropyD1on the magnetization and the susceptibility of the octahedral chain forJ1=?0.7 andD2=?3.5. In Fig. 8(a), the temperature dependence of the magnetization of the system is given for some typical values ofD1. Two values ofMsare found on the total average magnetization atMs=5/5 and 2/5.The different types of magnetization curves are due to the different temperature dependences ofMaandMbin Fig.8(b). The saturation magnetizations areMs=3/2 and 1/2, and 0 and?1 forMaandMb, respectively. This originates from the different magnetic states induced by anisotropy changes. In Fig.8(c),the temperature dependence of the susceptibility of the octahedral chain is analyzed with the same parameters as shown in Fig. 8(a). The singular behavior is observed atTBon the curve, at which point the temperature increases with decreasing|D1|. For example,TB=3.4, 2.9,2.3,1.5,and 0.8 forD1=?0.8,?1.2,?1.5,?2.3,and?4.5,respectively.

    Fig.7. Temperature dependence of the(a)magnetization,(b)sublattice magnetization, (c) susceptibility, and (d) the blocking temperature TB vs. J1 of the octahedral chain for D1=?0.5,D2=?3.5.

    The curves in Figs. 9(a)–9(c) describe the effects of the anisotropyD2on the magnetization and the susceptibility of the octahedral chain withJ1=?0.7 andD1=?0.5. In Fig.9(a),the temperature dependence of the magnetization of the system is plotted for some typical values ofD2.Two values ofMsare observed atMs=5/5 and 4/5. The different types of magnetization curves are due to the dependence of the various sublattice magnetizations on temperature,as illustrated in Fig.9(b).The saturation magnetizations areMs=3/2,and?2 and?1 forMaandMb,respectively. In Fig.9(c),the temperature dependence of the susceptibility of the octahedral chain is analyzed with the same parameters as shown in Fig. 9(a).The singular point on the curve atTBincreases with decreasing|D2|. For example,TB=3.7, 3.9, 4.1, 4.6, and 5.2 forD2=?3.5,?3.0,?2.5,?1.5, and?0.2, respectively. The susceptibility curve also contains an additional peak at low temperature due to the depressed saturation magnetization.The effects of the anisotropies on the blocking temperature are plotted in Figs.9(d)and 9(e)forJ1=?0.7. In Fig.9(d),the blocking temperature dependence of the anisotropyD1of the system is plotted for some typical values ofD2. For the same parameters,TBagrees with that obtained in Fig.9(c). To clearly show the variation of the blocking temperature with anisotropy,a three-dimensional space(TB,D1,D2)is provided for the octahedral chain.

    Fig. 8. Temperature dependence of (a) magnetization, (b) sublattice magnetization, and (c) susceptibility for the octahedral chain with J1 =?0.7 and D2=?3.5. The number on the curve is the anisotropy D1.

    Fig.9. Temperature dependence of(a)magnetization,(b)sublattice magnetization,and(c)susceptibility with J1 =?0.7 and D1 =?0.5,and the blocking temperature in(d)two-dimensional(TB,D1)and(e)three-dimensional space(TB,D1,D2)for the octahedral chain.

    4. Conclusions

    An octahedral chain described using a mixed spin Ising model has been investigated within the framework of an EFT with correlations. The calculations demonstrate that the exchange coupling and anisotropy exhibit important impacts on magnetism. For appropriate parameters, depressed saturation magnetization may be obtained in such a system.Furthermore,unusual behaviors, such as multiple hysteresis loops with the step effect and magnetization plateau inversion,have been discovered. These behaviors in 1D materials may be applicable to spin devices in the future.

    Acknowledgements

    Project supported by National Natural Science Foundation of China (Grant No. 51920105011) and the Key R&D Program of Liaoning Province of China (Grant No.2020JH2/10300079).

    猜你喜歡
    姜偉
    姜偉作品
    明媚的春天
    明媚的春天
    明媚的春天
    大理文化(2020年5期)2020-05-28 09:43:09
    姜偉:向夢(mèng)想的方向奔跑
    東西南北(2018年6期)2018-05-05 03:17:08
    災(zāi)難過后,陽光照進(jìn)重組家庭
    婦女(2018年12期)2018-02-15 12:43:32
    靈活運(yùn)用信息化手段破解追逃難題——對(duì)姜偉追逃一案的剖析與總結(jié)
    本色姜偉:“潛伏”是為了更好地爆發(fā)
    《潛伏》導(dǎo)演姜偉:讓夢(mèng)想潛伏
    做人與處世(2009年9期)2009-08-11 02:42:18
    姜偉:如火戲劇,似水人生
    高清黄色对白视频在线免费看| 久热这里只有精品99| 真人做人爱边吃奶动态| 中出人妻视频一区二区| 欧美人与性动交α欧美精品济南到| 久久久国产精品麻豆| 欧美黄色片欧美黄色片| 啦啦啦免费观看视频1| 国产精品一区二区精品视频观看| 国产日韩一区二区三区精品不卡| aaaaa片日本免费| 两性夫妻黄色片| 国产成人精品久久二区二区91| 亚洲性夜色夜夜综合| 91成年电影在线观看| 99热只有精品国产| 国产精品免费一区二区三区在线| 男女做爰动态图高潮gif福利片 | 久久久久久久精品吃奶| 亚洲久久久国产精品| 午夜免费观看网址| 精品久久久久久,| 麻豆成人av在线观看| 欧美国产精品va在线观看不卡| 欧美乱色亚洲激情| 中文字幕高清在线视频| 夜夜躁狠狠躁天天躁| 首页视频小说图片口味搜索| 国产精华一区二区三区| 最近最新免费中文字幕在线| 琪琪午夜伦伦电影理论片6080| 亚洲精品一二三| av欧美777| 国产深夜福利视频在线观看| 亚洲专区中文字幕在线| 免费在线观看影片大全网站| 色老头精品视频在线观看| 香蕉久久夜色| 国产精品野战在线观看 | 精品国产一区二区三区四区第35| 又黄又粗又硬又大视频| 正在播放国产对白刺激| 国产精品久久电影中文字幕| www国产在线视频色| 精品国产一区二区久久| 日本一区二区免费在线视频| 热99re8久久精品国产| 久久久精品国产亚洲av高清涩受| 在线观看午夜福利视频| 久久精品影院6| 欧美午夜高清在线| 搡老岳熟女国产| 免费少妇av软件| 亚洲欧美日韩无卡精品| 亚洲第一av免费看| 搡老岳熟女国产| 久热爱精品视频在线9| 一二三四在线观看免费中文在| 亚洲欧美精品综合一区二区三区| 又紧又爽又黄一区二区| 成年版毛片免费区| 国产精品乱码一区二三区的特点 | 精品久久久久久久久久免费视频 | 国产视频一区二区在线看| 天堂俺去俺来也www色官网| 丁香六月欧美| 9色porny在线观看| 国产成人精品久久二区二区免费| 99国产精品99久久久久| 精品卡一卡二卡四卡免费| a级毛片黄视频| 丝袜在线中文字幕| 亚洲精品国产区一区二| 老司机靠b影院| 亚洲伊人色综图| 久久精品aⅴ一区二区三区四区| 久久精品国产清高在天天线| 黄片小视频在线播放| 琪琪午夜伦伦电影理论片6080| 少妇裸体淫交视频免费看高清 | 精品久久久久久久毛片微露脸| 亚洲一码二码三码区别大吗| 国产精品久久视频播放| 久久精品成人免费网站| 如日韩欧美国产精品一区二区三区| 欧美日韩福利视频一区二区| e午夜精品久久久久久久| 国产精品久久电影中文字幕| 午夜免费鲁丝| 午夜福利影视在线免费观看| 欧美国产精品va在线观看不卡| 亚洲 欧美 日韩 在线 免费| 成人国产一区最新在线观看| 免费少妇av软件| 国产91精品成人一区二区三区| 亚洲精品粉嫩美女一区| 最近最新中文字幕大全免费视频| 国产精华一区二区三区| 中出人妻视频一区二区| 亚洲 欧美一区二区三区| 国产aⅴ精品一区二区三区波| 久久国产亚洲av麻豆专区| 老熟妇乱子伦视频在线观看| 激情视频va一区二区三区| 午夜精品国产一区二区电影| 国产亚洲精品第一综合不卡| 欧美黑人精品巨大| 女生性感内裤真人,穿戴方法视频| 国产精品自产拍在线观看55亚洲| 国产精品久久久久久人妻精品电影| 国产精品成人在线| 很黄的视频免费| 午夜成年电影在线免费观看| 黑人猛操日本美女一级片| 日日夜夜操网爽| 亚洲va日本ⅴa欧美va伊人久久| 丰满饥渴人妻一区二区三| 欧美一区二区精品小视频在线| 日本五十路高清| 欧美黑人精品巨大| 99精品欧美一区二区三区四区| 亚洲九九香蕉| 国产精品成人在线| 十分钟在线观看高清视频www| 成人18禁高潮啪啪吃奶动态图| 香蕉久久夜色| 亚洲三区欧美一区| 人人妻,人人澡人人爽秒播| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品免费一区二区三区在线| 女性生殖器流出的白浆| а√天堂www在线а√下载| a级毛片在线看网站| 一区在线观看完整版| 日本撒尿小便嘘嘘汇集6| 久久久国产成人精品二区 | 夜夜看夜夜爽夜夜摸 | av有码第一页| 午夜福利在线免费观看网站| 亚洲国产精品一区二区三区在线| 久久九九热精品免费| 十分钟在线观看高清视频www| 高潮久久久久久久久久久不卡| 欧美性长视频在线观看| 亚洲成人免费电影在线观看| 老熟妇仑乱视频hdxx| avwww免费| 色综合站精品国产| 视频在线观看一区二区三区| 国产成人一区二区三区免费视频网站| 久久伊人香网站| 精品久久久精品久久久| 又紧又爽又黄一区二区| 精品人妻1区二区| 久久精品国产清高在天天线| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧美日韩在线播放| 不卡一级毛片| 欧美黑人精品巨大| 免费女性裸体啪啪无遮挡网站| 久久香蕉激情| 成人18禁在线播放| 亚洲专区字幕在线| 国产欧美日韩一区二区三区在线| 日韩精品免费视频一区二区三区| 亚洲av成人不卡在线观看播放网| 亚洲国产精品999在线| 亚洲成人精品中文字幕电影 | 女性生殖器流出的白浆| 久久亚洲真实| 日本撒尿小便嘘嘘汇集6| 黄片播放在线免费| 色老头精品视频在线观看| 久久久久亚洲av毛片大全| 男女床上黄色一级片免费看| 久久亚洲真实| aaaaa片日本免费| 一级作爱视频免费观看| 国产人伦9x9x在线观看| 久久久久国产精品人妻aⅴ院| 神马国产精品三级电影在线观看 | 国产成年人精品一区二区 | 老司机深夜福利视频在线观看| 纯流量卡能插随身wifi吗| 1024香蕉在线观看| cao死你这个sao货| 亚洲欧美激情综合另类| 久久青草综合色| 水蜜桃什么品种好| 亚洲精品一区av在线观看| 黄色视频不卡| av超薄肉色丝袜交足视频| www国产在线视频色| 一区二区三区国产精品乱码| 亚洲精品成人av观看孕妇| 亚洲自拍偷在线| 成年人免费黄色播放视频| 久久人妻熟女aⅴ| 欧美色视频一区免费| 中文字幕最新亚洲高清| 国产精品免费视频内射| 国产精品香港三级国产av潘金莲| 黄色视频,在线免费观看| 超色免费av| 久久伊人香网站| 热99国产精品久久久久久7| 最好的美女福利视频网| 亚洲精品国产精品久久久不卡| 国产精品成人在线| 国内久久婷婷六月综合欲色啪| 欧美日韩瑟瑟在线播放| 日韩 欧美 亚洲 中文字幕| 亚洲国产精品一区二区三区在线| 首页视频小说图片口味搜索| 亚洲av片天天在线观看| 欧美亚洲日本最大视频资源| 久久精品国产清高在天天线| 午夜福利在线观看吧| 法律面前人人平等表现在哪些方面| 不卡av一区二区三区| 久久香蕉精品热| 国产xxxxx性猛交| 亚洲一码二码三码区别大吗| 可以免费在线观看a视频的电影网站| 国产伦一二天堂av在线观看| 亚洲成人免费av在线播放| 90打野战视频偷拍视频| 日本一区二区免费在线视频| 看黄色毛片网站| 国产欧美日韩一区二区三区在线| 亚洲久久久国产精品| 99在线视频只有这里精品首页| 正在播放国产对白刺激| 激情在线观看视频在线高清| 欧美日本亚洲视频在线播放| 久久久久久久午夜电影 | 妹子高潮喷水视频| 日本精品一区二区三区蜜桃| www.www免费av| 欧美大码av| 亚洲欧美日韩另类电影网站| 久久国产精品男人的天堂亚洲| 俄罗斯特黄特色一大片| 久久这里只有精品19| 99国产精品99久久久久| 欧美一区二区精品小视频在线| 琪琪午夜伦伦电影理论片6080| 欧美日韩一级在线毛片| 可以在线观看毛片的网站| 国产高清视频在线播放一区| 一二三四社区在线视频社区8| 亚洲人成电影观看| 国产人伦9x9x在线观看| 国产视频一区二区在线看| 亚洲伊人色综图| 一二三四社区在线视频社区8| tocl精华| av国产精品久久久久影院| 超碰97精品在线观看| 亚洲精品美女久久av网站| 日韩有码中文字幕| 一区二区三区国产精品乱码| 成人国产一区最新在线观看| 国产精品日韩av在线免费观看 | 很黄的视频免费| 午夜日韩欧美国产| 久久人人97超碰香蕉20202| 欧美激情极品国产一区二区三区| a在线观看视频网站| 黑人猛操日本美女一级片| 国产精品1区2区在线观看.| 男女下面进入的视频免费午夜 | а√天堂www在线а√下载| 女人被狂操c到高潮| 欧美精品啪啪一区二区三区| 国产又爽黄色视频| cao死你这个sao货| 亚洲精品国产色婷婷电影| 亚洲精品在线美女| 两个人免费观看高清视频| 欧美成人性av电影在线观看| 中文字幕色久视频| 免费日韩欧美在线观看| 午夜影院日韩av| 天天添夜夜摸| 久久精品国产99精品国产亚洲性色 | 三上悠亚av全集在线观看| 欧美日本中文国产一区发布| 别揉我奶头~嗯~啊~动态视频| 怎么达到女性高潮| 午夜视频精品福利| 成人亚洲精品一区在线观看| 色婷婷av一区二区三区视频| 韩国av一区二区三区四区| 亚洲伊人色综图| 国产亚洲精品久久久久5区| 国产精品久久电影中文字幕| 亚洲精品成人av观看孕妇| 日本精品一区二区三区蜜桃| 午夜精品久久久久久毛片777| 麻豆一二三区av精品| 国产野战对白在线观看| 国产有黄有色有爽视频| 狂野欧美激情性xxxx| 国产精品乱码一区二三区的特点 | 久久精品aⅴ一区二区三区四区| 久久久久国内视频| 亚洲欧美日韩高清在线视频| 国产深夜福利视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 成年女人毛片免费观看观看9| 亚洲av五月六月丁香网| 久久天堂一区二区三区四区| 欧美精品一区二区免费开放| 国产1区2区3区精品| 国产亚洲精品第一综合不卡| 久久久久久久精品吃奶| 天堂影院成人在线观看| 精品国产亚洲在线| 天堂动漫精品| 精品久久久久久电影网| www日本在线高清视频| 国产精品国产av在线观看| 两性夫妻黄色片| 亚洲国产欧美网| 国产不卡一卡二| 成年人黄色毛片网站| 国产精品野战在线观看 | 国产成人影院久久av| 亚洲 欧美一区二区三区| 亚洲精品在线观看二区| 久久99一区二区三区| 久久人人爽av亚洲精品天堂| 男人舔女人的私密视频| 99国产精品一区二区蜜桃av| 久久午夜综合久久蜜桃| 欧美亚洲日本最大视频资源| 国产免费现黄频在线看| 国产单亲对白刺激| 国产精品一区二区精品视频观看| 国产欧美日韩精品亚洲av| 欧美人与性动交α欧美精品济南到| 日韩免费高清中文字幕av| 亚洲成人国产一区在线观看| 免费在线观看黄色视频的| 在线十欧美十亚洲十日本专区| 欧美黑人精品巨大| 国产av又大| 一本综合久久免费| 在线永久观看黄色视频| 大香蕉久久成人网| 亚洲午夜理论影院| 日韩欧美一区二区三区在线观看| 久久精品亚洲av国产电影网| 久久精品国产综合久久久| 丰满的人妻完整版| 久9热在线精品视频| 久久精品亚洲精品国产色婷小说| 男女做爰动态图高潮gif福利片 | 久久中文字幕人妻熟女| 国产精品偷伦视频观看了| 色婷婷av一区二区三区视频| 三级毛片av免费| 日本欧美视频一区| 久久午夜综合久久蜜桃| 午夜影院日韩av| 一级黄色大片毛片| 18禁观看日本| 午夜福利在线免费观看网站| 少妇的丰满在线观看| 亚洲 欧美 日韩 在线 免费| 久久香蕉国产精品| 欧美另类亚洲清纯唯美| 少妇粗大呻吟视频| 日韩欧美免费精品| xxx96com| 亚洲国产精品999在线| 久久性视频一级片| av电影中文网址| www.999成人在线观看| 老司机福利观看| 水蜜桃什么品种好| 国产亚洲欧美在线一区二区| 熟女少妇亚洲综合色aaa.| 老司机靠b影院| 免费女性裸体啪啪无遮挡网站| 精品久久久久久久久久免费视频 | 嫩草影院精品99| 午夜成年电影在线免费观看| 天天躁夜夜躁狠狠躁躁| 国产成人精品无人区| 久久青草综合色| 一a级毛片在线观看| 真人一进一出gif抽搐免费| 精品卡一卡二卡四卡免费| a级片在线免费高清观看视频| 99久久国产精品久久久| 成年版毛片免费区| 国产精品日韩av在线免费观看 | 色尼玛亚洲综合影院| 天天躁夜夜躁狠狠躁躁| 久久亚洲真实| bbb黄色大片| 超碰成人久久| 长腿黑丝高跟| 欧美中文日本在线观看视频| 亚洲精品国产区一区二| 欧美日韩乱码在线| 国产精品电影一区二区三区| av欧美777| 国产成人一区二区三区免费视频网站| 美女国产高潮福利片在线看| 日韩欧美一区视频在线观看| 欧美日韩视频精品一区| 手机成人av网站| 日韩视频一区二区在线观看| 久久热在线av| 日韩精品青青久久久久久| 一个人观看的视频www高清免费观看 | 中文字幕精品免费在线观看视频| 久久亚洲精品不卡| 69精品国产乱码久久久| 激情在线观看视频在线高清| 色尼玛亚洲综合影院| 看黄色毛片网站| 亚洲视频免费观看视频| 国产成人一区二区三区免费视频网站| 成年版毛片免费区| 亚洲av电影在线进入| 最新美女视频免费是黄的| 亚洲成人精品中文字幕电影 | 国产精品 欧美亚洲| 好男人电影高清在线观看| 久久久久久久久久久久大奶| 成人精品一区二区免费| 久热这里只有精品99| 精品久久久久久电影网| 亚洲成人免费电影在线观看| 久久中文字幕一级| 国产精品一区二区在线不卡| 新久久久久国产一级毛片| 如日韩欧美国产精品一区二区三区| 国产精品久久久久成人av| 99在线人妻在线中文字幕| 国产亚洲欧美精品永久| 日韩精品青青久久久久久| 一边摸一边抽搐一进一小说| 午夜91福利影院| 亚洲精品美女久久av网站| 欧美中文综合在线视频| 国产精品影院久久| 母亲3免费完整高清在线观看| 国产1区2区3区精品| 国产精品免费一区二区三区在线| 97超级碰碰碰精品色视频在线观看| 女人被躁到高潮嗷嗷叫费观| 一个人观看的视频www高清免费观看 | 久久婷婷成人综合色麻豆| 久久99一区二区三区| 在线国产一区二区在线| 长腿黑丝高跟| 成人18禁在线播放| 免费少妇av软件| 久久久国产成人免费| 777久久人妻少妇嫩草av网站| 极品教师在线免费播放| 级片在线观看| 美女午夜性视频免费| 老司机午夜十八禁免费视频| 久久国产精品影院| 亚洲欧美一区二区三区黑人| 可以在线观看毛片的网站| 久久精品国产亚洲av香蕉五月| 操出白浆在线播放| 丰满饥渴人妻一区二区三| 精品福利永久在线观看| 亚洲午夜理论影院| 在线天堂中文资源库| 国产精品永久免费网站| 嫩草影视91久久| 国产精华一区二区三区| 老司机在亚洲福利影院| 午夜福利在线免费观看网站| 国产99久久九九免费精品| 精品人妻在线不人妻| 女人精品久久久久毛片| 亚洲av成人不卡在线观看播放网| 91国产中文字幕| 亚洲专区国产一区二区| 欧美日韩乱码在线| 午夜日韩欧美国产| 欧美日本中文国产一区发布| 最近最新中文字幕大全电影3 | 如日韩欧美国产精品一区二区三区| 精品福利观看| 天堂中文最新版在线下载| 亚洲中文日韩欧美视频| 日本精品一区二区三区蜜桃| 国产aⅴ精品一区二区三区波| 搡老岳熟女国产| 97超级碰碰碰精品色视频在线观看| 18禁观看日本| 又大又爽又粗| 成年版毛片免费区| 午夜福利在线免费观看网站| 人人妻人人添人人爽欧美一区卜| 日韩欧美一区视频在线观看| 人妻久久中文字幕网| 韩国精品一区二区三区| 国产欧美日韩一区二区精品| 亚洲欧美激情在线| 大型av网站在线播放| 欧美人与性动交α欧美软件| 久久久国产精品麻豆| 热re99久久国产66热| 国产黄a三级三级三级人| 黄色a级毛片大全视频| 亚洲精品久久成人aⅴ小说| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲自拍偷在线| 亚洲免费av在线视频| 乱人伦中国视频| 人人妻人人澡人人看| 精品电影一区二区在线| 中文字幕人妻熟女乱码| 亚洲 欧美 日韩 在线 免费| cao死你这个sao货| 欧美性长视频在线观看| 欧美日韩乱码在线| 亚洲午夜理论影院| 成人亚洲精品一区在线观看| 成人影院久久| 亚洲国产看品久久| 大码成人一级视频| 天天躁狠狠躁夜夜躁狠狠躁| 日本wwww免费看| 亚洲av成人不卡在线观看播放网| 在线观看免费午夜福利视频| 日本免费一区二区三区高清不卡 | 国产熟女午夜一区二区三区| 丝袜在线中文字幕| 欧美精品一区二区免费开放| 侵犯人妻中文字幕一二三四区| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 天堂中文最新版在线下载| 又黄又爽又免费观看的视频| 久久人妻熟女aⅴ| 日韩精品中文字幕看吧| 天堂中文最新版在线下载| 99国产精品一区二区三区| 久久人妻熟女aⅴ| 色老头精品视频在线观看| 91av网站免费观看| 一本综合久久免费| 少妇裸体淫交视频免费看高清 | 99国产精品99久久久久| 久久香蕉国产精品| 一级毛片高清免费大全| 亚洲熟妇熟女久久| 亚洲中文日韩欧美视频| 亚洲av电影在线进入| 免费在线观看视频国产中文字幕亚洲| 精品国产乱码久久久久久男人| 免费在线观看视频国产中文字幕亚洲| 久久精品人人爽人人爽视色| netflix在线观看网站| 精品久久久久久久毛片微露脸| 亚洲专区字幕在线| 国产有黄有色有爽视频| 不卡av一区二区三区| 满18在线观看网站| 午夜激情av网站| a级毛片在线看网站| 久久香蕉精品热| 日韩大码丰满熟妇| 日本黄色视频三级网站网址| 欧美色视频一区免费| 嫩草影视91久久| 成年女人毛片免费观看观看9| 久久国产乱子伦精品免费另类| 欧美黄色淫秽网站| 一级a爱片免费观看的视频| 欧美一级毛片孕妇| 午夜福利欧美成人| 正在播放国产对白刺激| 两个人免费观看高清视频| 9色porny在线观看| 国产欧美日韩精品亚洲av| 丝袜美足系列| 国产成人精品在线电影| 又黄又粗又硬又大视频| 日日干狠狠操夜夜爽| 黑人巨大精品欧美一区二区mp4| 91国产中文字幕| 自线自在国产av| 精品一区二区三区四区五区乱码| 久久国产乱子伦精品免费另类| 成人亚洲精品av一区二区 | 久久精品国产99精品国产亚洲性色 | 国产成人欧美在线观看| 在线视频色国产色| svipshipincom国产片| 亚洲男人天堂网一区| 欧美最黄视频在线播放免费 | 操出白浆在线播放| 黑人巨大精品欧美一区二区蜜桃| 欧美黄色淫秽网站| 日本 av在线| svipshipincom国产片| 岛国视频午夜一区免费看| 精品国内亚洲2022精品成人| 极品教师在线免费播放| 亚洲国产精品合色在线| 久久久久九九精品影院|