• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unusual slow energy relaxation induced by mobile discrete breathers in onedimensional lattices with next-nearestneighbor coupling

    2022-08-02 02:48:30BinXuJunZhangWeiZhongChiXiongandDaxingXiong
    Communications in Theoretical Physics 2022年6期

    Bin Xu,Jun Zhang,Wei Zhong,Chi Xiong and Daxing Xiong,?

    1 Department of Physics,Fuzhou University,Fuzhou 350108,China

    2 MinJiang Collaborative Center for Theoretical Physics,College of Physics and Electronic Information Engineering,Minjiang University,Fuzhou 350108,China

    Abstract We study the energy relaxation process in one-dimensional (1D) lattices with next-nearestneighbor (NNN) couplings.This relaxation is produced by adding damping (absorbing conditions) to the boundary (free-end) of the lattice.Compared to the 1D lattices with on-site potentials,the properties of discrete breathers (DBs) that are spatially localized intrinsic modes are quite unusual with the NNN couplings included,i.e.these DBs are mobile,and thus they can interact with both the phonons and the boundaries of the lattice.For the interparticle interactions of harmonic and Fermi–Pasta–Ulam–Tsingou-β (FPUT-β) types,we find two crossovers of relaxation in general,i.e.a first crossover from the stretched-exponential to the regular exponential relaxation occurring in a short timescale,and a further crossover from the exponential to the power-law relaxation taking place in a long timescale.The first and second relaxations are universal,but the final power-law relaxation is strongly influenced by the properties of DBs,e.g.the scattering processes of DBs with phonons and boundaries in the FPUT-β type systems make the power-law decay relatively faster than that in the counterparts of the harmonic type systems under the same coupling.Our results present new information and insights for understanding the slow energy relaxation in cooling the lattices.

    Keywords:energy relaxation,discrete breathers,next-nearest-neighbor coupling

    1.Introduction

    Discrete breathers (DBs),also known as intrinsic localized modes,are spatially localized nonlinear vibrational modes in defect-free discrete systems.In the past decades,huge numbers of theoretical and experimental studies had been devoted to confirming the existence and stability of DBs.Most of the theoretical studies focused on the anharmonic chains at zero temperature,from which the existence of DBs has been proved exactly (see [1,2]and reviews [3,4]).Since then,in other periodic systems such as cantilever arrays [5],Josephson junction arrays[6,7],electrical lattices[8,9],mass-spring chains [10],arrays of coupled pendula [11],chains of magnetic pendulums [12],and granular crystals [13,14],the existence of DBs has been proved experimentally.There are also many studies in real crystals [15],for example,in ionic NaI [16],covalent Si,Ge,and diamond [17,18],α-uranium[19],ordered alloys [20]as well as proteins [21,22].

    Standing DBs are localized modes of system energy.However,sometimes DBs can move with a small velocity.These mobile excitations can thus interact with the boundaries.It is thus interesting to study how this kind of DBs affects the energy relaxation at a finite-temperature system when the boundaries play a role.By using the cooling method,i.e.imposing the absorbing conditions on the boundaries,Aubry and Tsiron [23]first observed the stretched-exponential lattice energy relaxation induced by standing DBs in one-dimensional (1D) lattices with on-site potentials,in contrast to the standard exponential relaxation law of the corresponding linear chains.Subsequently,the counterpart two-dimensional lattices have been considered and a similar conclusion has been drawn in [24].Further detailed studies [25,26]of the harmonic and anharmonic chains without on-site potentials showed that the stretchedexponential energy relaxation is not universal,instead a usual exponential relaxation law is observed in a short time,followed by a power-law decay over a long time.The mechanism of the change of the power-law relaxation is induced by standing DBs.As the interactions of standing DBs with the boundaries are very weak,the energy release is actually suppressed and it is thus difficult to observe equilibrium states on typical simulation time scales.As a result,the lattice is in a metastable state,called the nonequilibrium residual state,similar to the glassy patterns in disordered systems.

    In addition to the above progress,it would be worth noting that the properties of DBs have been found to be related to other physical properties.For example,by considering some complex crystal structures,such as the nextnearest-neighbor(NNN)interactions[27,28],the lattice with altering mass or interactions [29],the on-site potentials[30–32]and the long-rang interactions [33],DBs have been studied in the perspective of energy transport.In such cases,DBs are more evident and sometimes can be moveable.This causes these kinds of DBs to be effective scatters of both phonons and boundaries [34],hence they can reduce the thermal conductivity [32,33].We also note that even only considering the role of nonlinearity,DBs can already affect some other macroscopic properties[35],e.g.elastic constants[36],thermal expansion [37,38],and heat capacity[36,38,39].

    The purpose of this paper is to study slow energy relaxation in a more complicated situation including mobile DBs.To this end,we shall focus on the Fermi–Pasta–Ulam–Tsingou-β (FPUT-β) chain with NNN interactions.By properly adjusting the ratio of the NNN coupling to the nearest-neighbor (NN) coupling,one might be able to produce the mobile DBs[27,28].Therefore,by employing such models we are devoted to exploring the combined effects of NNN interactions and nonlinearity (which produces moveable DBs) on the slow energy relaxation.The rest of this article is organized as follows:In section 2 we describe the reference models;section 3 presents the cooling methods to study energy relaxation and the physical quantities of interest;section 4 provides the main results for different lattice models,from which the role of NNN interactions and nonlinearity will be demonstrated;Finally,section 5 draws our conclusion.

    2.Models

    A general 1D lattice with both NN and NNN interparticle interactions and without on-site potential can be represented by

    where piis the ith (totally N particles and all with unit mass)particle’s momentum,xiis its displacement from the equilibrium position,V(ξ) is the interparticle potential and the parameter γ specifies the comparative strength of the NNN to NN couplings.We use the FPUT-β interparticle interactionto mainly consider the combined role of NNN coupling and nonlinearity in energy relaxation.For such a model,it would be worth noting that it has a special phonon dispersion relation (see figure 1 for the phonon spectrum):where q is the wave number for phonons and ωqis the corresponding frequency.From this dispersion relation,one obtains the phonon’s group velocity[s inq+2γsin (2q)]and finds that:(i)for 0 <γ <0.25,vg>1,which is in contrast to vg=1 in the case of systems with NN coupling;(ii) for γ=0.25,vgis very close to zero in a wider k domain near the Brillouin zone boundary;(iii) for γ>0.25,both ωqand vgare actually degenerate,i.e.one ωq/vgcorresponds to two q values.These unusual properties can favor the formation of a special highly moving localized excitation (mobile DBs) in the presence of appropriate nonlinearity[27,28]and thus one can expect that such properties would greatly influence the energy relaxation.

    3.Method

    We use the cooling method to reveal the slow energy relaxation and to obtain the information of DBs.For this purpose,we first thermalize the lattices to a fixed temperature T=0.1 by using the Nose–Hoover[40]heat baths.Then after the systems are fully thermalized for a considerably long time,we remove the heat baths and add the absorbing boundary conditions.That is to say,we impose damping to both ends(which are free)of the lattices,and so the equation of motion of the system can be expressed by

    By performing the cooling method,we are interested in the decay of the total energy.To reveal this decay,we first define the symmetrized site energies:

    With such a definition,the total energy of the system is given byE=We can now study the decay of the normalized energy E(t)/E(0),which represents the ratio of the decayed energy to the initial energy.As it has been shown that in some cases the exponential law or the stretchedexponential law is observed.To identify what exactly the law is,it is better to plot

    We remind readers that since the energy localization might be strongly inhibited by fixed-end boundary conditions[25,26],in our simulations we apply the free-end boundary conditions.The motion equations are integrated with the velocity-Verlet algorithm [41]with a time step 0.01.With both heat baths and damping,the systems are first evolved 106times with the heat baths to reach the stationary state under the given temperature,and next evolved additional 106times without the heat baths but with the damping presented,which enables us to reveal the relaxation process induced by the absorbing boundaries.

    4.Results

    4.1.Harmonic system

    To show the role of NNN coupling in slow energy relaxation separately,let us first check the results of the relevant linear systems with NNN coupling.For the same harmonic system with the NN coupling only,it has been theoretically predicted that [25]

    This means that one generally finds two energy relaxation processes,i.e.the exponential law and the inverse-square-root law,for short and long timescales,respectively.Such two laws have been verified in a harmonic chain with NN coupling only under a small N=32,but some deviations have also been numerically observed [25,26],i.e.a new exponential relaxation recovers in a long time.In view of this,we study the dependence of the energy relaxation properties on γ here in a large system size N=4096 in figure 2(a).Surprisingly,in a time of t <104,regardless of γ,the results of D versus t follow two general power-laws (~tν) with ν=0.68 and ν=1.03,respectively.This suggests that in addition to the previously theoretically predicted exponential law,there is another stretched-exponential lawwith ν=0.68 at a shorter time,independent of the NNN coupling ratio γ.Figure 2(a) also suggests that the long-time behavior of the energy relaxation should depend on γ.To see this more explicitly,figure 2(b)depicts the results of E(t)/E(0)versus t in harmonic systems with NNN coupling.A log–log plot then helps us clearly identify several power-law exponents.The best fittings give E(t)/E(0)~t-μwith μ=0.54,μ=0.52,μ=0.16,and μ=0.13 for γ=0,γ=0.025,γ=0.25,and γ=0.4,respectively (in a long time).It indicates that including the NNN coupling seems to further slow down the energy relaxation process.This is not trivial since from figure 1 by including the NNN coupling,on one hand the phonon group velocity vgis increased with the increase of γ.This speeds up the energy relaxation process.On the other hand,the increase of γ causes more phonons with higher frequencies to emerge,which however slows down the relaxation.Therefore,in a linear system with NNN coupling but without nonlinearity and DBs,the overall effect is to depress the energy relaxation process during the cooling.

    Figure 1.(a) Phonon frequency ωq and (b) group velocity vg versus wave number q for 1D lattice without on-site potentials.From bottom to top,the curves correspond to γ=0,0.25,0.4,and 1,respectively.

    4.2.FPUT-β system

    With the above understanding,let us now consider the combined effects of NNN coupling and nonlinearity.For this purpose,as mentioned we focus on the popular 1D FPUT-β lattice.Figure 1(c) shows that the first stretched-exponential and exponential laws of E(t)/E(0) for t <104,which are similar to that shown in figure 1(a).Therefore,these two relaxation laws seem independent of the NNN coupling,even when one includes the nonlinearity in the systems.This may also suggest that such two laws for t <104are general,at least for both the linear and nonlinear systems with NNN coupling.Therefore,the origin of this finding is worth studying in the future.

    Figure 2.(a) and (c):D versus t with several values of γ,where the two dashed lines denote the best fittings of tν and they indicate the previously predicted exponential law and the new observed stretched-exponential law decay of E(t)/E(0),respectively.(b)and(d):E(t)/E(0)versus t under several γ,where the dashed lines denote the best fittings of t-μ that indicate the power-law decay of E(t)/E(0).Figures(a)and(b) are for the harmonic potential;figures (c) and (d) are for the FPUT-β potential.

    Figure 3.μ versus γ,where the hollow and solid circles represent the results of harmonic and FPUT-β systems,respectively;the dashed line indicates the results of γ=0.25.For a better illustration,we also plot D versus t for γ=0.25,separately in the inset.

    Figure 4.Snapshot of atomic displacement after imposing the damping to the free-end boundaries by a time t=106,where the left (right)panel corresponds to a harmonic(FPUT-β)system with NNN coupling(γ=0.25).The inset in each panel is a zoom for the reference sites.

    Figure 5.Snapshot of atomic displacement after imposing the damping to the free-end boundaries by a time t=1.1×106(a),t=1.2×106(b),t=1.3×106 (c),and t=1.4×106 (d) in the FPUT-β system with NNN coupling (γ=0.25).

    Again,the distinctions for different γ in the FPUT-β systems still lie in the long-time behavior.As can be seen in figure 2(d),E(t)/E(0) follows a t-μlaw at long timescales,similar to those observed in the harmonic systems as shown in figure 2(b).A further comparison of figures 2(b) and (d)shows that the power-law exponent μ for harmonic and FPUT-β systems under the same γ is different,i.e.μ for the FPUT-β lattice is larger than that for harmonic lattice as long as γ ≠0.It presents a clue that the combined effects of NNN coupling and nonlinearity seem to speed up the relaxation during the cooling.

    In order to have a close look at this trend,in figure 3 we plot μ against γ for both the harmonic and FPUT-β lattices.Therein four data points are extracted from figures 2(b) and(d),while others are calculated additionally in the same way.Indeed,in the range of γ investigated,all μ of FPUT-β systems are larger than those of the harmonic systems.Indeed,this indicates that the combined effects of the NNN coupling and nonlinearity are to make the energy relaxation relatively faster if compared with the counterpart linear systems.

    4.3.The origin of the relatively faster energy relaxation:the role of mobile DBs

    We lastly explain the observed relatively faster energy relaxation in a nonlinear system compared to the counterpart linear systems.As it has already been pointed out in the introduction,the slow energy relaxation behaviors in nonlinear lattices are usually related to the energy localization and these localization origins from the excitation of standing DBs.In the absence of nonlinearity,it was previously regarded that the energy relaxation will turn back to the traditional exponential decay [25].However,our above results in figure 2 suggest that even for linear systems,this is not the case.The long-time behavior of the energy relaxation seems always to be a power-law decay.Combining the results of linear and nonlinear systems (see figures 2(a)–(d)),one might conclude that the power-law energy relaxation in a long time is general but the details of the power-law exponent are then affected by the localization induced by DBs.To illustrate this point,in figure 4 we plot a snapshot of the lattice displacements at the end of the simulation,i.e.by imposing the damping to both harmonic and FPUT-β systems after a time 106(with γ=0.25 for an example).As can be seen,only in the FPUT-β system do we identify the emergence of DBs (see the inset of figure 4(b),a profile of DBs can be found there),which is in clear contrast to that observed in the harmonic system(see the inset of figure 4(a)).

    Since DBs can localize energies,one may wonder why the energy relaxation in the nonlinear systems with NNN coupling is relatively faster than that in the counterpart linear systems.This can be understood from figure 5 if we further examine the mobility of DBs.In figure 5 we plot the same snapshot of the lattice displacements after imposing the damping of the free-end boundaries of the nonlinear lattice(γ=0.25) for four long times.It can be seen that due to the mobility of DBs,they can interact with both phonons and boundaries,which produces an additional passageway for speeding up the energy relaxation.This is surely different from the main passageway of phonons-boundaries scattering as shown in the relevant linear model (see figure 4(a)).

    5.Conclusion

    To summarize,by applying a damping term into the system’s boundaries,we have numerically studied the energy relaxation processes in both 1D linear and FPUT-β lattices when the NNN interactions are considered.As we expect that including the NNN coupling might need a longer time for systems to relax,we have considered a system size much larger than that that was taken into account of in previous studies.For both linear and nonlinear lattices,generally the short-time(t <104)relaxation behaviors are given by a stretched-exponential law,followed by an exponential law,which is independent of the ratio of the NNN coupling.This justifies that even linear systems can also support the stretched-exponential relaxation law at some timescales.Furthermore,the long-time (t>104)behavior is however determined by a power-law with the exponent strongly dependent on γ,i.e.as γ increases,the relaxation is slowed down.This means that including the NNN coupling makes the long-time power-law energy relaxation slower.Further introducing the nonlinearity,however,in turn,speed up the relaxation,which is induced by the emergence of mobile DBs.These mobile DBs can interact with both phonons and boundaries,which then produce an additional passageway for scattering the energies.Finally,this novel energy relaxation behavior,induced by mobile DBs in the nonlinear lattices with NNN coupling,is surely different from the stretched-exponential relaxation observed in lattices with on-site potentials that are mainly produced by the standing DBs [23,24].

    Acknowledgments

    DX was supported by the start-up fund of Minjiang university and NSF (Grant No.2021J02051) of Fujian Province of China.The work of CX was supported by the start-up fund of Minjiang University.The work of WZ was supported by the NNSF (Grant No.12105133) of China and NSF (Grant No.2021J011030) of Fujian Province of China.

    人人妻人人爽人人添夜夜欢视频 | 天堂俺去俺来也www色官网| 97精品久久久久久久久久精品| 国模一区二区三区四区视频| av在线播放精品| 黄色怎么调成土黄色| 久久人人爽av亚洲精品天堂 | 97人妻精品一区二区三区麻豆| 成人国产麻豆网| 爱豆传媒免费全集在线观看| 偷拍熟女少妇极品色| 亚洲欧洲日产国产| 女人十人毛片免费观看3o分钟| 亚洲va在线va天堂va国产| 欧美激情在线99| 亚洲最大成人手机在线| 性插视频无遮挡在线免费观看| 嫩草影院入口| 免费观看的影片在线观看| 国产亚洲av嫩草精品影院| 亚洲综合精品二区| 日本一二三区视频观看| 国语对白做爰xxxⅹ性视频网站| 国产黄色视频一区二区在线观看| 韩国高清视频一区二区三区| 国产爽快片一区二区三区| 99热这里只有精品一区| 亚洲av成人精品一区久久| 国产精品麻豆人妻色哟哟久久| 国产淫语在线视频| a级一级毛片免费在线观看| 国产探花极品一区二区| 免费av观看视频| 99re6热这里在线精品视频| 在线精品无人区一区二区三 | 国产伦理片在线播放av一区| 国产成人精品一,二区| 内射极品少妇av片p| 日韩欧美一区视频在线观看 | 国产精品久久久久久精品古装| 美女视频免费永久观看网站| 国产亚洲av片在线观看秒播厂| 欧美变态另类bdsm刘玥| 欧美高清成人免费视频www| 高清视频免费观看一区二区| 久久久久久久久久人人人人人人| 国产爱豆传媒在线观看| 黄片wwwwww| 最新中文字幕久久久久| 亚洲内射少妇av| 久久人人爽人人爽人人片va| 一区二区三区免费毛片| 丰满少妇做爰视频| 热99国产精品久久久久久7| 久久久久精品性色| 免费看av在线观看网站| 国产成人aa在线观看| 亚洲人与动物交配视频| 少妇熟女欧美另类| 国产亚洲一区二区精品| 久久久久久久大尺度免费视频| 亚洲美女搞黄在线观看| 99久久精品一区二区三区| 久久久欧美国产精品| 午夜视频国产福利| 精品国产一区二区三区久久久樱花 | 精品国产乱码久久久久久小说| 成人国产麻豆网| 日本爱情动作片www.在线观看| 一二三四中文在线观看免费高清| 卡戴珊不雅视频在线播放| 亚洲最大成人手机在线| 别揉我奶头 嗯啊视频| 亚洲人成网站在线观看播放| 国产精品.久久久| 亚洲av中文av极速乱| 3wmmmm亚洲av在线观看| 搡老乐熟女国产| 亚洲精品国产av成人精品| 国产精品蜜桃在线观看| 国产日韩欧美在线精品| 色综合色国产| freevideosex欧美| 亚洲精品乱久久久久久| 亚洲国产精品国产精品| 黄色欧美视频在线观看| 国产欧美亚洲国产| 男女啪啪激烈高潮av片| 国产精品国产三级国产av玫瑰| 久久人人爽人人爽人人片va| 亚洲精品影视一区二区三区av| 在线免费观看不下载黄p国产| 内地一区二区视频在线| 国产免费又黄又爽又色| 亚洲色图av天堂| 国产乱人视频| 成人黄色视频免费在线看| 国产亚洲午夜精品一区二区久久 | 欧美人与善性xxx| 夜夜看夜夜爽夜夜摸| 亚洲精品久久久久久婷婷小说| 少妇的逼好多水| 好男人在线观看高清免费视频| av黄色大香蕉| 国产欧美亚洲国产| 黄片wwwwww| 国产成人免费无遮挡视频| 美女视频免费永久观看网站| 日本熟妇午夜| 街头女战士在线观看网站| 亚洲最大成人av| 一级黄片播放器| 看黄色毛片网站| 久久久亚洲精品成人影院| 亚洲国产欧美人成| 老司机影院成人| 国产成人a区在线观看| 日本免费在线观看一区| 97超视频在线观看视频| 欧美成人a在线观看| 亚洲人成网站在线播| 欧美激情国产日韩精品一区| 交换朋友夫妻互换小说| 亚洲一级一片aⅴ在线观看| 久久久久久久精品精品| 99热6这里只有精品| 亚洲天堂国产精品一区在线| 国产成人一区二区在线| 两个人的视频大全免费| av播播在线观看一区| 亚洲内射少妇av| 婷婷色综合www| 欧美高清性xxxxhd video| 亚洲无线观看免费| 成年女人看的毛片在线观看| 亚洲国产av新网站| 国产成人a∨麻豆精品| 国产v大片淫在线免费观看| 国产淫语在线视频| 白带黄色成豆腐渣| 久久精品人妻少妇| 精品久久久久久久久亚洲| 99久久精品热视频| 九色成人免费人妻av| 久久精品久久精品一区二区三区| 亚洲国产最新在线播放| 成年人午夜在线观看视频| 亚洲精品一区蜜桃| 国产熟女欧美一区二区| 麻豆国产97在线/欧美| 亚洲成人久久爱视频| 97超碰精品成人国产| 精华霜和精华液先用哪个| 91久久精品国产一区二区成人| 内地一区二区视频在线| 一个人看视频在线观看www免费| 伊人久久精品亚洲午夜| 国产男女超爽视频在线观看| 我的老师免费观看完整版| 国内少妇人妻偷人精品xxx网站| 黄片无遮挡物在线观看| 99九九线精品视频在线观看视频| 久久ye,这里只有精品| 色婷婷久久久亚洲欧美| 熟妇人妻不卡中文字幕| a级一级毛片免费在线观看| 久久久久久久久久久丰满| 亚洲不卡免费看| 亚洲人成网站在线播| 国产91av在线免费观看| 国产综合懂色| 免费黄频网站在线观看国产| 最近最新中文字幕大全电影3| 观看免费一级毛片| 国产 一区 欧美 日韩| 国产色婷婷99| 人妻 亚洲 视频| 亚洲精华国产精华液的使用体验| 久久亚洲国产成人精品v| 色综合色国产| 在线看a的网站| 国产乱人视频| 亚洲欧美精品专区久久| 日本wwww免费看| 各种免费的搞黄视频| 亚洲av电影在线观看一区二区三区 | 观看美女的网站| 国精品久久久久久国模美| 一区二区三区乱码不卡18| 男人爽女人下面视频在线观看| 麻豆成人午夜福利视频| 国产黄色视频一区二区在线观看| 亚洲人与动物交配视频| 久久久久国产精品人妻一区二区| 51国产日韩欧美| 在线亚洲精品国产二区图片欧美 | 日韩av不卡免费在线播放| 亚洲av中文av极速乱| 日韩伦理黄色片| 国产欧美另类精品又又久久亚洲欧美| 大码成人一级视频| 欧美一区二区亚洲| 97热精品久久久久久| 午夜激情福利司机影院| 久久99热6这里只有精品| 国产爽快片一区二区三区| 成人欧美大片| 亚洲丝袜综合中文字幕| 亚洲最大成人中文| 国产高清不卡午夜福利| 亚洲一区二区三区欧美精品 | 一本一本综合久久| 狂野欧美激情性bbbbbb| 在线亚洲精品国产二区图片欧美 | 18禁动态无遮挡网站| 直男gayav资源| 国产精品国产av在线观看| 五月开心婷婷网| 国产高潮美女av| 少妇人妻一区二区三区视频| 免费播放大片免费观看视频在线观看| 高清日韩中文字幕在线| 嫩草影院精品99| 国产成人免费无遮挡视频| 简卡轻食公司| 亚洲不卡免费看| 久久久精品免费免费高清| 国产毛片a区久久久久| 成年女人看的毛片在线观看| 国产永久视频网站| 日韩不卡一区二区三区视频在线| 九九久久精品国产亚洲av麻豆| 久久久成人免费电影| 亚州av有码| 国产精品女同一区二区软件| 欧美zozozo另类| 一区二区三区免费毛片| 国产精品国产三级国产专区5o| 亚洲精品乱码久久久v下载方式| 久久久久久久亚洲中文字幕| 特级一级黄色大片| 最近中文字幕2019免费版| 亚洲精品亚洲一区二区| 精品久久久久久久久亚洲| 国产国拍精品亚洲av在线观看| 久久久成人免费电影| 免费观看av网站的网址| 免费看a级黄色片| 久久久久久伊人网av| 欧美性猛交╳xxx乱大交人| 亚洲婷婷狠狠爱综合网| 成年免费大片在线观看| 乱码一卡2卡4卡精品| 日韩,欧美,国产一区二区三区| 亚洲电影在线观看av| 国产极品天堂在线| 免费不卡的大黄色大毛片视频在线观看| 我要看日韩黄色一级片| 中文乱码字字幕精品一区二区三区| 亚洲成人一二三区av| 亚洲丝袜综合中文字幕| 99视频精品全部免费 在线| 国产精品无大码| 97在线视频观看| 国内精品宾馆在线| 狠狠精品人妻久久久久久综合| 成年女人在线观看亚洲视频 | 国产一区二区亚洲精品在线观看| 有码 亚洲区| 插阴视频在线观看视频| 男人狂女人下面高潮的视频| 新久久久久国产一级毛片| 久久亚洲国产成人精品v| 人妻夜夜爽99麻豆av| 又大又黄又爽视频免费| 久久精品综合一区二区三区| 亚洲av一区综合| 一区二区三区免费毛片| 最近的中文字幕免费完整| 晚上一个人看的免费电影| 赤兔流量卡办理| 肉色欧美久久久久久久蜜桃 | 亚洲国产精品成人久久小说| 别揉我奶头 嗯啊视频| 国产成人freesex在线| 精品人妻偷拍中文字幕| 色吧在线观看| 深爱激情五月婷婷| 黄色视频在线播放观看不卡| 涩涩av久久男人的天堂| 少妇高潮的动态图| 黄片无遮挡物在线观看| 大片免费播放器 马上看| 丝袜喷水一区| 亚洲精品日韩在线中文字幕| 日韩成人av中文字幕在线观看| 特大巨黑吊av在线直播| 亚洲色图av天堂| 大码成人一级视频| 色视频www国产| 国产毛片a区久久久久| 草草在线视频免费看| 亚洲精品国产av成人精品| 成人午夜精彩视频在线观看| 欧美日韩精品成人综合77777| 性插视频无遮挡在线免费观看| 在线亚洲精品国产二区图片欧美 | 国产免费一级a男人的天堂| 高清av免费在线| 在线免费观看不下载黄p国产| 看黄色毛片网站| 日本色播在线视频| 大片免费播放器 马上看| 水蜜桃什么品种好| 真实男女啪啪啪动态图| 看免费成人av毛片| 精品人妻视频免费看| 国产精品精品国产色婷婷| 国产在视频线精品| videos熟女内射| 久久久久久久久久久免费av| 少妇被粗大猛烈的视频| 亚洲,一卡二卡三卡| 欧美日韩亚洲高清精品| 黄色配什么色好看| 免费高清在线观看视频在线观看| 大码成人一级视频| 日本欧美国产在线视频| 男人添女人高潮全过程视频| av在线蜜桃| 亚洲国产av新网站| 亚洲婷婷狠狠爱综合网| 欧美日韩亚洲高清精品| 色综合色国产| 精品久久久久久电影网| 97热精品久久久久久| 精品人妻一区二区三区麻豆| 亚洲成色77777| 日韩制服骚丝袜av| 国产精品久久久久久av不卡| 亚洲图色成人| 精品国产露脸久久av麻豆| 亚洲一级一片aⅴ在线观看| 国产亚洲av嫩草精品影院| 亚洲不卡免费看| 亚洲成人av在线免费| 一级毛片 在线播放| 国产精品熟女久久久久浪| 免费少妇av软件| 中文天堂在线官网| 国产精品爽爽va在线观看网站| 午夜爱爱视频在线播放| 国产精品国产av在线观看| 国产精品成人在线| 久久久久久久精品精品| 狠狠精品人妻久久久久久综合| 天天一区二区日本电影三级| 少妇人妻一区二区三区视频| 嫩草影院精品99| 99热全是精品| 日日摸夜夜添夜夜添av毛片| 国产极品天堂在线| 欧美性感艳星| 欧美 日韩 精品 国产| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久| 免费观看无遮挡的男女| 日日啪夜夜爽| 你懂的网址亚洲精品在线观看| 日本wwww免费看| 男插女下体视频免费在线播放| 国产亚洲av片在线观看秒播厂| 国产有黄有色有爽视频| 日韩av免费高清视频| 日韩一区二区三区影片| 看免费成人av毛片| 久久久成人免费电影| 一区二区三区免费毛片| 一级爰片在线观看| 麻豆久久精品国产亚洲av| 又粗又硬又长又爽又黄的视频| 国产亚洲av嫩草精品影院| 男女那种视频在线观看| 日本黄大片高清| 亚洲av福利一区| 国产乱来视频区| 大香蕉久久网| 久久久久久伊人网av| 五月天丁香电影| 亚洲av中文字字幕乱码综合| 亚洲精品乱码久久久久久按摩| 免费大片18禁| 欧美高清性xxxxhd video| 成人毛片a级毛片在线播放| av国产精品久久久久影院| 天堂网av新在线| 神马国产精品三级电影在线观看| 久久97久久精品| 午夜精品一区二区三区免费看| 国产免费一级a男人的天堂| 听说在线观看完整版免费高清| 欧美3d第一页| 岛国毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 国产淫片久久久久久久久| 国产成人一区二区在线| 亚洲国产精品专区欧美| 亚洲综合精品二区| 亚洲精华国产精华液的使用体验| 亚洲天堂av无毛| 2021少妇久久久久久久久久久| 成人午夜精彩视频在线观看| 精品久久久久久久久亚洲| 国产亚洲精品久久久com| a级一级毛片免费在线观看| 亚洲精品成人久久久久久| 2021少妇久久久久久久久久久| 国产伦精品一区二区三区四那| 亚洲精品日韩在线中文字幕| 色播亚洲综合网| 国产一区有黄有色的免费视频| 交换朋友夫妻互换小说| 久久99热这里只频精品6学生| 亚洲精品一区蜜桃| 亚洲激情五月婷婷啪啪| 久久韩国三级中文字幕| 欧美潮喷喷水| 在线观看一区二区三区| 国产精品久久久久久精品电影小说 | 麻豆成人午夜福利视频| 中文资源天堂在线| 亚洲欧美成人综合另类久久久| 亚洲四区av| 国产一区二区三区综合在线观看 | 伦精品一区二区三区| 久久久久久伊人网av| 最近2019中文字幕mv第一页| 五月开心婷婷网| 国产成人福利小说| 成年免费大片在线观看| 99久久九九国产精品国产免费| 国产免费又黄又爽又色| 国产高清不卡午夜福利| 综合色av麻豆| 成人亚洲精品av一区二区| 99视频精品全部免费 在线| 国产精品爽爽va在线观看网站| 如何舔出高潮| 在线天堂最新版资源| 色哟哟·www| 国产91av在线免费观看| 亚洲av欧美aⅴ国产| 天美传媒精品一区二区| 亚洲在线观看片| av在线观看视频网站免费| 欧美成人一区二区免费高清观看| 99热这里只有是精品50| 免费高清在线观看视频在线观看| 在线观看免费高清a一片| 久久这里有精品视频免费| 亚洲综合色惰| 内地一区二区视频在线| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品古装| 日韩一本色道免费dvd| 国产精品嫩草影院av在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲av一区综合| 熟女av电影| 青春草亚洲视频在线观看| 成人欧美大片| 日韩三级伦理在线观看| 国产综合懂色| 日本wwww免费看| 欧美高清性xxxxhd video| 26uuu在线亚洲综合色| 91精品国产九色| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩另类电影网站 | 人人妻人人爽人人添夜夜欢视频 | 真实男女啪啪啪动态图| 五月伊人婷婷丁香| 最近的中文字幕免费完整| 亚洲精品aⅴ在线观看| 日本欧美国产在线视频| 欧美日韩一区二区视频在线观看视频在线 | 久久6这里有精品| 日本熟妇午夜| 激情 狠狠 欧美| 欧美变态另类bdsm刘玥| 国产黄a三级三级三级人| 免费少妇av软件| 又大又黄又爽视频免费| 亚洲欧美一区二区三区国产| 欧美最新免费一区二区三区| 久久影院123| 男女无遮挡免费网站观看| 精品一区二区免费观看| 国产69精品久久久久777片| 午夜福利网站1000一区二区三区| av国产精品久久久久影院| 国产又色又爽无遮挡免| 亚洲一级一片aⅴ在线观看| 在线亚洲精品国产二区图片欧美 | 成年女人看的毛片在线观看| 一级二级三级毛片免费看| 欧美97在线视频| 亚洲国产av新网站| 国产一级毛片在线| freevideosex欧美| 国产精品久久久久久精品电影小说 | 97精品久久久久久久久久精品| 亚洲av二区三区四区| 视频中文字幕在线观看| 久久久精品免费免费高清| 亚洲av免费在线观看| 欧美 日韩 精品 国产| 国产极品天堂在线| 国产精品久久久久久精品电影小说 | 亚洲精品成人av观看孕妇| 人妻夜夜爽99麻豆av| 在线观看免费高清a一片| 国产伦在线观看视频一区| 午夜激情久久久久久久| 国产 一区 欧美 日韩| 亚洲成人中文字幕在线播放| 熟女人妻精品中文字幕| 欧美区成人在线视频| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 舔av片在线| 男人添女人高潮全过程视频| 色吧在线观看| 欧美日韩亚洲高清精品| 日本与韩国留学比较| 色婷婷久久久亚洲欧美| 99视频精品全部免费 在线| 一个人观看的视频www高清免费观看| 国产午夜精品一二区理论片| 欧美精品国产亚洲| 国产色爽女视频免费观看| 久久久成人免费电影| 男人狂女人下面高潮的视频| 亚洲精品久久久久久婷婷小说| 一本一本综合久久| 国产黄片美女视频| 欧美性感艳星| 熟女av电影| 国产高清国产精品国产三级 | 别揉我奶头 嗯啊视频| 欧美bdsm另类| 久热久热在线精品观看| 久久99精品国语久久久| 免费在线观看成人毛片| 成人毛片60女人毛片免费| 久久国内精品自在自线图片| 欧美日韩综合久久久久久| 嫩草影院入口| 免费看光身美女| 中国国产av一级| 免费看不卡的av| 搡老乐熟女国产| 亚洲精品一二三| 亚洲精品国产色婷婷电影| 波多野结衣巨乳人妻| 国产男人的电影天堂91| 日本一本二区三区精品| www.色视频.com| 97在线人人人人妻| 一级毛片 在线播放| 国产亚洲av片在线观看秒播厂| 日韩伦理黄色片| 亚洲久久久久久中文字幕| 久久精品久久久久久噜噜老黄| 一级黄片播放器| 久久99精品国语久久久| 国产乱来视频区| 国产精品成人在线| 女人被狂操c到高潮| 亚洲自拍偷在线| 美女视频免费永久观看网站| 97人妻精品一区二区三区麻豆| a级毛色黄片| 国产黄频视频在线观看| 久久久久性生活片| freevideosex欧美| 欧美3d第一页| 国产午夜精品久久久久久一区二区三区| 成年人午夜在线观看视频| 亚洲精品自拍成人| 又爽又黄无遮挡网站| 少妇人妻一区二区三区视频| 国产精品国产三级国产专区5o| 国内少妇人妻偷人精品xxx网站| 纵有疾风起免费观看全集完整版| 午夜老司机福利剧场| 全区人妻精品视频| 大片免费播放器 马上看| 三级男女做爰猛烈吃奶摸视频| 色播亚洲综合网| 黄色一级大片看看| 亚洲婷婷狠狠爱综合网| 插逼视频在线观看| 国产老妇伦熟女老妇高清| 男女啪啪激烈高潮av片| a级毛色黄片| av国产免费在线观看| 国产v大片淫在线免费观看| 深夜a级毛片| 免费黄网站久久成人精品| 美女国产视频在线观看| 久久久久久久亚洲中文字幕| 亚洲av福利一区| 国产精品国产av在线观看| 超碰av人人做人人爽久久|