• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic polarizabilities of the clock states of Al+

    2022-08-31 09:56:48YuanFeiWei魏遠(yuǎn)飛ZhiMingTang唐志明ChengBinLi李承斌YangYang楊洋YaMingZou鄒亞明KaiFengCui崔凱楓andXueRenHuang黃學(xué)人
    Chinese Physics B 2022年8期
    關(guān)鍵詞:楊洋

    Yuan-Fei Wei(魏遠(yuǎn)飛) Zhi-Ming Tang(唐志明) Cheng-Bin Li(李承斌) Yang Yang(楊洋)Ya-Ming Zou(鄒亞明) Kai-Feng Cui(崔凱楓) and Xue-Ren Huang(黃學(xué)人)

    1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    2Shanghai EBIT Laboratory,Key Laboratory of Nuclear Physics and Ion-Beam Application(MOE),Institute of Modern Physics,Fudan University,Shanghai 200433,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    4Key Laboratory of Atom Frequency Standards,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    Keywords: dynamic polarizability,Al+optical clock

    1. Introduction

    Optical frequency standards have important application prospects in local timekeeping,deep space satellite navigation and the test of the fundamental theory of physics.[1–4]In recent years,the optical frequency standards based on neutral atoms or trapped ions have made great development[5–9]and some of them have demonstrated fractional frequency uncertainties of a few parts in 10?18or even 10?19. Among them,the Al+optical clock based on the trapped Al+ion has been well developed in the past decades due to the application of the sympathetic cooling and quantum-logic technologies.[10]In 2010,NIST researchers realized the comparison of two aluminum ion optical clocks and the frequency uncertainty reached 8.6×10?18.[11]They improved their experimental setups in 2019 and achieved the systematic uncertainty of 9.4×10?19.[9]

    The Al+optical clock is working on the highly forbidden 3s21S0–3s3p3Po0transition and the black-body radiation(BBR)shift of this transition is predicted to be very small.[12]Not only the intrinsic characters of Al+,which are insensitive to environmental perturbations,but also the delicate technologies of sympathetic cooling and quantum logic spectroscopy,make the Al+optical clock capable of achieving extreme precisions. To provide the reliable systematic uncertainty budget for the Al+optical clock, all the perturbations to the clock transition should be carefully considered, including the motional effects of the working ions, BBR shift of the clock transitions, frequency shifts due to the external electromagnetic fields,and so on. The BBR shift is generally associated with the differential static polarizabilities of the clock working states.[13]In the Al+clock,Mg+or Ca+is usually adopted for the sympathetic cooling of Al+.[9,11,14]The Doppler cooling laser beam of Mg+or Ca+maintains the Al+–Mg+or Al+–Ca+pair at a constant motional temperature during the clock interrogation pulse. Because it is also shed on the Al+ions,it causes an ac Stark shift to the clock transition,which is associated with the differential dynamic polarizabilities of the clock working states.

    The polarizability of an atomic system describes the distortion in the charge distribution and gives a measure of the energy shift of the atomic system when it is exposed in an electromagnetic field.[12,15]Since precise measurement of polarizabilities is quite challenging,the reliable and accurate theoretical studies of atomic and ionic polarizabilities are of particular interest. In the case of Al+, the previous studies are mainly focused on the static polarizabilities[16–19]to evaluate the BBR contribution to the fractional frequency uncertainty of the clock transtion. Rosenbandet al.used an extrapolation expression to estimate the dynamic polarizabilities of the 3s21S0and 3s3p3Po0states of Al+at the wavelengthλ=1126 nm.[20]Although their results agreed with the later theoretical calculations using the configuration interaction plus core polarization (CICP) method[16]and the configuration interaction plus all-order(CI+all-order)method,[18]the wavelength of the electromagnetic radiation adopted in the extrapolation method is required to be far-detuned from all transitions connecting to either clock states. The study on the dynamic polarizabilities over large range of electromagnetic spectrum of Al+is still scarce. Such study would not only be useful in the potential experiments based on Al+, but also lead to the prediction and identification of the magic wavelengths of Al+clock transition. The magic wavelength for a transition is the wavelength at which the ac Stark shift of the transition energy is zero,[21]and it means that, for the upper and lower energy levels of the transition concerned, the difference of the dynamic polarizabilities is zero. A notable application of the magic wavelengths is the optical lattice clocks operated on the neutral atoms.[1]As for the atomic ions, the magic wavelengths for the 4s1/2–3d5/2transition in Ca+have been observed,and meanwhile the ratio of the matrix elements for the 4s1/2–4p1/2and 4s1/2–4p3/2has been determined.[22]The identification of magic wavelength for ion clock transition pave the milestone for establishing all-optical trapped ion clocks and the precision values of the transition matrix elements extracted from the magic wavelength measurement could be used to improve the precision of the estimation of the BBR shift.

    For these motivations, we made calculations of the dynamic polarizabilities of the 3s21S0and 3s3p3Po0states in Al+based on sum-over-states (SOS) approach. The transition matrix elements were obtained using the method combining configuration interaction and the many-body perturbation theory(CI+MBPT),[23]and the multiconfiguration Dirac–Hartree–Fock (MCDHF) method.[24]A brief introduction of the theoretical methods and computational details is given in Section 2. The computation results of the energy levels,transition matrix elements,polarizabilities and magic wavelengths are given and discussed in Section 3.

    2. Method of calculations

    2.1. Polarizability

    The dynamic electric dipole(E1)polarizability of a quantum stateνin an electromagnetic radiation generally consists of three contributions from scalar, vector and tensor polarizabilities.[25]Both contributions from vector and tensor polarizabilities are related with the magnetic angular momentum quantum numbers of the atomic state. In this work,3s21S0and 3s3p3Po0states in Al+will be considered,and total angular momentum quantum numbersJfor both states are zero. Thus, only the scalar polarizability will be taken into account,and it can be conveniently divided into three parts:

    whereIis the laser intensity, andO(I2) represents the residual high-order Stark shift which is usually small and can be omitted under the weak intensity limit. The frequency shift of a certain transition caused by the electromagnetic field can be written as

    where ?α(ω) is the differential dynamic polarizability of statesκandν. Thus, by ignoring all nonlinear Stark shifts,the magic wavelength can be theoretically given by the condition ?α(ω)=0.[1]

    2.2. CI+MBPT calculations

    In the present work, CI+MBPT calculations are performed to get the energy levels and RMEs for Al+using the program package developed by Kozlovet al.[23]The CI+MBPT method is based on a combination of a conventional configuration interaction (CI) method and many-body perturbation theory (MBPT). The former explicitly contains the interaction between valence electrons, while the latter includes core–core and core–valence correlations. The calculations start from the numerical solution of Hartree–Fock–Dirac(HFD)equations using finite difference method to get singleelectron HFD energies and wavefunctions for the core and valence electrons. Here, 1s–4s, 2p–4p, 3d–4d and 4f orbitals are taken into account in this step. The virtual orbitals are then constructed by an automatic generation subroutine which is embedded in the package. The maximal principal quantum numbernmaxand the maximal orbital quantum numberlmaxare set to be 30 and 4, respectively. The HFD orbitals and the auto-generated virtual orbitals form the basis set (or say,the orbital space)for the later CI and MBPT calculations.The electron configuration of Al+can be treated as a closeshell core [1s22s22p6] and two valence electrons outside the core. The effective Hamiltonian for two valence electrons in the CI+MBPT method can be written as

    where ?h1and ?h2are the single-electron and two-electron interaction terms of the relativistic Hamiltonian, respectively.In the standard CI method, ?h1includes the kinetic energy of the electron, Coulomb interaction with the nucleus and the HFD potential of the close-shell atomic core. The CI space is formed by a set of configuration with all possible single(S)and double(D)excitations of the valence electrons in a given basis set. We first set the basis set of orbitals as{16s, 16p,16d,16f,16g},and then increase it up to{26s,26p,26d,26f,26g}and{29s, 29p, 29d, 29f, 29g}, which leads to the energy change with the expansion of the CI space lower than 0.01% and the matrix elements of the allowed E1 transitions change at most 0.03%. ?h2is the interaction between the valence electrons. In the CI+MBPT procedure,a single-electron operator which represents the correlation interaction of a particular valence electron with the atomic core is added into ?h1.A two-electron operator which represents the screening of the Coulomb interaction between the two valence electrons by the core electrons is added into ?h2. Both additional operators are treated in the second order of MBPT.

    2.3. MCDHF calculations

    To verify the hybrid CI+MBPT calculations,the MCDHF method is used in this work,as it is another form of CI method and based on the variational principle with both expansion coefficients and the orbitals to be variational parameters so that take into account correlations in a different way. The MCDHF calculations in this work are performed using the GRASP2018 package.[24]

    In the MCDHF method, the calculation starts with the many-electron Dirac–Coulomb Hamiltonian

    whereciis expansion(mixing)coefficient,γistands for the remaining quantum numbers of the CSFs. Each CSF is a linear combination of products of one-electron Dirac orbitals.Both mixing coefficients and orbitals are optimized in the selfconsistent field calculation. After a set of orbitals is obtained,the relativistic configuration interaction(RCI)calculations are used to capture more electron correlations. In addition to the Coulomb interactions, our RCI calculations also include the Breit interaction in the low-frequency approximation and the quantum electrodynamic(QED)corrections.

    In the present MCDHF calculations, the CSF space of a specifiedPandJsymmetry is generated following the active set(AS)approach[27,28]by virtual excitations from the orbitals in multireference (MR) configurations to an active set of orbitals. By extending the AS systematically, the CSF space is increased and thereby approaches the complete representation of the ASF with Eq.(7). The ASFs of even and odd states are optimized separately and the MR configuration sets for even and odd parities include

    Initial MCDHF calculations in the RSCF procedure are performed to determine simultaneously all the orbitals of the MR sets without any excitations. Subsequently,the CSFs expansions are obtained through single and double excitations from the orbitals in the MR sets of configurations up to an AS of orbitals withn ≤13,l ≤4. The AS is increased with layer by layer in 8 steps fromn=6 up to 13,i.e.,AS1–AS8,so that the basis set convergence in the calculations can be demonstrated.In each step,only the orbitals in newly added layer are optimized and the other orbitals are kept to be fixed. We treat the orbitals withn ≤2 as the core,and the other orbitals as the valence orbitals. We have allowed single and double excitations from the valence orbitals and single excitations from the core so that both the valence–valence(VV)and core–valence(CV) correlations have been taken into account in the RSCF procedure. In our test calculations,it was found that the contributions from 1s and 2s excitations are not important to the atomic parameters concerned, so these orbitals are kept to be fixed as an inactive core in the final calculational model. The differences between the energy levels obtained with the last two basis set, AS7and AS8, do not exceed 15 cm?1for any level.

    Here we also include higher-order correlation effects with a further extended CSF space enlarged by allowing triple (T)excitations from the orbitals in the MR sets to an ASi(i ≤5)of orbitals obtained in the previous RSCF procedure. It is convenient to define the CSF space in each step of SD-excitations as sdASi(i ≤8) and in each step of SDT-excitations as sdAS8+triASi(i ≤5). The differences between the energy levels obtained with sdAS8+triAS4and sdAS8+triAS5do not exceed 10 cm?1for any level. Therefore, the ASFs for every atomic states concerned are finally expanded with the CSF space sdAS8+triAS5by Eq.(7).

    Once the ASFs are obtained,the multipole-radiative transition matrix element from an initial stateΨ(γPJM)to a final stateΨ(γ′P′J′M′),〈Ψ(γPJM)‖?O(k)‖Ψ(γ′P′J′M′)〉can be obtained.

    3. Results and discussion

    3.1. Energy levels and E1 matrix elements

    In the present work, the energy levels and the E1 transition matrix elements of Al+are calculated using CI+MBPT method and MCDHF method. The computational details of each method are described in Section 2. The results of the excitation energies from the ground 3s21S0state to the low-lying states of Al+obtained using CI+MBPT method with the basis set{29s,29p,29d,29f,29g},and using MCDHF method with sdAS8+triAS5are tabulated in Table 1. It includes 16 odd-parity states with 3s3p, 3s4p, 3s4f and 3s5p configurations, and 17 even-parity states with 3p2, 3s4s, 3s3d, 3s5s,and 3s4d configurations. The final results of both CI+MBPT and MCDHF methods show good agreement with the values listed in National Institute of Standards and Technology(NIST)database.[29]It is noted that the discrepancies between the results of CI+MBPT method and NIST data are below 124 cm?1and the relative deviation to NIST data is lower than 0.13%.The energies of CI+MBPT method using pure CI,CI+MBPT without and with Breit interaction procedures are presented. It shows that the combination of CI and MBPT improves the accuracy notably. Although the double excitations from core orbitals are neglected in our MCDHF calculations,the discrepancies between the calculated excitation energies and NIST data are below 400 cm?1and the relative deviation to NIST data is lower than 0.4%. This shows the importance of the VV and CV correlations in the MCDHF calculations on the transition properties of Al+.The contributions of the triple excitation,Breit interaction,self-energy and vacuum polarization to the final MCDHF results are also listed in the table.

    Table 1. The excitation energies(in cm?1)of the low-lying levels of Al+, obtained by using the CI+MBPT and MCDHF methods and compared with the available values listed in NIST database.[29]T,B.,SE and VP denote the triple excitation,Breit interaction,self-energy and vacuum polarization,respectively.?1 ≡ECI+MBPT+B.?ENIST and ?2 ≡EMCDHF ?ENIST.

    Table 2. The reduced matrix elements of E1 transition for the 3s21S0 and 3s3p3Po0 clock states of Al+,obtained by using the CI+MBPT and MCDHF methods.

    The E1 RMEs involving the 3s21S0and 3s3p3Po0clock states of Al+obtained using CI+MBPT and MCDHF methods are presented in Table 2. The results in both length and velocity gauge are listed. The CI+MBPT results in the length gauge agree well with the counterparts obtained using CI+allorder method.[18]The E1 RMEs involving 3s3p3Po0state of CI+MBPT and MCDHF method in the same gauge have good agreement with each other,and the relative differences are below 2%. The agreement of the E1 RMEs involving 3s21S0state of both methods in the same gauge is not as good as the E1 RMEs involving 3s3p3Po0state and the relative differences span from 0.1% to over 50%. However, we would like to emphasize here that large discrepancies only occur for those RMEs involving weak transitions,which contribute fractionally to the polarizabilities discussed in this work. The discrepancy in the length and velocity gauge of E1 RMEs can be noted for the same theoretical method. Although it can be shown that the length and velocity form of the electric multipole transition operators yield the same line strength for an exact solution in the non-relativistic theory, it is not exactly same in the relativistic Dirac theory.[30,31]It is pointed out that the discrepancies in the length and velocity gauge of the calculated line strengths(SOνκ=|〈ν‖?O‖κ〉|2)for E1 transition is an important uncertainty indicator.[31,32]Thus, we also give the recommended values of E1 RMEs in Table 2, and the uncertainties are given following the above suggestion.

    3.2. Polorizabilities

    The static and dynamic E1 polarizabilities are calculated using Eqs.(1)and(2). The transition energies used in Eq.(2)are cited from NIST data. For the choice of the static polarizability of Al3+core,αcore, Mitroyet al.adopted the value of 0.268 a.u. which is the scaled result obtained from a perturbed HF calculations[16]and Safronovaet al.adopted 0.265 a.u.in their evaluation the BBR shift of the clock transition in Al+using CI+all-order method.[18]We apply the coupled-cluster method with single and double excitations (CCSD) which is implemented in Gaussian09 package[33]associated with a large basis set (aug-cc-pv6z basis set) and get 0.260 a.u. for the Al close-shell core. This result should capture sufficient correlation contribution, but the relativistic effect is absent.In the present work,αcore=0.265(5) a.u. is adopted. Corevalence contributions to the polarizability is usually small,and they are cited from Ref.[18]with a“safe”uncertainty of 50%.The dynamic corrections toαcoreandαcvfollow the extrapolation method used by Breweret al.[9]Static E1 polarizabilities for 3s21S0and 3s3p3Po0states are listed in Table 3. The SOS method is adopted for the polarizability calculations in this work. Our calculated values for the static polarizabilities agree with the results from other theoretical work. The uncertainties for the calculated static polarizabilities come from the uncertainties of the E1 RMEs,core and core-valence contributions. The present differential polarizability also agrees with the experimental result,[9]which is derived from the ac Stark shift measurement using an extrapolation method.

    Table 3.The static E1 polarizabilities(in a.u.)of 3s21S0 and 3s3p3Po0 states in Al+,and the differential polarizabilities.

    The dynamic polarizabilitiesα(ω) of the 3s21S0and 3s3p3Po0states in Al+are shown in Fig. 1. The photon energies of the electromagnetic radiation from 0 to 0.43 a.u.are taken into account, which is equivalent to the wavelength varying from ∞down to 106 nm. Five magic wavelengths of the Al+3s21S0–3s3p3Po0clock transition are identified, as 267.01(10) nm, 183.18(2) nm, 173.68(2) nm, 120.50(2) nm,and 113.33(48)nm. All magic wavelengths are located in the ultraviolet region. In the our numerical procedures,the magic wavelength is obtained when the dynamic differential polarizability ?α(ω)of 3s21S0and 3s3p3Po0states is zero. It can be noted that the core polarizability is same for both clock states and it will not affect the position of the magic wavelength.The uncertainty of the magic wavelength is evaluated by taking account of the uncertainties of the E1 RMEs in the magic wavelength identification procedure.

    The contributions of individual transitions to the static and dynamical polarizabilities of the 3s21S0and 3s3p3Po0states at the magic wavelengths for the 3s21S0–3s3p3Po0clock transition in Al+are tabulated in Table 4. It is noted that the contribution of 3s21S0–3s3p1Po1transition solely dominates the static and the five dynamic polarizabilities of 3s21S0state at the magic wavelengths, and it contributes no less than 92%. For the static and dynamic polarizabilities of 3s3p3Po0state at three magic wavelengths (267.01 nm,183.18 nm and 173.68 nm), the contributions of three transitions, 3s3p3Po0–3s4s3S1, 3s3p3Po0–3p23P1, and 3s3p3Po0–3s3d3D1, are over 95%. Tanget al.suggested that the ratio of two oscillator strengths could be determined via the precision measurement of magic wavelength for Ca+,[34]and it was practiced successfully.[22]By taking similar procedure in Ref. [22] and taking into account the RME of the strongest E1 transition 3s21S0–3s3p1Po1, the measurement on the magic wavelengths of Al+clock transition at 267.01 nm, 183.18 nm, and 173.68 nm would be helpful to obtain three ratios of the E1 RMEs for the four transitions mentioned above, RME(3s21S0–3s3p1Po1):RME(3s3p3Po0–3s4s3S1), RME(3s21S0–3s3p1Po1):RME(3s3p3Po0–3p23P1),and RME(3s21S0–3s3p1Po1):RME(3s3p3Po0–3s3d3D1). It can act as a calibration with the experimental input to the calculated RMEs,and then improve the reliability and the precision of the estimate of the BBR shift for the clock transition.

    Fig.1. The dynamic polarizabilities α(ω)of the 3s21S0 and 3s3p3Po0 states in Al+,in a photon energy of the electromagnetic radiation from 0.0 to 0.43 a.u.,which is equivalent to the wavelength from ∞down to 106 nm. The magic wavelengths are identified by arrows in(b)–(d).

    Table 4. The breakdown of the contributions of individual transitions to the static and dynamical polarizabilities of the 3s21S0 and 3s3p3Po0 states at the magic wavelengths for the 3s21S0–3s3p3Po0 clock transition in Al+. The numbers in parentheses are uncertainties in the digits calculated by adopting the recommended uncertainties of E1 RMEs in the present work.

    Table 5. The differential dynamic polarizabilities(in a.u.) of the clock states in Al+.

    The calculated dynamic polarizabilities can be used to evaluate the ac Stark shifts due to the clock interrogation,cooling,and repumping laser beams of the Al+optical clock.Based on the knowledge of the dynamic prolarizabilities obtained in this work, the calculated differential polarizabilities of the Al+clock transition at several specific wavelengths are given in Table 5. Rosenbandet al.measured the ac Stack shift of the Al+clock transition using an infrared light at 1126 nm[20]and obtained ?α(ω)=1.08(34)a.u.CI+all-order method gives this value as 0.549(55) a.u. and CICP method gives as 0.54(41)a.u. Our result agrees with theirs. Breweret al.obtained ?α(976 nm)=0.499(57)a.u.in their experiment and our result also agree with it. The wavelength of the clock interrogation beam is 267.4 nm. The cooling (397 nm) and repumping beams (866 nm) are kept on in same experiments to maintain a stable cooling.[35]According to the data in Table 5 and assuming all the laser beams to be Gaussian beams,the contributions of ac Stark shift to the fractional frequencey shift (?νac-Stark/νclock) of Al+clock transition at 267.4, 397 and 866 nm are (1.54±1.21)×10?20?I, (5.74±8.61)×10?20?I,and(2.98±7.28)×10?21?I,respectively,where the effective intensity ?I=P/r2,Pis the power of the laser in units of W andris the radius of beam waist in units of m.

    4. Conclusions

    In summary, the dynamic polarizabilities of 3s21S0and 3s3p3Po0states in Al+are calculated using CI+MBPT and MCDHF methods in this work. The magic wavelengths for the Al+clock transition 3s21S0–3s3p3Po0are identified. All the magic wavelengths predicted in this work are in the ultraviolet region. The potential precision measurement on these magic wavelengths of Al+near 267 nm,183 nm and 173 nm would be useful to extract the ratios of several certain transition matrix elements with high accuracy,and then to improve the precision of the estimate of the BBR shift for the Al+clock transition. The differential dynamic polarizabilities at certain wavelengths are evaluated using the knowledge of the calculated dynamic polarizabilities, which are useful to assess the ac Stark shift of the Al+clock transition frequency and helpful in the clock experiments to suppress the ac Stark shift of the clock transition as possible as it can.

    Acknowledgements

    The authors would like to thank Professor M. G. Kozlov and Dr. Y. M. Yu for the helpful assistance on the use of CI-MBPT package. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11934014, 11904387, 11704076, and U1732140), the National Key Research and Development Program of China(Grant Nos. 2017YFA0304401 and 2017YFA0304402), and Technical Innovation Program of Hubei Province, China(Grant No.2018AAA045).

    猜你喜歡
    楊洋
    “不及格”
    做人與處世(2022年6期)2022-05-26 10:26:35
    詩與遠(yuǎn)方
    新唱黃楊扁擔(dān)
    Upper trophic structure in the Atlantic Patagonian shelf break as inferred from stable isotope analysis*
    陪父親跑步
    小小說月刊(2018年2期)2018-02-07 15:39:27
    Why Should We Teach Languages
    楊洋:安靜持久的發(fā)光體
    愛吃零食的小白兔
    久热这里只有精品99| 天天躁日日躁夜夜躁夜夜| tocl精华| 久久精品国产亚洲av高清一级| 黄色视频,在线免费观看| 国产又色又爽无遮挡免| avwww免费| 国产日韩欧美在线精品| 91成人精品电影| 久久人人97超碰香蕉20202| 婷婷成人精品国产| 欧美性长视频在线观看| 精品一品国产午夜福利视频| 啦啦啦啦在线视频资源| 一区二区三区激情视频| 老汉色∧v一级毛片| 自线自在国产av| 高清欧美精品videossex| 久久久久网色| 国产高清视频在线播放一区 | 亚洲精品中文字幕一二三四区 | 国产一区二区在线观看av| 久久久久国产一级毛片高清牌| 欧美另类一区| 日日夜夜操网爽| 下体分泌物呈黄色| 亚洲少妇的诱惑av| 热99久久久久精品小说推荐| 天天添夜夜摸| 久久免费观看电影| 黄色片一级片一级黄色片| 国产成人啪精品午夜网站| 亚洲国产精品一区三区| 一区二区三区四区激情视频| 成年人午夜在线观看视频| 久久久久久免费高清国产稀缺| 日韩欧美国产一区二区入口| av免费在线观看网站| 婷婷色av中文字幕| 男女午夜视频在线观看| 国产真人三级小视频在线观看| 成年av动漫网址| 女人被躁到高潮嗷嗷叫费观| 免费在线观看影片大全网站| 国产欧美日韩一区二区三区在线| 精品一区二区三区四区五区乱码| 后天国语完整版免费观看| 美女高潮到喷水免费观看| 一个人免费看片子| 久久午夜综合久久蜜桃| 黄色片一级片一级黄色片| 国产精品自产拍在线观看55亚洲 | 在线精品无人区一区二区三| 国产精品影院久久| 水蜜桃什么品种好| 久久精品国产综合久久久| 亚洲精品日韩在线中文字幕| 伊人亚洲综合成人网| 蜜桃在线观看..| 国产成人a∨麻豆精品| 国产男女内射视频| 一进一出抽搐动态| 中亚洲国语对白在线视频| 最近最新免费中文字幕在线| 国产免费福利视频在线观看| 男女免费视频国产| 亚洲一码二码三码区别大吗| 国内毛片毛片毛片毛片毛片| 精品国产一区二区三区久久久樱花| 国产精品.久久久| 蜜桃在线观看..| 免费黄频网站在线观看国产| 亚洲精品国产av蜜桃| 亚洲中文字幕日韩| 亚洲午夜精品一区,二区,三区| 日韩免费高清中文字幕av| 国产免费视频播放在线视频| 久久久久久久精品精品| 欧美国产精品一级二级三级| 日韩中文字幕视频在线看片| 国产av又大| 十八禁网站网址无遮挡| 少妇被粗大的猛进出69影院| 成人国产一区最新在线观看| 欧美日韩黄片免| a 毛片基地| 老司机亚洲免费影院| 王馨瑶露胸无遮挡在线观看| 制服人妻中文乱码| 欧美国产精品一级二级三级| 色综合欧美亚洲国产小说| 亚洲精品乱久久久久久| 操美女的视频在线观看| 黄色片一级片一级黄色片| 99热国产这里只有精品6| 又大又爽又粗| 亚洲欧美一区二区三区黑人| a级毛片在线看网站| 老司机午夜十八禁免费视频| 法律面前人人平等表现在哪些方面 | 国产又爽黄色视频| 亚洲av美国av| 精品国产一区二区三区久久久樱花| 人成视频在线观看免费观看| 亚洲美女黄色视频免费看| 午夜老司机福利片| 在线av久久热| 中文字幕色久视频| 久久国产精品人妻蜜桃| 女人爽到高潮嗷嗷叫在线视频| 777久久人妻少妇嫩草av网站| 亚洲中文字幕日韩| av在线app专区| 欧美变态另类bdsm刘玥| 精品人妻1区二区| 亚洲三区欧美一区| 高清欧美精品videossex| 久久国产亚洲av麻豆专区| 国产高清国产精品国产三级| 可以免费在线观看a视频的电影网站| 热99re8久久精品国产| 中文欧美无线码| cao死你这个sao货| 丝袜美腿诱惑在线| 国产在线视频一区二区| 日韩欧美一区视频在线观看| 精品视频人人做人人爽| 丁香六月天网| 十八禁网站网址无遮挡| av网站免费在线观看视频| 十八禁人妻一区二区| 欧美日韩视频精品一区| 2018国产大陆天天弄谢| 欧美日韩国产mv在线观看视频| 老司机靠b影院| 考比视频在线观看| 亚洲性夜色夜夜综合| 亚洲av欧美aⅴ国产| 女人精品久久久久毛片| 啦啦啦视频在线资源免费观看| 亚洲熟女毛片儿| 久久精品国产亚洲av香蕉五月 | 亚洲va日本ⅴa欧美va伊人久久 | videosex国产| 亚洲av欧美aⅴ国产| 国产成人免费观看mmmm| 国产片内射在线| 啦啦啦在线免费观看视频4| 咕卡用的链子| 在线观看www视频免费| 久久狼人影院| 精品久久久久久久毛片微露脸 | 国产在视频线精品| 纯流量卡能插随身wifi吗| 岛国毛片在线播放| 女警被强在线播放| 亚洲成人手机| 无遮挡黄片免费观看| 久久99一区二区三区| 亚洲精品乱久久久久久| 免费日韩欧美在线观看| 日韩视频在线欧美| 久久久久久久久久久久大奶| 欧美国产精品一级二级三级| 亚洲一区中文字幕在线| 久久久精品免费免费高清| 亚洲精品久久久久久婷婷小说| 9色porny在线观看| 免费在线观看影片大全网站| 国产精品.久久久| e午夜精品久久久久久久| 久久精品亚洲熟妇少妇任你| 欧美精品高潮呻吟av久久| 肉色欧美久久久久久久蜜桃| 国产成人欧美在线观看 | 夜夜夜夜夜久久久久| 热99国产精品久久久久久7| 久久狼人影院| 丝袜人妻中文字幕| 国产成人av激情在线播放| 欧美+亚洲+日韩+国产| 国产有黄有色有爽视频| 成人三级做爰电影| 成年人午夜在线观看视频| 久久天堂一区二区三区四区| 制服诱惑二区| 午夜91福利影院| 男人添女人高潮全过程视频| 十八禁人妻一区二区| 少妇猛男粗大的猛烈进出视频| avwww免费| 成在线人永久免费视频| 久久久久国产一级毛片高清牌| 久久人人爽人人片av| 亚洲国产精品999| 超色免费av| 人人澡人人妻人| 国产成人欧美| 十八禁网站网址无遮挡| 99久久国产精品久久久| av国产精品久久久久影院| 老司机靠b影院| 日韩熟女老妇一区二区性免费视频| 国产精品秋霞免费鲁丝片| 亚洲av片天天在线观看| 无遮挡黄片免费观看| 日本a在线网址| 欧美一级毛片孕妇| a级毛片黄视频| 日韩电影二区| 汤姆久久久久久久影院中文字幕| 天堂8中文在线网| 少妇粗大呻吟视频| 老汉色av国产亚洲站长工具| 99久久国产精品久久久| 欧美日韩国产mv在线观看视频| 久久久国产欧美日韩av| 狠狠狠狠99中文字幕| 亚洲精品国产一区二区精华液| 亚洲精品第二区| 他把我摸到了高潮在线观看 | 日韩大码丰满熟妇| 亚洲av电影在线观看一区二区三区| 老司机影院成人| 欧美+亚洲+日韩+国产| 在线天堂中文资源库| 制服诱惑二区| 精品少妇久久久久久888优播| 99国产精品一区二区三区| 中文字幕精品免费在线观看视频| 婷婷成人精品国产| 精品国产乱码久久久久久男人| 男女高潮啪啪啪动态图| 侵犯人妻中文字幕一二三四区| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 亚洲人成电影免费在线| 中文字幕av电影在线播放| 免费在线观看影片大全网站| 91麻豆精品激情在线观看国产 | 国产成人a∨麻豆精品| 人人妻人人添人人爽欧美一区卜| 99九九在线精品视频| 伊人久久大香线蕉亚洲五| 欧美成人午夜精品| 国产成人系列免费观看| 国产伦人伦偷精品视频| 免费高清在线观看视频在线观看| 亚洲欧洲精品一区二区精品久久久| 久久精品国产综合久久久| 日韩中文字幕欧美一区二区| 在线观看一区二区三区激情| 亚洲精品粉嫩美女一区| 成人免费观看视频高清| 美女主播在线视频| 精品一区二区三区av网在线观看 | 一级黄色大片毛片| 99热全是精品| 国产在线一区二区三区精| 日韩欧美一区二区三区在线观看 | 精品亚洲成a人片在线观看| 天堂中文最新版在线下载| 高清在线国产一区| 国产精品久久久久久精品电影小说| 18禁观看日本| 欧美激情极品国产一区二区三区| 女警被强在线播放| 亚洲伊人久久精品综合| 亚洲第一欧美日韩一区二区三区 | 亚洲情色 制服丝袜| 丰满人妻熟妇乱又伦精品不卡| 国产精品熟女久久久久浪| 欧美性长视频在线观看| 老司机深夜福利视频在线观看 | 国产亚洲一区二区精品| 99九九在线精品视频| 麻豆乱淫一区二区| 一个人免费看片子| 久久精品人人爽人人爽视色| 最近中文字幕2019免费版| 国产精品久久久久久人妻精品电影 | 欧美日韩国产mv在线观看视频| 波多野结衣一区麻豆| 免费不卡黄色视频| 一级片'在线观看视频| 9色porny在线观看| 国产精品99久久99久久久不卡| 男人爽女人下面视频在线观看| 日本五十路高清| 久久亚洲国产成人精品v| 国产成人一区二区三区免费视频网站| 久久久精品94久久精品| 少妇 在线观看| 19禁男女啪啪无遮挡网站| 久久精品国产亚洲av高清一级| 亚洲国产欧美一区二区综合| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产日韩一区二区| 久久久欧美国产精品| 五月开心婷婷网| 久久中文字幕一级| 精品久久久久久电影网| 日本猛色少妇xxxxx猛交久久| 少妇猛男粗大的猛烈进出视频| 满18在线观看网站| 久久免费观看电影| 欧美日韩一级在线毛片| 国产一区二区在线观看av| 国产在视频线精品| 国产一级毛片在线| 大香蕉久久网| 91国产中文字幕| 一本—道久久a久久精品蜜桃钙片| 国产成+人综合+亚洲专区| 亚洲国产欧美日韩在线播放| 成年动漫av网址| 超色免费av| 亚洲免费av在线视频| 久久影院123| 建设人人有责人人尽责人人享有的| 男人添女人高潮全过程视频| 纵有疾风起免费观看全集完整版| 国产精品偷伦视频观看了| 国产男人的电影天堂91| 国产精品国产三级国产专区5o| 美女午夜性视频免费| 性高湖久久久久久久久免费观看| 人人妻人人澡人人看| 50天的宝宝边吃奶边哭怎么回事| 欧美国产精品va在线观看不卡| 精品亚洲成国产av| 亚洲精品美女久久av网站| 久久久久国内视频| 黑人猛操日本美女一级片| 五月天丁香电影| 天天躁夜夜躁狠狠躁躁| 俄罗斯特黄特色一大片| 欧美日韩一级在线毛片| 国产精品免费大片| 亚洲欧美日韩另类电影网站| 日本欧美视频一区| 欧美老熟妇乱子伦牲交| 亚洲天堂av无毛| 青青草视频在线视频观看| 91成人精品电影| 精品久久久久久久毛片微露脸 | 亚洲黑人精品在线| 极品人妻少妇av视频| 久久精品国产综合久久久| 男女无遮挡免费网站观看| 啪啪无遮挡十八禁网站| 国产成人av激情在线播放| 午夜福利影视在线免费观看| 久久国产精品影院| 亚洲精品粉嫩美女一区| a在线观看视频网站| 脱女人内裤的视频| 亚洲精品中文字幕在线视频| 成年动漫av网址| 国产精品久久久久久人妻精品电影 | 一区二区av电影网| 国产免费一区二区三区四区乱码| 一级黄色大片毛片| 国产欧美亚洲国产| 亚洲国产av新网站| 中文字幕精品免费在线观看视频| 国产成人欧美| 亚洲男人天堂网一区| 久久精品成人免费网站| 日本猛色少妇xxxxx猛交久久| 老司机影院成人| 国产不卡av网站在线观看| 男人操女人黄网站| 久久久久国产一级毛片高清牌| a 毛片基地| 青春草视频在线免费观看| 黄片大片在线免费观看| 国产精品欧美亚洲77777| 老司机深夜福利视频在线观看 | 国产免费现黄频在线看| 亚洲国产欧美在线一区| netflix在线观看网站| 国产成人欧美| 天堂中文最新版在线下载| 国产成人欧美在线观看 | 精品一区二区三卡| 亚洲,欧美精品.| 91国产中文字幕| 国产成人av激情在线播放| av天堂在线播放| 日本a在线网址| 精品国内亚洲2022精品成人 | 国产国语露脸激情在线看| 亚洲欧洲日产国产| 9191精品国产免费久久| 老司机靠b影院| 国产欧美亚洲国产| 一级片'在线观看视频| 国产老妇伦熟女老妇高清| 老汉色∧v一级毛片| 男女之事视频高清在线观看| 大片电影免费在线观看免费| 久久久久久久大尺度免费视频| 日韩,欧美,国产一区二区三区| 久久这里只有精品19| av国产精品久久久久影院| 狠狠精品人妻久久久久久综合| 亚洲精品中文字幕一二三四区 | 亚洲中文av在线| 精品国产乱码久久久久久小说| 热99国产精品久久久久久7| 天天影视国产精品| 亚洲国产欧美一区二区综合| 99久久综合免费| 亚洲国产毛片av蜜桃av| 青草久久国产| 国产日韩一区二区三区精品不卡| 午夜激情av网站| 国产成人精品在线电影| 午夜老司机福利片| 丁香六月欧美| 国产xxxxx性猛交| 丝袜人妻中文字幕| 咕卡用的链子| 欧美在线黄色| 51午夜福利影视在线观看| 日本av手机在线免费观看| 久久精品国产a三级三级三级| 亚洲激情五月婷婷啪啪| 久久人人爽av亚洲精品天堂| 搡老岳熟女国产| 人成视频在线观看免费观看| 日本猛色少妇xxxxx猛交久久| 精品人妻1区二区| 纵有疾风起免费观看全集完整版| 在线观看免费高清a一片| 飞空精品影院首页| 男女床上黄色一级片免费看| 成人三级做爰电影| 久热爱精品视频在线9| 午夜福利在线免费观看网站| 国产成人免费观看mmmm| 久久精品亚洲熟妇少妇任你| 日韩欧美一区视频在线观看| 一级毛片女人18水好多| 丰满迷人的少妇在线观看| 婷婷成人精品国产| 亚洲中文av在线| 国产精品一区二区在线不卡| 老熟妇仑乱视频hdxx| 最新的欧美精品一区二区| 啦啦啦视频在线资源免费观看| kizo精华| av片东京热男人的天堂| 欧美亚洲日本最大视频资源| 亚洲av日韩精品久久久久久密| 日韩一卡2卡3卡4卡2021年| 蜜桃国产av成人99| 中文字幕人妻丝袜制服| 亚洲中文日韩欧美视频| 国产精品麻豆人妻色哟哟久久| 亚洲欧美成人综合另类久久久| 不卡av一区二区三区| 久热这里只有精品99| 十分钟在线观看高清视频www| 欧美日韩av久久| 精品国产乱码久久久久久男人| 久久久精品94久久精品| 亚洲欧美色中文字幕在线| 老鸭窝网址在线观看| 91大片在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久女婷五月综合色啪小说| 久久影院123| 新久久久久国产一级毛片| 菩萨蛮人人尽说江南好唐韦庄| 国产精品免费视频内射| 久久精品国产亚洲av高清一级| 国产1区2区3区精品| 19禁男女啪啪无遮挡网站| 亚洲精品乱久久久久久| 欧美人与性动交α欧美软件| 91成年电影在线观看| 一本色道久久久久久精品综合| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久男人| 久久久久视频综合| 老熟女久久久| 99国产精品一区二区蜜桃av | 九色亚洲精品在线播放| av视频免费观看在线观看| 一本色道久久久久久精品综合| 日韩中文字幕欧美一区二区| 纵有疾风起免费观看全集完整版| 青青草视频在线视频观看| 亚洲精品国产av蜜桃| 欧美精品一区二区免费开放| 色播在线永久视频| www.av在线官网国产| 两人在一起打扑克的视频| 50天的宝宝边吃奶边哭怎么回事| 涩涩av久久男人的天堂| 精品国产乱码久久久久久男人| 欧美日韩成人在线一区二区| 一级毛片精品| 热re99久久精品国产66热6| 久久精品熟女亚洲av麻豆精品| 国产精品.久久久| 性少妇av在线| 黄色a级毛片大全视频| 午夜福利视频在线观看免费| 国产一区二区三区av在线| 脱女人内裤的视频| 飞空精品影院首页| 肉色欧美久久久久久久蜜桃| 日日夜夜操网爽| 在线观看www视频免费| 久久精品人人爽人人爽视色| 我的亚洲天堂| 国产淫语在线视频| 首页视频小说图片口味搜索| 黄色毛片三级朝国网站| 中文字幕制服av| 亚洲五月婷婷丁香| av不卡在线播放| 成年美女黄网站色视频大全免费| 我的亚洲天堂| 亚洲成人国产一区在线观看| 操出白浆在线播放| 免费在线观看视频国产中文字幕亚洲 | 青青草视频在线视频观看| 欧美+亚洲+日韩+国产| 高清黄色对白视频在线免费看| 中文字幕最新亚洲高清| 国产精品久久久久久精品电影小说| 性色av乱码一区二区三区2| 成人影院久久| 在线观看一区二区三区激情| 18在线观看网站| 老司机福利观看| 亚洲精品久久成人aⅴ小说| 后天国语完整版免费观看| 性色av一级| 最近中文字幕2019免费版| 99九九在线精品视频| 国产精品久久久人人做人人爽| 99精品久久久久人妻精品| 国产成人欧美| av超薄肉色丝袜交足视频| 午夜激情av网站| 亚洲国产精品999| 亚洲国产精品一区三区| 久久国产精品男人的天堂亚洲| 久久久久视频综合| 久久久久久久国产电影| 国产欧美日韩综合在线一区二区| 久久久久国产精品人妻一区二区| 久久天躁狠狠躁夜夜2o2o| 国产成人a∨麻豆精品| 大香蕉久久网| 黄片播放在线免费| 91精品三级在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av电影在线进入| 丰满少妇做爰视频| 日本精品一区二区三区蜜桃| 青春草亚洲视频在线观看| 在线观看一区二区三区激情| 老司机福利观看| av在线app专区| 一本—道久久a久久精品蜜桃钙片| 纯流量卡能插随身wifi吗| 亚洲人成电影免费在线| 王馨瑶露胸无遮挡在线观看| 不卡一级毛片| 免费在线观看黄色视频的| 亚洲成人免费电影在线观看| 桃红色精品国产亚洲av| 黄色视频在线播放观看不卡| av有码第一页| 伦理电影免费视频| 91成人精品电影| 18禁裸乳无遮挡动漫免费视频| 婷婷成人精品国产| 国产欧美日韩综合在线一区二区| 一二三四在线观看免费中文在| 日韩人妻精品一区2区三区| 美女福利国产在线| 大陆偷拍与自拍| 中文字幕av电影在线播放| 国产在线视频一区二区| 中国国产av一级| 国产一区二区三区综合在线观看| 免费久久久久久久精品成人欧美视频| 国产精品国产av在线观看| 欧美成狂野欧美在线观看| 在线亚洲精品国产二区图片欧美| 三级毛片av免费| 亚洲欧美色中文字幕在线| 性少妇av在线| 免费少妇av软件| svipshipincom国产片| 亚洲,欧美精品.| 中文字幕色久视频| 久久久久久人人人人人| 老司机午夜十八禁免费视频| 欧美精品高潮呻吟av久久| 大码成人一级视频| videos熟女内射| 免费久久久久久久精品成人欧美视频| 国产又色又爽无遮挡免| 午夜激情久久久久久久| 亚洲视频免费观看视频| 一级毛片电影观看| 99国产精品免费福利视频|