史真超,葛恩燕,何品晶,3,彭 偉,章 驊,呂 凡,4*
基于碳氮平衡模型評(píng)價(jià)廚余垃圾厭氧消化工程
史真超1,葛恩燕2,何品晶1,3,彭 偉1,章 驊1,呂 凡1,4*
(1.同濟(jì)大學(xué)固體廢物處理與資源化研究所,上海 200092;2.浙江省城市化發(fā)展研究中心,浙江 杭州 310007;3.上海多源固廢協(xié)同處理和能源化工程技術(shù)研究中心,上海 200092;4.上海污染控制與生態(tài)安全研究院,上海 200092)
以典型廚余垃圾厭氧消化工程為研究對(duì)象,使用碳氮平衡全流程模型計(jì)算,分析比較了碳氮物質(zhì)流模型計(jì)算結(jié)果與采樣實(shí)測(cè)數(shù)據(jù);通過(guò)碳氮在固液氣三相的全流程分配,評(píng)價(jià)工程實(shí)際運(yùn)行效能.結(jié)果表明,實(shí)測(cè)數(shù)據(jù)與模擬結(jié)果比較,顯示碳氮物質(zhì)流在厭氧產(chǎn)氣部分?jǐn)M合效果較好(擬合優(yōu)度0.88),但在固液分離組件環(huán)節(jié)存在顯著缺陷.通過(guò)優(yōu)化消化液含固率(TS)與固液分離分配比的關(guān)系,改進(jìn)了模型的固液分離組件,從而提高了沼液和沼渣含固率的模擬效果,擬合優(yōu)度分別提高至0.97和0.82;通過(guò)嵌入實(shí)際產(chǎn)氣程度(BMP),提出并應(yīng)用了一種基于碳氮平衡模型的評(píng)估方法,可判別厭氧消化反應(yīng)器運(yùn)行狀況.
廚余垃圾;厭氧消化;碳氮平衡模型;運(yùn)行效能
我國(guó)2020年城市生活垃圾收運(yùn)量達(dá)2.35億t[1],按廚余垃圾占生活垃圾57%[2]計(jì)算,廚余垃圾產(chǎn)生量近1.3億t.隨著我國(guó)垃圾分類規(guī)模擴(kuò)大和垃圾分類水平提高,廚余垃圾中的其他垃圾含量逐漸減少,更適合采用厭氧消化、堆肥、蟲體養(yǎng)殖等生物技術(shù)處理.厭氧消化因可回收沼氣、適合規(guī)模處理、碳減排效益顯著等特點(diǎn)[3],在我國(guó)已建廚余垃圾處理項(xiàng)目中占比達(dá)76.1%[4].但這些工程目前普遍存在沼氣產(chǎn)量低,消化副產(chǎn)物沼液和沼渣處理難等問(wèn)題[5-6].
針對(duì)提高厭氧消化效率和系統(tǒng)穩(wěn)定性、改善沼氣產(chǎn)量低的問(wèn)題,可通過(guò)建立厭氧消化模型,優(yōu)化設(shè)計(jì)參數(shù)并評(píng)估運(yùn)行效能[7-8].在現(xiàn)有研究中,厭氧消化模型主要有3類,第1類是基于生化反應(yīng)過(guò)程的理論模型,以ADM1為代表[9-13].趙小飛[14]針對(duì)餐飲行業(yè)產(chǎn)生的廚余垃圾特性,通過(guò)優(yōu)化ADM1模型結(jié)構(gòu)并校準(zhǔn)厭氧消化動(dòng)力學(xué)參數(shù),構(gòu)建了適合廚余垃圾厭氧消化的穩(wěn)態(tài)和非穩(wěn)態(tài)ADM1-FW模型.但是,廚余垃圾性質(zhì)與各地飲食習(xí)慣及季節(jié)有關(guān)[5],機(jī)理模型使用時(shí)需進(jìn)行動(dòng)力學(xué)參數(shù)校核,而ADM1的復(fù)雜性導(dǎo)致需要校核較多參數(shù),限制了該類模型的使用[15].第2類是預(yù)測(cè)沼氣產(chǎn)量的經(jīng)驗(yàn)?zāi)P?此類模型對(duì)厭氧消化過(guò)程進(jìn)行簡(jiǎn)化,使用簡(jiǎn)單明確的假設(shè),降低模型參數(shù)獲取難度,提高了模型易用性.國(guó)內(nèi)外科研工作者已開發(fā)出多種適用不同原料和規(guī)模的甲烷產(chǎn)量預(yù)測(cè)工具[15-16].如愛爾蘭環(huán)保署于2007開發(fā)的畜牧糞便沼氣池預(yù)測(cè)軟件,可幫助農(nóng)場(chǎng)主根據(jù)畜牧
養(yǎng)殖數(shù)量估算甲烷產(chǎn)量,并提供經(jīng)濟(jì)成本分析[15].Moscoviz等[17]使用半經(jīng)驗(yàn)公式,考慮厭氧消化反應(yīng),建立化學(xué)計(jì)量學(xué)模型來(lái)預(yù)測(cè)甲烷產(chǎn)量和揮發(fā)性固體(VS)降解量.第3類是統(tǒng)計(jì)模型,該類模型不強(qiáng)調(diào)模型的理論依據(jù),而是通過(guò)數(shù)據(jù)積累建立輸入?yún)?shù)與所需輸出參數(shù)的關(guān)系,采用回歸模型[7,18]和人工神經(jīng)網(wǎng)絡(luò)模型[19]等,預(yù)測(cè)甲烷產(chǎn)量和有機(jī)物降解.已有的模型研究主要關(guān)注甲烷產(chǎn)量,對(duì)沼液和沼渣消化殘余物預(yù)測(cè)研究較少,而厭氧消化產(chǎn)生大量消化殘余物需要進(jìn)一步處理和資源化利用[6,20],對(duì)厭氧消化設(shè)施整體運(yùn)行效能和減碳效果有較大影響,因此需要對(duì)厭氧消化碳氮全流程進(jìn)行分析.
Bareha等[9]開發(fā)了一種基于碳氮質(zhì)量守恒的經(jīng)驗(yàn)?zāi)P蚐YS-Metha,該模型適用于生物質(zhì)厭氧消化,并提供了畜禽糞便、廚余垃圾等多種原料的理化性質(zhì)數(shù)據(jù)庫(kù).該模型不僅可以計(jì)算沼氣產(chǎn)量,還可預(yù)測(cè)消化液以及固液分離后沼液和沼渣的碳氮相關(guān)指標(biāo).該模型的原理是依據(jù)物料的生化產(chǎn)甲烷潛力(BMP)[21]和生化有機(jī)氮降解潛力(ANMP)[9,12]來(lái)預(yù)測(cè)厭氧消化過(guò)程中碳氮降解轉(zhuǎn)化量,配合固液分離組件和儲(chǔ)存組件,從而計(jì)算出消化副產(chǎn)物沼液和沼渣的產(chǎn)量.但該模型還存在如下問(wèn)題: (1)數(shù)據(jù)庫(kù)中廚余進(jìn)料為法國(guó)原生廚余垃圾,而我國(guó)廚余垃圾性質(zhì)與國(guó)外相差很大[22-23];沒(méi)有考慮原料經(jīng)儲(chǔ)存[21]、預(yù)處理除雜制漿等前處理后理化性質(zhì)的改變,進(jìn)而對(duì)厭氧產(chǎn)氣和消化殘余物的影響;(2)固液分離組件采用了最優(yōu)情況下固定的分離參數(shù)[24],并假設(shè)其不隨消化液性質(zhì)變化,這與實(shí)際運(yùn)行情況不符;(3)該模型僅以BMP為輸入,沒(méi)有考慮到實(shí)際酸氨抑制或溫度等因素對(duì)厭氧消化效率的影響[25-26].
因此,為了形成可用于預(yù)測(cè)我國(guó)廚余垃圾厭氧消化處理廠碳氮在固、液、氣三相產(chǎn)物分布的研究方法,本研究使用碳氮平衡全流程模型,開展以下研究:(1)通過(guò)比較某一廚余垃圾厭氧消化廠實(shí)測(cè)數(shù)據(jù),驗(yàn)證該模型并評(píng)價(jià)該廠運(yùn)行情況;(2)結(jié)合文獻(xiàn)中的固液分離數(shù)據(jù),優(yōu)化該模型的固液分離組件,提高模型適用性;(3)基于上述優(yōu)化模型,分析厭氧產(chǎn)氣受到不同程度抑制時(shí),對(duì)沼液和沼渣產(chǎn)量和性質(zhì)可能造成的影響.
碳氮平衡全流程模型(基于SYS-Metha模型[9])的計(jì)算流程如圖1所示.該模型主要包括4個(gè)模塊,分別為:數(shù)據(jù)庫(kù)模塊、輸入模塊、轉(zhuǎn)換模塊和輸出模塊.首先在數(shù)據(jù)庫(kù)模塊中選擇厭氧消化原料和操作參數(shù),如厭氧消化水力停留時(shí)間(HRT)、固液分離方式、產(chǎn)物儲(chǔ)存方式等,輸入至模型,即可計(jì)算得到沼氣產(chǎn)量、消化液物質(zhì)流和性質(zhì),再經(jīng)過(guò)固液分離組件,可得到沼液和沼渣的物質(zhì)流及性質(zhì).
圖1 模型計(jì)算流程
根據(jù)Bareha等[9]重繪
數(shù)據(jù)庫(kù)模塊涵蓋了厭氧消化中常見進(jìn)料的物化指標(biāo).進(jìn)料可分為5大類:農(nóng)作物及其廢棄物、畜禽糞便、工業(yè)有機(jī)廢棄物(如食品加工、屠宰場(chǎng)等)、廚余垃圾和市政污泥,共46種.除此以外,該模塊可添加新的進(jìn)料.在本研究中,廚余垃圾經(jīng)預(yù)處理制漿后進(jìn)入?yún)捬跸?與已有數(shù)據(jù)庫(kù)中廚余垃圾性質(zhì)相差較大,故需現(xiàn)場(chǎng)采樣分析.數(shù)據(jù)庫(kù)進(jìn)料物化指標(biāo)整理如表1所示.
表1 數(shù)據(jù)庫(kù)進(jìn)料物化指標(biāo)歸類
注:表中8項(xiàng)指標(biāo)需測(cè)定,包括總固體(TS)、揮發(fā)性固體(VS)、總碳(TC)、凱氏氮(TKN)、氨氮(NH4+)、生化產(chǎn)甲烷潛力(BMP)、甲烷含量(CH4%)和表觀脫氮潛力(ANMP),其余據(jù)此計(jì)算可得.
1.1.1 輸入模塊 輸入模塊包含進(jìn)料量、水力停留時(shí)間HRT、固液分離設(shè)置和儲(chǔ)存條件設(shè)置.該模型可用于多種進(jìn)料共消化,故進(jìn)料流為每種進(jìn)料總量.固液分離設(shè)置即消化液固液分離方式(如離心、螺旋擠壓等),消化液分為沼液(固液分離后液相)和沼渣(固液分離后固相).儲(chǔ)存條件設(shè)置指消化產(chǎn)物是否儲(chǔ)存及其儲(chǔ)存有無(wú)覆蓋,可分為不儲(chǔ)存(即不考慮氣體排放)、消化液儲(chǔ)存(又可分為有覆蓋和無(wú)覆蓋儲(chǔ)存)、沼液儲(chǔ)存(又可分為有覆蓋和無(wú)覆蓋儲(chǔ)存)和沼渣儲(chǔ)存,儲(chǔ)存條件影響各相C、N減量和氣體排放量.本研究厭氧處理廠不設(shè)儲(chǔ)存.
1.1.2 轉(zhuǎn)換模塊 轉(zhuǎn)換模塊指系統(tǒng)中C、N所發(fā)生的各類生化反應(yīng)及物理變化,包含3個(gè)組件,分別為:厭氧消化組件、固液分離組件和儲(chǔ)存組件.其中,厭氧消化組件模擬計(jì)算原料進(jìn)入?yún)捬跸到y(tǒng)后,C、N發(fā)生的各類變化;固液分離組件模擬消化液經(jīng)過(guò)固液分離后,C、N在沼液和沼渣的分配;儲(chǔ)存組件計(jì)算各相經(jīng)儲(chǔ)存后,發(fā)生的C、N減量和氣體排放.計(jì)算公式詳見文獻(xiàn)[9].
1.1.3 輸出模塊 輸出模塊可得到甲烷產(chǎn)量(根據(jù)發(fā)電效率可轉(zhuǎn)化為發(fā)電功率),消化液、沼液和沼渣的物質(zhì)流指標(biāo)(各相流量、總固體(TS)、揮發(fā)性固體(VS))和C、N相關(guān)指標(biāo)(總碳(TC)、凱氏氮濃度(TKN)、氨氮濃度(NH4+)),以及儲(chǔ)存期間氣體排放(甲烷(CH4)、氮?dú)?N2)、一氧化二氮(N2O)).
1.1.4 模型評(píng)價(jià) 使用擬合優(yōu)度(2)評(píng)價(jià)模型,評(píng)估實(shí)測(cè)數(shù)據(jù)與模型計(jì)算數(shù)據(jù)的擬合程度,計(jì)算公式[27]如式(1)所示.2取值范圍0~1,擬合優(yōu)度2越接近1,則說(shuō)明擬合效果越好.
式中:實(shí)測(cè)表示實(shí)測(cè)數(shù)據(jù),模擬表示模型計(jì)算數(shù)據(jù).
我國(guó)東部某城市一廚余垃圾處理廠A采用預(yù)處理制漿提油+漿液濕式厭氧消化工藝[6],厭氧消化后消化液固液分離采用臥式螺旋沉降離心機(jī).厭氧消化反應(yīng)器水力停留時(shí)間為35d.下文分析時(shí)以100t/d經(jīng)預(yù)處理后漿料為計(jì)算基準(zhǔn),即本研究不考慮廚余垃圾雜物含量和預(yù)處理工序的因素,僅關(guān)注預(yù)處理后厭氧消化及后續(xù)固液分離過(guò)程.采樣時(shí)間為2021年2月和8月.如圖2所示,為驗(yàn)證模型模擬性能,取樣分析預(yù)處理后厭氧進(jìn)料、厭氧消化反應(yīng)器出口消化液、固液分離后的沼液和沼渣.
TS、VS采用重量法測(cè)量.固體樣品經(jīng)過(guò)冷凍干燥后研缽研磨至400目以下,采用有機(jī)元素分析儀(VarioEL,Germany)測(cè)定C、H、N元素含量.樣品消解后,采用凱氏定氮儀(UDK-159,Velp Scientifica Srl,Italy)測(cè)定凱氏氮(TKN),而氨氮(NH4+)則不經(jīng)消解直接用定氮儀測(cè)定.生化產(chǎn)甲烷潛力(BMP)采用Bio-Process自動(dòng)產(chǎn)甲烷潛力測(cè)試裝置(Bio-Process Control,Sweden)測(cè)定[21].表觀脫氮潛力(ANMP)測(cè)定方法與Bareha等[28]相同.
采樣分析結(jié)果如表2所示,模型計(jì)算結(jié)果與工藝節(jié)點(diǎn)實(shí)測(cè)結(jié)果如表3所示.消化液中TS、VS、TC、NH4+和TKN的擬合優(yōu)度分別為0.99,0.84,0.81,0.65和0.97,除NH4+外均大于0.80,甲烷產(chǎn)量擬合優(yōu)度為0.88.說(shuō)明模擬效果良好,同時(shí)表明現(xiàn)場(chǎng)厭氧消化運(yùn)行良好,未受到顯著抑制.但是,沼液和沼渣的模擬數(shù)據(jù)與實(shí)測(cè)數(shù)據(jù)相差較大.
圖2 模型與工藝流程對(duì)照
表2 厭氧消化廠A的工藝節(jié)點(diǎn)樣品測(cè)試結(jié)果
注:“—”表示無(wú)此數(shù)據(jù).
如表3所示,沼液沼渣的模擬數(shù)據(jù)與實(shí)測(cè)數(shù)據(jù)相差大,且沼渣模擬數(shù)據(jù)的TS僅為66.0g/kg,遠(yuǎn)低于實(shí)測(cè)數(shù)據(jù)164.3g/kg.由質(zhì)量守恒可知,造成差距的原因在于固液分離過(guò)程的固液物質(zhì)流分配比和各物質(zhì)(TS、VS、TKN等指標(biāo))的分配比不同.
表3 厭氧消化廠A的模擬數(shù)據(jù)與實(shí)測(cè)數(shù)據(jù)
分別對(duì)實(shí)測(cè)數(shù)據(jù)TS、VS、TC建立二元一次方程組(式(2)~(5)),計(jì)算實(shí)際沼液和沼渣物質(zhì)流占比,簡(jiǎn)化為公式(6)[24].計(jì)算結(jié)果見表4,不同指標(biāo)計(jì)算沼渣物質(zhì)流占比,得到結(jié)果相對(duì)誤差較小(相對(duì)誤差0.8%),說(shuō)明實(shí)測(cè)沼渣物質(zhì)流占比為7.0%,而不是模型中假設(shè)的固定值29%.
式中:表示沼液占消化液物質(zhì)流比例,表示沼渣占消化液物質(zhì)流比例,表示TS、VS或TC.
表4 碳相關(guān)指標(biāo)在固液相的分配比(%)
2.2.1 原模型固液分離組件的局限性 在SYS- Metha固液分離組件中,使用表5的固液物質(zhì)流分配比、TS分配比等參數(shù),該參數(shù)來(lái)自Guilayn等[24],其對(duì)63項(xiàng)固液分離設(shè)施按分離效率分類,取高效分離器的平均值,即該值并非單指離心分離,而是各類高效固液分離平均值.因此,本研究根據(jù)Akhiar等[29]整理了離心分離后沼渣物質(zhì)流與沼渣TS分配比數(shù)據(jù)(圖3).沼渣物質(zhì)流與沼渣TS呈負(fù)相關(guān),隨著沼渣物質(zhì)流占比增大,沼渣TS減小.2.1節(jié)模擬計(jì)算中沼渣物質(zhì)流分配比FM取29%,導(dǎo)致沼渣TS含量低.因此需要改進(jìn)模型中固液分離組件,以適應(yīng)不同TS的消化液.
2.2.2 消化液TS與固液分離效率的關(guān)系 2.1節(jié)的分析誤差,原因在于原模型中假設(shè)固液分離組件的沼渣物質(zhì)流分配比和TS分配比是固定的,不隨厭氧消化進(jìn)料和消化液性質(zhì)變化而變化.Akhiar等[29]探討了厭氧消化原料、操作參數(shù)、消化液各組分成分和固液分離方式對(duì)沼液各組分的影響,指出沼液組成主要取決于脫水方式和厭氧消化原料.Guilayn等[24]研究了消化液TS、VS對(duì)沼液組成的影響,指出了使用離心機(jī)時(shí),消化液TS與分離效率存在線性關(guān)系.通過(guò)文獻(xiàn)調(diào)研[30-31],關(guān)注消化液離心分離,消化液的TS和TN對(duì)TS和TN固液分離效率的影響,數(shù)據(jù)見表6.通過(guò)線性回歸可得到消化液TS與沼渣物質(zhì)流的關(guān)系、消化液TS與沼渣TS分配比的關(guān)系、消化液TN和沼渣TN分配比的關(guān)系,線性回歸參數(shù)見表7.
表5 原模型計(jì)算所用分配比[24] (%)
注:FM為物質(zhì)流(按質(zhì)量計(jì)).
圖3 離心分離沼渣TS與沼渣物質(zhì)流占比
根據(jù)Akhiar等[29]整理
表6 離心機(jī)固液分離下消化液TS和 TN對(duì)TS和TN分離效率的影響
續(xù)表6
表7 消化液組分與沼渣組分的線性回歸參數(shù)
注:FW為沼渣物質(zhì)流在消化液物質(zhì)流的質(zhì)量占比,%;TS為沼渣TS在消化液TS的質(zhì)量占比(即沼渣TS分配比),%;TN為沼渣TN在消化液TN的質(zhì)量占比(即沼渣TN分配比),%.
2.2.3 改進(jìn)的固液分離組件 將模型計(jì)算的消化液結(jié)果帶入線性回歸方程,可得沼渣物質(zhì)流分配比(FW)為5%,沼渣TS分配比(TS)為41%,沼渣TN分配比(TN)為17%.模擬結(jié)果和實(shí)測(cè)數(shù)據(jù)見表8.沼液TS擬合優(yōu)度為0.97,沼渣TS擬合優(yōu)度為0.82,沼液TN擬合優(yōu)度為0.60,沼渣TN擬合優(yōu)度為0.40.碳指標(biāo)TS模擬結(jié)果有顯著提高,沼液TS擬合優(yōu)度提升120%,沼渣TS擬合優(yōu)度提升105%.
表8 改進(jìn)后模擬結(jié)果與實(shí)測(cè)數(shù)據(jù)
注:TS和TKN單位為g/kg.
在SYS-Metha模型中,碳和氮生物可降解性沒(méi)有考慮有機(jī)酸累積、氨累積、油脂濃度高以及營(yíng)養(yǎng)物短缺等造成的抑制,也未考慮反應(yīng)器啟動(dòng)和運(yùn)行階段的變化,是一種穩(wěn)態(tài)模型[9].但在實(shí)際運(yùn)行中,厭氧消化系統(tǒng)容易受到抑制,存在穩(wěn)定性差、產(chǎn)氣效率低等問(wèn)題.進(jìn)而會(huì)影響沼液和沼渣的量和性質(zhì),關(guān)系著沼液和沼渣的后續(xù)資源化途徑[32-33].
SYS-Metha模型與ADM1為代表的機(jī)理模型最大的區(qū)別在于,ADM1機(jī)理模型使用動(dòng)力學(xué)方程,是一種過(guò)程模擬,參數(shù)數(shù)量多、模型結(jié)構(gòu)復(fù)雜. SYS-Metha則使用厭氧進(jìn)料BMP計(jì)算可生物降解碳含量(BioDC),將BMP表征厭氧過(guò)程中碳的生物降解量,進(jìn)而計(jì)算TS、VS、TC等碳相關(guān)指標(biāo).因此,為了確定厭氧消化系統(tǒng)受抑制的程度,可通過(guò)改變厭氧消化反應(yīng)器進(jìn)料實(shí)際的產(chǎn)氣率來(lái)實(shí)現(xiàn),定義實(shí)際產(chǎn)氣程度BMP=實(shí)際BMP/BMP0.仍以2.1節(jié)的厭氧消化廠數(shù)據(jù)為例,BMP0為470Nm3/ tTS,改變BMP帶入模型計(jì)算,結(jié)果如圖4a所示.在本模型中BMP與甲烷產(chǎn)率具有極強(qiáng)的線性關(guān)系(2>0.99),這與模型中甲烷產(chǎn)量計(jì)算有關(guān).隨著抑制程度的增強(qiáng),BMP降低導(dǎo)致甲烷產(chǎn)率降低.在BMP約50%時(shí)出現(xiàn)間斷點(diǎn),該間斷點(diǎn)源于模型中由HRT計(jì)算BioDC時(shí),當(dāng)可生物降解碳含量低于一定值后,計(jì)算公式中的參數(shù)變化導(dǎo)致的,圖4中出現(xiàn)的間斷均為該原因.
結(jié)合2.2節(jié)的固液分離組件優(yōu)化,本研究比較了固液分離組件優(yōu)化后的模型,以及原模型中兩種情景(沼渣物質(zhì)流占比FW=10%和FW=29%),模型計(jì)算的沼渣和沼液產(chǎn)量見圖4b和圖4c.總體而言,隨著抑制程度加強(qiáng),甲烷產(chǎn)率降低,沼渣和沼液TS均增高.出現(xiàn)這種趨勢(shì)的原因在于,實(shí)際產(chǎn)氣程度BMP降低反映出厭氧消化中產(chǎn)甲烷階段活性降低,根據(jù)碳的質(zhì)量守恒,消化液TS較抑制前增高,固液分離后的沼液和沼渣TS也會(huì)增高.3種模型出現(xiàn)不同的斜率,其中FW=10%時(shí),在圖4b和圖4c中斜率均最高,敏感性最強(qiáng).導(dǎo)致該情況的原因是當(dāng)FW降低而TS不變時(shí),意味著沼液和沼渣之間TS分配將更加懸殊,從而使得相比其他模型,FW=10%時(shí)TS含量對(duì)甲烷產(chǎn)率變化更敏感.優(yōu)化后模型對(duì)甲烷產(chǎn)率變化最不敏感,因?yàn)樵诠桃悍蛛x組件中,FW和TS隨消化液TS變化而變化,抵消了一部分變化,從而使得優(yōu)化后的模型更加穩(wěn)健.
圖4 厭氧消化系統(tǒng)抑制程度評(píng)估
BMP0為470Nm3/tTS
因此,實(shí)際產(chǎn)氣程度指標(biāo)BMP可表示厭氧消化系統(tǒng)的抑制程度.此外,利用改進(jìn)后的固液分離組件,可得到不同抑制程度下沼液和沼渣TS,為沼液沼渣后續(xù)處理提供性質(zhì)數(shù)據(jù)支持.
為驗(yàn)證該評(píng)估方法,對(duì)同一省份另一處廚余垃圾厭氧消化工程B(采樣時(shí)間為2021年2月)應(yīng)用該方法進(jìn)行評(píng)估.工藝節(jié)點(diǎn)輸入?yún)?shù)見表9.未引入BMP時(shí)的模型模擬數(shù)據(jù)與實(shí)測(cè)數(shù)據(jù)見表10,從計(jì)算結(jié)果看,消化液TS和甲烷產(chǎn)量擬合優(yōu)度2分別為0.67和0.72,其余小于0.50,這說(shuō)明工程現(xiàn)場(chǎng)甲烷產(chǎn)量低,厭氧消化存在抑制.根據(jù)2.3節(jié)提出的實(shí)際產(chǎn)氣程度指標(biāo)BMP,將進(jìn)料的輸入?yún)?shù)BMP降低為430Nm3/tTS,此時(shí)BMP為89%,重新計(jì)算.結(jié)果表明消化液TS、VS和TC以及甲烷產(chǎn)量擬合優(yōu)度有明顯提升,分別為0.92,0.92,0.99和0.86.同時(shí)測(cè)試了反應(yīng)器出料消化液樣品的產(chǎn)甲烷潛力,BMP消化液為(145.7±13.6)Nm3/tTS,說(shuō)明消化液仍有較高產(chǎn)甲烷潛力,說(shuō)明厭氧產(chǎn)甲烷不完全(受抑制或停留時(shí)間不足),導(dǎo)致了甲烷產(chǎn)量低于預(yù)期.
表9 厭氧消化處理廠B的工藝節(jié)點(diǎn)參數(shù)輸入
表10 厭氧消化處理廠B的模擬數(shù)據(jù)與實(shí)測(cè)數(shù)據(jù)
注:括號(hào)內(nèi)數(shù)值為BMP為430Nm3/tTS時(shí)模型計(jì)算結(jié)果.
3.1 基于我國(guó)典型實(shí)際厭氧消化工程的工藝節(jié)點(diǎn)實(shí)測(cè)數(shù)據(jù),驗(yàn)證和優(yōu)化了碳氮平衡全流程模型.擬合結(jié)果表明原模型在厭氧產(chǎn)氣部分有較好的擬合效果,但在固液分離組件環(huán)節(jié)存在顯著缺陷.
3.2 通過(guò)文獻(xiàn)數(shù)據(jù)進(jìn)行線性回歸,得到離心機(jī)固液分離條件下,消化液TS與分離后沼渣物質(zhì)流占比、消化液TS與分離效率以及消化液TN與分離效率的關(guān)系.將相應(yīng)的分配比FW、TS和TN再次帶入模型計(jì)算后,總固體TS模擬結(jié)果顯著提升,沼液TS擬合優(yōu)度提升至0.97,沼渣TS擬合優(yōu)度提至0.82.
3.3 引入實(shí)際產(chǎn)氣程度BMP指標(biāo),為評(píng)估厭氧消化反應(yīng)器處于不同產(chǎn)氣運(yùn)行狀況下,預(yù)測(cè)沼液沼渣量和性質(zhì)提供了方法;并應(yīng)用該方法進(jìn)行現(xiàn)場(chǎng)評(píng)估,預(yù)測(cè)結(jié)果能較好解釋現(xiàn)場(chǎng)數(shù)據(jù),為廚余垃圾厭氧消化廠運(yùn)行評(píng)價(jià)提供評(píng)價(jià)手段.
[1] 國(guó)家統(tǒng)計(jì)局.中國(guó)統(tǒng)計(jì)年鑒(2021) [M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2021.
National Bureau of Statistics of China. China statistical yearbook (2021) [M]. Beijing: China Statistics Press,2021.
[2] 魏瀟瀟,王小銘,李 蕾,等.1979~2016年中國(guó)城市生活垃圾產(chǎn)生和處理時(shí)空特征 [J]. 中國(guó)環(huán)境科學(xué),2018,38(10):3833-3843.
Wei Xiao-xiao,Wang Xiao-ming,Li Lei,et al. Temporal and spatial characteristics of municipal solid waste generation and treatment in China from 1979 to 2016 [J]. China Environmental Science,2018,38(10):3833-3843.
[3] Liao N,Bolyard S C,Lü F,et al. Can waste management system be a Greenhouse Gas sink? Perspective from Shanghai,China [J]. Resources,Conservation and Recycling,2022,180:106170.
[4] Li Y,Jin Y,Borrion A,et al. Current status of food waste generation and management in China [J]. Bioresource Technology,2019,273:654-665.
[5] Wu D,Peng X,Li L,et al. Commercial biogas plants: Review on operational parameters and guide for performance optimization [J]. Fuel,2021,303:121282.
[6] 呂 凡,章 驊,邵立明,等.基于物質(zhì)流分析餐廚垃圾厭氧消化工藝的問(wèn)題與對(duì)策 [J]. 環(huán)境衛(wèi)生工程,2017,25(1):1-9.
Lü Fan,Zhang Hua,Shao Li-ming,et al. Problems of anaerobic digestion process to deal with food waste and its countermeasures through material flow analysis [J]. Environmental Sanitation Engineering,2017,25(1):1-9.
[7] Long F,Wang L,Cai W,et al. Predicting the performance of anaerobic digestion using machine learning algorithms and genomic data [J]. Water Research,2021,199:117182.
[8] Lauwers J,Appels L,Thompson I P,et al. Mathematical modelling of anaerobic digestion of biomass and waste: Power and limitations [J]. Progress in Energy and Combustion Science,2013,39(4):383-402.
[9] Bareha Y,Affes R,Moinard V,et al. A simple mass balance tool to predict carbon and nitrogen fluxes in anaerobic digestion systems [J]. Waste Management,2021,135:47-59.
[10] Urtnowski-Morin C,Tanguay-Rioux F,Legros R,et al. Upgrading waste material flow analysis with process models: The case of anaerobic digestion [J]. Journal of Cleaner Production,2021,298:126695.
[11] Weinrich S,Nelles M. Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) - Model development and stoichiometric analysis [J]. Bioresource Technology,2021,333:125124.
[12] Bareha Y,Girault R,Guezel S,et al. Modeling the fate of organic nitrogen during anaerobic digestion: Development of a bioaccessibility based ADM1 [J]. Water Research,2019,154:298-315.
[13] Batstone D J,Keller J,Angelidaki I,et al. The IWA Anaerobic Digestion Model No 1 (ADM1) [J]. Water Science and Technology,2002,45(1):65-73.
[14] 趙小飛.基于ADM1的餐廚垃圾厭氧消化過(guò)程模擬研究 [D]. 重慶:重慶大學(xué),2019.
Zhao Xiao-fei. Study on process simulation of anaerobic digestion of food waste based on ADM1 [D]. Chongqing: Chongqing University,2019.
[15] Kythreotou N,Florides G,Tassou S A. A review of simple to scientific models for anaerobic digestion [J]. Renewable Energy,2014,71:701-714.
[16] Hafner S D,Koch K,Carrere H,et al. Software for biogas research: Tools for measurement and prediction of methane production [J]. SoftwareX,2018,7:205-210.
[17] Moscoviz R,Jimenez J. Improving anaerobic digestion mass balance calculations through stoichiometry and usual substrate characterization [J]. Bioresource Technology,2021,337:125402.
[18] Mottet A,Fran?ois E,Latrille E,et al. Estimating anaerobic biodegradability indicators for waste activated sludge [J]. Chemical Engineering Journal,2010,160(2):488-496.
[19] Xu F,Wang Z W,Li Y. Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters [J]. Bioresource Technology,2014,173:168-176.
[20] Guo X,Yang X. The economic and environmental benefits analysis for food waste anaerobic treatment: a case study in Beijing [J]. Environmental Science Pollution Research,2019,26(10):10374-10386.
[21] Lu F,Xu X,Shao L,et al. Importance of storage time in mesophilic anaerobic digestion of food waste [J]. Journal of Environmental Science (China),2016,45:76-83.
[22] Qu X,Mazeas L,Vavilin V A,et al. Combined monitoring of changes in delta13CH4and archaeal community structure during mesophilic methanization of municipal solid waste [J]. FEMS Microbiology Ecology,2009,68(2):236-245.
[23] Yang N,Damgaard A,Scheutz C,et al. A comparison of chemical MSW compositional data between China and Denmark [J]. Journal Environmental Science,2018,74:1-10.
[24] Guilayn F,Jimenez J,Rouez M,et al. Digestate mechanical separation: Efficiency profiles based on anaerobic digestion feedstock and equipment choice [J]. Bioresource Technology,2019,274:180-189.
[25] He P,Duan H,Han W,et al. Responses of Methanosarcina barkeri to acetate stress [J]. Biotechnol Biofuels,2019,12:289.
[26] Lu F,Hao L,Guan D,et al. Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion of organics [J]. Water Res,2013,47(7):2297-2306.
[27] 孫航宇,楊紫怡,李瀟男,等.ADM1模型對(duì)生物強(qiáng)化厭氧產(chǎn)甲烷體系的模擬 [J]. 中國(guó)環(huán)境科學(xué),2020,40(3):1049-1058.
Sun Hang-yu,Yang Zi-yi,Li Xiao-nan,et al. Simulation of anaerobic digestion based on bioaugmentation by ADM1 [J]. China Environmental Science,2020,40(3):1049-1058.
[28] Bareha Y,Girault R,Jimenez J,et al. Characterization and prediction of organic nitrogen biodegradability during anaerobic digestion: A bioaccessibility approach [J]. Bioresource Technology,2018,263:425-436.
[29] Akhiar A,Guilayn F,Torrijos M,et al. Correlations between the composition of liquid fraction of full-scale digestates and process conditions [J]. Energies,2021,14(4):971.
[30] M?ller H B,Hansen J D,S?rensen C A G. Nutrient recovery by solid-liquid separation and methane productivity of solids [J]. Transactions of the ASABE,2007,50(1):193-200.
[31] M?ller H B,Sommer S G,Ahring B K. Separtion efficiency and particle size ditribution in ralation to manure type and storage conditions [J]. Bioresource Technology,2002,85(2):189-196.
[32] Peng W,Lu F,Hao L,et al. Digestate management for high-solid anaerobic digestion of organic wastes: A review [J]. Bioresource Technology,2020,297:122485.
[33] 王志杰,何品晶,章 驊,等.厭氧消化殘余物土地利用的中外標(biāo)準(zhǔn)政策淺析 [J]. 環(huán)境衛(wèi)生工程,2021,30(1):17-27.
Wang Zhi-jie,He Pin-jing,Zhang Hua,et al. Analysis on domestic and foreign standards and policies about the land application of anaerobic digestate [J]. Environmental Sanitation Engineering,2021,30(1):17-27.
Evaluating the operation efficiency of kitchen waste anaerobic digestion with carbon and nitrogen balance model.
SHI Zhen-chao1,GE En-yan2,HE Pin-jing1,3,PENG Wei1,ZHANG Hua1,Lü Fan1,4*
(1.Institute of Waste Treatment and Reclamation,Tongji University,Shanghai 200092,China;2.Zhejiang Research Center of Urbanization Development,Hangzhou 310007,China;3.Shanghai Engineering Research Center of Multi-source Solid Waste Co-processing and Energy Utilization,Shanghai 200092,China;4.Shanghai Institute of Pollution Control and Ecological Security,Shanghai 200092,China).,2022,42(8):3804~3811
A typical AD plant for kitchen waste was taken as a case to evaluate carbon and nitrogen flow using the carbon and nitrogen balance model,and the operation performance was evaluated through the distribution of carbon and nitrogen in solid,liquid and gas phases. The results showed that the carbon and nitrogen material flow can fit well with the results of biogas production (goodness of fit was 0.88). The modified solid-liquid separation unit in the model significantly improves the simulation results of solid content (TS) of solid digestate and liquid digestate (goodness of fit increased to 0.97 and 0.82,respectively). Clearly,the carbon and nitrogen balance model-assisted approach,integrated with the actual gas production index (BMP),is suitable for evaluating the operating efficiency.
biowaste;anaerobic digestion;carbon and nitrogen balance model;operating performance
X705
A
1000-6923(2022)08-3804-08
2022-01-13
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD1100600);浙江省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021C03024);國(guó)家自然科學(xué)基金資助項(xiàng)目(52000144)
* 責(zé)任作者,研究員,lvfan.rhodea@#edu.cn
史真超(1995-),男,河南安陽(yáng)人,同濟(jì)大學(xué)博士研究生,主要研究方向?yàn)楣腆w廢物處理與資源化利用.