• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic properties of bilayer nano-stanenelike structure with Ruderman–Kittel–Kasuya–Yoshida coupling

    2022-08-02 02:48:36XinSuNanSiWeiJiangWeiChunGaoandFengGeZhang
    Communications in Theoretical Physics 2022年6期

    Xin Su,Nan Si,Wei Jiang,Wei-Chun Gao and Feng-Ge Zhang

    1 School of Environmental and Chemical Engineering,Shenyang University of Technology,Shenyang 110870,China

    2 School of Electric Engineering,Shenyang University of Technology,Shenyang 110870,China

    Abstract A bilayer nano-stanene-like structure with Ruderman–Kittel–Kasuya–Yoshida (RKKY)coupling described by the Ising model is proposed.The magnetic and thermodynamic properties are studied using the effective-field theory with correlations.The exchange coupling,longitudinal magnetic field,number of non-magnetic layers,and anisotropies had major influences on the magnetization,specific heat,and internal energy.Different saturation magnetizations are observed on the magnetization curve.The variation in the system blocking temperature is studied.The results provide theoretical guidance for the magnetic investigation of nanomaterials with RKKY coupling.

    Keywords:bilayer nano-stanene-like structure,mixed spin Ising model,magnetization,internal energy

    1.Introduction

    Over the past few years,the discovery of graphene has paved the way for a considerable advancement in the field of materials and condensed matter physics.Based on the studies on graphene,a large number of novel properties of twodimensional (2D) materials have been predicted and demonstrated,such as massless Dirac fermions,energy valley polarized electrons,and quantum spin Hall states [1–5].Although graphene has a series of excellent physical properties,the two chiral pairs of Dirac cones open the energy gap at the K and K′ points to a very small value and exhibit the characteristics of semimetal,which restricts the application of graphene in devices to a certain extent [6–9].To this end,studies on new two-dimensional (2D) materials and the determination of their properties have attracted considerable interest.2D materials composed of group-IV elements with a graphene-like structure and same group as carbon,such as silylene,germanene,and stanene,have attracted considerable attention owing to their new features,such as the high strength of the lattice and high electronic mobility [10–14].Among them,the 2D network stanene,composed of tin atoms,is promising because of its excellent properties.Due to its stronger spin–orbit coupling,stanene has been predicted by many theoretical physicists to have exotic physical properties that are not available in 2D materials such as graphene,silylene,and germanene,including a 2D quantum spin Hall state with a large energy gap,low-loss conductance at room temperature,topological superconductivity,quantum spin Hall state,and quantum anomalous Hall state[15–23].One of its unique features is its high carrier mobility,which allows electrons to move freely.Stanene can possess a larger band gap obtained by regulation of the external field and chemistry[24–26].The excellent properties of stanene make it a promising 2D material.

    The relevant properties of stanene have been investigated in detail by theoretical calculations and experiments.By epitaxially straining gray tin (a-Sn),Falson et al obtained superconductors with few layers of stanene,which exhibit a unique type of Ising pairing between carriers residing in bands with different orbital indices near the Γ-point.The inplane upper critical magnetic field is strongly enhanced and exhibited an upward trend at ultralow temperatures [27].Rachel et al exposed the 2D topological insulators silene,germanene,and stannane with helical edge states to charge density wave order,superconductor,out-of-plane antiferromagnetic,and in-plane antiferromagnetic fields to study the global and local manipulations at the edges to achieve the quantum spin Hall effect without edge states [28].Liao et al achieved superconductivity in a few-layer stanene grown on PbTe,while bulk α-tin is not superconductive,according to an analysis of the layer degree of freedom.Based on substrate engineering,they reported that transition from a single band to a two-band superconductor can be realized by doubling the transition temperature[29].Using low-temperature molecular beam epitaxy,Deng et al successfully grew high-quality olefins on Cu (111).An abnormal ultralight monoene is observed at the Γ point,with in-plane s–p band inversion and topological gap induced by spin–orbit coupling (~0.3 eV),which represents the most important group-IV ultralight graphene-like topology material in the experiment[30].Based on the Sn/PbI2heterostructure,Zhang et al proposed a very stable basic device with a quantum anomalous Hall effect.The experimental results showed that the quantum anomalous Hall effect can be easily realized in the tin/lead iodide heterostructure [31].Using the first-principle method based on density functional,Pamungkas et al thoroughly investigated the influences of hydrogenation and Al/P doping on the electronic structure and magnetic properties of stanene.The hydrogenation opened the band gap of stanene and converted it from nonmagnetic to ferromagnetic through the hybridization of H 1s and Sn 5p states [32].Xiong et al studied the electronic structure and magnetic properties of stanene nanoribbons.They reported that all considered armchair-type stanene nanoribbons are nonmagnetic semiconductors and that the gap is a periodic oscillation function of the band width [33].Based on Monte Carlo simulations,Fadil et al investigated the magnetic properties of a bilayer nanostanene structure with Ruderman–Kittel–Kasuya–Yoshida (RKKY)interactions.By studying the effect of RKKY interactions on the magnetic properties of the system,they discovered that,when the number of nonmagnetic layers is reduced,the blocking temperature increases under nonzero temperature conditions[34].Using the multi-orbital tight coupling model,Hattori et al systematically studied the edge states of stanene nanoribbons in the presence of Coulomb interactions and vertical electric fields.Owing to the multi-orbital effect,the resulting edge states have nonlinear energy dispersion and the stanene nanoribbons exhibit induced magnetization at the edges [35].Wu et al proposed a quantum anomalous Hall platform with a large energy gap of 0.34 eV and 0.06 eV on honeycomb lattices comprised of Sn and Ge by ab-initio band structure calculations,respectively.The results indicated that the ferromagnetic sequence is formed in a sublattice of the honeycomb structure by controlling surface functionalization instead of diluting magnetic doping [36].In our previous studies,we successfully employed the EFT to assess the magnetic characteristics of nanomaterials [37–39].

    The aim of this study is to investigate the magnetic and thermodynamic properties of the system.The model and theory of the nano-stanene-like bilayer with the RKKY interaction are introduced in section 2.In section 3,the magnetization,magnetic susceptibility,internal energy,and specific heat are discussed.The conclusions of this paper are presented in section 4.

    2.Calculation method

    A schematic of the bilayer nano-stanene-like structure,separated by nonmagnetic layers,is shown in figure 1.The red and blue balls in layers A and B represent spin atoms,respectively.There is a ferrimagnetic exchange coupling (J)between them.The two types of magnetic atoms had spins ofσ=and spinS=.A mixed spin Ising model is developed to describe this bilayer nano-stanene-like structure.For simplicity,the exchange coupling RKKY JRKKY[40–42]between the spin atoms of layers A and B is assumed.The bilayer nano-stanene-like structure with the exchange coupling RKKY is investigated using the effective-field theory with correlations.The Hamiltonian for the bilayer nano-stanene-like structure is

    whereSizandσzjare the spin operators with possible values ofandrespectively,J (<0) is the ferrimagnetic exchange coupling,JRKKYis the RKKY exchange coupling system,D1(D2) is the anisotropy of the red (blue) spin atoms,and h is the longitudinal magnetic field.

    The JRKKYcoupling between the magnetic bilayers is defined by [34]

    According to [43,44],the coefficientais the lattice constant,while J0denotes the magnetic coupling constant.a2J0is equal to one as the unit

    Within the framework of the effective-field theory with correlations,two types of sublattice magnetization (M1and M2) can be calculated [45–47]:

    wherea1=Jη1?,a2=Jη2?,b1=JRKKYη1?,b2=JRKKYη2?and ?=??xis the differential operator and

    The total average magnetization M per magnetic atom is calculated by

    The functionsFa(x),Fb(x)andGa(x),Gb(x)can be expressed as

    whereλandφare the eigenvalues and eigenfunctions,respectively,which can be calculated using a computer program.

    The average magnetic susceptibility is

    The specific heat of the bilayer nano-stanene-like structure is

    where U is the internal energy of the bilayer nano-stanenelike structure.It can be calculated by

    where N is the number of sites.<>denotes expectation.Because the terms in equation (15) are complex,they are calculated using a computer program.

    3.Numerical results and discussion

    In this section,we discuss the magnetic and thermodynamic properties of bilayer nano-stanene-like structures.At zero temperature,we suppose that the two types of spins are arranged in opposite directions,where spin-7/2 is parallel to the longitudinal magnetic field (h),while spin-3/2 is antiparallel to the longitudinal magnetic field (h).Typical numerical results for the bilayer nano-stanene-like structure are presented in figures 2–6.The influences of the ferrimagnetic exchange coupling (J) and anisotropies (D1,D2) on the magnetic and thermodynamic properties are presented.

    The influences of the ferrimagnetic exchange coupling J on the magnetic and thermodynamic properties of the bilayer nano-stanene-like structure are shown in figures 2(a)–(f).The parameters are set to D1=-0.6,D2=-2.0,h=0.4,and N=2.The temperature dependence of the total magnetization of the system is shown in figure 2(a),which shows two different saturation magnetizations (Ms).For example,Ms=0.5 and 1.0 for J=-0.5 (-0.6) and-0.7 (-1.1,-1.5),respectively.To evaluate the variation rule of the total system average magnetization M,we study the variations of the magnetizations M1and M2of the sublattices of layers A and B of the system with the ferrimagnetic exchange coupling J,as shown in figure 2(c).With the change in the ferrimagnetic exchange coupling J,the magnetization of the sublattice also changes.The total magnetization and sublattice magnetization satisfy equation (8).For example,for J=1.1,M=(M1+M2)/2=(3.5-1.5)/2=1.The ferrimagnetic exchange coupling J mainly controls the change in the total magnetization by affecting the sublattice magnetization.According to equation (13),the susceptibility is the first derivative of the magnetization with respect to the longitudinal magnetic field.The temperature corresponding to its highest point is referred to as blocking temperature (TB).Figure 2(b) shows the curve of the system as a function of the temperature.With the increase in the ferrimagnetic exchange coupling |J|,the highest point of the susceptibility curve shifts to the hightemperature region,that is,the blocking temperature TBincreases with the ferrimagnetic exchange coupling|J|.When|J|=0.5,0.6,0.7,1.1,and 1.5,the corresponding blocking temperatures of the system are TB=0.615,1.115,2.47,5.73,and 8.405,respectively.We studied the change in the system blocking temperature,as shown in figure 2(d).The blocking temperature divides the system into ferrimagnetic and paramagnetic phases.When the temperature is higher than the blocking temperature,the system is in the paramagnetic phase(white region);otherwise,it is in the ferrimagnetic phase(yellow region).The physical origin is the competition between ordered energy and disordered energy.At lower temperature,ordered energy dominates and the system is in a ferromagnetic phase.At higher temperature,the disordered energy dominates and the system transforms into a paramagnetic phase.The system blocking temperature increases linearly with the ferrimagnetic exchange coupling |J|,which is consistent with the change in figure 2(b).The temperature dependence of the internal energy (U) for the bilayer nanostanene-like structure is shown in figure 2(e).The increase of|J| can reduce the internal energy.With the increase in temperature,the ground state will increase.After reaching a certain temperature,the system can hardly change,mainly as,at low temperatures,each sublattice is less affected by the thermal disturbance and the influence of the exchange effect J is dominant.However,with the increase in temperature,the thermal disturbance energy is dominant.The temperature corresponding to the inflection point of the internal energy curve is the blocking temperature.With the increase in ferrimagnetic exchange coupling |J|,the system blocking temperature increases,which has the same trend as in figure 2(b).The temperature dependence of the specific heat(Cv) for the bilayer nano-stanene-like structure is shown in figure 2(f).A singular phenomenon at the blocking temperature was observed in the specific heat curve.When|J|increased,the blocking temperature at the singular position shifted toward a high temperature.This agrees with the observations in figure 2(e).

    Figure 1.A sketch of bilayer nano-stanene-like with RKKY coupling.

    Figure 2.Thermal variations of the (a) magnetization,(b) sublattice magnetizations,(c) susceptibility,(d) internal energy,and (e) specific heat with D1=-0.6,D2=-2.0,h=0.4,N=2 and various J.

    Figure 3.Thermal variations of the (a) magnetization,(b) sublattice magnetizations,(c) susceptibility,(d) internal energy,and (e) specific heat with J=-1.5,D2=-2.0,h=0.4,N=2 and various D1.

    Figure 4.Thermal variations of the (a) magnetization,(b) sublattice magnetizations,(c) susceptibility,(d) internal energy,and (e) specific heat with J=-1.5,D1=-0.6,h=0.4,N=2 and various D2.

    Figure 5.Thermal variations of the (a) magnetization,(b) sublattice magnetizations,(c) susceptibility,(d) internal energy,and (e) specific heat with J=-1.5,D1=-0.6,D2=-2.0,N=2,and various h.

    Figure 6.Thermal variations of the (a) magnetization,(b) sublattice magnetizations,(c) susceptibility,(d) internal energy,and (e) specific heat with J=-1.0,D1=-1.4,D2=-0.6,h=0.4,and various N.

    The influences of the anisotropy D1on the magnetic and thermodynamic properties of the bilayer nano-stanene-like structure are shown in figures 3(a)–(f).The typical parameters are J=-1.5,D2=-2.0,h=0.4,and N=2.The temperature dependence of the total magnetization of the system is presented in figure 3(a),which shows two different behaviors.In the first type,the magnetization curve initially rises,drops,and finally becomes flat with the increase in temperature at D1=-1.4 and-2.2.In the other type,the magnetization curve increases with the decrease in temperature,and then becomes flat at D1=-0.6,-1.1,and-1.6.In the selected parameter range,the saturation magnetization (Ms) has three different values,Ms=0,0.5,and 1.0,when D1=-2.2,-1.6(-1.4),and-1.1 (-0.6),respectively.To better understand the variation rule of the total magnetization M of the system,figure 3(c)shows the variations of the magnetizations M1and M2of the sublattices of layers A and B of the system.With the change in D1,the magnetization of M1changes significantly,M1=1.5,2.5,and 3.5,for D1=-2.2,-1.6(-1.4),and-1.1 (-0.6),respectively.M2is constant,-1.5.The anisotropy D1mainly influences the magnetization of the A-layer sublattice.The temperature dependence of the susceptibility of the bilayer nano-stanene-like structure is shown in figure 3(b).A singular phenomenon at the blocking temperature is observed on the susceptibility curve.When|D1| increased,the blocking temperature at the singular position shifted toward a low temperature.TB=8.450,7.005,6.015,5.285,and 3.07 for |D1|=2.2,1.6,1.4,1.1,and 0.6,respectively.The anisotropy D1dependence of the blocking temperature for the bilayer nano-stanene-like structure is shown in figure 3(d).The system blocking temperature decreases linearly with the increase in anisotropy|D1|,which is consistent with the change in figure 3(b).When the temperature is higher than the blocking temperature,the system is in the paramagnetic phase(white region);otherwise,it is in the ferrimagnetic phase(yellow region).Similar results are also found in materials RKKY coupling [48].The temperature dependence of the internal energy (U) for the bilayer nano-stanene-like structure is shown in figure 3(e).The system internal energy increases with the anisotropy |D1|.However,the rate of increase gradually decreases.However,in the high-temperature region,the internal energy system almost directly increases with the increase in|D1|,because,at low temperatures,the sublattices are slightly affected by the thermal disturbance energy and the influence of D1is dominant.However,with the increase in temperature,the thermal disturbance energy is dominant.The temperature dependence of the specific heat (Cv) for the bilayer nano-stanene-like structure is shown in figure 3(f).The Cvcurves have a sharp peak at the blocking temperature for different values of D1,which corresponds to the inflection point on the U curve.The blocking temperature increases with the decrease in the anisotropy |D1|.In particular,the Cvcurves showed distinct peaks at low temperatures,because the U curve showed an abnormal temperature dependence.

    The influences of the anisotropy D2on the magnetic and thermodynamic properties of the bilayer nano-stanene-like structure are shown in figures 4(a)–(f).The typical parameters are J=-1.5,D1=-0.6,h=0.4,and N=2.The temperature dependence of the total average and sublattice magnetizations of the system are shown in figures 4(a)and(c).As shown in figure 4(a),the magnetization curves exhibited the same behavior types.The magnetization curve decreased with the increase in temperature T,and finally tended to a stable value of 0.078.In the selected parameter range,the saturation magnetization |Ms| is always 1.To explain the M curve,the sublattice M1(dashed) and M2(dotted) are shown in figure 4(c).With the increase in anisotropy D1,the magnetization of the system sublattice remained constant.At temperature T=0,M1=3.5,M2=-1.5.In figure 4(b),the susceptibility curve for the bilayer nano-stanene-like structure was obtained by changing D1.All curves drop rapidly at high temperatures,which indicates that the system is in the paramagnetic phase.The blocking temperature decreased when|D2|increased.This is in agreement with the M curves shown in figure 4(b).The thermal variations of the internal energy(U) of the bilayer nano-stanene-like structure are shown in figure 4(e).With the increase in D2,the internal energy of the system gradually increases.Unlike D1,the effect of D2on the internal energy of the system is always proportional.The temperature dependence of the specific heat (Cv) for the bilayer nano-stanene-like structure is shown in figure 4(f).The Cvcurves have a sharp peak at the blocking temperature for different D2values,which corresponds to the inflection point on the U curve.The blocking temperature decreased with the increase in the anisotropy |D2|.This is in agreement with figures 3(e)–(f).The maximum values corresponding to blocking temperature are found on the susceptibility curve and the specific heat curves in figures 4(b)and (f),which are in agreement with those obtained in figure 2 of [49].

    The influences of the longitudinal magnetic field h on the magnetic and thermodynamic properties of the bilayer nanostanene-like structure are shown in figures 5(a)–(f).The typical parameters are J=-1.5,D1=-0.6,D2=-2.0,N=2.The temperature dependence of the total magnetization of the system is shown in figure 5(a).At T=0,the saturation magnetization has only one value,Ms=1.When T>0,the magnetization increases with the longitudinal magnetic field h,mainly due to the competition between the thermal disturbance energy and longitudinal magnetic field energy.As the temperature T continues to increase,the magnetization curve tends to a stable value,which increases with the longitudinal magnetic field h.This shows that the magnetic properties of the system are mainly determined by the longitudinal magnetic field intensity when the temperature increases to a critical value.The magnetizations M1and M2of layer-A and layer-B sublattices are shown in figure 5(c).According to figure 5(c),the magnetization curve M2almost does not change with the change in longitudinal magnetic field h and temperature T,while the change trend of the magnetization curve M1is consistent with that of the total magnetization curve.The A-layer sublattice has a major effect on the magnetic properties of the system.In figure 5(b),the susceptibility curve for the bilayer nano-stanene-like structure was obtained by changing h.The temperature corresponding to the highest point is the blocking temperature.The blocking temperature decreases with the increase in external magnetic field h.For example,TB=7.01,6.945,6.92,6.905,6.88,6.83,6.755,and 6.635 for h=0.5,1.0,1.5,2.0,2.5,3.0,3.5,and 4.0,respectively.To study the influence of the blocking temperature on the system,the longitudinal magnetic field dependence of the blocking temperature is shown in figure 5(d).In contrast to the ferrimagnetic exchange coupling and anisotropy,there is no linear change between the blocking temperature and longitudinal magnetic field.The area of the ferrimagnetic phase(yellow area)is larger than that of the paramagnetic phase (white area),which indicates that the system is more likely to exhibit ferrimagnetism.The temperature dependence of the internal energy (U) for the bilayer nano-stanene-like structure is shown in figure 5(e).In the low-temperature region,the internal energy increases with h,while,in the high-temperature region,the internal energy does not change with the change in h,mainly because,in the intermediate temperature region,the internal energy is affected by the external field energy and thermal disturbance energy.At a smaller external field,the internal energy is more severely affected by the thermal disturbance energy and the internal energy increases faster.The temperature corresponding to the inflection point of the internal energy curve is the blocking temperature.With the increase in the longitudinal magnetic field h,the system blocking temperature decreases,which has the same trend as that in figure 5(b).The temperature dependence of the specific heat (Cv) for the bilayer nano-stanene-like structure is shown in figure 5(f).In the low-temperature region,the specific heat of the system is disturbed,which is mainly determined by the competition between the temperature and anisotropy.

    The influence of the number of nonmagnetic layers N on the magnetic and thermodynamic properties of the bilayer nano-stanene-like structure was investigated,as shown in figures 6(a)–(e).The typical parameters are J=-1.5,D1=-0.6,D2=-2.0,h=0.4.The temperature dependence of the total magnetization of the system is shown in figure 6(a).At T=0,the saturation magnetization has only one value,Ms=1.When the temperature is T>0,the magnetization decreases with the increase in N.However,the difference between one and two layers is considerably larger than that between two and ten layers.This shows that,with the increase in the number of layers,the effect on the magnetic properties of the system decreases.The magnetizations M1and M2of layer-A and layer-B sublattices are shown in figure 6(c).According to figure 6(c),the magnetization curve M2almost does not change with the change in N and temperature T,while the changing trend of the magnetization curve M1is consistent with that of the total magnetization curve.The A-layer sublattice has a major effect on the magnetic properties of the system.In figure 5(b),the susceptibility curve for the bilayer nano-stanene-like structure was obtained by changing N.The temperature corresponding to the highest point is the blocking temperature,which decreases with the increase in N.For example,TB=10.96,8.45,and 7.9 for N=1,2,and 10,respectively.The temperature dependences of the internal energy (U) and specific heat(Cv)of the bilayer nano-stanene-like structure are shown in figures 6(d),(e).The internal energy of the system increases,while the specific heat decreases with the increase in the number of layers.The disturbance of the specific heat at low temperatures is mainly caused by the competition between the temperature and anisotropy.Moreover,with the increase in the number of layers,the effect on the magnetic and thermodynamic properties of the system decreases.It is worth noting that the results obtained may be useful in helping to understand the magnetic properties of other RKKY materials,such as Ce–Al metallic glasses[48],NdRhIn5[49].

    4.Conclusions

    Based on the EFT,a bilayer nano-stanene-like structure described by mixed spin 7/2 and 3/2 Ising models was studied.The exchange coupling,anisotropy,external fields,and number of nonmagnetic layers regulated the magnetic and thermodynamic properties of the system.With the changes in exchange and anisotropy,the system could exhibit different magnetic configurations.The effect on the magnetic and thermodynamic properties of the system decreased with the increase in the number of non-magnetic layers.

    Acknowledgments

    This project was supported by the Nation Science Foundation of China (Grant no.51920105011) and Key R&D project of Liaoning Province of China (No.2020JH2/10300079) and LiaoNing revitalization talents program (XLYC1908034).

    桃色一区二区三区在线观看| 两个人的视频大全免费| 久久精品久久久久久噜噜老黄 | 欧美激情国产日韩精品一区| 日韩欧美精品v在线| 亚洲国产欧美人成| 日本一二三区视频观看| 色尼玛亚洲综合影院| 在线播放无遮挡| 老熟妇仑乱视频hdxx| 精品乱码久久久久久99久播| 春色校园在线视频观看| 精品久久久久久成人av| 久久久久免费精品人妻一区二区| 亚洲美女黄片视频| 国国产精品蜜臀av免费| 麻豆国产av国片精品| av在线老鸭窝| 色哟哟哟哟哟哟| 精品乱码久久久久久99久播| 国产亚洲av嫩草精品影院| 国内久久婷婷六月综合欲色啪| 婷婷亚洲欧美| 免费av毛片视频| 免费人成视频x8x8入口观看| 亚洲美女搞黄在线观看 | 男女下面进入的视频免费午夜| 欧美日韩乱码在线| 久久99热6这里只有精品| 少妇的逼水好多| 国内精品美女久久久久久| 亚洲av.av天堂| 精品久久久久久久末码| 蜜桃久久精品国产亚洲av| 国内精品一区二区在线观看| 久久婷婷人人爽人人干人人爱| 女人十人毛片免费观看3o分钟| 免费看av在线观看网站| 午夜视频国产福利| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧洲综合997久久,| 熟女人妻精品中文字幕| av专区在线播放| 三级国产精品欧美在线观看| 国产一区二区在线av高清观看| 麻豆国产av国片精品| 午夜精品一区二区三区免费看| 免费观看在线日韩| 日本精品一区二区三区蜜桃| 国产美女午夜福利| 麻豆一二三区av精品| 一区二区三区高清视频在线| 波多野结衣高清作品| 毛片女人毛片| 看片在线看免费视频| ponron亚洲| 变态另类丝袜制服| 成人av在线播放网站| 免费观看精品视频网站| 91久久精品电影网| 变态另类丝袜制服| 亚洲人与动物交配视频| 国产在线男女| 深夜a级毛片| 少妇裸体淫交视频免费看高清| 亚洲一区高清亚洲精品| 国产精品女同一区二区软件 | 国产免费av片在线观看野外av| 免费搜索国产男女视频| 蜜桃久久精品国产亚洲av| 看十八女毛片水多多多| 国产蜜桃级精品一区二区三区| 毛片一级片免费看久久久久 | 五月伊人婷婷丁香| 色播亚洲综合网| 亚洲男人的天堂狠狠| 成年版毛片免费区| 久久亚洲精品不卡| 中亚洲国语对白在线视频| 国内久久婷婷六月综合欲色啪| 欧美区成人在线视频| 免费电影在线观看免费观看| bbb黄色大片| 久久久久久久久中文| 国产精品久久久久久亚洲av鲁大| av在线天堂中文字幕| 国产日本99.免费观看| 中文资源天堂在线| 无遮挡黄片免费观看| 日本爱情动作片www.在线观看 | 看十八女毛片水多多多| 亚洲综合色惰| 成年人黄色毛片网站| 亚洲欧美日韩高清在线视频| 国产爱豆传媒在线观看| 亚洲精品国产成人久久av| 欧美激情在线99| 欧美丝袜亚洲另类 | 在线免费观看的www视频| 高清毛片免费观看视频网站| 中文字幕av在线有码专区| 日韩欧美国产一区二区入口| 色播亚洲综合网| 日韩欧美国产在线观看| 国产极品精品免费视频能看的| 欧美精品国产亚洲| 中文字幕精品亚洲无线码一区| 亚洲精华国产精华液的使用体验 | 久久热精品热| av在线天堂中文字幕| 特大巨黑吊av在线直播| 免费av不卡在线播放| 高清日韩中文字幕在线| 最近在线观看免费完整版| 麻豆一二三区av精品| 亚洲美女黄片视频| 男女视频在线观看网站免费| 欧美最黄视频在线播放免费| 最好的美女福利视频网| 欧美在线一区亚洲| 老师上课跳d突然被开到最大视频| 国产午夜福利久久久久久| 女生性感内裤真人,穿戴方法视频| 一级黄片播放器| 91狼人影院| 3wmmmm亚洲av在线观看| 日韩高清综合在线| 成人欧美大片| 男人舔女人下体高潮全视频| 久99久视频精品免费| 日日摸夜夜添夜夜添小说| 精品一区二区三区视频在线观看免费| 一a级毛片在线观看| 亚洲七黄色美女视频| 成年女人毛片免费观看观看9| 亚洲,欧美,日韩| 国产精品福利在线免费观看| 成年女人永久免费观看视频| 国产精品一区www在线观看 | 亚洲精品粉嫩美女一区| 国产精品一区www在线观看 | 亚洲av美国av| 日本黄色片子视频| 国语自产精品视频在线第100页| 我的女老师完整版在线观看| 国内精品宾馆在线| 色av中文字幕| av天堂中文字幕网| 少妇的逼好多水| 亚洲欧美激情综合另类| 成人国产综合亚洲| 国产欧美日韩精品亚洲av| 亚洲人成伊人成综合网2020| 女同久久另类99精品国产91| 亚洲性夜色夜夜综合| 91麻豆av在线| 999久久久精品免费观看国产| 嫩草影院精品99| 欧美高清性xxxxhd video| 亚洲第一区二区三区不卡| 色综合站精品国产| 精品午夜福利视频在线观看一区| 麻豆久久精品国产亚洲av| 亚洲狠狠婷婷综合久久图片| 成人二区视频| 国产女主播在线喷水免费视频网站 | 亚洲精品日韩av片在线观看| 嫁个100分男人电影在线观看| 99久久精品一区二区三区| 无遮挡黄片免费观看| 欧美xxxx黑人xx丫x性爽| 99热精品在线国产| 精品人妻视频免费看| 亚洲精品影视一区二区三区av| 欧美一级a爱片免费观看看| 午夜免费成人在线视频| 久久久久久久精品吃奶| 欧美最黄视频在线播放免费| 国产伦精品一区二区三区视频9| 在现免费观看毛片| 亚洲性久久影院| 日韩欧美一区二区三区在线观看| 人妻少妇偷人精品九色| 成人国产综合亚洲| 精品久久国产蜜桃| 蜜桃久久精品国产亚洲av| 悠悠久久av| 免费观看人在逋| 国产色爽女视频免费观看| 亚洲真实伦在线观看| 一个人观看的视频www高清免费观看| 99热这里只有是精品50| 免费看a级黄色片| 国产精品久久视频播放| 小蜜桃在线观看免费完整版高清| 久久这里只有精品中国| 精品人妻熟女av久视频| h日本视频在线播放| 国国产精品蜜臀av免费| 色尼玛亚洲综合影院| 最近在线观看免费完整版| 看黄色毛片网站| 在线观看一区二区三区| 午夜爱爱视频在线播放| 成人国产综合亚洲| 国产精品日韩av在线免费观看| 91麻豆av在线| 久久久午夜欧美精品| 亚洲精华国产精华精| 日韩一区二区视频免费看| 亚洲精品成人久久久久久| 最近在线观看免费完整版| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧洲综合997久久,| 老司机福利观看| 永久网站在线| 国产一区二区激情短视频| 老司机福利观看| 国产一区二区三区视频了| 日本爱情动作片www.在线观看 | 国产伦一二天堂av在线观看| 精品久久久久久久久亚洲 | 欧美又色又爽又黄视频| 久久久久国内视频| 亚洲性久久影院| 日本精品一区二区三区蜜桃| 高清在线国产一区| 午夜影院日韩av| 亚洲欧美清纯卡通| 欧美精品啪啪一区二区三区| 国产精品自产拍在线观看55亚洲| 黄色欧美视频在线观看| 色噜噜av男人的天堂激情| 精品人妻熟女av久视频| 精品不卡国产一区二区三区| 狠狠狠狠99中文字幕| 老司机福利观看| 亚洲精华国产精华液的使用体验 | 永久网站在线| 色综合亚洲欧美另类图片| 深爱激情五月婷婷| 免费看日本二区| 亚洲色图av天堂| 五月玫瑰六月丁香| 一本久久中文字幕| 两人在一起打扑克的视频| 国产伦在线观看视频一区| 精品久久久久久久久亚洲 | 又黄又爽又免费观看的视频| 国产一区二区在线观看日韩| 久久久精品欧美日韩精品| 1024手机看黄色片| 观看免费一级毛片| 成年女人看的毛片在线观看| 五月玫瑰六月丁香| 99精品久久久久人妻精品| 麻豆一二三区av精品| 亚洲美女黄片视频| 亚洲欧美日韩卡通动漫| 久久精品国产鲁丝片午夜精品 | 午夜福利在线观看吧| 中文在线观看免费www的网站| 成人特级黄色片久久久久久久| 欧美精品国产亚洲| 免费在线观看成人毛片| 亚洲国产精品合色在线| 久久精品国产清高在天天线| 在线免费十八禁| 中文资源天堂在线| 麻豆国产97在线/欧美| 尤物成人国产欧美一区二区三区| 精华霜和精华液先用哪个| bbb黄色大片| 亚洲电影在线观看av| 69av精品久久久久久| 色综合婷婷激情| 亚洲国产欧洲综合997久久,| 国产在线精品亚洲第一网站| 国产精品久久久久久精品电影| 男人狂女人下面高潮的视频| 午夜免费成人在线视频| 成人av在线播放网站| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久末码| 亚洲国产精品合色在线| 日韩欧美免费精品| 可以在线观看毛片的网站| 免费电影在线观看免费观看| 一本精品99久久精品77| 一a级毛片在线观看| 日本黄色片子视频| 成人国产一区最新在线观看| 可以在线观看的亚洲视频| 亚洲av二区三区四区| 搡老妇女老女人老熟妇| 亚洲午夜理论影院| 国产精品日韩av在线免费观看| 中文在线观看免费www的网站| 日本色播在线视频| 久久久久性生活片| 欧美一区二区精品小视频在线| 春色校园在线视频观看| 国产高清不卡午夜福利| 欧美zozozo另类| 国产亚洲精品av在线| 国产精品三级大全| 精品国内亚洲2022精品成人| 少妇的逼好多水| 又黄又爽又刺激的免费视频.| 男人舔女人下体高潮全视频| 亚洲人成网站在线播| 久久欧美精品欧美久久欧美| 人妻少妇偷人精品九色| 999久久久精品免费观看国产| 亚洲av日韩精品久久久久久密| 成熟少妇高潮喷水视频| 美女免费视频网站| 亚洲欧美日韩高清专用| av在线亚洲专区| 久久久久久国产a免费观看| 午夜久久久久精精品| 在线观看一区二区三区| 人妻久久中文字幕网| 久久热精品热| 国产成人av教育| 国内精品美女久久久久久| 18禁裸乳无遮挡免费网站照片| h日本视频在线播放| 一区二区三区四区激情视频 | 美女被艹到高潮喷水动态| 99久久中文字幕三级久久日本| 久久精品国产亚洲av天美| 少妇丰满av| 如何舔出高潮| 黄片wwwwww| 免费看av在线观看网站| 日韩欧美精品v在线| 97超级碰碰碰精品色视频在线观看| 婷婷精品国产亚洲av| 久久久久久国产a免费观看| 久久久久久久精品吃奶| 久久久久国内视频| 成人综合一区亚洲| 婷婷色综合大香蕉| 午夜精品久久久久久毛片777| 国产免费男女视频| 国产男人的电影天堂91| 精品99又大又爽又粗少妇毛片 | 日韩欧美精品免费久久| 午夜免费男女啪啪视频观看 | 国产男人的电影天堂91| 久久精品国产99精品国产亚洲性色| 一区二区三区激情视频| 色综合站精品国产| 亚洲不卡免费看| 中文字幕av成人在线电影| 亚洲精品久久国产高清桃花| 色综合婷婷激情| 国产私拍福利视频在线观看| 性欧美人与动物交配| 成人毛片a级毛片在线播放| 一个人观看的视频www高清免费观看| 国产精品野战在线观看| 国产精品久久久久久精品电影| 在线免费观看不下载黄p国产 | 禁无遮挡网站| 欧美不卡视频在线免费观看| 亚洲性夜色夜夜综合| 淫妇啪啪啪对白视频| 国产不卡一卡二| 久99久视频精品免费| 又黄又爽又免费观看的视频| 亚洲无线在线观看| av在线老鸭窝| 成人三级黄色视频| 人妻少妇偷人精品九色| 亚洲第一区二区三区不卡| 丝袜美腿在线中文| 韩国av一区二区三区四区| 97超视频在线观看视频| 欧美极品一区二区三区四区| 身体一侧抽搐| 午夜亚洲福利在线播放| 美女被艹到高潮喷水动态| 99热只有精品国产| 精品无人区乱码1区二区| 夜夜看夜夜爽夜夜摸| 亚洲最大成人av| 国产成人a区在线观看| eeuss影院久久| 一进一出抽搐动态| 在线a可以看的网站| 两个人视频免费观看高清| 中文字幕av在线有码专区| 久久这里只有精品中国| 很黄的视频免费| 身体一侧抽搐| 天天躁日日操中文字幕| 熟妇人妻久久中文字幕3abv| 久久精品久久久久久噜噜老黄 | 热99re8久久精品国产| 亚洲精品亚洲一区二区| 欧美3d第一页| 男女下面进入的视频免费午夜| 日韩欧美在线二视频| 亚洲综合色惰| 免费人成在线观看视频色| 亚洲av日韩精品久久久久久密| 亚洲成av人片在线播放无| 欧美日韩乱码在线| 国产乱人伦免费视频| 午夜老司机福利剧场| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩高清专用| 国产精品久久久久久亚洲av鲁大| 老司机午夜福利在线观看视频| avwww免费| 别揉我奶头 嗯啊视频| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩高清在线视频| 九九热线精品视视频播放| 在线观看舔阴道视频| 亚洲av一区综合| 欧美精品啪啪一区二区三区| 性色avwww在线观看| 精品一区二区三区人妻视频| 亚洲最大成人手机在线| 欧美精品啪啪一区二区三区| 国产成人福利小说| 亚洲国产精品久久男人天堂| 97碰自拍视频| 女人十人毛片免费观看3o分钟| 可以在线观看毛片的网站| 精品国产三级普通话版| 欧美色视频一区免费| 亚洲,欧美,日韩| 有码 亚洲区| 老司机福利观看| 日韩欧美 国产精品| 夜夜爽天天搞| 精品久久久噜噜| 91av网一区二区| 人妻少妇偷人精品九色| 三级男女做爰猛烈吃奶摸视频| 综合色av麻豆| 国产精品一区二区免费欧美| 日韩中字成人| 国产日本99.免费观看| 亚洲成人久久性| 18禁裸乳无遮挡免费网站照片| 久久精品国产亚洲av涩爱 | 久久久久久久久久成人| 成年女人永久免费观看视频| 国产 一区 欧美 日韩| 18禁黄网站禁片免费观看直播| 午夜激情欧美在线| 免费在线观看影片大全网站| 最后的刺客免费高清国语| 少妇高潮的动态图| 偷拍熟女少妇极品色| 少妇的逼水好多| 少妇的逼好多水| 国产色爽女视频免费观看| 精品无人区乱码1区二区| 网址你懂的国产日韩在线| 超碰av人人做人人爽久久| 免费一级毛片在线播放高清视频| 亚洲自偷自拍三级| 中文字幕人妻熟人妻熟丝袜美| 欧美bdsm另类| 国产精品伦人一区二区| 国产男靠女视频免费网站| 非洲黑人性xxxx精品又粗又长| 成人毛片a级毛片在线播放| 亚洲四区av| 国产熟女欧美一区二区| 毛片一级片免费看久久久久 | av在线观看视频网站免费| 美女 人体艺术 gogo| 亚洲 国产 在线| 非洲黑人性xxxx精品又粗又长| 亚洲精品成人久久久久久| 国产大屁股一区二区在线视频| 久久精品综合一区二区三区| 国产精品国产高清国产av| 久久九九热精品免费| 亚洲真实伦在线观看| 亚洲精品乱码久久久v下载方式| 亚洲av成人av| 日本熟妇午夜| 国产精华一区二区三区| 最好的美女福利视频网| 人妻久久中文字幕网| 婷婷色综合大香蕉| 国产精品久久久久久久久免| 亚洲精品一区av在线观看| 国产精品嫩草影院av在线观看 | 色噜噜av男人的天堂激情| 欧美丝袜亚洲另类 | 亚洲aⅴ乱码一区二区在线播放| 人人妻人人看人人澡| 国产精品av视频在线免费观看| 婷婷亚洲欧美| 亚洲精品粉嫩美女一区| 亚洲天堂国产精品一区在线| 午夜a级毛片| 亚洲欧美精品综合久久99| 自拍偷自拍亚洲精品老妇| 97热精品久久久久久| 白带黄色成豆腐渣| 99国产精品一区二区蜜桃av| 欧美三级亚洲精品| 亚洲人成伊人成综合网2020| 国内揄拍国产精品人妻在线| 欧美潮喷喷水| av视频在线观看入口| 波野结衣二区三区在线| 少妇人妻精品综合一区二区 | 国产精品野战在线观看| 黄片wwwwww| 老司机福利观看| 一级a爱片免费观看的视频| 干丝袜人妻中文字幕| 人人妻人人澡欧美一区二区| 亚洲人与动物交配视频| 亚洲精品一卡2卡三卡4卡5卡| 我要看日韩黄色一级片| 啦啦啦韩国在线观看视频| 国国产精品蜜臀av免费| 日韩大尺度精品在线看网址| 国产av不卡久久| 欧美一级a爱片免费观看看| 精品午夜福利在线看| 别揉我奶头 嗯啊视频| 精华霜和精华液先用哪个| 最新在线观看一区二区三区| 午夜影院日韩av| 最新在线观看一区二区三区| 久久久久久久久大av| 中文字幕高清在线视频| 免费人成视频x8x8入口观看| 亚洲专区中文字幕在线| 内地一区二区视频在线| 91久久精品国产一区二区三区| 亚洲av二区三区四区| x7x7x7水蜜桃| 久久99热这里只有精品18| 18+在线观看网站| 精品久久久久久久末码| 人人妻人人澡欧美一区二区| 国产又黄又爽又无遮挡在线| 俄罗斯特黄特色一大片| 一区二区三区激情视频| 蜜桃亚洲精品一区二区三区| 十八禁网站免费在线| 国产毛片a区久久久久| 麻豆国产av国片精品| 一区福利在线观看| 啦啦啦韩国在线观看视频| 夜夜爽天天搞| 日韩欧美国产一区二区入口| 国产又黄又爽又无遮挡在线| 一级毛片久久久久久久久女| 麻豆久久精品国产亚洲av| 老司机福利观看| 久久久久久国产a免费观看| 国产黄片美女视频| 亚洲欧美激情综合另类| 亚洲一级一片aⅴ在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 精品欧美国产一区二区三| 男人舔女人下体高潮全视频| 真人做人爱边吃奶动态| 性色avwww在线观看| 国产精品福利在线免费观看| 中文字幕久久专区| 亚洲国产精品成人综合色| 日韩人妻高清精品专区| 直男gayav资源| 最近视频中文字幕2019在线8| 在线天堂最新版资源| 久久久国产成人精品二区| 国产精品一区二区三区四区久久| 亚洲av五月六月丁香网| aaaaa片日本免费| 高清日韩中文字幕在线| 伊人久久精品亚洲午夜| 久久天躁狠狠躁夜夜2o2o| 免费观看在线日韩| 偷拍熟女少妇极品色| 麻豆国产av国片精品| 欧美三级亚洲精品| 成年人黄色毛片网站| 99视频精品全部免费 在线| 一边摸一边抽搐一进一小说| 国产精品亚洲一级av第二区| 18禁裸乳无遮挡免费网站照片| 国产老妇女一区| 国产亚洲精品久久久com| 在线天堂最新版资源| 亚洲欧美清纯卡通| 中文亚洲av片在线观看爽| 欧美色视频一区免费| 国内少妇人妻偷人精品xxx网站| 久久午夜亚洲精品久久| 久久热精品热| 无人区码免费观看不卡| av在线观看视频网站免费| 国产v大片淫在线免费观看| 欧美日韩精品成人综合77777| 日本三级黄在线观看| 欧美黑人欧美精品刺激| 亚洲欧美日韩高清在线视频| 国产一区二区激情短视频| 亚洲性久久影院|