• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Upper trophic structure in the Atlantic Patagonian shelf break as inferred from stable isotope analysis*

    2018-07-11 01:58:14ZHUGuoping朱國(guó)平ZHANGHaiting張海亭YANGYang楊洋WANGShaoqin王少琴WEILian魏聯(lián)YANGQingyuan楊清源
    Journal of Oceanology and Limnology 2018年3期
    關(guān)鍵詞:清源楊洋

    ZHU Guoping (朱國(guó)平) 2 ZHANG Haiting (張海亭) YANG Yang (楊洋) WANG Shaoqin (王少琴) WEI Lian (魏聯(lián)) YANG Qingyuan (楊清源)

    1College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China

    2National Engineering Research Center for Oceanic Fisheries,Shanghai 201306,China

    3Polar Marine Ecosystem Group,Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources,Shanghai Ocean University,Ministry of Education,Shanghai 201306,China

    AbstractThe Patagonian Shelfis a very productive region with different ecosystem structures. A long history of fi shing in the Southwestern Atlantic Ocean combined with a complex hydrographic structure,with a permanent front over the shelf-break and different coastal frontal regions, and a wide non-frontal area in between have made the food web in this area more complex and have resulted in changes to the spatialtemporal scale. Stable isotopes of carbon and nitrogen were used to determine the trophic structure of the Patagonian shelf break which was previously poorly understood. The results indicated that the average δ15N value of pelagic guild (Illex argentinus) was remarkable lower than those of the other guilds. The δ13C values of almost all species ranged from -17‰ to -18‰, butStromateus brasiliensishad a significant lower δ13C value. Compared with the southern Patagonian shelf, short food chain length also occurred. The impact of complex oceanographic structures has resulted in food web structure change to the temporal-spatial scale on the Patagonian shelf. The Patagonian shelf break can be considered as a separated ecosystem structure with lower δ15N values.

    Keyword: 13C;15N; trophic structure; Patagonian shelf break

    1 INTRODUCTION

    The Patagonian Shelf and Slope is among the most productive areas in the Southwest Atlantic. There are two marine ecosystems, the southern temperate ecosystem and the sub-Antarctic ecosystem which run from the south-western part to the north-eastern part of the Patagonian Shelf through the Falkland(Malvinas) Islands archipelago (Boltovskoy, 2000). A complex hydrographic structure, with a permanent front (the Eastern Falkland Current) over the shelfbreak and three coastal frontal regions (the temperate estuarine zone, the Patagonian tidal zone and the Patagonian cold estuarine zone) and a wide nonfrontal area in between, occurs on the Patagonian shelf (Acha et al., 2004).

    In the past several decades, the Patagonian shelf has been a region with a major bottom-trawl fishery for the longfi n squid,Loligogahi(Patterson, 1988),Argentine shortfi n squid,Illexargentinus(Laptikhovsky et al., 2013), fi nfish fishery (Nakamura et al., 1986; Haimovici, 1998) and squid jigging fishery. This has become an important squid fi shing ground for the Chinese squid fishery (Chen et al.,2008). Fishery discards include damaged squid, the remains of processed commercial fi sh and by-catch species, sea urchins and scallops, and other benthos(Laptikhovsky et al., 2013). Those non-natural food sources result in a change in the feeding ecology of fishes and squids in the spatial-temporal scales(Laptikhovsky, 2004). The climate change exacerbates the complex of trophic relationships of fishes and squid in this region. The trophic level of marine fauna on the upper Patagonian shelf, particularly the Río de la Plata estuary (Botto et al., 2011) and lower Patagonian shelf (Ciancio et al., 2008), especially the waters around the Falkland Islands (Quillfeldt et al.,2015) were examined using stable isotope analysis(SIA). This analysis has proved to a powerful and reliable technique to characterize trophic relationships within the Southern Patagonian shelf region (Ciancio et al., 2008; Saporiti et al., 2015). Saporiti et al. (2015)explore the latitudinal variations in the 3 different coastal ecosystems along the Patagonian shelf using SIA. However, the food web of the Patagonian shelf break, particularly the area around the important fi shing ground of the squid fishery has not been examined and is poorly understood. Therefore, the aim of this study was to determine the trophic structure of fishes and squid in the productive Patagonian shelf break.

    2 MATERIAL AND METHOD

    2.1 Sample collection

    Samples were collected from the large-scale midwater trawlerLongfabetween December 2014 to April 2015 in the fi shing grounds around the central Patagonian shelf break (Fig.1). All samples were collected randomly from the fi shing locations and stored in a freezer at -20°C for later analysis in a landbased laboratory.

    2.2 Stable isotope analysis

    Once in the laboratory, samples were unfrozen.The length (total length for skates, standard length for fi sh and mantle length for squid, in centimeters) and wet weight (in grams) of the samples were measured.The mantle or white dorsal muscle was extracted and analyzed for the cephalopods, skates and fishes,respectively. The muscle samples were thawed, dried in an oven at 60°C for 36-48 h, and ground to a fi ne powder with a mortar and pestle. Lipids were extracted from fi sh and invertebrate samples with a chloroform/methanol (2:1) solution (Bligh and Dyer,1959). This is because lipids are depleted in13C compared with other molecules (DeNiro and Epstein,1977) and lipid concentration in tissues may vary between and within species. This variation results in an artifactual variation of the overall tissue δ13C value.This powder was used directly for carbon and nitrogen analysis.

    Fig.1 Study area and sampling location

    Stable isotope abundance is expressed in standard δ notation relative to carbonate Pee Dee Belemnite and atmospheric nitrogen. International secondary isotope standards of knownandratios,as given by the International Atomic Energy Agency(IAEA)—namely: polyethylene (IAEA CH7,C=-31.8‰), sucrose (IAEA CH6,C=-10.4‰),ammonium sulphate (IAEA N1;N=+0.4% and IAEA N2;N=+20.3%), potassium nitrate (USGS 34;N=21.7%), L-glutamic acid (USGS 40;N=24.6%;C=22.6, 2%), and caffeine (IAEA 600; δ15N=1.0%;=27.7%)—were used for calibration ofand δ15N. The precision for nitrogen was 0.2‰ and for carbon was 0.3‰. Mean C- and N- isotope values were presented for each species.Analyses was performed at the College of Marine Sciences of Shanghai Ocean University (SHOU).

    2.3 Food web analysis

    Limited availability of baseline data impeded the estimation of the trophic level (TL) of these species directly. However, the samples from Ciancio et al.(2008) were almost all collected from the shelf break(Ciancio et al., 2008; Saporiti et al., 2015), so in order to assign a trophic level to all species, euphausids, a herbivores, were introduced as the lowest trophic level of all species and assigned a value of 2.0 to this species (Ciancio et al., 2008). Using the mean trophic fractionation (TF) factor for15N for marine herbivores(2.52‰; Van Der Zanden and Rasmussen 2001),trophic level was calculated by:

    Table 1 The mean C- and N-isotope values and length of fi sh, skate and squid in the Patagonian shelf break

    Fig.2 Stable carbon and nitrogen isotopes in the food web of the Patagonian shelf break (±SD)The δ13C values on the x-axis reflect potential carbon sources (more depleted in more offshore-pelagic waters), whereas δ15N on the y axis generally can be interpreted as proportional to the trophic level.

    2.4 Data analysis

    Twelve species were analyzed for carbon and nitrogen isotope composition. Species were grouped into functional guilds, i.e., demersal (Cottoperca gobio,Congiopodusperuvianus,Congerorbignyanus,Rajacyclophora), benthopelagic (Stromateus brasiliensis,Patagonotothenramsayi,Macruronus magellanicus), bathydemersal (Genypterusblacodes,Merlucciusalbidus,Brevirajaspinosa,Rajabullisi)and pelagic (Illexargentines) guilds according to their biological and ecological features (Sielfeld and Vargas, 1999; Froese and Pauly, 2011; WoRMS Editorial Board, 2014). Kruskal-Wallis test was used to examine the difference in stable C- and N-isotope signatures of guilds.

    nMDS Variation in fi sh species and squid was visualized using non-metric multidimensional scaling(nMDS) on the Bray-Curtis distances with mean C-and N-isotope values. According to Clarke (1993) a stress value below 0.2 indicates that an nMDS plot is useful for interpreting differences between communities.

    3 RESULT

    The general picture of C- and N-stable-isotope data showed a food web with a narrow range of C-isotope values (between -18.08‰ and -17.04‰), except forS.brasiliensis(-20.75‰) (Table 1, Fig.2). δ13C values for fishes, skates and squid analyzed ranged from-22.01‰ to -16.56‰, -17.53‰ to -16.56‰ and-19.06‰ to -16.52‰, respectively. The δ15N values for fishes, skates and squid analyzed ranged from 12.86‰ to 17.63‰, 12.64‰ to 14.44‰ and 8.58‰to 12.61‰, respectively. The lowest and highest δ13C values wereS.brasiliensis(-22.01‰) andG.blacodes(-16.56‰) for fishes,R.cyclophora(-17.53‰ and-16.57‰) for skates andI.argenitna(-19.06‰ and-16.52‰) for squid. The lowest and highest δ15N values wereP.ramsayi(12.86‰) andG.blacodes(17.63‰) for fishes,R.bullisi(12.64‰ and 14.44‰)for skates andI.argenitna(8.58‰ and 12.61‰).

    Except forS.brasiliensis(ANOVA,F=8.416,P=0.020<0.05), there were no significant linearrelationships between δ13C value and the length of fi sh and squid species (Table 2). However, more linear relationships can be found on δ15N and the length of fi sh species, includingC.peruvianusand two skates(R.cyclophoraandR.bullisi) (Table 3).

    Table 2 The linear relationship between δ13C and length of fi sh and squid species

    Table 3 The linear relationship between δ15N and length of fi sh species

    The stress value for this nMDS plot is 0.01,meaning that the plot provides a useful representation of the variation in fi sh species and squid (Fig.3).P.ramsayi,M.magellanicusand skates (R.cyclophora,B.spinosaandR.bullisi) can be divided into a group.C.gobio,C.peruvianus,C.orbignyanusandM.albiduswas categorized as another group.S.brasiliensis,G.blacodesandI.argentinuswere significantly different from other species and separated from each other.

    Fig.3 The non-metric multidimensional scaling ordination of marine fauna on the Patagonian shelf breakThe circles denote groups of statistically different marine fauna.1:Stromateus brasiliensis; 2:Cottoperca gobio; 3:Congiopodusperuvianus; 4:Genypterus blacodes; 5:Conger orbignyanus;6:Patagonotothen ramsayi; 7:Merluccius albidus; 8:Rajacyclophora; 9:Breviraja spinosa; 10:Raja bullisi; 11:Macruronusmagellanicus; 12:Illex argentines.

    Fig.4 Mean values of δ13C value and δ15N values (±SD) for fi sh and squid fauna on the Patagonian shelf break

    The mean C-isotope signatures varied (Kruskal-WallisH3,78=17.63,P=0.001<0.05) for the four trophic guilds. The guild-average δ13C value was less enriched for the benthopelagic guild than for other three guilds, which presented very similar average δ13C values (Fig.4). For the benthopelagic guild,P.ramsayiandM.magellanicusshared similar δ13C values, butS.brasiliensishad a significant lower δ13C value and lowered the average δ13C value of this guild.

    A similar significant difference was also found for the stable N-isotope signatures of the four guilds(Kruskal-WallisH3,78=28.95,P<0.001). The average δ15N value of the pelagic guild (I.argentinus) was remarkable lower than those of the other guilds,which showed very similar and more enriched δ15N values (Kruskal-WallisH2,68=4.10,P=0.13>0.05).The bathydemersal guild (G.blacodes,M.albidus,B.spinosa, andR.bullisi) had more enriched δ13C and δ15N values than those of the other guilds. Generally,δ15N values increased with the depth of the fi sh habitat from the surface (pelagic) to the bottom(bathydemersal).

    4 DISCUSSION

    Stable isotopic analysis was widely used to indicate the feeding habitat of aquatic animals (Fisk et al.,2002; Jackson et al., 2007; Park et al., 2011; Agersted et al., 2014) and has become a common approach to understand the food web structure and the trophic dynamics of different ecosystems (Post, 2002).However, information on diet composition or feeding habits of some fi sh species in the Atlantic Patagonian shelf region were still derived from gut content analysis (Santos and Haimovici, 1997; Mouat et al.,2001; Nyegaard et al., 2004). Diet composition ofI.argentinusandG.blacodespresented an ontogenetic variation (Mouat et al., 2001). RockcodPatagonotothenspp. andM.magellanicuswere key prey species ofG.blacodesaround the Falkland Islands, but spatial variability in the diet was found inG.blacodesbetween temperate and sub-Antarctic waters (Nyegaard et al., 2004). However, the stable isotope analysis did not support the ontogenetic diet shift in the above fi sh species, based on the relation between both isotopes and size. The spatial-temporal heterogeneity of diet composition and limited sample size may contribute to the difference.

    The food web structure on the Patagonian shelf were examined by several studies. Because of the introduction of salmonids on the tip of South America in the past decades, Ciancio et al. (2008) examined the trophic relationships of exotic anadromous salmonids on the southern Patagonian shelfinferred from stable isotopes. Drago et al. (2009) revealed the stable isotope values of the food items from South American sea lion in Patagonia. Based on stable isotope analysis, Saporiti et al. (2015) compared the latitudinal changes (the temperature estuarine zone associated with the Río de la Plata plume, the tidal zone off northern and central Patagonia and the cold estuarine zone off southern Patagonia) in the marine food web structures in this region and found the food chain length (FCL) decreases and the trophic redundancy increases as latitude increases in all of the above three regions. The tidal zone off northern and central Patagonia (northern Patagonian region in Fig.5) has similar latitude range to the present study,but the region of the present study is located offshore and in the shelf break. significant differences can be found for mean C- and N-isotope values of the same species among the present study and the previous studies (Table 4). The δ15N value ofP.ramsayiin the Patagonian shelf break was lowest and the δ15N value ofP.ramsayiin the northern and central Patagonian shelf was significantly higher than those in the others regions (Fig.5). Similar lower δ15N values can be found for other fi sh and squid species in the shelf break, although the latitudinal changes on the δ15N values of those species has not occurred. significant lower δ15N values of species in present study area may be attributed to complex habitats, oceanographic dynamics and overlapping anthropogenic activities.Squid and fi nfish fi sheries were concentrated in this region in the past decades (Haimovici, 1998; Chen et al., 2008; Laptikhovsky et al., 2013). Humans were fi shing down the food web to lower trophic level by selectively removing large fi sh from the oceans (Pauly et al., 2000). This process has potentially contributed to the lower δ15N value in this ecosystem. However,data on the feeding ecology of commercial species,particularly fi nfish, in this region was scarce (Mouat et al., 2001). Therefore more fishery data needed to provide a possible explanation. The δ13C values for most of species were concentrated from -18‰ to-17‰. However, the δ13C values of some species (for example,G.blacodesandP.ramsayi) in the northern and central Patagonian region were significantly higher than other species. The δ13C value of species in the southern Patagonian shelf were higher than those in other regions (Fig.5). Particularly, the δ13C values ofS.brasiliensiswas significantly lower than other species in the present study, the possible reason could be its residence in shallower and less salty waters which flowed from Argentina or Falkland waters(Fig.6). Using the ratio of δ13C/δ15N of species (four species,P.ramsayi,G.blacodes,M.MagellanicusandI.argentinuswere involved) as an indicator of food web structure. A significant difference can be found between the Patagonian shelf break (the present study) and the northern and central Patagonian region(Saporiti et al., 2015) (pairedt-test,t=4.30,P=0.04<0.05) (Fig.5). Lowest mean N-isotope values of species occurred in the Patagonian shelf break.Spatial-temporal heterogeneity of those studies can provide potential explanations for these differences.One of reasons is the possible annual or seasonally variability in stable isotope ratios, as the samples used by Ciancio et al. (2008) and Saporiti et al. (2015)were collected from 2001 to 2005 and from October 2009 to December 2011, respectively. However, the samples collected for the present study were collected from December 2014 to May 2015. The second reason is that the samples collected by Ciancio et al. (2008)were from the southern Patagonian shelf regions between the coastal frontal area and the shelf break and by Saporiti et al. (2015) from the coastal frontal area of northern or southern Patagonian shelf.However the samples in the present study were from shelf break between the regions B and C of Saporiti et al. (2015). significant differences in the mean N-isotope values ofI.argentines(pelagic species),P.ramsayi(benthopelagic species) andG.blacodes(bathydemersal species) between Ciancio et al. (2008)and Saporiti et al. (2015) in a similar region also supported the temporal heterogeneity of the ecosystem.

    Fig.5 Comparison of mean C- and N-isotope values of selected fi sh species and squid in the different regions of the Patagonian ecosystema. Patagonian shelf break (the present study);b. southern Patagonian shelf (Ciancio et al., 2008);c. southern Patagonian region (Saporiti et al., 2015);d. northern and central Patagonian region (Saporiti et al., 2015);e. southern Patagonian region (Drago et al., 2009).

    Table 4 Comparison on stable C- and N-isotope values of selected fi sh species and squid in the Patagonian regions between the present study and previous studies

    Fig.6 The study area with the distribution of stable carbon and nitrogen isotopic values for the combined species and a schematic illustrating the main oceanographic featuresPartly reproduced from Arkhipkin et al. (2013).

    Complex frontal regime in this region can provide another explanation. The Patagonian shelf has a complicated hydrographic structure, with a permanent front over the shelf break and coastal frontal regions(Acha et al., 2004). This results in the different ecosystem structures in the above habitats. Ciancio et al. (2008) collected most of the secondary consumer samples from the shelf region between the coastal frontal area and the shelf break. The samples of Saporiti et al. (2015) were collected within the coastal frontal regions where are characterized by intense vertical mixing of the water column (Acha et al.,2004) and hence a region with higher δ15N values(Calvert et al., 1992; Wu et al., 1997; Waser et al.,2000). This can explain why the δ15N values of samples from Saporiti et al. (2015) were higher than those from Ciancio et al. (2008) and the present study.Furthermore, the FCL in the Patagonian shelf break(FCL=2.16 betweenG.blacodesandI.argentinus,the present study) was longer than those in the southern Patagonian shelf (FCL=1.4, Ciancio et al.,2008), meaning poleward food web shortening was noted (Saporiti et al., 2015). Compared with the δ15N values in the northern and central Patagonia, the lower δ15N values presented in this study area also support this argument. Fishing activities, which has modified the abundance of many species and their diets (Drago et al., 2009; Ramírez et al., 2014; Zenteno et al., 2015)have also modified fatherly food web structures in the exploited regions, particularly in the Patagonian shelf break where heavy commercial squid fishery has occurred in the past decades (Laptikhovsky et al.,2013).

    Oceanographic structures, such as fronts, are discontinuities in the marine environment which inf l uence the ecology of marine organisms (Leichter and Witman, 2009) and the distributional pattern of marine organisms at all trophic levels (Alemany et al.,2014). At upper trophic levels, particularly fi sh and squids, behavioral sensory cues (i.e., temperature,salinity, optical conditions, and trace substances) are involved in actively seek out frontal structures for reproduction, feeding and migration (Olson, 2002).Frontal systems are characterized by high primary and secondary production (Mann and Lazier, 2006)that is transferred to higher trophic levels within the regional food web. The Shelf-break front (SBF,Alemany et al., 2014) and the Eastern Falkland current (EFC, Arkhipkin et al., 2013) cross the present study area (Fig.6). Argentine drift also reaches the present study area. Similarly, the Southern Patagonia front (SPF) and Argentine drift have an impact on the study areas of Ciancio et al. (2008) and Saporiti et al.(2015). However, the impact of those fronts had different effects on those study areas and further affected trophic levels of the above food web structures.

    With the unavailability of stable isotope data of primary producers, the trophic level of the Patagonian shelf break cannot be structured directly. However,there was a clear separation of resources between demersal-benthic and pelagic species of some fi sh species (Fig.4 and Fig.5). Moreover, the present study indicates the Patagonian shelf break can be considered as a separated ecosystem structure with lower δ15N values.

    5 ACKNOWLEDGMENT

    We would like to thank the fi sheries observers,crew and the offcers of the trawlerLongfa, LIU Zijun,CHEN Lvfen, WANG Rui, SONG Qi and REN Zeqian at the College of Marine Sciences, Shanghai Ocean University for their helps in processing the samples. We acknowledge Mr Alan Coughtrey of the Shanghai Ocean University for his help in polishing the language. Finally, we would also like to thank two anonymous reviewers for their contributions to improve this manuscript.

    猜你喜歡
    清源楊洋
    “不及格”
    做人與處世(2022年6期)2022-05-26 10:26:35
    詩(shī)與遠(yuǎn)方
    “怡清源”黑茶包裝設(shè)計(jì)
    湖南包裝(2020年4期)2020-09-11 07:06:46
    新唱黃楊扁擔(dān)
    “一根筋”的古清源
    青春期健康(2019年9期)2019-05-23 09:15:28
    THE ALPHA AND OMERA OF GO
    『一根筋』的古清源
    “一根筋” 的古清源
    治本清源 創(chuàng)新舉措 海門積極化解環(huán)境信訪難題
    Why Should We Teach Languages
    亚洲五月婷婷丁香| 天天躁夜夜躁狠狠躁躁| 日韩,欧美,国产一区二区三区| 大型av网站在线播放| 日韩制服骚丝袜av| 91精品国产国语对白视频| 久久国产精品影院| 午夜福利乱码中文字幕| 国产精品 国内视频| 国产成人欧美在线观看 | 亚洲一区二区三区欧美精品| 老司机福利观看| 黑人操中国人逼视频| 欧美亚洲日本最大视频资源| 欧美激情 高清一区二区三区| 国产亚洲精品久久久久5区| 国产欧美日韩综合在线一区二区| 国产1区2区3区精品| 一区二区三区激情视频| 人人妻人人爽人人添夜夜欢视频| 国产一区二区三区av在线| 美女主播在线视频| 久久av网站| 成人三级做爰电影| 亚洲国产av影院在线观看| 男女高潮啪啪啪动态图| 久久人人爽人人片av| 青春草视频在线免费观看| 黄色视频,在线免费观看| 最黄视频免费看| 91老司机精品| 亚洲国产成人一精品久久久| av有码第一页| 亚洲成国产人片在线观看| 天堂8中文在线网| 一级黄色大片毛片| 久久亚洲国产成人精品v| 欧美精品人与动牲交sv欧美| 久久久久视频综合| 在线十欧美十亚洲十日本专区| 国产野战对白在线观看| 国产免费现黄频在线看| 操美女的视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产淫语在线视频| 亚洲精品自拍成人| 久久热在线av| 亚洲国产成人一精品久久久| 国产有黄有色有爽视频| 日本vs欧美在线观看视频| 中文字幕高清在线视频| 涩涩av久久男人的天堂| 亚洲精品中文字幕一二三四区 | 99久久综合免费| 午夜精品国产一区二区电影| 亚洲人成77777在线视频| 黄色片一级片一级黄色片| 啦啦啦在线免费观看视频4| 热re99久久精品国产66热6| 宅男免费午夜| 国产熟女午夜一区二区三区| 高潮久久久久久久久久久不卡| 中文字幕精品免费在线观看视频| 亚洲成人免费电影在线观看| 亚洲视频免费观看视频| 大陆偷拍与自拍| 精品国产乱码久久久久久小说| 黄色a级毛片大全视频| 一级a爱视频在线免费观看| av视频免费观看在线观看| 亚洲欧美精品自产自拍| 午夜成年电影在线免费观看| 下体分泌物呈黄色| 亚洲,欧美精品.| 又大又爽又粗| 国产精品一区二区在线不卡| 久久国产精品影院| 十八禁网站网址无遮挡| 女人精品久久久久毛片| 精品久久久精品久久久| 日本欧美视频一区| 1024视频免费在线观看| 久久99热这里只频精品6学生| 不卡一级毛片| 国产亚洲欧美在线一区二区| 日韩大片免费观看网站| 热99国产精品久久久久久7| 巨乳人妻的诱惑在线观看| 国产免费福利视频在线观看| 丰满迷人的少妇在线观看| 亚洲三区欧美一区| 亚洲中文av在线| 99久久国产精品久久久| 欧美激情久久久久久爽电影 | 国产成人精品久久二区二区91| 色综合欧美亚洲国产小说| 国产老妇伦熟女老妇高清| 日韩 欧美 亚洲 中文字幕| 日韩人妻精品一区2区三区| 91大片在线观看| 午夜两性在线视频| 国产精品九九99| 一进一出抽搐动态| 免费日韩欧美在线观看| 黄片小视频在线播放| 香蕉国产在线看| 脱女人内裤的视频| 亚洲第一av免费看| 欧美成狂野欧美在线观看| 精品少妇久久久久久888优播| 老汉色∧v一级毛片| 19禁男女啪啪无遮挡网站| 黄色片一级片一级黄色片| 一级毛片精品| 久久狼人影院| 久久精品亚洲av国产电影网| 国产人伦9x9x在线观看| 久久久久久久大尺度免费视频| 女性生殖器流出的白浆| 各种免费的搞黄视频| 国产精品熟女久久久久浪| av视频免费观看在线观看| 香蕉国产在线看| 真人做人爱边吃奶动态| 精品国产一区二区三区四区第35| 大香蕉久久成人网| 精品卡一卡二卡四卡免费| av在线老鸭窝| 精品福利永久在线观看| 久久99热这里只频精品6学生| 日韩欧美国产一区二区入口| 人成视频在线观看免费观看| 国产99久久九九免费精品| 亚洲 国产 在线| 香蕉丝袜av| 高清av免费在线| 国产亚洲av高清不卡| 人人妻人人爽人人添夜夜欢视频| 亚洲伊人久久精品综合| 亚洲精品第二区| 在线精品无人区一区二区三| 女警被强在线播放| 国产精品久久久久久精品电影小说| 日韩精品免费视频一区二区三区| 久久久国产成人免费| 一区二区三区乱码不卡18| 欧美97在线视频| 黄片大片在线免费观看| 我要看黄色一级片免费的| 久久亚洲精品不卡| 日本一区二区免费在线视频| 一级a爱视频在线免费观看| 亚洲精品美女久久久久99蜜臀| 日韩一卡2卡3卡4卡2021年| 亚洲欧美清纯卡通| 免费在线观看完整版高清| 在线观看免费午夜福利视频| 色老头精品视频在线观看| 欧美老熟妇乱子伦牲交| 欧美日韩一级在线毛片| 美女国产高潮福利片在线看| 成年人免费黄色播放视频| 99久久精品国产亚洲精品| 精品福利观看| 99精国产麻豆久久婷婷| 国产高清videossex| 免费在线观看影片大全网站| 亚洲av欧美aⅴ国产| 高潮久久久久久久久久久不卡| 涩涩av久久男人的天堂| 捣出白浆h1v1| 日韩大片免费观看网站| 12—13女人毛片做爰片一| 最近中文字幕2019免费版| 亚洲国产中文字幕在线视频| 成人国产一区最新在线观看| 视频在线观看一区二区三区| 咕卡用的链子| 捣出白浆h1v1| 高清在线国产一区| 国产日韩欧美亚洲二区| 母亲3免费完整高清在线观看| 淫妇啪啪啪对白视频 | 一区在线观看完整版| 在线观看舔阴道视频| 国产精品国产av在线观看| 久久香蕉激情| 又紧又爽又黄一区二区| 国产男女超爽视频在线观看| 中国国产av一级| 成人国产一区最新在线观看| 久久精品成人免费网站| 国产1区2区3区精品| 男女无遮挡免费网站观看| 亚洲五月婷婷丁香| 手机成人av网站| 亚洲国产日韩一区二区| √禁漫天堂资源中文www| 黄色 视频免费看| 亚洲七黄色美女视频| 亚洲国产精品一区三区| 巨乳人妻的诱惑在线观看| 香蕉国产在线看| 一本久久精品| 久久av网站| 国产精品亚洲av一区麻豆| 侵犯人妻中文字幕一二三四区| 精品人妻熟女毛片av久久网站| 国产成人免费观看mmmm| 国产精品99久久99久久久不卡| 老汉色av国产亚洲站长工具| 欧美另类亚洲清纯唯美| 自线自在国产av| 亚洲av欧美aⅴ国产| 久久 成人 亚洲| 精品一区二区三卡| 国产欧美日韩综合在线一区二区| 日韩中文字幕欧美一区二区| 男女之事视频高清在线观看| 国产精品一区二区免费欧美 | 欧美国产精品一级二级三级| 少妇精品久久久久久久| 日韩有码中文字幕| 国产成人a∨麻豆精品| 一级a爱视频在线免费观看| 欧美精品av麻豆av| 午夜视频精品福利| 美女脱内裤让男人舔精品视频| 美女扒开内裤让男人捅视频| 亚洲欧美精品综合一区二区三区| 精品少妇黑人巨大在线播放| 久9热在线精品视频| 国精品久久久久久国模美| 好男人电影高清在线观看| 99精国产麻豆久久婷婷| 国产男人的电影天堂91| 日韩 亚洲 欧美在线| 久久久水蜜桃国产精品网| 久9热在线精品视频| 9191精品国产免费久久| 亚洲欧美色中文字幕在线| 99国产精品一区二区蜜桃av | 无遮挡黄片免费观看| 天堂中文最新版在线下载| 国产区一区二久久| 亚洲中文日韩欧美视频| 18禁观看日本| 中文字幕另类日韩欧美亚洲嫩草| 女人精品久久久久毛片| av不卡在线播放| 在线观看一区二区三区激情| 国产精品久久久久久人妻精品电影 | 国产精品 国内视频| 丰满迷人的少妇在线观看| 欧美日韩亚洲高清精品| 亚洲精品粉嫩美女一区| 日本wwww免费看| 午夜91福利影院| 天天影视国产精品| 电影成人av| 亚洲精品国产色婷婷电影| 精品亚洲乱码少妇综合久久| 久久香蕉激情| 欧美日韩黄片免| 久久99一区二区三区| 国精品久久久久久国模美| 欧美变态另类bdsm刘玥| 91麻豆av在线| 亚洲伊人色综图| 免费人妻精品一区二区三区视频| a 毛片基地| 美女脱内裤让男人舔精品视频| 色视频在线一区二区三区| 男人添女人高潮全过程视频| 老司机午夜福利在线观看视频 | 在线观看人妻少妇| 黄色片一级片一级黄色片| 黄网站色视频无遮挡免费观看| 亚洲一码二码三码区别大吗| 99国产精品一区二区三区| 国产一区二区激情短视频 | 亚洲av美国av| 嫁个100分男人电影在线观看| 精品国产乱子伦一区二区三区 | 又大又爽又粗| 欧美久久黑人一区二区| 91字幕亚洲| 90打野战视频偷拍视频| 香蕉国产在线看| 热99国产精品久久久久久7| 视频区欧美日本亚洲| 久久人人爽av亚洲精品天堂| 国产精品久久久人人做人人爽| 各种免费的搞黄视频| 自线自在国产av| 亚洲色图 男人天堂 中文字幕| 中文字幕精品免费在线观看视频| 国产三级黄色录像| 精品国内亚洲2022精品成人 | 国产老妇伦熟女老妇高清| 国产一区二区三区在线臀色熟女 | 亚洲人成77777在线视频| 高潮久久久久久久久久久不卡| 日韩欧美一区二区三区在线观看 | 亚洲一码二码三码区别大吗| 国产精品熟女久久久久浪| 天天添夜夜摸| 中文字幕高清在线视频| 中文字幕人妻丝袜一区二区| 中文字幕最新亚洲高清| 亚洲视频免费观看视频| 成人影院久久| a级片在线免费高清观看视频| 法律面前人人平等表现在哪些方面 | 18禁国产床啪视频网站| 国产亚洲午夜精品一区二区久久| 国产主播在线观看一区二区| 欧美日韩亚洲国产一区二区在线观看 | 老司机福利观看| 亚洲成人免费av在线播放| 精品熟女少妇八av免费久了| 飞空精品影院首页| 欧美日韩视频精品一区| 国产成人欧美| 中文字幕人妻熟女乱码| 纯流量卡能插随身wifi吗| 免费人妻精品一区二区三区视频| 黄网站色视频无遮挡免费观看| 一级片免费观看大全| 老司机深夜福利视频在线观看 | 国产精品免费视频内射| 亚洲精品自拍成人| 国产视频一区二区在线看| 亚洲国产欧美一区二区综合| 曰老女人黄片| 最近最新免费中文字幕在线| 少妇 在线观看| 欧美日韩亚洲综合一区二区三区_| 91精品伊人久久大香线蕉| 老汉色av国产亚洲站长工具| 日日爽夜夜爽网站| 欧美激情极品国产一区二区三区| 免费一级毛片在线播放高清视频 | 久久香蕉激情| 狠狠精品人妻久久久久久综合| 亚洲熟女精品中文字幕| 婷婷成人精品国产| 久9热在线精品视频| 另类精品久久| 午夜精品久久久久久毛片777| 日韩中文字幕欧美一区二区| 香蕉国产在线看| 国产亚洲一区二区精品| 男人操女人黄网站| 中文字幕制服av| 美女主播在线视频| 伊人久久大香线蕉亚洲五| 国产熟女午夜一区二区三区| 亚洲精品国产av蜜桃| 99香蕉大伊视频| 亚洲国产欧美日韩在线播放| 麻豆国产av国片精品| 动漫黄色视频在线观看| 国产精品偷伦视频观看了| 亚洲成人免费电影在线观看| 后天国语完整版免费观看| 黄网站色视频无遮挡免费观看| 亚洲精品久久久久久婷婷小说| 亚洲欧美日韩另类电影网站| 麻豆av在线久日| 欧美精品亚洲一区二区| 日韩大码丰满熟妇| 蜜桃国产av成人99| 别揉我奶头~嗯~啊~动态视频 | 老司机午夜福利在线观看视频 | 午夜福利,免费看| 亚洲情色 制服丝袜| 久久亚洲国产成人精品v| 国产日韩一区二区三区精品不卡| www.999成人在线观看| 亚洲精品久久午夜乱码| 久久久水蜜桃国产精品网| 国产av国产精品国产| 国产在线免费精品| 国产成人精品久久二区二区免费| 日韩视频一区二区在线观看| 人妻人人澡人人爽人人| 亚洲一码二码三码区别大吗| 少妇 在线观看| 免费高清在线观看视频在线观看| 日韩中文字幕欧美一区二区| 69精品国产乱码久久久| 999久久久国产精品视频| 视频区图区小说| 亚洲伊人色综图| 女人精品久久久久毛片| 久久狼人影院| 欧美大码av| 99精品欧美一区二区三区四区| 人人妻人人添人人爽欧美一区卜| 日韩,欧美,国产一区二区三区| 日日夜夜操网爽| 欧美日韩中文字幕国产精品一区二区三区 | 欧美中文综合在线视频| 宅男免费午夜| xxxhd国产人妻xxx| 国产男女超爽视频在线观看| 热99国产精品久久久久久7| 欧美在线一区亚洲| 一二三四在线观看免费中文在| a级毛片在线看网站| 一边摸一边做爽爽视频免费| 香蕉国产在线看| 国产欧美日韩一区二区三区在线| 国产成人免费观看mmmm| 国产精品香港三级国产av潘金莲| 丰满人妻熟妇乱又伦精品不卡| a级片在线免费高清观看视频| 精品一区二区三区av网在线观看 | 亚洲欧美精品自产自拍| 一级a爱视频在线免费观看| a在线观看视频网站| 日韩中文字幕欧美一区二区| 电影成人av| 欧美性长视频在线观看| 黄色视频,在线免费观看| 9色porny在线观看| 国产精品香港三级国产av潘金莲| 日韩制服骚丝袜av| 建设人人有责人人尽责人人享有的| 亚洲黑人精品在线| 成年人午夜在线观看视频| 黑丝袜美女国产一区| 亚洲情色 制服丝袜| 久久久精品免费免费高清| 中文精品一卡2卡3卡4更新| 国产亚洲一区二区精品| 51午夜福利影视在线观看| 美女福利国产在线| 亚洲久久久国产精品| 伦理电影免费视频| 久久久国产欧美日韩av| 国产精品秋霞免费鲁丝片| 丰满饥渴人妻一区二区三| 精品国产超薄肉色丝袜足j| 亚洲人成电影观看| 久久人人97超碰香蕉20202| 十分钟在线观看高清视频www| 久久狼人影院| 欧美大码av| 日韩三级视频一区二区三区| 亚洲欧美一区二区三区久久| 精品福利永久在线观看| 国产无遮挡羞羞视频在线观看| 99香蕉大伊视频| 丁香六月天网| 午夜久久久在线观看| 一本一本久久a久久精品综合妖精| 精品少妇久久久久久888优播| 91成年电影在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 女人爽到高潮嗷嗷叫在线视频| 天天操日日干夜夜撸| 秋霞在线观看毛片| 18禁黄网站禁片午夜丰满| 女人高潮潮喷娇喘18禁视频| 国产精品欧美亚洲77777| 中文字幕人妻丝袜一区二区| 咕卡用的链子| 亚洲激情五月婷婷啪啪| 国产欧美日韩一区二区三区在线| 老司机午夜福利在线观看视频 | 视频区欧美日本亚洲| 老司机深夜福利视频在线观看 | 亚洲 国产 在线| 可以免费在线观看a视频的电影网站| 久久精品国产亚洲av香蕉五月 | 高清在线国产一区| av有码第一页| 色老头精品视频在线观看| 91国产中文字幕| 18禁观看日本| 国产亚洲欧美精品永久| 亚洲av美国av| 中文字幕制服av| 亚洲精品乱久久久久久| 久久亚洲国产成人精品v| 精品高清国产在线一区| 国产精品久久久久久人妻精品电影 | 韩国高清视频一区二区三区| 日本一区二区免费在线视频| 精品视频人人做人人爽| 国产99久久九九免费精品| 欧美激情高清一区二区三区| 亚洲欧美激情在线| 老司机午夜十八禁免费视频| 考比视频在线观看| 美女福利国产在线| 日韩欧美免费精品| netflix在线观看网站| 人人妻人人澡人人爽人人夜夜| 亚洲成人手机| 一本一本久久a久久精品综合妖精| 亚洲成人手机| a级毛片在线看网站| 久久久久久久大尺度免费视频| 成年女人毛片免费观看观看9 | 精品国产超薄肉色丝袜足j| 少妇人妻久久综合中文| 一区二区日韩欧美中文字幕| 国产成人免费无遮挡视频| 亚洲性夜色夜夜综合| 一本久久精品| 亚洲九九香蕉| 91国产中文字幕| av在线播放精品| 国产不卡av网站在线观看| 亚洲av男天堂| 精品亚洲乱码少妇综合久久| 老司机午夜十八禁免费视频| 韩国精品一区二区三区| 18禁黄网站禁片午夜丰满| 丝瓜视频免费看黄片| 后天国语完整版免费观看| 欧美亚洲日本最大视频资源| tocl精华| 国产一级毛片在线| 69精品国产乱码久久久| 国产欧美日韩一区二区三区在线| 精品国产乱码久久久久久小说| 亚洲 国产 在线| 少妇人妻久久综合中文| 亚洲成人免费av在线播放| 黄色片一级片一级黄色片| 久久精品国产a三级三级三级| 国产精品秋霞免费鲁丝片| 女人高潮潮喷娇喘18禁视频| 国产精品亚洲av一区麻豆| 在线观看一区二区三区激情| 婷婷丁香在线五月| 日韩 欧美 亚洲 中文字幕| 国产成人啪精品午夜网站| 久久久欧美国产精品| 国产一区二区 视频在线| 91精品三级在线观看| 91精品伊人久久大香线蕉| 天天添夜夜摸| 国产视频一区二区在线看| 操美女的视频在线观看| 亚洲国产精品999| 天天躁日日躁夜夜躁夜夜| 免费看十八禁软件| 精品亚洲成a人片在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲av日韩精品久久久久久密| 曰老女人黄片| 黄色片一级片一级黄色片| 考比视频在线观看| 在线观看舔阴道视频| 在线观看免费日韩欧美大片| 国产成人系列免费观看| 亚洲色图综合在线观看| av超薄肉色丝袜交足视频| 亚洲伊人色综图| 亚洲国产精品一区三区| 精品免费久久久久久久清纯 | 啦啦啦在线免费观看视频4| 久久久久久久久久久久大奶| 亚洲全国av大片| 亚洲精品国产色婷婷电影| 国内毛片毛片毛片毛片毛片| 超碰97精品在线观看| 中文字幕色久视频| 欧美激情极品国产一区二区三区| 亚洲欧美精品综合一区二区三区| 免费不卡黄色视频| 中文字幕人妻丝袜一区二区| 曰老女人黄片| 亚洲伊人久久精品综合| 高清视频免费观看一区二区| 99国产精品一区二区三区| 中文字幕人妻熟女乱码| 国产精品久久久人人做人人爽| 搡老熟女国产l中国老女人| 大香蕉久久成人网| 精品一区二区三卡| 色播在线永久视频| 汤姆久久久久久久影院中文字幕| 国产成人系列免费观看| 久久 成人 亚洲| 18在线观看网站| 国产日韩欧美在线精品| 91精品国产国语对白视频| 丝袜人妻中文字幕| 免费黄频网站在线观看国产| 一区二区三区四区激情视频| 午夜福利在线观看吧| av在线老鸭窝| 久久国产亚洲av麻豆专区| 中亚洲国语对白在线视频| av天堂在线播放| 9色porny在线观看| 欧美精品一区二区大全| 极品少妇高潮喷水抽搐| 脱女人内裤的视频| 亚洲精品日韩在线中文字幕| 国产精品久久久av美女十八| 国精品久久久久久国模美| 日韩大码丰满熟妇| 亚洲第一av免费看| 丝袜美足系列| 欧美日韩视频精品一区| 少妇被粗大的猛进出69影院| 超碰成人久久| 国产麻豆69|