• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complete Mitochondrial Genome of Myra affinis (Decapoda:Brachyura: Leucosiidae) and Its Phylogenetic Implications for Brachyura

    2022-08-17 05:59:30ZHANGYingMENGLeiMIAOZengliangWEILimingLIUBingjianLIULiqinGONGLiandZhenming
    Journal of Ocean University of China 2022年4期

    ZHANG Ying, MENG Lei, MIAO Zengliang, WEI Liming, LIU Bingjian,LIU Liqin, GONG Li, and Lü Zhenming, *

    Complete Mitochondrial Genome of(Decapoda:Brachyura: Leucosiidae) and Its Phylogenetic Implications for Brachyura

    ZHANG Ying1), MENG Lei2), MIAO Zengliang1), WEI Liming1), LIU Bingjian1),LIU Liqin1), GONG Li1), and Lü Zhenming1), *

    1),,,,316022,2),,316022,

    Knowledge of complete mitochondrial genomes (mitogenomes) can help understand the molecular evolution and phylogenetic relationships of various species. To date, the phylogenetic status of Leucosiidae within Brachyura remains unresolved because of the limited number of mitogenomes available. In the present study, the complete mitogenome ofwas sequenced using next-generation sequencing to supplement the limited mitogenome information of Leucosiidae.The 15349bp-long mitogenome includes 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a putative control region. The overall base composition is 34.5% A, 36.1% T, 11.5% G, and 17.9% C, with a high AT bias (70.6%). All 13 PCGs start with the standard ATN codon and stop with the TAN codon or incomplete T. Except for, all other tRNAs have a typical cloverleaf-like secondary structure. Phylogenetic analyses based on the maximum likelihood and Bayesian inference methods are employed to generate identical phylogenetic topologies, thereby supporting the sister relationship between Leucosiidae and Matutidae for the first time. The monophyly of Eubrachyura is well established, and its sister relationship with Raninoida is strongly supported.The results of this work will not only help achieve a better understanding of the characteristics of themitogenome and the phylogenetic position of Leucosiidae, but also provide relevant information for further studies on the phylogeny of Brachyura.

    leucosiid crab; mitogenome; phylogenetic analysis; Brachyura

    1 Introduction

    The typical metazoan mitochondrial genome (mitoge- nome) is a closed-circular molecule of 14–20kb. It general-ly contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (and), and an AT-rich region (also called the control region, CR) (Boore, 1999). Compared with the nuclear genome, the mi- togenome is more widely employed in population genetics,comparative genomics, and phylogenetic studies (Sanchez., 2016; Tan., 2018; Ruan., 2020). The main advantages of the use of mitogenomes in molecular sys- tematics are as follows: 1) the small genome size and high genome copy numbers of mitogenomes reduce the diffi- culties of PCR amplification; 2) the relatively high evolu- tionary rate and low level of recombination of these ge- nomes are suitable for conducting evolutionary and phy- logenetic analyses; and 3) the different evolutionary rates of mitochondrial genes render them efficient materials in the phylogenetic analyses at different levels (., family, genus, or population). The advent and maturation of next- generation sequencing (NGS) technologies in recent years have markedly improved the ability to obtain and analyze mitogenomic data, which can further expand the popula- rity of mitogenomic research (Kumar., 2020; Ruan., 2020; Wang., 2020a).

    The infraorder Brachyura contains approximately 7250 known species inhabiting marine, freshwater, and terres- trial habitats (Zhang, 2011; Chen., 2018; Ma., 2019).Brachyura, as the oldest crab, originated in the Ju- rassic period (Schweitzer and Feldmann, 2010; Davie., 2015), and a group of its members with extremely diverse morphology and ecology was finally formed after massive radiative evolution. However, this same diversity has also caused the identification of species of this order to be re- markably challenging, and their real phylogenetic relation- ships remain unknown (Rocha., 2018; Tan., 2018).The classification of Brachyura has a long history and has undergone several changes.Brachyura was initially seg- mented into three groups, namely, Podotremata, Heterotre-mata, and Thoracotremata (Spears., 1992).Subse-quently, the infraorder was proposed to be divided into Dro-miacea and Eubrachyura (including Thoracotremata, Rani- noida, and Heterotremata) (Martin and Davis, 2001). How- ever, the latest classification scheme divides Brachyura intoEubrachyura, Dromiacea, Raninoida, and Cyclodorippoida(Ahyong., 2007; Tsang., 2014).Although the phy- logenetic relationship within Brachyura is incompletely un-derstood, the current classification system has been recog- nized by most scholars.Leucosiidae, a diversified group belonging to Eubrachyura, is usually referred to as ‘peb- ble crab’ on account of its unusual carapaces, which vary from pyriform to oval and subcircular; this feature is quite different from that of traditional crabs (Naderloo, 2017). The habitats of this group are also diversified, and indivi- dual species may be found in coastal sand bottoms, gravel, muds, and nearshore watersin Asian countries, such as China, Japan, and Korea (De Melo, 1996).The phyloge- netic relationships among Leucosiidae and even the evo- lutionary status of this family have not been well resolved. Furthermore, only one complete mitogenome sequence of this family ()is available (Park., 2017). This lack of relevant data mainly hampers phylogenetic studies of Leucosiidae and even Brachyura.

    The genusLeach, 1817, has been a source of sys- tematic and nomenclatural confusion (Galil, 2001).Bell, 1855,is a species mainly distributed in the Indo-West Pacifica, including most areas of the East Chi- na Sea and the South China Sea (Naderloo, 2017).Thus far, most studies of this species have focused on its mor- phology (Tan, 1996; Naderloo, 2017), and related mole- cular research is unavailable. In the present study, we first sequence and annotate the complete mitogenome ofto supplement the number of Leucosiidae mitoge- nomes currently available. The molecular features of this mitogenome, including mitogenome organization, codon usage, and tRNA secondary structures, are then described in detail. Next, the phylogeny of Brachyura is reconstruct- ed according to the nucleotide sequences of 13 PCGs from83 Brachyuran species and two Anomuran species (as out- groups). The data presented in this study will help achi- eve a better understanding of the characteristics of themitogenome, determine the phylogenetic position of Leucosiidae, and shed light on the evolutionary relation- ships among Brachyura.

    2 Materials and Methods

    2.1 Ethics Statement

    The crab specimen used in this study was collected fromZhoushan Province, China (29?45?32??N, 121?45?30??E). The species was not involved in the endangered list of the International Union for Conservation of Nature (https:// www.iucnredlist.org/). Specimen collection and mainte- nance were performed in strict accordance with the rec- ommendations of Animal Care Quality Assurance in Chi- na. All experimental protocols were approved by the In- stitutional Ethics Committee of Zhejiang Ocean Univer- sity.

    2.2 DNA Extraction, Mitogenome Sequencing,and Assembly

    An SQ Tissue DNA Kit (OMEGA, USA) was used to extract the total genomic DNA from the muscle tissue of a single sample following the manufacturer’s instructions. The mitogenome ofwas sequenced by NGS of paired reads measuring 150bp in length (Illumina HisSeq 4000; Shanghai Origingene Bio-pharmTechnology Co., Ltd., China).Adapters and low-quality bases were removed us- ing Cutadapt v1.16 (Martin, 2011) with the following pa- rameters: ?q 20 ?m 20.Trimmed reads shorter than 50bp were discarded. Quality control of the raw and trimmed reads was performed using FastQC v0.11.5 (http://www. bioinformatics.babraham.ac.uk/projects/fastqc/). The filter- ed clean data were assembled and mapped to a complete mitogenome sequence using NOVOPlasty v2.7.2 (Dierck- xsens., 2017).

    2.3 Mitogenome Annotation and Sequence Analyses

    The complete mitogenome was manually annotated us- ing Sequin software (version 15.10, http://www.ncbi.nlm. nih.gov/Sequin/), and PCGs were determined by their openreading frames following the guidelines of the inverte- brate mtDNA translation table. The boundaries of rRNA and tRNA genes were determined using NCBI-BLAST (http://blast.ncbi.nlm.nih.gov) and tRNAscan-SE 1.21 (Lowe and Chan, 2016), respectively, and compared with the re- lated species. Transfer RNA (tRNA) genes were manually plotted according to the secondary structure predicted by tRNAscan-SE 1.21 (Lowe and Chan, 2016) and MITOS Web Server (Bernt., 2013) with invertebrate mito- chondrial genetic codes. The CR was determined by the locations of adjacent genes. The mitogenome map was drawn by CGView Server V 1.0 (Stothard and Wishart, 2005), and the base composition and relative synonymous codon usage (RSCU) were obtained using MEGA X (Ku- mar., 2018). The following formulas were used to calculate strand asymmetries (Perna and Kocher, 1995):

    2.4 Phylogenetic Analysis

    A total of 84 complete mitogenome sequences down- loaded from GenBank database (https://www.ncbi.nlm.nih. gov/genbank) and a newly determined sequence () were used to reconstruct the phylogenetic relation- ships among Brachyura (Table 1). In addition, two species from Anomura were used as outgroups (Table 1). The nu- cleotide sequences of 13 PCGs for each species were ex- tracted from the relevant GenBank files using PhyloSuite (Zhang., 2020a), and the MAFFT program (Katoh., 2002) integrated with PhyloSuite was executed to align multiple sequences into normal-alignment mode. Gblocks was used to identify and remove ambiguously aligned sequences using default settings (Talavera and Ca- stresana, 2007).The sequences were then concatenated and used to generate input files (phylip and nexus format) for phylogenetic analyses. Maximum likelihood (ML) and Ba- yesian inference (BI) were employed for phylogenetic ana- lyses. The best-fitting model was selected using Model- Finder (Kalyaanamoorthy., 2017) on the basis of the Bayesian Information Criterion. GTR+F+G7 and GTR+F+I+G4 were selected as the best-fitting models for ML and BI analyses, respectively. ML analysis was carried out in IQ-TREE (Nguyen., 2015) using an ML+rapid bootstrap (BS) algorithm with 1000 replicates.BI analy- sis was performed in MrBayes 3.2.6 (Ronquist., 2012) with default parameters and 3×106Metropolis-coupled Markov Chain Monte Carlo generations.Trees were sampled every 1000 generations with a burn-in rate of 25%. The average standard deviation of split frequencies below 0.01 was considered to reach convergence.

    Table 1 List of 83 Brachyuran species and two outgroups used in this paper

    ()

    ()

    SpeciesFamilyLength (bp)Accession no. Tubuca politaOcypodidae15672NC_039106 Ocypode ceratophthalmusOcypodidae15564NC_025324 Ocypode cordimanusOcypodidae15604NC_029725 Dotilla wichmanniDotillidae15600NC_038180 Ilyoplax deschampsiDotillidae15460NC_020040 Grapsus tenuicrustatusGrapsidae15858NC_029724 Pachygrapsus crassipesGrapsidae15652NC_021754 Pachygrapsus marmoratusGrapsidae15406NC_039109 Metopograpsus frontalisGrapsidae15587NC_042152 Metopograpsus quadridentatusGrapsidae15517NC_038178 Eriocheir hepuensisVarunidae16335NC_011598 Eriocheir sinensisVarunidae16354NC_006992 Eriocheir japonicaVarunidae16352NC_011597 Neoeriocheir leptognathusVarunidae16143NC_041211 Hemigrapsus penicillatusVarunidae16486NC_038202 Hemigrapsus sanguineusVarunidae16275NC_035307 Macrophthalmus darwinensisMacrophthalmidae16348MF457408 Macrophthalmus japonicusMacrophthalmidae16170NC_030048 Macrophthalmus pacificusMacrophthalmidae17226NC_046039 Mictyris longicarpusMictyridae15548NC_025325 Geothelphusa dehaaniPotamidae18197NC_007379 Geothelphusa sp.Potamidae18052MG674171 Huananpotamon lichuanensePotamidae15380NC_031406 Longpotamon yangtsekiensePotamidae17885NC_036946 Longpotamon kenliensePotamidae18499NC_044413 Potamiscus motuoensisPotamidae17971KY285013 Somanniathelphusa boyangensisGecarcinucidae17032NC_032044 Lyreidus brevifronsRaninidae16112NC_026721 Umalia orientalisRaninidae15466NC_026688 Ranina raninaRaninidae15557NC_023474 Homola orientalisHomolidae16084KT182071 Homologenus malayensisHomolidae15793NC_026080 Moloha majoraHomolidae15903NC_029361 Latreillia validaLatreilliidae15097MK204361 Dynomene pilumnoidesDynomenidae16475KT182070 Pagurus nigrofasciaPaguridae15392NC_042412 Pagurus gracilipesPaguridae16051LC222534

    3 Results and Discussion

    3.1 Mitogenome Organization

    The complete mitochondrial genome offorms a closed-circular molecule measuring 15349bp in size (Gen- Bank accession no. MW192449). This mitogenome con- sists of 13 PCGs, 2 rRNAs, 22 tRNAs, and one putative CR (Fig.1, Table 2).Except for four PCGs (.,,,, and), eight tRNAs (.,-,,,Leu,,,, and), and two rRNAs, which aredistributed on the light (L-) strand, the other mitogenes aredistributed on the heavy (H-) strand (Table 2).Overall, the genes in themitogenome are closely arranged with interval (10 intergenic spacers totaling 146bp) and overlapping (11 overlaps totaling 26bp) phenomena (Ta- ble 2).Three typical overlaps occur between protein- coding genes (., 1bp betweenand, 7bp be- tweenand, 1bp betweenand; Ta- ble 2), and these overlaps are commonly identified in other crabs (Lu., 2020; Zhang., 2020b). As is the case with other Brachyuran mitogenomes (Wang., 2020a; Wang., 2020b; Zhang., 2020b), themi- togenome exhibits a high AT bias (70.6%).The AT- and GC-skews of the mitogenome are negative at ?0.022 and ?0.217, respectively (Table 3), thereby indicating that Ts and Cs are more abundant than As and Gs.

    3.2 PCGs and Codon Usage

    The mitogenome ofcontains 13 PCGs in the order typically found in most Brachyuran species and con- sists of seven NADH dehydrogenases (–and), three cytochrome c oxidases (-), two AT- Pases (and8), and one cytochrome b ().These 13 PCGs have a total length of 11092bp and encode 3687 amino acids. All of the 13 PCGs are initiated by the canonical start codon ATN. The majority of the 13 PCGs terminate with TAA or TAG, while four other PCGs (.,,,,and) use a single T as a stop codon(Table 2). Incomplete stop codons are common in meta- zoan mitogenomes and may be recoveredpost-trans- criptional polyadenylation (Ojala., 1981). The AT- and GC-skews of the 13 PCGs are similarly negative, at ?0.018 and ?0.004, respectively (Table 3). This finding de- monstrates that Ts and Cs are more abundant than As and Gs in the entire protein-coding gene sequence. Four PCGs (.,,,, and) have positive GC-skew values, thereby indicating that they are encoded by the L-strand, whereas the other nine PCGs exhibit negative values, which indicates they are encoded by the H-strand (Table 3).

    Table 2 Features of the M. affinis mitogenome

    Table 3 Composition and skewness of the M. affinis mitogenome

    Fig.1 Gene map of the M. affinis mitogenome.

    Among the 13 PCGs, the most frequently used amino acid are Leu (15.57%), Ser (10.31%), Phe (9.57%), and Ile(8.11%). In comparison, the least common amino acids are Cys (1.06%), Arg (1.63%), Gln (1.76%), and Asp (1.90%) (Fig.2A, Table 4). RSCU analysis shows that the most fre- quently used codons include UUA (Leu), UCU (Ser), and CCU (Pro); by contrast, GCG (Ala), AGC (Ser), CCG (Pro), and CGC (Arg) are the codons with the least frequencies (Fig.2B, Table 4). The preference for NNU and NNA co- dons can clearly be observed in the mitochondrial PCGs, which is consistent with the case of other Brachyuran spe- cies (Wang., 2020a; Wang., 2020b; Zhang., 2020b).

    Table 4 Codon numbers and relative synonymous codon usage (RSCU) of 13 PCGs in the M. affinis mitogenome

    Fig.2 Amino acid composition (A) and relative synonymous codon usage (B) of the M. affinis mitogenome.

    3.3 Transfer RNAs (tRNAs), Ribosomal RNAs (rRNAs), and Control Region

    A total of 22 tRNA genes, with lengths varying from 61bp to 70bp, are identified in the mitogenome of.Most tRNAs can fold into the typical cloverleaf-like struc- ture exceptfor-, which lacks the dihydrouridine arm (Fig.3). This feature seems common in metazoan mi- togenomes (Wang., 2015; Gong., 2019; Gong., 2020). In addition to the Watson-Crick base pairs (A–Tand G–C) and G–U matches, three types of mismatches are found in the stem region of tRNA. One C–U base pair is predicted in-, one A–A base pair is predicted in-, and three U–U base pairs are predicted in-,-,and-. Such stem mismatches ap- pear to be a common phenomenon in mitochondrial tRNA genes and may be corrected through post-transcriptional editing (Lavrov., 2000). The most reasonable expla- nation for this finding is that mitogenomes are unaffected by the recombination process. Therefore, base mismatches are able to exist, which may be helpful for eliminating de- leterious mutations (Lynch, 1997).

    The(812bp) andgenes (1277bp) of themitogenome are typically separated by(Fig.1, Table 1). Both genes exhibit positive GC-skew (Table 3), thereby indicating that they are encoded by the L-strand. The CR of the mitogenome is located betweenand. The 626 bp-long CR is obvious- ly AT-biased (81.0%). The AT- and GC-skews are 0.124 and ?0.059; respectively (Table 3), thus indicating an obvious bias toward the use of As and Cs.

    3.4 Phylogenetic Analysis

    In the present study, the phylogenetic relationships among Brachyura were reconstructed according to the nucleotide sequences of 13 PCGs using the ML and BI methods.The ML tree and BI trees show an identical topology; thus, only one topology (., BI) with both support values is dis- playedin Fig.4. The results show thatandare most closely related among the species obtained and form a sister group at the end of the phylogenetic tree. Thus far, phylogenetic studies of Leucosiidae at the mole- cular level are extremely rare, and the evolutionary status of this family is unclear (Park., 2017). Although Park. (2017) presented the first and only research on the phylogenetic status of Leucosiidae using whole mitoge-nomes, the phylogenetic location of this family was not well resolved because of its limited representatives. By con-trast, the sister relationship between Leucosiidae and Matu-tidae in our phylogenetic trees is well supported (poste- rior probabilities=1; bootstrap=98). Considering that only two mitogenomes of this family have been analyzed, more sequences of leucosiid crabs are needed to be analyzed to reconfirm the phylogenetic position of Leucosiidae.

    The monophyly of each of the 30 families included in this phylogeny, except Xanthidae and Homolidae, is strong- ly supported. Four Xanthidae species are divided into two clades, while three of these species cluster together as a clade, and the remaining species()forms a sister clade with the single representative of Ozii- dae ().Regarding the non-monophyly ofHomolidae, a single representative of Latreilliidae () forms a sister clade with a member ofHo- molidae (), thereby highlighting the autho- ritative identification ofand the necessity of col- lecting more representatives of Latreilliidae in future work.When viewed from a higher taxonomic level, our tree topo- logy indicates the existence of two major clades: section Dromiacea (the most basal clade) and the other two sections(Eubrachyura+Raninoida).The sister relationship betweenEubrachyura and Raninoida is strongly supported(poste- rior probabilities=1; bootstrap=100).The monophyly of Eubrachyura is well established (Von Sternberg and Cum berlidge, 2001; Tsang., 2014; Ma., 2019), while that of the other sections remains controversial due to li- mited mitogenomic data. Furthermore, because a third of the families (10/30) include only one representative, the non-monophyly of relevant families should be treated with some cautions. In the future studies, larger taxon samples are re- quired to resolve the origin and evolutionary relationships among Brachyura conclusively.

    Fig.3 Potential secondary structures of 22 inferred tRNAs in the M. affinis mitogenome.

    Fig.4 Phylogenetic tree of Brachyuran species inferred from the nucleotide sequences of 13 PCGs on the basis of maxi- mum likelihood (ML) and Bayesian inference (BI) analyses. Nodes marked with a solid circle indicate an ML bootstrap value of 100 and a supporting value of 100%.

    4 Conclusions

    In this study, we first determine and describe the com- plete mitogenome ofto supplement the limited mitogenome information of Leucosiidae.The 15349bp- long mitogenome contains 37 genes and an AT-rich region, which is typical in metazoan mitogenomes. All PCGs are initiated by the canonical start codon ATN and terminated by the TAN codon or an incomplete T.Phylogenetic ana-lyses support the sister relationship of Leucosiidae and Ma- tutidae on the basis of 13 PCGs. Furthermore, the mono- phyly of Eubrachyura is well established, and its sister re- lationship with Raninoida is strongly supported. Neverthe- less, comprehensive taxon sampling is necessary to resolve the phylogeny and origin of Brachyura with better accuracy.

    Acknowledgements

    This work was supported by the Natural Science Foun- dation of Zhejiang Province (No. LY21C190007) and the Zhoushan Science and Technology Bureau (No. 2021C21 007). We would like to express our gratitude to Dr. Jian Chen for helping in the species identification and provid- ing critical comments.

    Ahyong, S. T., Lai, J. C., Sharkey, D., Colgan, D. J., and Ng, P. K., 2007. Phylogenetics of the brachyuran crabs (Crustacea: Decapoda): The status of Podotremata based on small subunit nuclear ribosomal RNA., 45 (2): 576-586.

    Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G.,., 2013. MITOS: Improvedmetazoanmitochondrial genome annotation., 69 (2): 313-319.

    Boore, J. L., 1999. Animal mitochondrial genomes., 27 (8): 1767-1780.

    Chen, J., Xing, Y., Yao, W., Zhang, C., Zhang, Z., Jiang, G.,., 2018. Characterization of four new mitogenomes from Ocy- podoidea & Grapsoidea, and phylomitogenomic insights into thoracotreme evolution., 675: 27-35.

    Davie, P. J., Guinot, D., and Ng, P. K., 2015.In:–Koninklijke Brill NV, Leiden, 921-979.

    De Melo, G. A. S., 1996..Plêiade/FAPESP, S?o Paulo, 603-604.

    Dierckxsens, N., Mardulyn, P., and Smits, G., 2017. NOVOPlasty:assembly of organelle genomes from whole genome data., 45 (4): e18-e18.

    Galil, B., 2001. A revision ofLeach, 1817 (Crustacea: De- capoda: Leucosioidea)., 75: 409- 446.

    Gong, L., Liu, B., Liu, L., Guo, B., and Lü, Z., 2019a. The com- plete mitochondrial genome of(Centrarchifor- mes: Terapontidae) and comparative analysis of the control re- gion among eight Centrarchiformes species., 45 (2): 137-144

    Gong, L., Lu, X., Wang, Z., Zhu, K., Liu, L., Jiang, L.,.,2019b. Novel gene rearrangement in the mitochondrial genome of(Anomura: Coenobitidae) and phylo-genetic implications for Anomura., 112 (2): 1804- 1812.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A.,and Jermiin, L. S., 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates., 14 (6): 587- 589.

    Katoh, K., Misawa, K., Kuma, K. I., and Miyata, T., 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform., 30 (14): 3059- 3066.

    Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across com-puting platforms., 35 (6): 1547-1549.

    Kumar, V., Tyagi, K., Chakraborty, R., Prasad, P., Kundu, S., Tyagi, I.,., 2020. The complete mitochondrial genome of endemic giant tarantula,(Araneae: The- raphosidae) and comparative analysis., 10 (1): 1-11.

    Lavrov, D. V., Brown, W. M., and Boore, J. L., 2000. A novel typeof RNA editing occurs in the mitochondrial tRNAs of the cen- tipede Lithobius forficatus., 97 (25): 13738-13742.

    Lowe, T. M., and Chan, P. P., 2016. tRNAscan-SE on-line: Integrating search and context for analysis of transfer RNA genes., 44 (W1): W54-W57.

    Lu, X., Gong, L., Zhang, Y., Chen, J., Liu, L., Jiang, L.,., 2020. The complete mitochondrial genome of: The first representative from the family Calappidae and its phylogenetic position within Brachyura., 112 (3): 2516-2523.

    Lynch, M., 1997. Mutation accumulation in nuclear, organelle, and prokaryotic transfer RNA genes., 14 (9): 914-925.

    Ma, K. Y., Qin, J., Lin, C. W., Chan, T. Y., Ng, P. K., Chu, K. H.,., 2019. Phylogenomic analyses of brachyuran crabs sup- port early divergence of primary freshwater crabs., 135: 62-66.

    Martin, J. W., and Davis, G. E., 2001.. Natural History Museum of Los An- geles County, Los Angeles, 1-124.

    Martin, M., 2011. Cutadapt removes adapter sequences from high- throughput sequencing reads., 17 (1): 10-12.

    Naderloo, R., 2017. FamilyLeucosiidae Samouelle, 1819 (pebble crabs).In:. Springer, Cham, 75-120.

    Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies., 32 (1): 268-274.

    Ojala, D., Montoya, J., and Attardi, G., 1981. tRNA punctuation model of RNA processing in human mitochondria., 290(5806): 470-474.

    Park, Y. J., Park, C. E., Jung, B. K., Ibal, J. C., Jung, Y., Hong, S. J.,., 2017. The first complete mitochondrial genome sequence of the leucosiid crab(Arthropoda, Decapoda, Leucosiidae)., 2 (2): 885- 886.

    Perna, N. T., and Kocher, T. D., 1995. Patterns of nucleotide com- position at fourfold degenerate sites of animal mitochondrial genomes., 41 (3): 353-358.

    Rocha, C. T., Regina, W. M., Mantelatto, F. L., Christopher, T., and José, Z. F., 2018. Ultrastructure of spermatozoa of members of Calappidae, Aethridae and Menippidae and discussion of theirphylogenetic placement., 101 (1): 89-100.

    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Dar- ling, A., Hohna, S.,., 2012. MrBayes 3.2: Efficient Baye- sian phylogenetic inference and model choice across a large model space., 61 (3): 539-542.

    Ruan, H., Li, M., Li, Z., Huang, J., Chen, W., Sun, J.,.,2020. Comparative analysis of complete mitochondrial genomes of tThreefishes (Perciformes: Gerreidae) and primary exploration of their evolution history., 21 (5): 1874.

    Sanchez, G., Tomano, S., Yamashiro, C., Fujita, R., Wakabayashi, T., Sakai, M.,., 2016. Population genetics of the jumbo squid(Cephalopoda: Ommastrephidae) in the northern Humboldt Current system based on mitochondrial and microsatellite DNA markers., 175: 1-9.

    Schweitzer, C. E., and Feldmann, R. M., 2010. The oldest Brach-yura (Decapoda: Homolodromioidea: Glaessneropsoidea) known to date (Jurassic)., 30 (2): 251- 256.

    Spears, T., Abele, L. G., and Kim, W., 1992. The monophyly of Brachyuran crabs: A phylogenetic study based on 18S rRN?., 41 (4): 446-461.

    Stothard, P., and Wishart, D. S., 2005. Circular genome visuali- zation and exploration using CGView., 21 (4): 537-539.

    Talavera, G., and Castresana, J., 2007. Improvement of phyloge- nies after removing divergent and ambiguously aligned blocks from protein sequence alignments., 56 (4): 564-577.

    Tan, C., 1996. Leucosiidae of the Albatross expedition to the Phi- lippines, 1907–1910 (Crustacea: Brachyura: Decapoda)., 30 (7): 1021-1058.

    Tan, M. H., Gan, H. M., Lee, Y. P., Linton, S., Grandjean, F., Bartholomei-Santos, M. L.,., 2018. ORDER within the chaos: Insights into phylogenetic relationships within the Ano- mura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements., 127: 320-331.

    Tsang, L. M., Schubart, C. D., Ahyong, S. T., Lai, J. C., Au, E. Y.,Chan, T. Y.,., 2014. Evolutionary history of true crabs (Crustacea: Decapoda: Brachyura) and the origin of freshwater crabs., 31 (5): 1173-1187.

    Von Sternberg, R., and Cumberlidge, N., 2001. On the hetero- treme-thoracotreme distinction in the Eubrachyura de Saint Laurent, 1980 (Decapoda, Brachyura)., 74 (4): 321- 338.

    Wang, Q., Tang, D., Guo, H., Wang, J., Xu, X., and Wang, Z., 2020a. Comparative mitochondrial genomic analysis ofand insights into the phylogeny of the Ocypo- doidea & Grapsoidea., 112 (1): 82-91.

    Wang, X., Huang, Y., Liu, N., Yang, J., and Lei, F., 2015. Seven complete mitochondrial genome sequences of bushtits (Passe- riformes, Aegithalidae,): The evolution pattern in dup- licated control regions., 26 (3): 350-356.

    Wang, Z., Shi, X., Guo, H., Tang, D., Bai, Y., and Wang, Z., 2020b.Characterization of the complete mitochondrial genome ofand comparison with other Brachyuran crabs., 112 (1): 10-19.

    Zhang, D., Gao, F., Jakovlic, I., Zou, H., Zhang, J., Li, W. X.,.,2019. PhyloSuite: An integrated and scalable desktop platformfor streamlined molecular sequence data management and evo-lutionary phylogenetics studies.,20 (1): 348-355.

    Zhang, Y., Gong, L., Lu, X., Jiang, L., Liu, B., Liu, L.,., 2020.Gene rearrangements in the mitochondrial genome of(Brachyura: Sesarmidae) and phylogenetic im- plications for Brachyura., 162: 704-714.

    Zhang, Z. Q., 2011.. Magno- lia Press, Auckland, 1-237.

    December 21, 2020;

    February 16, 2021;

    July 20, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2022

    .E-mail:lzmnblzm@163.com

    (Edited by Qiu Yantao)

    xxxhd国产人妻xxx| 国产毛片在线视频| 婷婷色麻豆天堂久久| 亚洲av福利一区| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久精品古装| 国产免费又黄又爽又色| 99久久人妻综合| 国国产精品蜜臀av免费| 大片电影免费在线观看免费| 国产一区亚洲一区在线观看| 久久久精品94久久精品| 久久国产亚洲av麻豆专区| 精品少妇内射三级| 精品卡一卡二卡四卡免费| 男男h啪啪无遮挡| 黄色毛片三级朝国网站| av在线播放精品| 久久久久久久精品精品| av卡一久久| 久久国内精品自在自线图片| 黄色视频在线播放观看不卡| 麻豆精品久久久久久蜜桃| 欧美丝袜亚洲另类| 老熟女久久久| 夜夜爽夜夜爽视频| 国产精品不卡视频一区二区| 欧美日本中文国产一区发布| 人体艺术视频欧美日本| 91午夜精品亚洲一区二区三区| 欧美人与性动交α欧美精品济南到 | 精品少妇黑人巨大在线播放| 欧美精品一区二区免费开放| av国产精品久久久久影院| 久久99热6这里只有精品| 男女无遮挡免费网站观看| 少妇的逼好多水| 日韩亚洲欧美综合| h视频一区二区三区| 大话2 男鬼变身卡| 久久ye,这里只有精品| 水蜜桃什么品种好| 另类亚洲欧美激情| 国产精品无大码| 成人漫画全彩无遮挡| 97精品久久久久久久久久精品| 一级毛片aaaaaa免费看小| 欧美xxⅹ黑人| 国产片内射在线| 国产成人aa在线观看| 在线观看免费视频网站a站| 亚洲国产精品一区二区三区在线| 久久久国产一区二区| 一本一本综合久久| 国产日韩欧美在线精品| 22中文网久久字幕| 搡老乐熟女国产| 麻豆乱淫一区二区| 99国产精品免费福利视频| 国产午夜精品久久久久久一区二区三区| 国产高清国产精品国产三级| 日本黄色片子视频| 欧美人与善性xxx| 日本与韩国留学比较| 青春草亚洲视频在线观看| 久久精品国产亚洲网站| 女人久久www免费人成看片| 国产极品粉嫩免费观看在线 | 亚洲人成网站在线观看播放| 欧美精品一区二区免费开放| 18禁在线无遮挡免费观看视频| 九九爱精品视频在线观看| 少妇高潮的动态图| 爱豆传媒免费全集在线观看| 少妇熟女欧美另类| 国产探花极品一区二区| 亚洲怡红院男人天堂| 丝袜美足系列| 久久精品国产鲁丝片午夜精品| 国产毛片在线视频| 99精国产麻豆久久婷婷| 男人爽女人下面视频在线观看| 大香蕉97超碰在线| a 毛片基地| 亚洲精品国产av蜜桃| 两个人免费观看高清视频| 久久精品人人爽人人爽视色| a级毛片在线看网站| 一区二区av电影网| 91久久精品国产一区二区三区| 国产精品久久久久久av不卡| 青春草国产在线视频| 少妇精品久久久久久久| 伦精品一区二区三区| 我的老师免费观看完整版| av福利片在线| 国产精品一区二区在线不卡| 五月天丁香电影| tube8黄色片| 欧美激情国产日韩精品一区| 成人手机av| 校园人妻丝袜中文字幕| 日本91视频免费播放| 欧美三级亚洲精品| 一级a做视频免费观看| 免费黄色在线免费观看| 久久精品人人爽人人爽视色| 国产精品三级大全| 美女视频免费永久观看网站| 看免费成人av毛片| 日韩中文字幕视频在线看片| 欧美精品亚洲一区二区| 亚洲,欧美,日韩| 欧美日韩精品成人综合77777| 男男h啪啪无遮挡| 免费黄频网站在线观看国产| 亚洲精品乱码久久久久久按摩| 国产高清国产精品国产三级| 18禁观看日本| 高清黄色对白视频在线免费看| 激情五月婷婷亚洲| 熟妇人妻不卡中文字幕| 国产女主播在线喷水免费视频网站| 欧美另类一区| 久久久久久人妻| 成人免费观看视频高清| 日本猛色少妇xxxxx猛交久久| 在线免费观看不下载黄p国产| 久久av网站| av福利片在线| av不卡在线播放| 日韩一区二区视频免费看| 欧美日韩成人在线一区二区| 国产成人免费无遮挡视频| 十八禁高潮呻吟视频| 欧美xxⅹ黑人| 啦啦啦中文免费视频观看日本| 高清毛片免费看| 亚洲第一区二区三区不卡| 欧美少妇被猛烈插入视频| 另类精品久久| 久久久久久久久久人人人人人人| 2018国产大陆天天弄谢| 亚洲五月色婷婷综合| 十八禁网站网址无遮挡| 亚洲怡红院男人天堂| 在现免费观看毛片| www.av在线官网国产| 久久久久久久久大av| 中文乱码字字幕精品一区二区三区| 亚洲人成网站在线观看播放| 国产成人91sexporn| 热99国产精品久久久久久7| 男人添女人高潮全过程视频| 精品久久久久久久久亚洲| 人妻人人澡人人爽人人| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一边摸一边做爽爽视频免费| 国产精品一区二区在线观看99| 久久久久久伊人网av| 中文字幕精品免费在线观看视频 | 亚洲精品亚洲一区二区| 日韩欧美精品免费久久| 热99久久久久精品小说推荐| 国产国语露脸激情在线看| 我要看黄色一级片免费的| 欧美变态另类bdsm刘玥| 观看av在线不卡| 夜夜骑夜夜射夜夜干| 一区二区日韩欧美中文字幕 | 大片电影免费在线观看免费| 18禁观看日本| 2022亚洲国产成人精品| 午夜老司机福利剧场| 一区二区日韩欧美中文字幕 | 亚洲av福利一区| 久久精品久久久久久久性| 久久女婷五月综合色啪小说| 久久久久人妻精品一区果冻| 少妇精品久久久久久久| 久久精品久久久久久噜噜老黄| 夜夜骑夜夜射夜夜干| 蜜桃在线观看..| 久久精品久久久久久噜噜老黄| 国内精品宾馆在线| 九草在线视频观看| 国产精品一区二区在线不卡| 91成人精品电影| 亚洲av中文av极速乱| 久久 成人 亚洲| 青春草视频在线免费观看| 91aial.com中文字幕在线观看| 欧美日韩国产mv在线观看视频| 久热这里只有精品99| 五月伊人婷婷丁香| 狂野欧美白嫩少妇大欣赏| 岛国毛片在线播放| 亚洲av电影在线观看一区二区三区| 免费黄网站久久成人精品| 人妻夜夜爽99麻豆av| 欧美日韩视频高清一区二区三区二| 十八禁高潮呻吟视频| 婷婷色麻豆天堂久久| 精品国产国语对白av| 赤兔流量卡办理| 视频区图区小说| a 毛片基地| 久久久久久久久久久免费av| 成人漫画全彩无遮挡| 丁香六月天网| 欧美日韩精品成人综合77777| 久久久久网色| 久久国产精品大桥未久av| 亚洲欧洲精品一区二区精品久久久 | 在线观看免费日韩欧美大片 | 在线亚洲精品国产二区图片欧美 | 久久97久久精品| 超碰97精品在线观看| 国产高清三级在线| 国产黄色免费在线视频| 精品久久久久久电影网| 热re99久久国产66热| 亚洲国产成人一精品久久久| 九草在线视频观看| av免费观看日本| 人人澡人人妻人| 美女视频免费永久观看网站| 岛国毛片在线播放| 99热网站在线观看| 国产高清有码在线观看视频| 国产精品久久久久久精品古装| 精品人妻在线不人妻| 人成视频在线观看免费观看| 国产亚洲欧美精品永久| 美女国产高潮福利片在线看| 亚洲三级黄色毛片| 91久久精品电影网| 夫妻午夜视频| 韩国av在线不卡| 国产毛片在线视频| 日本色播在线视频| 啦啦啦视频在线资源免费观看| 亚洲不卡免费看| www.av在线官网国产| 日本wwww免费看| 高清欧美精品videossex| 大又大粗又爽又黄少妇毛片口| 伊人亚洲综合成人网| 国产精品欧美亚洲77777| 99久久人妻综合| av在线观看视频网站免费| 国内精品宾馆在线| 日韩熟女老妇一区二区性免费视频| 国产视频首页在线观看| 日韩一区二区视频免费看| 少妇人妻久久综合中文| 亚洲国产成人一精品久久久| 汤姆久久久久久久影院中文字幕| 下体分泌物呈黄色| 性高湖久久久久久久久免费观看| 黄色怎么调成土黄色| 成年女人在线观看亚洲视频| 国产精品国产三级国产av玫瑰| 国产精品久久久久久久久免| 汤姆久久久久久久影院中文字幕| 日韩 亚洲 欧美在线| 色网站视频免费| 欧美日韩视频高清一区二区三区二| 国产色婷婷99| 国产一区亚洲一区在线观看| 91成人精品电影| 看非洲黑人一级黄片| 一边摸一边做爽爽视频免费| 人成视频在线观看免费观看| 五月天丁香电影| .国产精品久久| 欧美性感艳星| 日韩电影二区| 亚洲综合色惰| 伊人久久国产一区二区| 国产精品秋霞免费鲁丝片| 97精品久久久久久久久久精品| av.在线天堂| 久久 成人 亚洲| 日韩成人伦理影院| 一级片'在线观看视频| 老熟女久久久| 草草在线视频免费看| 国产无遮挡羞羞视频在线观看| 国产精品 国内视频| 亚洲欧美清纯卡通| 五月开心婷婷网| 黄片播放在线免费| 在线播放无遮挡| 日本猛色少妇xxxxx猛交久久| 精品亚洲成a人片在线观看| 精品久久久久久久久亚洲| 人妻系列 视频| 两个人的视频大全免费| 国产精品嫩草影院av在线观看| 国产精品一区二区三区四区免费观看| 国产av国产精品国产| 人妻一区二区av| 男女高潮啪啪啪动态图| 天天影视国产精品| 日本vs欧美在线观看视频| 亚洲国产成人一精品久久久| 最黄视频免费看| 丰满饥渴人妻一区二区三| 日本-黄色视频高清免费观看| 午夜福利视频精品| 大香蕉久久网| 一区二区三区四区激情视频| 免费大片黄手机在线观看| 制服人妻中文乱码| 日韩成人伦理影院| 国产日韩一区二区三区精品不卡 | 成人国产麻豆网| 欧美亚洲日本最大视频资源| 国产黄色免费在线视频| 人妻系列 视频| 男女边摸边吃奶| 在现免费观看毛片| 国产精品国产三级国产av玫瑰| 亚洲精品456在线播放app| 午夜日本视频在线| 97精品久久久久久久久久精品| 亚洲精品aⅴ在线观看| 国产亚洲精品久久久com| 亚洲国产日韩一区二区| 久久综合国产亚洲精品| 亚洲在久久综合| 一级a做视频免费观看| 国产免费又黄又爽又色| 少妇的逼好多水| 午夜影院在线不卡| 97超视频在线观看视频| 国产亚洲av片在线观看秒播厂| 免费播放大片免费观看视频在线观看| 欧美成人午夜免费资源| 精品一区二区免费观看| 91成人精品电影| 久久久久久久久大av| 久久精品国产a三级三级三级| 久久精品久久久久久噜噜老黄| 飞空精品影院首页| 最黄视频免费看| 飞空精品影院首页| 又大又黄又爽视频免费| 内地一区二区视频在线| 日本vs欧美在线观看视频| 亚洲图色成人| 99热网站在线观看| 国产一区有黄有色的免费视频| 中国三级夫妇交换| 精品亚洲成国产av| 国产男人的电影天堂91| 午夜免费观看性视频| 九色成人免费人妻av| 午夜影院在线不卡| 一级a做视频免费观看| 一级毛片aaaaaa免费看小| 国产国拍精品亚洲av在线观看| 成人综合一区亚洲| 免费av中文字幕在线| 秋霞伦理黄片| 日韩强制内射视频| 日日摸夜夜添夜夜添av毛片| 黄色怎么调成土黄色| 十八禁网站网址无遮挡| 一二三四中文在线观看免费高清| 亚洲人成77777在线视频| 亚洲成人手机| 中文字幕人妻丝袜制服| 国产精品熟女久久久久浪| 日本免费在线观看一区| 国产精品嫩草影院av在线观看| 大话2 男鬼变身卡| 狂野欧美激情性bbbbbb| 91国产中文字幕| 日本黄色片子视频| 26uuu在线亚洲综合色| 中文字幕免费在线视频6| 人人妻人人澡人人看| 亚洲人成网站在线播| 国产欧美日韩综合在线一区二区| 十八禁高潮呻吟视频| 少妇人妻 视频| 三级国产精品片| 日本免费在线观看一区| 搡老乐熟女国产| 丝袜喷水一区| 大陆偷拍与自拍| 精品一区在线观看国产| 晚上一个人看的免费电影| 男的添女的下面高潮视频| 一区二区三区四区激情视频| 一区二区日韩欧美中文字幕 | 日韩av在线免费看完整版不卡| 大片免费播放器 马上看| 蜜桃在线观看..| 国产精品人妻久久久影院| 如何舔出高潮| 国产永久视频网站| 国语对白做爰xxxⅹ性视频网站| 免费看光身美女| 久久ye,这里只有精品| 国产高清三级在线| 免费播放大片免费观看视频在线观看| 国产视频内射| 亚洲精品aⅴ在线观看| 一级毛片我不卡| 91精品三级在线观看| av在线播放精品| 亚洲经典国产精华液单| 亚洲精品国产av成人精品| 亚洲av日韩在线播放| 国产黄色视频一区二区在线观看| 黄片无遮挡物在线观看| 午夜精品国产一区二区电影| 最近最新中文字幕免费大全7| 一级爰片在线观看| 国国产精品蜜臀av免费| 欧美+日韩+精品| 国产高清有码在线观看视频| 精品国产一区二区三区久久久樱花| 国语对白做爰xxxⅹ性视频网站| 男女免费视频国产| 久久精品夜色国产| 69精品国产乱码久久久| 新久久久久国产一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 午夜视频国产福利| 9色porny在线观看| 亚洲av二区三区四区| 免费观看的影片在线观看| 亚洲av欧美aⅴ国产| 99热6这里只有精品| 日本色播在线视频| 丁香六月天网| 97在线视频观看| 国产成人午夜福利电影在线观看| av在线播放精品| 大陆偷拍与自拍| 国产片特级美女逼逼视频| 亚洲精品视频女| 91精品国产九色| 亚洲美女视频黄频| 男女无遮挡免费网站观看| 国产高清国产精品国产三级| 精品酒店卫生间| 日韩免费高清中文字幕av| 国产女主播在线喷水免费视频网站| 久久人人爽人人片av| 国产精品一国产av| videos熟女内射| 国产亚洲欧美精品永久| 欧美+日韩+精品| 精品卡一卡二卡四卡免费| 免费观看在线日韩| 99热6这里只有精品| 观看av在线不卡| 丁香六月天网| 亚洲欧洲精品一区二区精品久久久 | 欧美激情国产日韩精品一区| 亚洲欧美日韩卡通动漫| 欧美xxⅹ黑人| 国产亚洲一区二区精品| 少妇人妻 视频| 亚洲第一av免费看| 久久影院123| 亚洲精品美女久久av网站| 精品久久久精品久久久| 久久免费观看电影| 久热久热在线精品观看| 七月丁香在线播放| 国产av一区二区精品久久| 9色porny在线观看| 精品国产一区二区三区久久久樱花| 下体分泌物呈黄色| 美女主播在线视频| 国产成人精品一,二区| 久久久精品94久久精品| 女人久久www免费人成看片| 日本欧美国产在线视频| 成人手机av| 伊人久久国产一区二区| 久久久精品94久久精品| 久久久久久久久久久免费av| 国产精品久久久久久精品电影小说| 日韩av不卡免费在线播放| 久久人人爽人人片av| 免费高清在线观看视频在线观看| 色哟哟·www| 热99国产精品久久久久久7| 国产在线免费精品| 视频中文字幕在线观看| 97超碰精品成人国产| 桃花免费在线播放| 在线观看一区二区三区激情| 极品人妻少妇av视频| 国产精品久久久久久精品古装| 国产av码专区亚洲av| 国产片内射在线| 午夜免费观看性视频| 亚洲av.av天堂| 久久精品国产亚洲av天美| 日本wwww免费看| 蜜桃国产av成人99| 成人手机av| 国产精品久久久久久精品古装| 亚洲熟女精品中文字幕| 久热久热在线精品观看| 亚洲美女黄色视频免费看| 成年人午夜在线观看视频| 色94色欧美一区二区| av国产久精品久网站免费入址| 岛国毛片在线播放| 综合色丁香网| 欧美日本中文国产一区发布| 国产免费视频播放在线视频| 久久久国产精品麻豆| 最近中文字幕高清免费大全6| 涩涩av久久男人的天堂| 日韩制服骚丝袜av| 亚洲人成网站在线播| 2022亚洲国产成人精品| 99热全是精品| 纵有疾风起免费观看全集完整版| 免费观看的影片在线观看| 国产精品一区二区在线观看99| 一区二区三区四区激情视频| 不卡视频在线观看欧美| 成人影院久久| kizo精华| 亚洲欧美成人综合另类久久久| 国产欧美日韩一区二区三区在线 | 亚洲综合色网址| 老女人水多毛片| 亚洲美女视频黄频| 高清毛片免费看| 久久久久久伊人网av| 99久久人妻综合| 国产伦精品一区二区三区视频9| 美女视频免费永久观看网站| 国产一区二区三区av在线| 亚洲精品成人av观看孕妇| 日韩av在线免费看完整版不卡| 韩国av在线不卡| 国产精品国产三级专区第一集| 国产乱来视频区| 91国产中文字幕| 亚洲av综合色区一区| 亚洲色图 男人天堂 中文字幕 | 99久久综合免费| 精品熟女少妇av免费看| 亚洲av免费高清在线观看| 人妻夜夜爽99麻豆av| 欧美xxxx性猛交bbbb| 久久热精品热| 简卡轻食公司| 视频在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 只有这里有精品99| 蜜桃国产av成人99| 国产极品粉嫩免费观看在线 | 满18在线观看网站| 国产乱来视频区| 久久久午夜欧美精品| 欧美亚洲日本最大视频资源| 少妇人妻 视频| 伊人久久国产一区二区| 久久久久久久久大av| 在线观看人妻少妇| 久久久国产一区二区| 午夜视频国产福利| 国产精品女同一区二区软件| 不卡视频在线观看欧美| 一二三四中文在线观看免费高清| videosex国产| 男人爽女人下面视频在线观看| 黄片无遮挡物在线观看| 免费黄网站久久成人精品| 日本av免费视频播放| 亚洲国产欧美日韩在线播放| 日韩精品有码人妻一区| 久久久国产欧美日韩av| 亚洲内射少妇av| 人人妻人人爽人人添夜夜欢视频| 卡戴珊不雅视频在线播放| 国产av码专区亚洲av| 亚洲国产色片| av播播在线观看一区| 黑人巨大精品欧美一区二区蜜桃 | 中文精品一卡2卡3卡4更新| 80岁老熟妇乱子伦牲交| 欧美日韩视频高清一区二区三区二| 久久久国产精品麻豆| 老司机亚洲免费影院| 人妻夜夜爽99麻豆av| 国产视频内射| 国产精品秋霞免费鲁丝片| 中文字幕久久专区| 美女xxoo啪啪120秒动态图| videosex国产| 精品一区二区三区视频在线| 成人手机av| 老熟女久久久| 久久人人爽人人爽人人片va| 熟女av电影| 性色avwww在线观看| 伊人亚洲综合成人网| 欧美成人精品欧美一级黄| 日本vs欧美在线观看视频| 国产色婷婷99|