• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasinormal modes and absorption of a massless scalar field for the magnetic Gauss–Bonnet black hole

    2022-08-02 02:48:08ChenMaYuZhangQianLiandZhiWenLin
    Communications in Theoretical Physics 2022年6期

    Chen Ma,Yu Zhang,Qian Li and Zhi-Wen Lin

    Faculty of Science,Kunming University of Science and Technology,Kunming,Yunnan 650500,China

    Abstract We study the massless scalar quasinormal frequencies of an asymptotically flat static and spherically symmetric black hole with a nonzero magnetic charge in four-dimensional extended scalar-tensor-Gauss–Bonnet theory.The results show that the real part of the quasinormal frequency becomes larger and the imaginary part becomes smaller with increasing the magnetic charge or the angular harmonic index.The existence of magnetic charges will reduce the damping of scalar perturbation,but increase the frequency.We also study the absorption crosssection of the scalar field in this black hole.We find that its curve will become lower as the magnetic charge increases,i.e.the magnetic charge will weaken the absorption capacity of the black hole.Meanwhile,the high-frequency limit of the total absorption cross-section is just the area of black hole shadow.

    Keywords:quasinormal modes,scattering,absorption cross-section,massless scalar field,magnetic Gauss–Bonnet black hole

    1.Introduction

    Due to the discovery of gravitational waves,the existence of black holes has become a reality [1–3].The quasinormal modes (QNMs) are called the characteristic sound of black holes,which are of great significance to the exploration of black holes.It is well known that QNMs satisfy the appropriate boundary conditions,that is,the waves must be purely ingoing at the event horizon and purely outgoing at infinity.They have discrete complex frequency values,in which the real part represents the frequency of the oscillation,and the imaginary part represents the attenuation of the oscillation[4].In order to better understand the kinetic of black holes,more and more researchers have studied the QNMs,and got very meaningful results.The scalar perturbation [4,5],the electromagnetic perturbation[6,7],the Dirac perturbation[8]and the gravitational perturbation[9],have all been discussed.Moreover,in AdS/CFT theory,one can obtain the thermalization timescale by calculating the quasinormal frequency [10].

    Another important issue is the wave scattering problem of black holes.Scattering by gravitational sources has been an important test for General Relativity.In previous works,Dolan et al studied the Fermion scattering by Schwarzschild black hole [11].Crispino and Oliveira studied the electromagnetic absorption by Reissner–Nordstr?m black hole [12].Benone et al studied the absorption of a massive scalar field by a charged black hole [13].Chakrabarty studied the absorption of a black hole surrounded by quintessence [5].Considering that there is a potential barrier outside the black hole,the waves emitted to the black hole (or emitted by the black hole) will be reflected and transmitted.Through the analysis of the scattered wave,the observer at infinity can receive the information sent by the black hole and infer the internal structure of the black hole.

    On the other hand,General Relativity requires the dynamics are two-derivative systems,which is probably the weakest link in it.Many researchers consider higher-derivative extensions to Einstein gravity,and one of the relatively successful attempts is the Gauss–Bonnet gravity theory.If the scalar field is coupled with the Gauss–Bonnet invariant,the extended scalar-tensor-Gauss–Bonnet(ESTGB)theory can be obtained [14].In [15],the authors firstly found the exact asymptotically flat static and spherically symmetric black hole solution for the four-dimensional extended scalar-tensor-Gauss–Bonnet theory coupled to the nonlinear electrodynamics.The nonlinear electrodynamics will reduce to Maxwell’s theory in the weak field limit and satisfy the weak energy condition.

    We know that for pure Gauss–Bonnet gravity,the Gauss–Bonnet term is just a topological term,and the Gauss–Bonnet AdS black hole degenerates into a four-dimensional normal AdS black hole.Hence for the Gauss–Bonnet AdS black hole,the spacetime is at least four-dimensional.While for extended scalar-tensor-Gauss–Bonnet theory,we have an asymptotically flat static and spherically symmetric black hole solution in four-dimensions.The black hole itself has very important research value,and it has a nonzero magnetic charge and scalar hair,which turns out to be dependent on the magnetic charge.Based on this,we take the black hole as the background to discuss and analyze its dynamic behavior.We use the 6th order WKB approximation to calculate the quasinormal frequencies and the absorption cross section of a massless scalar field in the magnetic Gauss–Bonnet black hole spacetime and point out the specific influence of black hole parameters on it.

    In section 2,we review the magnetic Gauss–Bonnet black hole solution and study the massless free scalar field equation.In section 3,we calculate the quasinormal frequencies of the magnetic Gauss–Bonnet black hole.In section 4,we calculate the gray-body factor and absorption cross-section and give the corresponding analysis.Conclusions are presented in section 5.

    2.The background spacetime and free scalar field dynamics

    The black hole solution with nontrivial scalar hair can be obtained by directly coupling the scalar field with the secondorder algebraic curvature invariants.In particular,the ESTGB theory considers the coupling of the scalar field with Gauss–Bonnet invariant,and the scalar hair is maintained by interacting with the curvature of spacetime[14].The action of the four-dimensional ESTGB theory with matter field is defined by [15]

    where the Gauss–Bonnet term is non-minimally coupled to the scalar field byf(φ)andU(φ),which are the function and potential of the scalar field,respectively.They are given by

    And the NLED Lagrangian in the weak-field limit is given by

    where the electromagnetic field invariant F=

    When the parameters satisfy the relations

    the asymptotically flat static and spherically symmetric black hole solution is given by

    where

    Here q is the magnetic charge,and the scalar field is

    Due to the scalar charge being proportional to the magnetic charge,the scalar hair is not accompanied by any new information for the black hole,therefore this scalar hair constitutes the second type of legal hair.In the case q=0,it represents the Schwarzscild black hole,and in the case m=0,we can obtain a purely magnetic Gauss–Bonnet black hole.By requiring the weak energy condition to be satisfied,only values of q <0 are allowed.Moreover,in order to keep our research object as a non-extreme black hole,q/m>-1.058 must be satisfied.

    The dynamics of a massless free scalar field in the black hole background spacetime(6)is given by the Klien–Gordon equation

    We emphasize that this free scalar field is different from the coupled scalar field.In order to separate the variables,we use the ansatz

    whereYlm(θ,φ) are the spherical harmonics.

    The tortoise coordinate r?is defined as

    substituting equations(6),(10)and(11)into equation(9),we can obtain the radial scalar field equation

    where

    The effective potential V(r) is dependent on the black hole mass m,the magnetic charge q,and the angular harmonic index l.We plot the behavior of the effective potential for the different values of q and l in figure 1.We can find that the peak of the effective potential moves to the left and becomes higher as the absolute value of q increases for fixed l in figure 1(a);and the peak of the effective potential moves to the right and becomes higher as l increases for fixed q in figure 1(b).

    3.The quasinormal modes

    QNMs are the solutions of the Schr?dinger-like equation(12).We impose the requirement that QNMs have appropriate boundary conditions,that is,the waves are purely ingoing at the horizon and purely outgoing at infinity:

    In this paper,we use the WKB method for our calculation.The WKB method approximation for calculating the quasinormal modes of a black hole was first proposed by Schutz and Will [16]in 1985.In 1987,the 3rd order extension for this approach was developed by Iyer and Will[17].In 2003,the method was extended to the 6th order by Konoplya[18].In 2017,Matyjasek and Opala [19]developed the approach to the 13th order.

    The result of the 3rd order WKB method[17]for QNMs is as follows

    where

    and

    Table 1.The QNMs of the magnetic Gauss–Bonnet black hole with q=-0.2,-0.4,-0.6,-0.8,-1.0.

    The form of the result of the 6th order WKB method[18]for QNMs is as follows

    where Λjare presented in [18].

    We list the results of the 6th order WKB method for QNMs in table 1,where l is the angular harmonic index,n is the overtone number,and q is the magnetic charge.

    We plot the quasinormal frequencies of scalar field with respect to the spherical harmonic index l for q=-0.4,-0.8,-1.0 in figures 2 and 3 for n=0,1,respectively.Figures 2(a)and 3(a) panels show the real part of the quasinormal frequency and figures 2(b) and 3(b) panels show the imaginary part of the frequency.

    Figure 1.Behavior of the effective potential V(r).(a)Behavior of the effective potential V(r)with l=3,q=-0.4,-0.8,-1.0.(b)Behavior of the effective potential V (r) with q=-0.4,l=1,2,3.

    Figure 2.The quasinormal frequencies with n=0.(a)The real part of quasinormal frequencies with n=0,q=-0.4,-0.8,-1.0.(b)The imaginary part of quasinormal frequencies with n=0,q=-0.4,-0.8,-1.0.

    Figure 3.The quasinormal frequencies with n=1.(a)The real part of quasinormal frequencies with n=1,q=-0.4,-0.8,-1.0.(b)The imaginary part of quasinormal frequencies with n=1,q=-0.4,-0.8,-1.0.

    Figure 4.The dependence of∣T(ω)∣2 and∣R(ω)∣2 on ω for different spherical harmonic indices l with q=-0.4.(a) The dependence of |T(ω)|2 on ω for different spherical harmonic indices l.(b) The dependence of |R(ω)|2 on ω for different spherical harmonic indices l.

    Figure 5.The dependence of∣T(ω)∣2 and∣R(ω)∣2 on ω for different magnetic charges q with l=3.(a) The dependence of |T(ω)|2 on ω for different magnetic charges q.(b) The dependence of |R(ω)|2 on ω for different magnetic charges q.

    From table 1(or figures 2 and 3),we can see that for the fixed parameters l and n,the real part of quasinormal frequency increases and the imaginary part decreases with the increase of the absolute value of magnetic charge|q|.The real and imaginary parts of the quasinormal frequency correspond to the actual frequency and decay rate of the perturbation field,respectively.This means that as the magnetic charge|q|increases,the actual frequency of the scalar perturbation around the black hole increases,but the decay becomes slower.In other words,the presence of a magnetic charge will reduce the damping of the scalar perturbation,but the oscillation frequency will be higher.When q and n remain unchanged,with the increase of spherical harmonic index l,the real part of the quasinormal frequency increases almost linearly,and the imaginary part slightly decreases.When q and l are unchanged,with the increase of the overtone index n,the real part of the quasinormal frequency decreases,and the imaginary part increases.This means that the higher modal phase of the QNM decays faster than the lower modal so that the fundamental quasi-normal frequencies n=0 dominate.

    4.Gray-body factors and absorption cross-section

    Hawking emission spectrum is not a perfect black body spectrum to an asymptotic observer,and the deviation of the Hawking radiation spectrum from the exact black body spectrum can be described by the gray-body factor [20].In this section,we discuss the gray-body factors and absorption cross-section for the massless scalar field of the magnetic Gauss–Bonnet black hole.We will use the 6th order WKB method for our calculation.

    4.1.Gray-body factors

    We consider the asymptotic solution of equation (12).Since we are interested in the absorption process,we set the boundary conditions as

    where T(ω) and R(ω) are the transmission and reflection coefficient,and due to conservation of flux,they satisfy

    The gray-body factor γ(ω)is defined as the square of the absolute value of the transmission coefficient∣T(ω)∣2.

    In the WKB approximation,the reflection coefficient is defined as

    We plot the dependence of∣T(ω)∣2and∣R(ω)∣2on ω for different spherical harmonic indices l and magnetic charges q in figures 4 and 5,respectively.As can be seen from figures 4 and 5,the transmission coefficient∣(Tω2)∣,or gray-body factor γ(ω),tends to be 1 at higher frequencies and tends to be 0 at lower frequencies.This means that the higher-frequency waves are more likely to be absorbed by black holes.Similarly,the lower-frequency waves are more likely to be scattered by black holes.The presence of magnetic charge reduces the gray-body factor,which makes it harder for waves of the same frequency to be absorbed by the black hole.

    4.2.Absorption cross section

    4.2.1.Numerical computations.Partial and total absorption cross-sections are defined as

    We plot the variation of partial absorption cross-section σlfor different spherical harmonic indices l and magnetic charges q in figure 6.Figure 6(a) shows the variation of partial absorption cross-section σlfor different spherical harmonic indices l,and figure 6(b)shows the dependence of σlon ω for different magnetic charges q.

    Figure 6.The dependence of σl on ω for different magnetic charges q and spherical harmonic indices l.(a) The dependence of σl on ω for different spherical harmonic indices l with q=-0.4.(b) The dependence of σl on ω for different magnetic charges q with l=3.

    Figure 7.The dependence of σ on ω (black lines) and the highfrequency limit of the absorption cross-section σhf (gray lines) for different magnetic charges q.

    It can be seen from figure 6 that the partial absorption cross-section has a peak,and the position of the peak shifts to the right as l or |q| increases,while the peak decreases.This shows that for a fixed spherical harmonic index,black holes are more likely to absorb waves in a certain frequency band,and the frequency band increases with the increase of l.The existence of the magnetic charge q will shift the frequency band corresponding to each l to the right as a whole.

    We also plot the total absorption cross-section σ with respect to the frequency ω for q=-0.4,-0.8,-1.0 in figure 7,and for convenience we calculated the sum of the modes from l=0 to l=10 to approximate σ.

    4.2.2.High-frequency limit.As the frequency gets higher and higher,the particle property of the wave function becomes more and more obvious.When the frequency tends to infinity,the wavefront of the massless scalar field propagates along the null geodesics [21].In this subsection,we analyze the null geodesics in the magnetic Gauss–Bonnet black hole.Without loss of generality,we only consider the motion for a massless particle in the θ=π/2 plane.Through Killing vector fields ?tand ?φ,we can get two conserved quantities:energy E and angular momentum L,which are defined as

    respectively,where λ is the affine parameter.

    Substituting equations (25) and (26) into the following equation

    we have

    There are three different finial states of motion for a massless particle shot at the black hole from infinity.In case(1):the particle will reach the perihelion and then be reflected to infinity;in case(2):the particle orbit will be asymptotically close to the photon sphere;in case (3):the particle will fall into the black hole.Case (2) is the dividing point between cases (1) and (3).

    We define the impact parameter b ≡L/E and introduce the function

    the particle in case (2) must fulfill two conditions:(I) the effective kinetic energy is 0,i.e.T (rps,bc)=0,which indicates that there is a perihelion;(II) the time derivative of the effective kinetic energy is 0,i.e.?tT (rps,bc)=0,which indicates that the perihelion cannot be reached (Because the angular momentum L is a conserved quantity).We can get the solution (rps,bc) of the equations of conditions (I) and (II).Thus,the high-frequency limit of the absorption cross-section is σhf=πb2,and its physical meaning is the area of black hole shadow.

    Based on this analysis,as the frequency increases,the absorption cross-section σ will oscillate around σhfsmaller and smaller.We also plot the high-frequency limit of the absorption cross-section σhfin figure 7 using the gray lines,the result of the figure meets our expectations.

    5.Conclusions

    In this paper,we have used the 6th order WKB approximation to calculate the quasinormal frequencies and the absorption cross-section of a massless scalar field in the magnetic Gauss–Bonnet black hole spacetime.

    For the quasinormal frequencies,we have found

    · As the absolute value of the magnetic charge |q|increases,the real part of quasinormal frequency increases while its imaginary part decreases.The existence of magnetic charges will reduce the damping of scalar perturbation,but increase the frequency.

    · As the spherical harmonic index l increases,the real part of quasinormal frequency increases almost linearly,while its imaginary part decreases.Although the decay rate of scalar perturbation decreases,its variation range is very small.

    · As the overtone index n increases,the real part of quasinormal frequency decreases slightly while its imaginary part increases significantly.The higher the overtone index,the faster the decay.Therefore,the frequency of n=0 after a certain time is dominant.

    For the transmission and reflection coefficients,we have obtained

    · The transmission coefficient∣(Tω2)∣decreases and hence reflection coefficient∣(Rω2) increases with an increase in spherical harmonic index l or absolute value of the magnetic charge |q|.The existence of a magnetic charge will reduce the gray-body factor,which makes the waves with the same frequency more difficult to be absorbed by the black hole.

    · In the low-frequency case,the transmission coefficient∣T(ω)∣2→0and the reflection coefficient∣R(ω)∣2→1.In the high-frequency case,the situation is just the other way round.We have seen that higher frequency waves are more easily absorbed by black holes,and lower frequency waves are more easily scattered by black holes.

    For the absorption cross-section,we have found

    · The peak of the partial absorption cross-sections moves to the right and becomes lower as l or the absolute value of q increases.In other words,the partial wave is more easily scattered by the black hole as the absolute value of the magnetic charge is larger.

    · The curve of the total absorption cross-section becomes lower as the absolute value of q increases,and its highfrequency limit is the area of black hole shadow.The overall absorption cross-section of the black hole vibrates near its optical geometric limit,that is,the shadow area of the black hole,and converges here.At the same time,the magnetic charge q will weaken the absorption capacity of the black hole.

    In the future,we also hope to discuss the electromagnetic perturbation,the Dirac perturbation,and the gravitational perturbation in the background of a four-dimensional extended scalar-tensor-Gauss–Bonnet black hole,so as to obtain more important information about the black hole.

    Acknowledgments

    This work was supported partly by the National Natural Science Foundation of China(Grant No.12065012),Yunnan High-level Talent Training Support Plan Young &Elite Talents Project (Grant No.YNWR-QNBJ-2018-360) and the Fund for Reserve Talents of Young and Middle-aged Academic and Technical Leaders of Yunnan Province(Grant No.2018HB006).

    久久综合国产亚洲精品| 日日撸夜夜添| 蜜桃在线观看..| 欧美乱码精品一区二区三区| 亚洲熟女精品中文字幕| 十八禁高潮呻吟视频| 夫妻午夜视频| 99国产综合亚洲精品| 日韩欧美精品免费久久| 中文字幕人妻熟女乱码| 久久久国产欧美日韩av| 亚洲欧美成人综合另类久久久| 国产精品久久久av美女十八| 色综合欧美亚洲国产小说| 看免费成人av毛片| 国产野战对白在线观看| 午夜福利影视在线免费观看| 亚洲人成电影观看| 国产乱人偷精品视频| 午夜激情久久久久久久| 性高湖久久久久久久久免费观看| 日日摸夜夜添夜夜爱| 午夜福利网站1000一区二区三区| 亚洲国产看品久久| 大片免费播放器 马上看| 亚洲欧美成人综合另类久久久| 国产在线视频一区二区| 少妇 在线观看| 一级毛片 在线播放| 国产伦人伦偷精品视频| 男女床上黄色一级片免费看| 久久人人97超碰香蕉20202| 婷婷成人精品国产| 老司机亚洲免费影院| 一区二区三区四区激情视频| 高清av免费在线| 精品国产一区二区久久| 午夜av观看不卡| 天天躁夜夜躁狠狠久久av| 国产av精品麻豆| 国产有黄有色有爽视频| 欧美日韩一区二区视频在线观看视频在线| 看免费成人av毛片| av有码第一页| 久久女婷五月综合色啪小说| 美女大奶头黄色视频| 又大又爽又粗| 香蕉国产在线看| 一区在线观看完整版| 午夜av观看不卡| 国产精品一国产av| 国产 一区精品| 国产精品无大码| 大香蕉久久成人网| 超色免费av| 国产精品 国内视频| 久久久久精品人妻al黑| 一区福利在线观看| av在线老鸭窝| 女的被弄到高潮叫床怎么办| 国产无遮挡羞羞视频在线观看| 国产老妇伦熟女老妇高清| 久久精品久久精品一区二区三区| 桃花免费在线播放| 一区二区av电影网| 少妇被粗大的猛进出69影院| 三上悠亚av全集在线观看| 午夜激情av网站| 国产精品久久久久成人av| 丝袜美足系列| 青青草视频在线视频观看| 国产精品女同一区二区软件| 国产精品人妻久久久影院| 日韩大码丰满熟妇| 一级片免费观看大全| 欧美最新免费一区二区三区| 成人午夜精彩视频在线观看| 久久久久久人妻| 精品国产国语对白av| 多毛熟女@视频| av又黄又爽大尺度在线免费看| 亚洲国产av影院在线观看| 中文字幕色久视频| 咕卡用的链子| 韩国高清视频一区二区三区| 天天躁夜夜躁狠狠躁躁| 婷婷成人精品国产| 老司机亚洲免费影院| 一级黄片播放器| 一本久久精品| 成人18禁高潮啪啪吃奶动态图| 视频区图区小说| 一级,二级,三级黄色视频| 国产成人精品久久二区二区91 | 丁香六月天网| 欧美 日韩 精品 国产| 悠悠久久av| 亚洲成人免费av在线播放| 亚洲国产毛片av蜜桃av| 欧美老熟妇乱子伦牲交| 91精品三级在线观看| 叶爱在线成人免费视频播放| 欧美亚洲 丝袜 人妻 在线| 在线看a的网站| 99国产综合亚洲精品| 黑丝袜美女国产一区| 亚洲人成77777在线视频| 午夜福利免费观看在线| 亚洲av日韩在线播放| 亚洲av日韩在线播放| 久久99一区二区三区| 久久久久久久久久久久大奶| 哪个播放器可以免费观看大片| 国产 一区精品| av福利片在线| 日韩不卡一区二区三区视频在线| 少妇人妻久久综合中文| 亚洲欧美成人综合另类久久久| 国产极品粉嫩免费观看在线| 日韩不卡一区二区三区视频在线| 在线观看免费午夜福利视频| 亚洲熟女精品中文字幕| 国产一区二区三区av在线| 婷婷色综合大香蕉| 少妇人妻久久综合中文| 成人国语在线视频| 欧美日韩亚洲国产一区二区在线观看 | 蜜桃国产av成人99| 一二三四在线观看免费中文在| av女优亚洲男人天堂| www日本在线高清视频| 国产精品99久久99久久久不卡 | 国产一区二区激情短视频 | 中文字幕av电影在线播放| 精品第一国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 熟女少妇亚洲综合色aaa.| 久久久久国产一级毛片高清牌| 夫妻午夜视频| 中国国产av一级| 亚洲 欧美一区二区三区| 日日摸夜夜添夜夜爱| 啦啦啦视频在线资源免费观看| 看免费av毛片| 亚洲成人手机| 亚洲精品日本国产第一区| 国产一级毛片在线| 韩国精品一区二区三区| 亚洲精品一区蜜桃| 丁香六月天网| 无遮挡黄片免费观看| 热99久久久久精品小说推荐| 久久毛片免费看一区二区三区| 国产成人一区二区在线| 欧美日韩综合久久久久久| 免费女性裸体啪啪无遮挡网站| 国产福利在线免费观看视频| 国产成人91sexporn| 亚洲国产欧美一区二区综合| 男人操女人黄网站| 精品一区二区三区四区五区乱码 | 黄片小视频在线播放| 美女脱内裤让男人舔精品视频| 男的添女的下面高潮视频| 汤姆久久久久久久影院中文字幕| 最新在线观看一区二区三区 | 大香蕉久久成人网| 色婷婷av一区二区三区视频| 国产高清国产精品国产三级| xxxhd国产人妻xxx| 精品少妇一区二区三区视频日本电影 | 免费在线观看视频国产中文字幕亚洲 | 日日啪夜夜爽| 亚洲国产毛片av蜜桃av| 另类亚洲欧美激情| 天天添夜夜摸| av.在线天堂| 青草久久国产| 久久久久国产一级毛片高清牌| 人人妻人人添人人爽欧美一区卜| 无限看片的www在线观看| 18禁动态无遮挡网站| 在线观看一区二区三区激情| 高清视频免费观看一区二区| 一级毛片黄色毛片免费观看视频| 久久天躁狠狠躁夜夜2o2o | 在线天堂最新版资源| 十八禁人妻一区二区| e午夜精品久久久久久久| av一本久久久久| 国产精品女同一区二区软件| 一区二区三区乱码不卡18| 最近手机中文字幕大全| 精品少妇一区二区三区视频日本电影 | 丝袜美足系列| 日本欧美国产在线视频| 久久久久久久国产电影| 国产xxxxx性猛交| 久久精品aⅴ一区二区三区四区| 精品视频人人做人人爽| 黄色一级大片看看| 在线天堂最新版资源| 精品福利永久在线观看| 久久精品亚洲av国产电影网| 精品一区二区免费观看| 夫妻午夜视频| 黄片播放在线免费| 精品少妇内射三级| 亚洲一区中文字幕在线| 国产亚洲一区二区精品| 女人高潮潮喷娇喘18禁视频| 亚洲欧美成人精品一区二区| 欧美xxⅹ黑人| 国产黄频视频在线观看| 精品午夜福利在线看| 国产日韩一区二区三区精品不卡| 91精品国产国语对白视频| 午夜日韩欧美国产| 日韩欧美精品免费久久| 亚洲精品在线美女| 妹子高潮喷水视频| 国产深夜福利视频在线观看| 在线观看免费视频网站a站| 黄色一级大片看看| 婷婷色综合大香蕉| 又粗又硬又长又爽又黄的视频| 亚洲国产最新在线播放| 女人高潮潮喷娇喘18禁视频| 国产精品一区二区在线观看99| 亚洲天堂av无毛| 最近最新中文字幕免费大全7| 中文精品一卡2卡3卡4更新| 国产成人av激情在线播放| 99久国产av精品国产电影| 狠狠精品人妻久久久久久综合| 久久久久久久大尺度免费视频| 国产精品蜜桃在线观看| 国产成人系列免费观看| 99re6热这里在线精品视频| 一级毛片黄色毛片免费观看视频| 午夜日本视频在线| 少妇被粗大猛烈的视频| 一边亲一边摸免费视频| 中文字幕高清在线视频| 午夜激情av网站| 丰满饥渴人妻一区二区三| 亚洲av在线观看美女高潮| 亚洲,欧美,日韩| 黄片无遮挡物在线观看| 可以免费在线观看a视频的电影网站 | 国产 一区精品| 看非洲黑人一级黄片| 国产激情久久老熟女| 日韩欧美精品免费久久| 婷婷成人精品国产| 国产精品国产av在线观看| 91成人精品电影| 亚洲精品久久成人aⅴ小说| 少妇人妻精品综合一区二区| 国产成人a∨麻豆精品| av女优亚洲男人天堂| 国产精品久久久av美女十八| 黄片小视频在线播放| 肉色欧美久久久久久久蜜桃| 一区在线观看完整版| 人人妻人人添人人爽欧美一区卜| 男人舔女人的私密视频| 99国产精品免费福利视频| 国产伦理片在线播放av一区| 欧美最新免费一区二区三区| 波多野结衣一区麻豆| 日日爽夜夜爽网站| 晚上一个人看的免费电影| 国产色婷婷99| 欧美最新免费一区二区三区| 亚洲人成电影观看| 国产亚洲最大av| 丰满饥渴人妻一区二区三| 在线精品无人区一区二区三| 亚洲一区二区三区欧美精品| 欧美日韩亚洲国产一区二区在线观看 | 国产97色在线日韩免费| 一区二区三区乱码不卡18| 男女无遮挡免费网站观看| 亚洲国产精品一区二区三区在线| 国产精品一区二区在线不卡| 啦啦啦在线免费观看视频4| 97精品久久久久久久久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 国产在线视频一区二区| a级毛片在线看网站| xxx大片免费视频| 国产免费一区二区三区四区乱码| 国产日韩欧美视频二区| 秋霞伦理黄片| 最近中文字幕2019免费版| 日本午夜av视频| 一级毛片电影观看| 不卡av一区二区三区| 午夜福利视频在线观看免费| 国产精品.久久久| 国产极品天堂在线| 一级毛片电影观看| 午夜激情av网站| 久久国产精品男人的天堂亚洲| 老司机影院毛片| 国产一区二区在线观看av| 午夜福利视频精品| 女人被躁到高潮嗷嗷叫费观| 性高湖久久久久久久久免费观看| 香蕉国产在线看| 日本av手机在线免费观看| 欧美成人午夜精品| 久久av网站| 两性夫妻黄色片| av国产精品久久久久影院| 国产黄色视频一区二区在线观看| 亚洲精品一二三| 纵有疾风起免费观看全集完整版| 国产国语露脸激情在线看| 亚洲av电影在线观看一区二区三区| 老汉色∧v一级毛片| 午夜福利免费观看在线| 日本色播在线视频| 亚洲欧洲精品一区二区精品久久久 | 最近最新中文字幕大全免费视频 | 黄色视频不卡| 亚洲第一区二区三区不卡| 日本wwww免费看| 亚洲精品av麻豆狂野| 国产亚洲av高清不卡| tube8黄色片| 国产不卡av网站在线观看| 男女免费视频国产| 在线观看免费午夜福利视频| 亚洲av电影在线观看一区二区三区| 日本欧美国产在线视频| 久久久久久久大尺度免费视频| 80岁老熟妇乱子伦牲交| 亚洲国产看品久久| 黄色视频不卡| 免费观看人在逋| 欧美精品人与动牲交sv欧美| 哪个播放器可以免费观看大片| 色婷婷av一区二区三区视频| 天堂8中文在线网| 国产精品久久久久久久久免| 欧美人与善性xxx| 欧美精品一区二区免费开放| 久久久精品94久久精品| 王馨瑶露胸无遮挡在线观看| 啦啦啦啦在线视频资源| 免费看不卡的av| 日韩av在线免费看完整版不卡| 免费久久久久久久精品成人欧美视频| 午夜福利影视在线免费观看| 亚洲国产成人一精品久久久| 国产精品.久久久| 亚洲精品乱久久久久久| 99热全是精品| 叶爱在线成人免费视频播放| 日韩中文字幕视频在线看片| 韩国av在线不卡| 五月开心婷婷网| 欧美少妇被猛烈插入视频| 丝袜在线中文字幕| 亚洲第一区二区三区不卡| 一级毛片电影观看| 国产亚洲av高清不卡| www.av在线官网国产| 桃花免费在线播放| 欧美乱码精品一区二区三区| 亚洲欧美色中文字幕在线| 日韩人妻精品一区2区三区| 国产免费视频播放在线视频| 精品亚洲成国产av| 国产免费福利视频在线观看| 欧美日韩视频精品一区| 黄色毛片三级朝国网站| 久久久精品免费免费高清| 亚洲,欧美,日韩| 最新在线观看一区二区三区 | 欧美久久黑人一区二区| 国产亚洲精品第一综合不卡| av网站免费在线观看视频| 美国免费a级毛片| 99re6热这里在线精品视频| xxx大片免费视频| 精品国产超薄肉色丝袜足j| 永久免费av网站大全| 中文字幕av电影在线播放| 欧美97在线视频| 亚洲精品,欧美精品| av电影中文网址| 日本欧美视频一区| 男的添女的下面高潮视频| 久久ye,这里只有精品| 亚洲国产成人一精品久久久| 90打野战视频偷拍视频| 午夜老司机福利片| 伦理电影免费视频| 女性被躁到高潮视频| 蜜桃国产av成人99| 欧美在线黄色| 中文天堂在线官网| 国产男女内射视频| 亚洲熟女毛片儿| 亚洲精华国产精华液的使用体验| 免费观看a级毛片全部| 精品国产国语对白av| videos熟女内射| a级毛片在线看网站| 亚洲精品av麻豆狂野| 亚洲精品国产av蜜桃| 99精国产麻豆久久婷婷| 七月丁香在线播放| 午夜激情av网站| 在线精品无人区一区二区三| 99热网站在线观看| 久久久久网色| 久热这里只有精品99| 99热国产这里只有精品6| 黄色视频在线播放观看不卡| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区在线不卡| 亚洲三区欧美一区| 国产男女超爽视频在线观看| av一本久久久久| 秋霞在线观看毛片| 深夜精品福利| 日韩精品有码人妻一区| 色播在线永久视频| 国产在线一区二区三区精| 女性生殖器流出的白浆| 精品一区二区三区四区五区乱码 | 久久久久精品人妻al黑| 街头女战士在线观看网站| 人人妻人人添人人爽欧美一区卜| 18禁动态无遮挡网站| 天堂中文最新版在线下载| 免费av中文字幕在线| 女的被弄到高潮叫床怎么办| 国产女主播在线喷水免费视频网站| 久久人人爽av亚洲精品天堂| 国产野战对白在线观看| 国产精品国产三级专区第一集| 人人妻人人爽人人添夜夜欢视频| a级毛片黄视频| 亚洲第一青青草原| 国产极品粉嫩免费观看在线| 亚洲一区中文字幕在线| 91精品三级在线观看| 成人国产av品久久久| 成年女人毛片免费观看观看9 | 国产成人精品久久二区二区91 | 18禁动态无遮挡网站| 交换朋友夫妻互换小说| 嫩草影院入口| 亚洲精华国产精华液的使用体验| 中国三级夫妇交换| 超碰97精品在线观看| 亚洲av欧美aⅴ国产| 99久久99久久久精品蜜桃| 亚洲成人国产一区在线观看 | 亚洲av男天堂| 免费黄色在线免费观看| 国产熟女欧美一区二区| 黄片播放在线免费| 一区福利在线观看| 国产国语露脸激情在线看| 97精品久久久久久久久久精品| 精品国产露脸久久av麻豆| 观看美女的网站| h视频一区二区三区| 成人国产麻豆网| 蜜桃国产av成人99| 欧美精品人与动牲交sv欧美| 好男人视频免费观看在线| 国产精品二区激情视频| 午夜激情久久久久久久| 亚洲专区中文字幕在线 | 美女福利国产在线| 精品人妻在线不人妻| 午夜老司机福利片| 99热全是精品| 男女之事视频高清在线观看 | 哪个播放器可以免费观看大片| 久久久久网色| 黑丝袜美女国产一区| av女优亚洲男人天堂| 久久久欧美国产精品| 午夜久久久在线观看| 国产日韩欧美在线精品| 99久久精品国产亚洲精品| 亚洲美女搞黄在线观看| 欧美日韩视频精品一区| 一边摸一边做爽爽视频免费| 日韩av在线免费看完整版不卡| 我要看黄色一级片免费的| 国产精品.久久久| 黄片播放在线免费| 免费在线观看完整版高清| 激情五月婷婷亚洲| 一级爰片在线观看| 美女扒开内裤让男人捅视频| 亚洲国产看品久久| 一本—道久久a久久精品蜜桃钙片| 国产爽快片一区二区三区| 最黄视频免费看| 老汉色∧v一级毛片| 欧美精品一区二区免费开放| 精品少妇一区二区三区视频日本电影 | 亚洲,欧美,日韩| 青青草视频在线视频观看| 亚洲在久久综合| 黄色怎么调成土黄色| 人妻一区二区av| 制服人妻中文乱码| 国产精品久久久人人做人人爽| 免费久久久久久久精品成人欧美视频| av在线app专区| 久久久久久久久久久久大奶| 老司机深夜福利视频在线观看 | 99久久99久久久精品蜜桃| 亚洲在久久综合| 丰满迷人的少妇在线观看| 两个人免费观看高清视频| 爱豆传媒免费全集在线观看| 亚洲图色成人| 视频区图区小说| 18禁动态无遮挡网站| 亚洲熟女精品中文字幕| 婷婷色av中文字幕| 国产精品无大码| 麻豆乱淫一区二区| 国产精品无大码| 18禁动态无遮挡网站| 国产熟女午夜一区二区三区| 一边摸一边做爽爽视频免费| 电影成人av| 欧美日韩精品网址| 国产免费福利视频在线观看| 久久久久精品性色| 最近最新中文字幕大全免费视频 | 一二三四在线观看免费中文在| 久久99精品国语久久久| 曰老女人黄片| 又大又爽又粗| 国产亚洲av高清不卡| 国产 一区精品| 久久久久久久国产电影| 亚洲国产av影院在线观看| av在线app专区| 各种免费的搞黄视频| 国产一区有黄有色的免费视频| 一级片'在线观看视频| 日韩电影二区| 青春草亚洲视频在线观看| 亚洲成av片中文字幕在线观看| 国精品久久久久久国模美| 老司机影院毛片| 国产精品久久久久成人av| 人成视频在线观看免费观看| 一边摸一边做爽爽视频免费| 哪个播放器可以免费观看大片| 男人舔女人的私密视频| 最新在线观看一区二区三区 | 老汉色∧v一级毛片| 亚洲欧洲国产日韩| 亚洲欧美色中文字幕在线| √禁漫天堂资源中文www| 国产毛片在线视频| 啦啦啦视频在线资源免费观看| 99精国产麻豆久久婷婷| 久久久久精品性色| 大香蕉久久成人网| 国产爽快片一区二区三区| 女人精品久久久久毛片| 日韩电影二区| 精品第一国产精品| 亚洲av日韩精品久久久久久密 | 日本av手机在线免费观看| 大陆偷拍与自拍| 免费黄色在线免费观看| 看非洲黑人一级黄片| 无遮挡黄片免费观看| 亚洲综合色网址| 欧美激情 高清一区二区三区| 一本久久精品| 观看av在线不卡| 80岁老熟妇乱子伦牲交| 亚洲综合精品二区| 波多野结衣一区麻豆| 两个人免费观看高清视频| 亚洲综合精品二区| 中文字幕人妻熟女乱码| 久久久欧美国产精品| 免费在线观看视频国产中文字幕亚洲 | 18禁国产床啪视频网站| 久久精品亚洲熟妇少妇任你| 人人妻人人澡人人看| 黄片小视频在线播放| 男人爽女人下面视频在线观看| 亚洲国产av影院在线观看| 亚洲人成网站在线观看播放| 丁香六月欧美| 亚洲av日韩在线播放| 韩国高清视频一区二区三区| 在线天堂最新版资源| 伦理电影免费视频| 国产一区有黄有色的免费视频| 精品一区二区三区av网在线观看 | 黄色一级大片看看| 中文乱码字字幕精品一区二区三区| 制服诱惑二区|