• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complete Mitochondrial Genome of Myra affinis (Decapoda:Brachyura: Leucosiidae) and Its Phylogenetic Implications for Brachyura

    2022-08-17 05:59:30ZHANGYingMENGLeiMIAOZengliangWEILimingLIUBingjianLIULiqinGONGLiandZhenming
    Journal of Ocean University of China 2022年4期

    ZHANG Ying, MENG Lei, MIAO Zengliang, WEI Liming, LIU Bingjian,LIU Liqin, GONG Li, and Lü Zhenming, *

    Complete Mitochondrial Genome of(Decapoda:Brachyura: Leucosiidae) and Its Phylogenetic Implications for Brachyura

    ZHANG Ying1), MENG Lei2), MIAO Zengliang1), WEI Liming1), LIU Bingjian1),LIU Liqin1), GONG Li1), and Lü Zhenming1), *

    1),,,,316022,2),,316022,

    Knowledge of complete mitochondrial genomes (mitogenomes) can help understand the molecular evolution and phylogenetic relationships of various species. To date, the phylogenetic status of Leucosiidae within Brachyura remains unresolved because of the limited number of mitogenomes available. In the present study, the complete mitogenome ofwas sequenced using next-generation sequencing to supplement the limited mitogenome information of Leucosiidae.The 15349bp-long mitogenome includes 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a putative control region. The overall base composition is 34.5% A, 36.1% T, 11.5% G, and 17.9% C, with a high AT bias (70.6%). All 13 PCGs start with the standard ATN codon and stop with the TAN codon or incomplete T. Except for, all other tRNAs have a typical cloverleaf-like secondary structure. Phylogenetic analyses based on the maximum likelihood and Bayesian inference methods are employed to generate identical phylogenetic topologies, thereby supporting the sister relationship between Leucosiidae and Matutidae for the first time. The monophyly of Eubrachyura is well established, and its sister relationship with Raninoida is strongly supported.The results of this work will not only help achieve a better understanding of the characteristics of themitogenome and the phylogenetic position of Leucosiidae, but also provide relevant information for further studies on the phylogeny of Brachyura.

    leucosiid crab; mitogenome; phylogenetic analysis; Brachyura

    1 Introduction

    The typical metazoan mitochondrial genome (mitoge- nome) is a closed-circular molecule of 14–20kb. It general-ly contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (and), and an AT-rich region (also called the control region, CR) (Boore, 1999). Compared with the nuclear genome, the mi- togenome is more widely employed in population genetics,comparative genomics, and phylogenetic studies (Sanchez., 2016; Tan., 2018; Ruan., 2020). The main advantages of the use of mitogenomes in molecular sys- tematics are as follows: 1) the small genome size and high genome copy numbers of mitogenomes reduce the diffi- culties of PCR amplification; 2) the relatively high evolu- tionary rate and low level of recombination of these ge- nomes are suitable for conducting evolutionary and phy- logenetic analyses; and 3) the different evolutionary rates of mitochondrial genes render them efficient materials in the phylogenetic analyses at different levels (., family, genus, or population). The advent and maturation of next- generation sequencing (NGS) technologies in recent years have markedly improved the ability to obtain and analyze mitogenomic data, which can further expand the popula- rity of mitogenomic research (Kumar., 2020; Ruan., 2020; Wang., 2020a).

    The infraorder Brachyura contains approximately 7250 known species inhabiting marine, freshwater, and terres- trial habitats (Zhang, 2011; Chen., 2018; Ma., 2019).Brachyura, as the oldest crab, originated in the Ju- rassic period (Schweitzer and Feldmann, 2010; Davie., 2015), and a group of its members with extremely diverse morphology and ecology was finally formed after massive radiative evolution. However, this same diversity has also caused the identification of species of this order to be re- markably challenging, and their real phylogenetic relation- ships remain unknown (Rocha., 2018; Tan., 2018).The classification of Brachyura has a long history and has undergone several changes.Brachyura was initially seg- mented into three groups, namely, Podotremata, Heterotre-mata, and Thoracotremata (Spears., 1992).Subse-quently, the infraorder was proposed to be divided into Dro-miacea and Eubrachyura (including Thoracotremata, Rani- noida, and Heterotremata) (Martin and Davis, 2001). How- ever, the latest classification scheme divides Brachyura intoEubrachyura, Dromiacea, Raninoida, and Cyclodorippoida(Ahyong., 2007; Tsang., 2014).Although the phy- logenetic relationship within Brachyura is incompletely un-derstood, the current classification system has been recog- nized by most scholars.Leucosiidae, a diversified group belonging to Eubrachyura, is usually referred to as ‘peb- ble crab’ on account of its unusual carapaces, which vary from pyriform to oval and subcircular; this feature is quite different from that of traditional crabs (Naderloo, 2017). The habitats of this group are also diversified, and indivi- dual species may be found in coastal sand bottoms, gravel, muds, and nearshore watersin Asian countries, such as China, Japan, and Korea (De Melo, 1996).The phyloge- netic relationships among Leucosiidae and even the evo- lutionary status of this family have not been well resolved. Furthermore, only one complete mitogenome sequence of this family ()is available (Park., 2017). This lack of relevant data mainly hampers phylogenetic studies of Leucosiidae and even Brachyura.

    The genusLeach, 1817, has been a source of sys- tematic and nomenclatural confusion (Galil, 2001).Bell, 1855,is a species mainly distributed in the Indo-West Pacifica, including most areas of the East Chi- na Sea and the South China Sea (Naderloo, 2017).Thus far, most studies of this species have focused on its mor- phology (Tan, 1996; Naderloo, 2017), and related mole- cular research is unavailable. In the present study, we first sequence and annotate the complete mitogenome ofto supplement the number of Leucosiidae mitoge- nomes currently available. The molecular features of this mitogenome, including mitogenome organization, codon usage, and tRNA secondary structures, are then described in detail. Next, the phylogeny of Brachyura is reconstruct- ed according to the nucleotide sequences of 13 PCGs from83 Brachyuran species and two Anomuran species (as out- groups). The data presented in this study will help achi- eve a better understanding of the characteristics of themitogenome, determine the phylogenetic position of Leucosiidae, and shed light on the evolutionary relation- ships among Brachyura.

    2 Materials and Methods

    2.1 Ethics Statement

    The crab specimen used in this study was collected fromZhoushan Province, China (29?45?32??N, 121?45?30??E). The species was not involved in the endangered list of the International Union for Conservation of Nature (https:// www.iucnredlist.org/). Specimen collection and mainte- nance were performed in strict accordance with the rec- ommendations of Animal Care Quality Assurance in Chi- na. All experimental protocols were approved by the In- stitutional Ethics Committee of Zhejiang Ocean Univer- sity.

    2.2 DNA Extraction, Mitogenome Sequencing,and Assembly

    An SQ Tissue DNA Kit (OMEGA, USA) was used to extract the total genomic DNA from the muscle tissue of a single sample following the manufacturer’s instructions. The mitogenome ofwas sequenced by NGS of paired reads measuring 150bp in length (Illumina HisSeq 4000; Shanghai Origingene Bio-pharmTechnology Co., Ltd., China).Adapters and low-quality bases were removed us- ing Cutadapt v1.16 (Martin, 2011) with the following pa- rameters: ?q 20 ?m 20.Trimmed reads shorter than 50bp were discarded. Quality control of the raw and trimmed reads was performed using FastQC v0.11.5 (http://www. bioinformatics.babraham.ac.uk/projects/fastqc/). The filter- ed clean data were assembled and mapped to a complete mitogenome sequence using NOVOPlasty v2.7.2 (Dierck- xsens., 2017).

    2.3 Mitogenome Annotation and Sequence Analyses

    The complete mitogenome was manually annotated us- ing Sequin software (version 15.10, http://www.ncbi.nlm. nih.gov/Sequin/), and PCGs were determined by their openreading frames following the guidelines of the inverte- brate mtDNA translation table. The boundaries of rRNA and tRNA genes were determined using NCBI-BLAST (http://blast.ncbi.nlm.nih.gov) and tRNAscan-SE 1.21 (Lowe and Chan, 2016), respectively, and compared with the re- lated species. Transfer RNA (tRNA) genes were manually plotted according to the secondary structure predicted by tRNAscan-SE 1.21 (Lowe and Chan, 2016) and MITOS Web Server (Bernt., 2013) with invertebrate mito- chondrial genetic codes. The CR was determined by the locations of adjacent genes. The mitogenome map was drawn by CGView Server V 1.0 (Stothard and Wishart, 2005), and the base composition and relative synonymous codon usage (RSCU) were obtained using MEGA X (Ku- mar., 2018). The following formulas were used to calculate strand asymmetries (Perna and Kocher, 1995):

    2.4 Phylogenetic Analysis

    A total of 84 complete mitogenome sequences down- loaded from GenBank database (https://www.ncbi.nlm.nih. gov/genbank) and a newly determined sequence () were used to reconstruct the phylogenetic relation- ships among Brachyura (Table 1). In addition, two species from Anomura were used as outgroups (Table 1). The nu- cleotide sequences of 13 PCGs for each species were ex- tracted from the relevant GenBank files using PhyloSuite (Zhang., 2020a), and the MAFFT program (Katoh., 2002) integrated with PhyloSuite was executed to align multiple sequences into normal-alignment mode. Gblocks was used to identify and remove ambiguously aligned sequences using default settings (Talavera and Ca- stresana, 2007).The sequences were then concatenated and used to generate input files (phylip and nexus format) for phylogenetic analyses. Maximum likelihood (ML) and Ba- yesian inference (BI) were employed for phylogenetic ana- lyses. The best-fitting model was selected using Model- Finder (Kalyaanamoorthy., 2017) on the basis of the Bayesian Information Criterion. GTR+F+G7 and GTR+F+I+G4 were selected as the best-fitting models for ML and BI analyses, respectively. ML analysis was carried out in IQ-TREE (Nguyen., 2015) using an ML+rapid bootstrap (BS) algorithm with 1000 replicates.BI analy- sis was performed in MrBayes 3.2.6 (Ronquist., 2012) with default parameters and 3×106Metropolis-coupled Markov Chain Monte Carlo generations.Trees were sampled every 1000 generations with a burn-in rate of 25%. The average standard deviation of split frequencies below 0.01 was considered to reach convergence.

    Table 1 List of 83 Brachyuran species and two outgroups used in this paper

    ()

    ()

    SpeciesFamilyLength (bp)Accession no. Tubuca politaOcypodidae15672NC_039106 Ocypode ceratophthalmusOcypodidae15564NC_025324 Ocypode cordimanusOcypodidae15604NC_029725 Dotilla wichmanniDotillidae15600NC_038180 Ilyoplax deschampsiDotillidae15460NC_020040 Grapsus tenuicrustatusGrapsidae15858NC_029724 Pachygrapsus crassipesGrapsidae15652NC_021754 Pachygrapsus marmoratusGrapsidae15406NC_039109 Metopograpsus frontalisGrapsidae15587NC_042152 Metopograpsus quadridentatusGrapsidae15517NC_038178 Eriocheir hepuensisVarunidae16335NC_011598 Eriocheir sinensisVarunidae16354NC_006992 Eriocheir japonicaVarunidae16352NC_011597 Neoeriocheir leptognathusVarunidae16143NC_041211 Hemigrapsus penicillatusVarunidae16486NC_038202 Hemigrapsus sanguineusVarunidae16275NC_035307 Macrophthalmus darwinensisMacrophthalmidae16348MF457408 Macrophthalmus japonicusMacrophthalmidae16170NC_030048 Macrophthalmus pacificusMacrophthalmidae17226NC_046039 Mictyris longicarpusMictyridae15548NC_025325 Geothelphusa dehaaniPotamidae18197NC_007379 Geothelphusa sp.Potamidae18052MG674171 Huananpotamon lichuanensePotamidae15380NC_031406 Longpotamon yangtsekiensePotamidae17885NC_036946 Longpotamon kenliensePotamidae18499NC_044413 Potamiscus motuoensisPotamidae17971KY285013 Somanniathelphusa boyangensisGecarcinucidae17032NC_032044 Lyreidus brevifronsRaninidae16112NC_026721 Umalia orientalisRaninidae15466NC_026688 Ranina raninaRaninidae15557NC_023474 Homola orientalisHomolidae16084KT182071 Homologenus malayensisHomolidae15793NC_026080 Moloha majoraHomolidae15903NC_029361 Latreillia validaLatreilliidae15097MK204361 Dynomene pilumnoidesDynomenidae16475KT182070 Pagurus nigrofasciaPaguridae15392NC_042412 Pagurus gracilipesPaguridae16051LC222534

    3 Results and Discussion

    3.1 Mitogenome Organization

    The complete mitochondrial genome offorms a closed-circular molecule measuring 15349bp in size (Gen- Bank accession no. MW192449). This mitogenome con- sists of 13 PCGs, 2 rRNAs, 22 tRNAs, and one putative CR (Fig.1, Table 2).Except for four PCGs (.,,,, and), eight tRNAs (.,-,,,Leu,,,, and), and two rRNAs, which aredistributed on the light (L-) strand, the other mitogenes aredistributed on the heavy (H-) strand (Table 2).Overall, the genes in themitogenome are closely arranged with interval (10 intergenic spacers totaling 146bp) and overlapping (11 overlaps totaling 26bp) phenomena (Ta- ble 2).Three typical overlaps occur between protein- coding genes (., 1bp betweenand, 7bp be- tweenand, 1bp betweenand; Ta- ble 2), and these overlaps are commonly identified in other crabs (Lu., 2020; Zhang., 2020b). As is the case with other Brachyuran mitogenomes (Wang., 2020a; Wang., 2020b; Zhang., 2020b), themi- togenome exhibits a high AT bias (70.6%).The AT- and GC-skews of the mitogenome are negative at ?0.022 and ?0.217, respectively (Table 3), thereby indicating that Ts and Cs are more abundant than As and Gs.

    3.2 PCGs and Codon Usage

    The mitogenome ofcontains 13 PCGs in the order typically found in most Brachyuran species and con- sists of seven NADH dehydrogenases (–and), three cytochrome c oxidases (-), two AT- Pases (and8), and one cytochrome b ().These 13 PCGs have a total length of 11092bp and encode 3687 amino acids. All of the 13 PCGs are initiated by the canonical start codon ATN. The majority of the 13 PCGs terminate with TAA or TAG, while four other PCGs (.,,,,and) use a single T as a stop codon(Table 2). Incomplete stop codons are common in meta- zoan mitogenomes and may be recoveredpost-trans- criptional polyadenylation (Ojala., 1981). The AT- and GC-skews of the 13 PCGs are similarly negative, at ?0.018 and ?0.004, respectively (Table 3). This finding de- monstrates that Ts and Cs are more abundant than As and Gs in the entire protein-coding gene sequence. Four PCGs (.,,,, and) have positive GC-skew values, thereby indicating that they are encoded by the L-strand, whereas the other nine PCGs exhibit negative values, which indicates they are encoded by the H-strand (Table 3).

    Table 2 Features of the M. affinis mitogenome

    Table 3 Composition and skewness of the M. affinis mitogenome

    Fig.1 Gene map of the M. affinis mitogenome.

    Among the 13 PCGs, the most frequently used amino acid are Leu (15.57%), Ser (10.31%), Phe (9.57%), and Ile(8.11%). In comparison, the least common amino acids are Cys (1.06%), Arg (1.63%), Gln (1.76%), and Asp (1.90%) (Fig.2A, Table 4). RSCU analysis shows that the most fre- quently used codons include UUA (Leu), UCU (Ser), and CCU (Pro); by contrast, GCG (Ala), AGC (Ser), CCG (Pro), and CGC (Arg) are the codons with the least frequencies (Fig.2B, Table 4). The preference for NNU and NNA co- dons can clearly be observed in the mitochondrial PCGs, which is consistent with the case of other Brachyuran spe- cies (Wang., 2020a; Wang., 2020b; Zhang., 2020b).

    Table 4 Codon numbers and relative synonymous codon usage (RSCU) of 13 PCGs in the M. affinis mitogenome

    Fig.2 Amino acid composition (A) and relative synonymous codon usage (B) of the M. affinis mitogenome.

    3.3 Transfer RNAs (tRNAs), Ribosomal RNAs (rRNAs), and Control Region

    A total of 22 tRNA genes, with lengths varying from 61bp to 70bp, are identified in the mitogenome of.Most tRNAs can fold into the typical cloverleaf-like struc- ture exceptfor-, which lacks the dihydrouridine arm (Fig.3). This feature seems common in metazoan mi- togenomes (Wang., 2015; Gong., 2019; Gong., 2020). In addition to the Watson-Crick base pairs (A–Tand G–C) and G–U matches, three types of mismatches are found in the stem region of tRNA. One C–U base pair is predicted in-, one A–A base pair is predicted in-, and three U–U base pairs are predicted in-,-,and-. Such stem mismatches ap- pear to be a common phenomenon in mitochondrial tRNA genes and may be corrected through post-transcriptional editing (Lavrov., 2000). The most reasonable expla- nation for this finding is that mitogenomes are unaffected by the recombination process. Therefore, base mismatches are able to exist, which may be helpful for eliminating de- leterious mutations (Lynch, 1997).

    The(812bp) andgenes (1277bp) of themitogenome are typically separated by(Fig.1, Table 1). Both genes exhibit positive GC-skew (Table 3), thereby indicating that they are encoded by the L-strand. The CR of the mitogenome is located betweenand. The 626 bp-long CR is obvious- ly AT-biased (81.0%). The AT- and GC-skews are 0.124 and ?0.059; respectively (Table 3), thus indicating an obvious bias toward the use of As and Cs.

    3.4 Phylogenetic Analysis

    In the present study, the phylogenetic relationships among Brachyura were reconstructed according to the nucleotide sequences of 13 PCGs using the ML and BI methods.The ML tree and BI trees show an identical topology; thus, only one topology (., BI) with both support values is dis- playedin Fig.4. The results show thatandare most closely related among the species obtained and form a sister group at the end of the phylogenetic tree. Thus far, phylogenetic studies of Leucosiidae at the mole- cular level are extremely rare, and the evolutionary status of this family is unclear (Park., 2017). Although Park. (2017) presented the first and only research on the phylogenetic status of Leucosiidae using whole mitoge-nomes, the phylogenetic location of this family was not well resolved because of its limited representatives. By con-trast, the sister relationship between Leucosiidae and Matu-tidae in our phylogenetic trees is well supported (poste- rior probabilities=1; bootstrap=98). Considering that only two mitogenomes of this family have been analyzed, more sequences of leucosiid crabs are needed to be analyzed to reconfirm the phylogenetic position of Leucosiidae.

    The monophyly of each of the 30 families included in this phylogeny, except Xanthidae and Homolidae, is strong- ly supported. Four Xanthidae species are divided into two clades, while three of these species cluster together as a clade, and the remaining species()forms a sister clade with the single representative of Ozii- dae ().Regarding the non-monophyly ofHomolidae, a single representative of Latreilliidae () forms a sister clade with a member ofHo- molidae (), thereby highlighting the autho- ritative identification ofand the necessity of col- lecting more representatives of Latreilliidae in future work.When viewed from a higher taxonomic level, our tree topo- logy indicates the existence of two major clades: section Dromiacea (the most basal clade) and the other two sections(Eubrachyura+Raninoida).The sister relationship betweenEubrachyura and Raninoida is strongly supported(poste- rior probabilities=1; bootstrap=100).The monophyly of Eubrachyura is well established (Von Sternberg and Cum berlidge, 2001; Tsang., 2014; Ma., 2019), while that of the other sections remains controversial due to li- mited mitogenomic data. Furthermore, because a third of the families (10/30) include only one representative, the non-monophyly of relevant families should be treated with some cautions. In the future studies, larger taxon samples are re- quired to resolve the origin and evolutionary relationships among Brachyura conclusively.

    Fig.3 Potential secondary structures of 22 inferred tRNAs in the M. affinis mitogenome.

    Fig.4 Phylogenetic tree of Brachyuran species inferred from the nucleotide sequences of 13 PCGs on the basis of maxi- mum likelihood (ML) and Bayesian inference (BI) analyses. Nodes marked with a solid circle indicate an ML bootstrap value of 100 and a supporting value of 100%.

    4 Conclusions

    In this study, we first determine and describe the com- plete mitogenome ofto supplement the limited mitogenome information of Leucosiidae.The 15349bp- long mitogenome contains 37 genes and an AT-rich region, which is typical in metazoan mitogenomes. All PCGs are initiated by the canonical start codon ATN and terminated by the TAN codon or an incomplete T.Phylogenetic ana-lyses support the sister relationship of Leucosiidae and Ma- tutidae on the basis of 13 PCGs. Furthermore, the mono- phyly of Eubrachyura is well established, and its sister re- lationship with Raninoida is strongly supported. Neverthe- less, comprehensive taxon sampling is necessary to resolve the phylogeny and origin of Brachyura with better accuracy.

    Acknowledgements

    This work was supported by the Natural Science Foun- dation of Zhejiang Province (No. LY21C190007) and the Zhoushan Science and Technology Bureau (No. 2021C21 007). We would like to express our gratitude to Dr. Jian Chen for helping in the species identification and provid- ing critical comments.

    Ahyong, S. T., Lai, J. C., Sharkey, D., Colgan, D. J., and Ng, P. K., 2007. Phylogenetics of the brachyuran crabs (Crustacea: Decapoda): The status of Podotremata based on small subunit nuclear ribosomal RNA., 45 (2): 576-586.

    Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G.,., 2013. MITOS: Improvedmetazoanmitochondrial genome annotation., 69 (2): 313-319.

    Boore, J. L., 1999. Animal mitochondrial genomes., 27 (8): 1767-1780.

    Chen, J., Xing, Y., Yao, W., Zhang, C., Zhang, Z., Jiang, G.,., 2018. Characterization of four new mitogenomes from Ocy- podoidea & Grapsoidea, and phylomitogenomic insights into thoracotreme evolution., 675: 27-35.

    Davie, P. J., Guinot, D., and Ng, P. K., 2015.In:–Koninklijke Brill NV, Leiden, 921-979.

    De Melo, G. A. S., 1996..Plêiade/FAPESP, S?o Paulo, 603-604.

    Dierckxsens, N., Mardulyn, P., and Smits, G., 2017. NOVOPlasty:assembly of organelle genomes from whole genome data., 45 (4): e18-e18.

    Galil, B., 2001. A revision ofLeach, 1817 (Crustacea: De- capoda: Leucosioidea)., 75: 409- 446.

    Gong, L., Liu, B., Liu, L., Guo, B., and Lü, Z., 2019a. The com- plete mitochondrial genome of(Centrarchifor- mes: Terapontidae) and comparative analysis of the control re- gion among eight Centrarchiformes species., 45 (2): 137-144

    Gong, L., Lu, X., Wang, Z., Zhu, K., Liu, L., Jiang, L.,.,2019b. Novel gene rearrangement in the mitochondrial genome of(Anomura: Coenobitidae) and phylo-genetic implications for Anomura., 112 (2): 1804- 1812.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A.,and Jermiin, L. S., 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates., 14 (6): 587- 589.

    Katoh, K., Misawa, K., Kuma, K. I., and Miyata, T., 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform., 30 (14): 3059- 3066.

    Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across com-puting platforms., 35 (6): 1547-1549.

    Kumar, V., Tyagi, K., Chakraborty, R., Prasad, P., Kundu, S., Tyagi, I.,., 2020. The complete mitochondrial genome of endemic giant tarantula,(Araneae: The- raphosidae) and comparative analysis., 10 (1): 1-11.

    Lavrov, D. V., Brown, W. M., and Boore, J. L., 2000. A novel typeof RNA editing occurs in the mitochondrial tRNAs of the cen- tipede Lithobius forficatus., 97 (25): 13738-13742.

    Lowe, T. M., and Chan, P. P., 2016. tRNAscan-SE on-line: Integrating search and context for analysis of transfer RNA genes., 44 (W1): W54-W57.

    Lu, X., Gong, L., Zhang, Y., Chen, J., Liu, L., Jiang, L.,., 2020. The complete mitochondrial genome of: The first representative from the family Calappidae and its phylogenetic position within Brachyura., 112 (3): 2516-2523.

    Lynch, M., 1997. Mutation accumulation in nuclear, organelle, and prokaryotic transfer RNA genes., 14 (9): 914-925.

    Ma, K. Y., Qin, J., Lin, C. W., Chan, T. Y., Ng, P. K., Chu, K. H.,., 2019. Phylogenomic analyses of brachyuran crabs sup- port early divergence of primary freshwater crabs., 135: 62-66.

    Martin, J. W., and Davis, G. E., 2001.. Natural History Museum of Los An- geles County, Los Angeles, 1-124.

    Martin, M., 2011. Cutadapt removes adapter sequences from high- throughput sequencing reads., 17 (1): 10-12.

    Naderloo, R., 2017. FamilyLeucosiidae Samouelle, 1819 (pebble crabs).In:. Springer, Cham, 75-120.

    Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies., 32 (1): 268-274.

    Ojala, D., Montoya, J., and Attardi, G., 1981. tRNA punctuation model of RNA processing in human mitochondria., 290(5806): 470-474.

    Park, Y. J., Park, C. E., Jung, B. K., Ibal, J. C., Jung, Y., Hong, S. J.,., 2017. The first complete mitochondrial genome sequence of the leucosiid crab(Arthropoda, Decapoda, Leucosiidae)., 2 (2): 885- 886.

    Perna, N. T., and Kocher, T. D., 1995. Patterns of nucleotide com- position at fourfold degenerate sites of animal mitochondrial genomes., 41 (3): 353-358.

    Rocha, C. T., Regina, W. M., Mantelatto, F. L., Christopher, T., and José, Z. F., 2018. Ultrastructure of spermatozoa of members of Calappidae, Aethridae and Menippidae and discussion of theirphylogenetic placement., 101 (1): 89-100.

    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Dar- ling, A., Hohna, S.,., 2012. MrBayes 3.2: Efficient Baye- sian phylogenetic inference and model choice across a large model space., 61 (3): 539-542.

    Ruan, H., Li, M., Li, Z., Huang, J., Chen, W., Sun, J.,.,2020. Comparative analysis of complete mitochondrial genomes of tThreefishes (Perciformes: Gerreidae) and primary exploration of their evolution history., 21 (5): 1874.

    Sanchez, G., Tomano, S., Yamashiro, C., Fujita, R., Wakabayashi, T., Sakai, M.,., 2016. Population genetics of the jumbo squid(Cephalopoda: Ommastrephidae) in the northern Humboldt Current system based on mitochondrial and microsatellite DNA markers., 175: 1-9.

    Schweitzer, C. E., and Feldmann, R. M., 2010. The oldest Brach-yura (Decapoda: Homolodromioidea: Glaessneropsoidea) known to date (Jurassic)., 30 (2): 251- 256.

    Spears, T., Abele, L. G., and Kim, W., 1992. The monophyly of Brachyuran crabs: A phylogenetic study based on 18S rRN?., 41 (4): 446-461.

    Stothard, P., and Wishart, D. S., 2005. Circular genome visuali- zation and exploration using CGView., 21 (4): 537-539.

    Talavera, G., and Castresana, J., 2007. Improvement of phyloge- nies after removing divergent and ambiguously aligned blocks from protein sequence alignments., 56 (4): 564-577.

    Tan, C., 1996. Leucosiidae of the Albatross expedition to the Phi- lippines, 1907–1910 (Crustacea: Brachyura: Decapoda)., 30 (7): 1021-1058.

    Tan, M. H., Gan, H. M., Lee, Y. P., Linton, S., Grandjean, F., Bartholomei-Santos, M. L.,., 2018. ORDER within the chaos: Insights into phylogenetic relationships within the Ano- mura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements., 127: 320-331.

    Tsang, L. M., Schubart, C. D., Ahyong, S. T., Lai, J. C., Au, E. Y.,Chan, T. Y.,., 2014. Evolutionary history of true crabs (Crustacea: Decapoda: Brachyura) and the origin of freshwater crabs., 31 (5): 1173-1187.

    Von Sternberg, R., and Cumberlidge, N., 2001. On the hetero- treme-thoracotreme distinction in the Eubrachyura de Saint Laurent, 1980 (Decapoda, Brachyura)., 74 (4): 321- 338.

    Wang, Q., Tang, D., Guo, H., Wang, J., Xu, X., and Wang, Z., 2020a. Comparative mitochondrial genomic analysis ofand insights into the phylogeny of the Ocypo- doidea & Grapsoidea., 112 (1): 82-91.

    Wang, X., Huang, Y., Liu, N., Yang, J., and Lei, F., 2015. Seven complete mitochondrial genome sequences of bushtits (Passe- riformes, Aegithalidae,): The evolution pattern in dup- licated control regions., 26 (3): 350-356.

    Wang, Z., Shi, X., Guo, H., Tang, D., Bai, Y., and Wang, Z., 2020b.Characterization of the complete mitochondrial genome ofand comparison with other Brachyuran crabs., 112 (1): 10-19.

    Zhang, D., Gao, F., Jakovlic, I., Zou, H., Zhang, J., Li, W. X.,.,2019. PhyloSuite: An integrated and scalable desktop platformfor streamlined molecular sequence data management and evo-lutionary phylogenetics studies.,20 (1): 348-355.

    Zhang, Y., Gong, L., Lu, X., Jiang, L., Liu, B., Liu, L.,., 2020.Gene rearrangements in the mitochondrial genome of(Brachyura: Sesarmidae) and phylogenetic im- plications for Brachyura., 162: 704-714.

    Zhang, Z. Q., 2011.. Magno- lia Press, Auckland, 1-237.

    December 21, 2020;

    February 16, 2021;

    July 20, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2022

    .E-mail:lzmnblzm@163.com

    (Edited by Qiu Yantao)

    欧美黑人欧美精品刺激| 久久欧美精品欧美久久欧美| 日本在线视频免费播放| 欧美精品亚洲一区二区| 一a级毛片在线观看| 婷婷精品国产亚洲av在线| 一二三四社区在线视频社区8| 亚洲中文av在线| 国产精品免费一区二区三区在线| 国产成人精品久久二区二区91| 老司机午夜十八禁免费视频| 亚洲av成人一区二区三| 两个人的视频大全免费| 黄片小视频在线播放| 啪啪无遮挡十八禁网站| 欧美丝袜亚洲另类 | 欧美丝袜亚洲另类 | 亚洲va日本ⅴa欧美va伊人久久| 好男人电影高清在线观看| 国产精品久久久久久精品电影| 51午夜福利影视在线观看| 在线观看日韩欧美| 国产精品电影一区二区三区| 国产精品综合久久久久久久免费| 国产三级黄色录像| 可以在线观看的亚洲视频| 50天的宝宝边吃奶边哭怎么回事| 我的老师免费观看完整版| 黄色女人牲交| av在线天堂中文字幕| av福利片在线| 中文字幕高清在线视频| 伊人久久大香线蕉亚洲五| 国产精品一区二区三区四区久久| 别揉我奶头~嗯~啊~动态视频| 中文字幕最新亚洲高清| 久久香蕉精品热| 国产蜜桃级精品一区二区三区| 性色av乱码一区二区三区2| 国产日本99.免费观看| 久久久久久久久中文| 久久久久久九九精品二区国产 | 麻豆一二三区av精品| 欧美日韩黄片免| 免费电影在线观看免费观看| 午夜福利视频1000在线观看| 最近最新中文字幕大全电影3| 亚洲专区国产一区二区| 久久精品国产亚洲av香蕉五月| 色播亚洲综合网| 精品日产1卡2卡| 国产精品乱码一区二三区的特点| 美女大奶头视频| 久久久国产精品麻豆| 日韩有码中文字幕| 亚洲午夜理论影院| 村上凉子中文字幕在线| 99国产精品一区二区蜜桃av| 亚洲男人的天堂狠狠| 亚洲va日本ⅴa欧美va伊人久久| 午夜影院日韩av| 美女黄网站色视频| 久久中文看片网| 国产欧美日韩一区二区三| 伊人久久大香线蕉亚洲五| 人人妻,人人澡人人爽秒播| 伊人久久大香线蕉亚洲五| 亚洲av成人不卡在线观看播放网| 亚洲成人中文字幕在线播放| 国产主播在线观看一区二区| 午夜a级毛片| 国产蜜桃级精品一区二区三区| 色综合站精品国产| 日本a在线网址| 国产69精品久久久久777片 | 亚洲国产精品999在线| 男女之事视频高清在线观看| 精品久久蜜臀av无| 无限看片的www在线观看| 久久婷婷成人综合色麻豆| 国产高清视频在线播放一区| 成人特级黄色片久久久久久久| 国产精品一区二区三区四区免费观看 | 国产精品影院久久| 老司机靠b影院| 97碰自拍视频| 人人妻,人人澡人人爽秒播| 欧美黄色片欧美黄色片| 亚洲精品久久国产高清桃花| 欧美最黄视频在线播放免费| 亚洲电影在线观看av| 亚洲国产精品999在线| 久久婷婷人人爽人人干人人爱| 男女做爰动态图高潮gif福利片| 丰满的人妻完整版| 国产一区二区三区视频了| 国产亚洲精品久久久久久毛片| 国产精品国产高清国产av| 一区二区三区激情视频| 亚洲欧美精品综合一区二区三区| av福利片在线观看| 一边摸一边做爽爽视频免费| 日韩三级视频一区二区三区| 夜夜夜夜夜久久久久| 欧美性长视频在线观看| 男人舔女人下体高潮全视频| 亚洲欧美日韩高清专用| 制服人妻中文乱码| 激情在线观看视频在线高清| 精品国产超薄肉色丝袜足j| 欧美三级亚洲精品| 午夜激情av网站| 亚洲色图av天堂| 精品国产亚洲在线| 国产精品影院久久| 欧美又色又爽又黄视频| 岛国视频午夜一区免费看| 久久久久国内视频| 久9热在线精品视频| 最新在线观看一区二区三区| 免费在线观看黄色视频的| 这个男人来自地球电影免费观看| 久久精品91无色码中文字幕| 午夜福利视频1000在线观看| 精品无人区乱码1区二区| 国内久久婷婷六月综合欲色啪| 国产亚洲精品综合一区在线观看 | 19禁男女啪啪无遮挡网站| 亚洲七黄色美女视频| 亚洲精品国产一区二区精华液| 欧美日韩瑟瑟在线播放| 国产av在哪里看| 床上黄色一级片| 极品教师在线免费播放| 免费看美女性在线毛片视频| 国内毛片毛片毛片毛片毛片| 精品久久久久久久末码| 好男人在线观看高清免费视频| 精品久久蜜臀av无| 成人18禁高潮啪啪吃奶动态图| av免费在线观看网站| 亚洲av成人不卡在线观看播放网| 亚洲成人精品中文字幕电影| 成人国产一区最新在线观看| 免费看a级黄色片| avwww免费| 中文字幕人妻丝袜一区二区| cao死你这个sao货| 欧美最黄视频在线播放免费| 国产精品香港三级国产av潘金莲| av福利片在线| 欧美精品亚洲一区二区| 久久久久久大精品| 在线播放国产精品三级| 欧美又色又爽又黄视频| 俺也久久电影网| 天堂av国产一区二区熟女人妻 | 欧美在线一区亚洲| 又爽又黄无遮挡网站| 在线国产一区二区在线| 日本熟妇午夜| 精品福利观看| 一区二区三区高清视频在线| 亚洲国产精品999在线| 国产精品一及| 在线观看美女被高潮喷水网站 | 少妇熟女aⅴ在线视频| 午夜免费成人在线视频| 两个人免费观看高清视频| 亚洲男人天堂网一区| videosex国产| 久久久久久久精品吃奶| 欧美人与性动交α欧美精品济南到| 欧美极品一区二区三区四区| 看片在线看免费视频| 在线视频色国产色| 麻豆成人午夜福利视频| 国内精品久久久久精免费| 精品国产亚洲在线| 99久久精品热视频| 1024香蕉在线观看| 国产精品av久久久久免费| 俺也久久电影网| 国产视频内射| 可以在线观看毛片的网站| 757午夜福利合集在线观看| 人人妻人人澡欧美一区二区| 午夜免费激情av| 9191精品国产免费久久| 免费在线观看完整版高清| 热99re8久久精品国产| 色老头精品视频在线观看| 国产欧美日韩精品亚洲av| 桃色一区二区三区在线观看| 国产一区二区三区视频了| 中文字幕人妻丝袜一区二区| 日韩高清综合在线| 精品无人区乱码1区二区| 在线播放国产精品三级| 搡老熟女国产l中国老女人| 在线观看66精品国产| 日韩精品青青久久久久久| 久久天堂一区二区三区四区| 国产精品精品国产色婷婷| 午夜激情福利司机影院| 久久国产精品影院| 久久久水蜜桃国产精品网| 日本一区二区免费在线视频| 一区二区三区国产精品乱码| 老司机在亚洲福利影院| 免费在线观看影片大全网站| 久久精品国产亚洲av香蕉五月| 久久久久久大精品| 亚洲av熟女| 99精品久久久久人妻精品| 精品欧美一区二区三区在线| 亚洲国产欧美网| 一进一出抽搐gif免费好疼| 国产精品日韩av在线免费观看| 欧美日韩一级在线毛片| 人妻久久中文字幕网| svipshipincom国产片| 色综合婷婷激情| 国产精品国产高清国产av| 久久久久久人人人人人| 国产精品av视频在线免费观看| 欧美成人一区二区免费高清观看 | 色综合欧美亚洲国产小说| 窝窝影院91人妻| 又黄又爽又免费观看的视频| 午夜福利在线在线| 日韩欧美三级三区| 我要搜黄色片| 国产成人aa在线观看| 看片在线看免费视频| 亚洲熟妇熟女久久| 免费看日本二区| 欧美绝顶高潮抽搐喷水| 在线视频色国产色| 国产精品日韩av在线免费观看| 99国产精品一区二区蜜桃av| 十八禁人妻一区二区| 亚洲一区高清亚洲精品| 国产激情偷乱视频一区二区| 全区人妻精品视频| 国产不卡一卡二| 久久精品成人免费网站| 久久 成人 亚洲| 亚洲国产精品sss在线观看| 久久精品国产亚洲av高清一级| 欧美日韩福利视频一区二区| 色av中文字幕| 国产亚洲精品综合一区在线观看 | 国产午夜精品久久久久久| 桃红色精品国产亚洲av| 国产aⅴ精品一区二区三区波| 国内少妇人妻偷人精品xxx网站 | 国产区一区二久久| 香蕉久久夜色| 色在线成人网| 女生性感内裤真人,穿戴方法视频| 久久精品91无色码中文字幕| 可以免费在线观看a视频的电影网站| 国产亚洲精品综合一区在线观看 | 在线观看午夜福利视频| 国产久久久一区二区三区| 欧美精品啪啪一区二区三区| 色噜噜av男人的天堂激情| 午夜激情福利司机影院| 国产爱豆传媒在线观看 | 悠悠久久av| 极品教师在线免费播放| 美女扒开内裤让男人捅视频| 老司机在亚洲福利影院| 日韩精品免费视频一区二区三区| 一个人免费在线观看的高清视频| 最近在线观看免费完整版| 色综合欧美亚洲国产小说| 在线观看舔阴道视频| 亚洲专区中文字幕在线| 俄罗斯特黄特色一大片| 成人欧美大片| 亚洲18禁久久av| 日本三级黄在线观看| 亚洲全国av大片| 久久中文字幕一级| 亚洲av电影不卡..在线观看| 国产精品免费视频内射| 亚洲成人中文字幕在线播放| 国产精品自产拍在线观看55亚洲| 99久久国产精品久久久| 两个人看的免费小视频| 亚洲色图av天堂| 色综合亚洲欧美另类图片| 操出白浆在线播放| 久久精品91蜜桃| 露出奶头的视频| 精品午夜福利视频在线观看一区| 欧美性长视频在线观看| 国产三级中文精品| 十八禁网站免费在线| 午夜精品在线福利| 人妻丰满熟妇av一区二区三区| 亚洲av五月六月丁香网| 久久精品国产亚洲av香蕉五月| 禁无遮挡网站| 在线a可以看的网站| 日本a在线网址| 亚洲成av人片在线播放无| 国产91精品成人一区二区三区| 久久久精品国产亚洲av高清涩受| 天天一区二区日本电影三级| av在线播放免费不卡| 99久久无色码亚洲精品果冻| 精品欧美一区二区三区在线| 搞女人的毛片| 亚洲国产精品sss在线观看| 久久中文字幕一级| 色综合欧美亚洲国产小说| 欧美精品啪啪一区二区三区| 男女之事视频高清在线观看| 看免费av毛片| 啦啦啦免费观看视频1| 99riav亚洲国产免费| 国产成人啪精品午夜网站| 女人爽到高潮嗷嗷叫在线视频| 国产av在哪里看| 99国产综合亚洲精品| 精品无人区乱码1区二区| 精品国产乱子伦一区二区三区| 日本黄大片高清| 午夜亚洲福利在线播放| 超碰成人久久| 欧美日韩亚洲综合一区二区三区_| 看片在线看免费视频| 99久久精品热视频| 免费在线观看成人毛片| 色老头精品视频在线观看| 午夜a级毛片| 18美女黄网站色大片免费观看| 国产精品永久免费网站| 黄色成人免费大全| 99在线人妻在线中文字幕| av超薄肉色丝袜交足视频| 亚洲第一欧美日韩一区二区三区| 不卡av一区二区三区| 国产一区二区在线观看日韩 | 一区二区三区国产精品乱码| 久久中文看片网| 麻豆国产av国片精品| 亚洲国产精品久久男人天堂| 在线十欧美十亚洲十日本专区| 两个人的视频大全免费| 他把我摸到了高潮在线观看| 在线观看午夜福利视频| 免费在线观看日本一区| 亚洲成人免费电影在线观看| 99热只有精品国产| 久久久国产成人免费| 中文字幕高清在线视频| 久久婷婷人人爽人人干人人爱| 精品午夜福利视频在线观看一区| 国产男靠女视频免费网站| 桃红色精品国产亚洲av| 国产亚洲精品av在线| 少妇人妻一区二区三区视频| 一个人免费在线观看电影 | 99久久无色码亚洲精品果冻| 亚洲熟妇熟女久久| 最新在线观看一区二区三区| 国产99白浆流出| 精品国产乱码久久久久久男人| 亚洲精品国产一区二区精华液| 久久久久久人人人人人| av超薄肉色丝袜交足视频| 精品久久久久久久人妻蜜臀av| 国产主播在线观看一区二区| 欧美乱妇无乱码| 日韩欧美在线乱码| 亚洲国产精品999在线| 夜夜爽天天搞| 伦理电影免费视频| 日本黄大片高清| 国产精品精品国产色婷婷| 亚洲国产中文字幕在线视频| 日韩欧美 国产精品| 亚洲黑人精品在线| 精品福利观看| 午夜免费激情av| 精品国产超薄肉色丝袜足j| 香蕉国产在线看| 我的老师免费观看完整版| 麻豆成人午夜福利视频| 国产精品影院久久| 好男人在线观看高清免费视频| 午夜激情av网站| 丝袜美腿诱惑在线| www.熟女人妻精品国产| 亚洲电影在线观看av| 欧美黑人欧美精品刺激| e午夜精品久久久久久久| 国产精品99久久99久久久不卡| 一二三四社区在线视频社区8| 国产精品亚洲av一区麻豆| 全区人妻精品视频| 国产亚洲精品久久久久5区| 中文字幕久久专区| 波多野结衣高清作品| 国产探花在线观看一区二区| 中文字幕熟女人妻在线| 两性午夜刺激爽爽歪歪视频在线观看 | 成人三级做爰电影| 久久精品aⅴ一区二区三区四区| aaaaa片日本免费| 亚洲中文字幕一区二区三区有码在线看 | 国产精品亚洲一级av第二区| 18禁国产床啪视频网站| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品一区二区www| 亚洲精品久久成人aⅴ小说| 久久久精品国产亚洲av高清涩受| 又黄又粗又硬又大视频| 麻豆国产97在线/欧美 | 国内少妇人妻偷人精品xxx网站 | 久久精品亚洲精品国产色婷小说| 两个人视频免费观看高清| 又黄又粗又硬又大视频| a级毛片a级免费在线| 怎么达到女性高潮| 草草在线视频免费看| 18禁黄网站禁片午夜丰满| 亚洲一区二区三区不卡视频| 18禁黄网站禁片免费观看直播| 青草久久国产| 亚洲国产日韩欧美精品在线观看 | 午夜成年电影在线免费观看| 亚洲成a人片在线一区二区| 麻豆成人av在线观看| 日本免费a在线| 免费观看精品视频网站| 日韩 欧美 亚洲 中文字幕| 99精品久久久久人妻精品| 777久久人妻少妇嫩草av网站| 90打野战视频偷拍视频| 日本三级黄在线观看| 又粗又爽又猛毛片免费看| 国产精华一区二区三区| 国产精品1区2区在线观看.| 黄片大片在线免费观看| 国产爱豆传媒在线观看 | 久久欧美精品欧美久久欧美| 午夜福利成人在线免费观看| 88av欧美| 在线观看舔阴道视频| 淫秽高清视频在线观看| 亚洲人成网站高清观看| 中文字幕人成人乱码亚洲影| 欧美日韩一级在线毛片| 一级黄色大片毛片| 亚洲中文av在线| svipshipincom国产片| 国产野战对白在线观看| 又大又爽又粗| 国产伦在线观看视频一区| 久久久久久国产a免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲美女黄片视频| 狂野欧美白嫩少妇大欣赏| 伊人久久大香线蕉亚洲五| 少妇的丰满在线观看| 丰满的人妻完整版| 亚洲av中文字字幕乱码综合| 岛国在线免费视频观看| 在线观看www视频免费| 午夜老司机福利片| 一区福利在线观看| 亚洲欧美日韩高清在线视频| 久久中文字幕一级| 黑人巨大精品欧美一区二区mp4| 中亚洲国语对白在线视频| 国产伦在线观看视频一区| 长腿黑丝高跟| 亚洲精品国产一区二区精华液| 国产精品影院久久| 狂野欧美白嫩少妇大欣赏| 亚洲中文字幕日韩| 国产精品精品国产色婷婷| 91麻豆av在线| 一区二区三区高清视频在线| 免费看十八禁软件| 成人高潮视频无遮挡免费网站| 国产一区二区三区在线臀色熟女| 欧美久久黑人一区二区| 亚洲片人在线观看| 欧美日韩亚洲国产一区二区在线观看| 日本 av在线| 日韩大尺度精品在线看网址| 欧美日韩乱码在线| 日韩中文字幕欧美一区二区| 久久这里只有精品19| avwww免费| 一级毛片女人18水好多| 亚洲av第一区精品v没综合| 全区人妻精品视频| 97超级碰碰碰精品色视频在线观看| 亚洲美女视频黄频| 亚洲国产精品久久男人天堂| 少妇被粗大的猛进出69影院| 日韩欧美国产在线观看| 久久精品aⅴ一区二区三区四区| 91麻豆av在线| 欧美一区二区精品小视频在线| 1024视频免费在线观看| 亚洲欧美日韩东京热| 在线免费观看的www视频| 精品欧美一区二区三区在线| 亚洲成人精品中文字幕电影| 欧美中文日本在线观看视频| 亚洲av成人不卡在线观看播放网| 久久性视频一级片| 日韩中文字幕欧美一区二区| 久久午夜亚洲精品久久| 国产三级在线视频| 亚洲欧洲精品一区二区精品久久久| 欧美日韩中文字幕国产精品一区二区三区| 757午夜福利合集在线观看| 99riav亚洲国产免费| 国产精品影院久久| 正在播放国产对白刺激| 午夜福利免费观看在线| 国产精品99久久99久久久不卡| 日韩有码中文字幕| 男女下面进入的视频免费午夜| 啦啦啦韩国在线观看视频| 岛国在线免费视频观看| 一区二区三区高清视频在线| 狂野欧美激情性xxxx| 国产精品一及| 国产午夜精品论理片| 午夜福利视频1000在线观看| 久久国产乱子伦精品免费另类| 两个人看的免费小视频| 日本免费a在线| 久久久久久免费高清国产稀缺| 制服诱惑二区| 老熟妇仑乱视频hdxx| 国产成人一区二区三区免费视频网站| 久久久久亚洲av毛片大全| 久久久国产成人免费| 欧美三级亚洲精品| 日本一二三区视频观看| 老司机在亚洲福利影院| а√天堂www在线а√下载| 国产午夜精品论理片| 淫秽高清视频在线观看| 脱女人内裤的视频| 国产高清视频在线观看网站| xxx96com| 美女黄网站色视频| 啦啦啦韩国在线观看视频| 国产成人精品久久二区二区91| 成人av一区二区三区在线看| 蜜桃久久精品国产亚洲av| videosex国产| 熟女电影av网| 免费看日本二区| 日韩三级视频一区二区三区| 国产精品99久久99久久久不卡| 非洲黑人性xxxx精品又粗又长| 在线观看一区二区三区| 91大片在线观看| 国产av不卡久久| 91在线观看av| 俄罗斯特黄特色一大片| 精品高清国产在线一区| 国产亚洲欧美在线一区二区| 国产激情欧美一区二区| 欧美黄色片欧美黄色片| 国产在线精品亚洲第一网站| 免费在线观看完整版高清| 久久国产精品人妻蜜桃| 国产精品一区二区三区四区久久| 麻豆一二三区av精品| 成在线人永久免费视频| 国产熟女xx| 精品久久久久久久毛片微露脸| 亚洲一区二区三区不卡视频| 男插女下体视频免费在线播放| 欧美av亚洲av综合av国产av| 成人一区二区视频在线观看| 午夜福利在线观看吧| 日本五十路高清| 国产在线精品亚洲第一网站| 69av精品久久久久久| 国产精品影院久久| 亚洲在线自拍视频| 91av网站免费观看| 久久久久久九九精品二区国产 | 久久亚洲精品不卡| 搡老熟女国产l中国老女人| tocl精华| 久久精品国产亚洲av香蕉五月| 香蕉久久夜色| 成人av在线播放网站| 久久天堂一区二区三区四区| 不卡av一区二区三区| 在线观看免费日韩欧美大片| 伊人久久大香线蕉亚洲五| 成熟少妇高潮喷水视频| 久久婷婷人人爽人人干人人爱| svipshipincom国产片| 亚洲,欧美精品.| 一级毛片女人18水好多| 久久精品综合一区二区三区| 成人精品一区二区免费|