• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scattering amplitude and two-body loss of ultracold alkaline-earth atoms in a shaking synthetic magnetic field

    2022-08-02 02:48:24ShuYangYueChenandPengZhang
    Communications in Theoretical Physics 2022年6期

    Shu Yang,Yue Chen and Peng Zhang,2,3

    1 Department of Physics,Renmin University of China,Beijing 100872,China

    2 Beijing Computational Science Research Center,Beijing 100084,China

    3 Beijing Key Laboratory of Opto-electronic Functional Materials &Micro-nano Devices,Renmin University of China,Beijing 100872,China

    Abstract The idea of manipulating the interaction between ultracold fermionic alkaline-earth (like)atoms via a laser-induced periodical synthetic magnetic field was proposed in Kanász-Nagy et al (2018 Phys.Rev.B 97,155156).In that work,it was shown that in the presence of the shaking synthetic magnetic field,two atoms in 1S0 and 3P0 states experience a periodical interaction in a rotated frame,and the effective inter-atomic interaction was approximated as the time-averaged operator of this time-dependent interaction.This technique is supposed to be efficient for 173Yb atoms which have a large natural scattering length.Here we examine this time-averaging approximation and derive the rate of the two-body loss induced by the shaking of the synthetic magnetic field,by calculating the zero-energy inter-atomic scattering amplitude corresponding to the explicit periodical interaction.We find that for the typical cases with shaking angular frequency λ of the synthetic magnetic field being of the order of (2π)kHz,the time-averaging approximation is applicable only when the shaking amplitude is small enough.Moreover,the two-body loss rate increases with the shaking amplitude,and is of the order of 10-10 cm3·s-1 or even larger when the time-averaging approximation is not applicable.Our results are helpful for the quantum simulations with ultracold gases of fermionic alkaline-earth (like) atoms.

    Keywords:ultracold atom,spin-exchange interaction,Floquet engineering

    1.Introduction

    In recent years,the ultracold gases of alkaline-earth (like)atoms attracted much interest from both theorists and experimentalists [1,2].These atoms can be prepared in not only the electronic-orbit ground state(the1S0state)but also some longlived electronic-orbit excited states (the3P0and3P2states).In addition,there is a spin-exchange interaction between two fermionic alkaline-earth (like) atoms in1S0and3P0states,respectively.Explicitly,the nuclear-spin states of these two atoms can be exchanged during collision (figure 1(a)) [3–18].Therefore,the ultracold alkaline-earth(like)atoms can be used in quantum simulations for many-body physics related to the spin-exchange processes [19–28],e.g.the Kondo effects.To implement these quantum simulations,it is important to control the spin-exchange interaction between two atoms in1S0and3P0states,respectively.People have proposed various approaches to control this interaction with confinement potential or laser beams and experimentally realized the former in a quasi-(1+0)dimensional system of ultracold173Yb atoms [13–21].

    In 2018,an optical-control approach for the above spinexchange interaction is proposed by Kana′sz-Nagy et al for173Yb atoms[19],which has relatively large natural scattering length.In this scheme,a single laser beam is applied to far-off-resonantly couple the3P0states to the3D1states.This beam induces a nuclear-spin-dependent AC-Stark shifts for the3P0states(figure 1(b)),which are proportional to the laser intensity and can be regarded as the effective Zeeman energies (EZEs) of a synthetic magnetic field.These EZEs can couple the scattering channels with respect to nuclear-spin singlet and triplet states.In this method,the laser intensity is periodically modulated,and thus the laser-induced EZEs for3P0are ‘shaking’.By changing the shaking amplitude and frequency,one can tune the effective inter-atomic interaction,i.e.realize a Floquet engineering.

    Figure 1.(a)A schematic of spin-exchange scattering process of two alkaline-earth (like) atoms in 1S0 and 3P0 states,respectively,with different nuclear-spin states.(b) A schematic of the laser-induced nuclear-spin dependent AC-Stark shifts(i.e.the EZEs)of 3P0 states of an 173Yb atom.A detailed discussion is given in appendix C of [19].

    Explicitly,in the presence of the shaking EZEs,there is a rotated frame where the free Hamiltonian of each atom is time-independent and the two-body interaction potential is a periodical function of time,which depends on the shaking of the EZEs.Moreover,in [19]the effective inter-atomic interaction is approximated to be the time-averaged value of this explicit periodical interaction potential.

    In this work we investigate the system of this scheme,and try to answer the following two questions:

    (i) How good is the above‘time-averaging approximation’for the effective inter-atomic interaction?

    (ii) How serious is the two-body loss (i.e.the heating effect) induced by the shaking of the laser intensity?

    To this end,we calculate the inter-atomic zero-energy scattering amplitudes corresponding to the explicit timedependent interaction potential for the173Yb atoms,via the Floquet scattering approach.We answer question (i) by comparing the results with the scattering amplitudes given by the time-averaged interaction potential and answer question(ii)by deriving the two-body loss rate from the imaginary part of the zero-energy scattering amplitudes.

    We study the typical cases with the shaking angular frequency λ ~kHz.We find that for these cases the time-averaging approximation is applicable only when the shaking amplitude of the EZE is small enough.In addition,the two-body loss rate K2increases with δ0.when the time-averaging approximation is not applicable we have K2?10-10cm3·s-1,which yields that for ultracold gases with typical density(1013–1014)/cm3the lifetime can be decreased to the order of (0.1–1) ms.

    Our results yield that,in the quantum simulations for a closed system (e.g.the quantum simulations for Kondo physics),the shaking amplitude δ0should be smaller enough so that the two-body loss rate is low enough.In this parameter region,the time-averaging approximation is usually applicable.On the other hand,since the two-body loss rate can be controlled by the amplitude and frequency of the shaking field,this system may be used for the studies of open quantum many-body systems with atom-number dissipation.

    The remainder of this paper is organized as follows.In section 2,we introduce the principle of the control for the interaction between alkaline-earth(like)atoms in1S0and3P0,respectively,with shaking EZEs.In section 3 we show the Floquet scattering approach for the calculation of inter-atomic zero-energy scattering amplitude.Our results are discussed in section 4 and a brief summary is given in section 5.

    2.Control of inter-atomic interaction with a shaking laser beam

    In this section,we introduce the interaction-manipulation scheme proposed in [19].

    2.1.System and inter-atomic interaction

    As shown in figure 1(a),we consider two ultracold173Yb atoms in the1S0-(g-)and3P0(e-)states,respectively.In the two-body problem,these two atoms can be considered as two distinguishable atoms,i.e.the g-atom and e-atom.We further assume that the nuclear-spin state of each atom can be either ↑or ↓,with magnetic quantum numbersmF(↑)ormF(↓),respectively,while the nuclear-spin states of the g-and e-atoms are different.Therefore,for our system,the two-atom internal state could be either

    or

    Furthermore,in the presence of a natural magnetic field B and a laser beam which can induce nuclear-spin dependent ACStark shifts (i.e.the EZEs) for the3P0states (figure 1(b)).Therefore,the total Zeeman energies Eα(β)of the state|α(β)〉is the summation of the one given by the natural magnetic field and the laser-induced EZE,and thus the Zeeman-energy difference between these two states is

    where δBis the difference of the Zeeman energies induced by the real magnetic field for states|β〉and|α〉,and δLis the EZE difference between these two states.Explicitly,we have

    where μe(g)is the nuclear magnetic moment of the e-(g-)atom andis the laser-induced AC-Stark shift of the3P0state with a magnetic quantum numbermI(↑)(mI(↓)).

    Now we consider the inter-atomic interaction of these two atoms.The bare interaction of these two atoms is diagonal on the basis of nuclear-spin singlet and triplet states,i.e.

    and thus can be expressed as

    where r ≡|r|with r is the relative position of these two atoms,and V±(r) is the interaction potential corresponding to the states |±〉.In this work,we consider the low-energy cases where both the relative kinetic energy of the two atoms and the amplitude and shaking frequency of the Zeeman energy gap δ are much smaller than the characteristic energy(the van der Waals energy) of the inter-atomic interaction potential5This low-energy condition is satisfied by the current experiments.For instance,for ultracold gases of 173Yb atoms EvdW is about ?(2π)3 MHz,while in the experiments the two-body relative kinetic energy is on the order of ?(2π)104 Hz,and the energy gap δ is also of this order when the magnetic field B is below 100 G..Therefore,we model the interaction potential(r) with the energy-independent Huang-Yang pseudopotential (HYP),i.e.we have (?=m=1,with m being the single-atom mass)

    where a±are the scattering lengths of the two atoms in states|±〉.In our calculation we take a+=1900a0and a-=200a0,which are approximations of the theoretical computations or the experimentally measured values [4–6].

    According to the above discussions,the total Hamiltonian for the relative motion of these two atoms is given by

    2.2.Shaking of δ and rotated frame

    In this scheme,the intensity of the laser beam is periodically modulated,and thus the EZE difference δLof equation(5)can be expressed as

    with δ0>0 and λ>0 being the shaking amplitude and frequency,respectively.In addition,we further assume that the real magnetic field is tuned so that the difference δBof the real Zeeman energies of states |α〉 and |β〉 satisfies

    Thus,the total energy gap δ between these two states is

    Therefore,in the Schr?dinger picture,the time-dependent Hamiltonian H of our two-body problem is given by equation (9),with δ andV? (r) being given by equation (12)and equations(7),(8),respectively.Nevertheless,as[19],we do our calculation in the rotated frame induced by the unitary transformation

    Explicitly,the state |ψ(t)〉(R)in the rotated frame is related to the state |ψ〉(S)in the Schro¨dinger picture via

    Direct calculation shows that in this frame the evolution of|ψ(t)〉(R)satisfies

    where the Hamiltonianin the rotated frame is given by

    with

    Here the operatoris defined as

    with

    and Jn(z)being the nth order first-type Bessel function.Notice that in the rotated frame the two-body spin states before and after spin-exchanging (e.g.|α〉 and |β〉) are degenerate when the two atoms are far away with each other.

    In the rotated frame the inter-atomic interaction is described by the time-dependent two-component pseudopotential,which depends on the amplitude δ0and the shaking frequency λ of the laser beam.Therefore,one can control the inter-atomic interaction via this laser beam.

    2.3.Time-averaging approximation

    Nevertheless,it is not easy to directly use the pseudopotentialin the many-body calculations.Therefore,it would be useful ifcan be approximated by an effective interaction in the rotated frame.In [19]the authors use the time average ofas the effective potential,which can be denoted asand is given by

    with

    3.Floquet scattering

    In this section,we show our approach for the calculation of the inter-atomic zero-energy scattering amplitude and the two-body loss rate.To perform these calculations,we require to solve the scattering problem with respect to the Hamiltonianof equation (16).Since the interaction potentialof this Hamiltonian is a periodic function of time,we use Floquet scattering theory with the formalism of Sykes,Landa,and Petrov in [29].

    3.1.Scattering with incident channel |α〉

    We first consider the scattering of the g-atom with nuclear spin ↓and the e-atom with nuclear-spin ↑,i.e.the scattering process incident from spin channel |α〉.This scattering is described by the Floquet scattering wave function |Ψ(α)(r,t)〉which satisfies

    and the out-going boundary condition in the limit r→∞,and thus can be expressed as:

    where r=|r| and

    Substituting the wave function |Ψ(α)(r,t)〉 into the Schro¨dinger equation (15),and using the relation=-4πδ(r),we can find that Ψ(α)(r,t)〉 should also satisfy the Bethe-Peierls boundary condition (BPC)

    Hereis the inverse operator of ‘scattering length matrix’defined in equation (18).Substituting equation (24) into (26),we derive the linear algebraic equations for the amplitudes fα(β)←αand:

    Numerically solving equations (27)–(29),we can derive elastic scattering amplitude fα←αand the spin-exchanging amplitude fβ←α.

    3.2.Scattering with incident channel |β〉

    Similarly,we can also consider the zero-energy scattering of the g-atom with nuclear spin ↑and the e-atom with nuclearspin ↓,i.e.the scattering process incident from spin channel|β〉.This process is described by the Floquet scattering wave function |Ψ(β)(r,t)〉 which satisfies

    and the out-going boundary condition in the limit r→∞.Thus,this wave function can be expressed as:

    Figure 2.The scattering amplitudes of 173Yb atoms,as a function of δ0 for λ=(2π)3 kHz,λ=(2π)5 kHz,and λ=(2π)10 kHz.(a1)–(a3):Re[fα←α](black solid line)and (blue dotted line).(b1)–(b3):Re[fβ←α](black solid line)and(blue dotted line).The insets show the behavior of each quantity for δ0 ≤5 kHz.

    Numerically solving equations (33)–(36),we can derive elastic scattering amplitude fβ←βand the spin-exchanging amplitude fβ←α.

    3.3.Two-atom loss rate

    Our above calculation shows that due to the shaking of the interactionthe atoms have some probability to be scattered to the Floquet bands which differs from the incoming one.This is described by the terms with n>0 in equations (24),(32).When the shaking frequency λ is high,the out-going momentum knfor these bands are also very large.As a result,the atoms scattered to these bands can escape from the trap.This is the two-body loss induced by the shaking of the control beam of our system.

    According to the optical theorem,for our system,the two-body loss rate of atoms in state |α〉 and in state |β〉 are 8πIm[fα←α]and8πIm[fβ←β],respectively.Furthermore,the direct calculation for the above equations (36) and (29)show that fα←α=fβ←β.Thus,the two-body loss rate of our system can be expressed as

    4.Results

    Figure 3.Im[fβ←α]/|fβ←α| of 173Yb atoms as a function of δ0,for λ=(2π) 3 kHz (red solid line),λ=(2π) 5 kHz (blue dashed line),and λ=(2π) 10 kHz (green dotted line).Here we show the results for (a):δ0 ≤(2π)100 kHz and (b):δ0 ≤(2π)4 kHz.

    In this section,we use the results given by the calculations of section 3 to address the questions (i) and (ii) of section 1.We first notice that,according to direct calculations,the zero-energy scattering amplitudesfrom channel|l〉to|j〉(l,j=α,β) with respect tocan be expressed as

    On the other hand,the zero-energy scattering amplitudes fl←j(l,j=α,β)derived by the Floquet scattering approach satisfy fα←α=fβ←βand fβ←α=fα←β.

    The above facts yield that to answer the question (i),i.e.examine the applicability of the time-averaging approximation,we just require to compare fα←αand fβ←αwithand,respectively.In figures 2 and 3 we perform this comparison for cases with typical shaking angular frequency λ=(2π) 3 kHz,λ=(2π) 5 kHz,and λ=(2π) 10 kHz.Our results show that the time-averaging approximation is applicable only when the shaking amplitude δ0is small enough,or roughly speaking,under the condition δ0?λ.As shown in figure 2,when this condition is violated,either Re[fα←α]or Re[fβ←α]would be quite different fromor,respectively.Furthermore,as shown in figure 3,when δ0is too largeIm[fβ←α]becomes comparable with the norm of fβ←α,while the time-averaging approximation yields=0.

    Figure 4.The two-body loss rate K2 of 173Yb atoms as a function of δ0.Here we show the results for (a):δ0 ≤(2π)100 kHz and (b):δ0 ≤(2π)5 kHz.

    In figure 4 we show the two-body loss rate K2for these three cases,which is calculated by the Floquet scattering approach.It is shown that K2increases with the shaking amplitude δ0,and can be enhanced to the order of 10-10cm3·s-1or even larger when δ0is so large that the timeaveraging approximation is not applicable.

    In addition,figure 2 also shows that a scattering resonance occurs for λ=(2π) 3 kHz and δ0≈(2π) 6.58 kHz,where both the scattering amplitude and the two-body loss rate are significantly enhanced.To understand this resonance more clearly,in figure 5 we illustrate the real parts of the scattering amplitudes fα←αand fβ←αas a function of λ for fixed shaking amplitude δ0=(2π) 6.58 kHz.Five significant resonances A,B,C,D and E are clearly shown in this figure,which occur at λ ≈(2π)6.16 kHz,λ ≈(2π)3.00 kHz,λ ≈(2π)1.99 kHz,λ ≈(2π)1.49 kHz and λ ≈(2π)1.19 kHz,respectively.The resonance B is just the one in figure 2.These resonances are due to the coupling between the incident channel and other Floquet channels corresponding to the terms proportional to e-iωnt(n ≠0) of equation (32).

    In the following,we provide more discussion on these resonances.We first notice that,for our Floquet scattering problem the total Hilbert space can be expressed as H=Hr?HS?HF,with Hrand HSbeing the Hilbert space for the two-atom relative motion and internal states,respectively,andFH being the space of periodical functions of time,i.e.the space spanned by the functions e-iωnt(n=0,±1,±2,...).Here we formally denote the states inSH,FH,and HS? HFwith |〉,|〉Fand |〉SF,respectively,and denote the functions e-iωnt(n=0,±1,±2,...)as|n).With these notations,the Schro¨dinger equation (23) can be re-expressed as

    Figure 5.The scattering amplitudes of 173Yb atoms,as a function of λ for δ0=(2π) 6.58 kHz.(a):Re[fα←α](black solid line) and (blue dotted line).(b):Re[fβ←α](black solid line) and (blue dotted line).The insets show the behavior of each quantity for λ ≤0.8 kHz.

    where |ψ(r)〉SFis the scattering wave function,

    and

    Hereandare defined as:

    and

    In our problem,the atoms are incident from the channel |0〉Fwith zero kinetic energy,and the channels |n〉Fwith n≥0 and n <0 are open and closed channels,respectively.Furthermore,direct calculations also show that for each given n <0,the self Hamiltonianof the closed channel can support two bound states with energies

    In the weak-inter-channel-coupling cases with small shaking amplitude δ0,the scattering resonances can occur when these closed-channel bound states are resonant with the zero-energy incident state,i.e.when any one of the following equations

    is approximately satisfied by δ0and λ.Here we say ‘a(chǎn)pproximately’ because the resonance points can actually be slightly shifted from the solutions of equation(46)by the inter-channel couplings,i.e.the inter-channel coupling can contribute to Lamb shifts for the self-energies of the closed-channel bound states.This physical picture is justified by our results of figure 5.Using direct calculations we find that the values of (δ0,λ)corresponding to the resonances A,B,C,D and E of this figure approximately satisfy equation (46) with ζ=+and n=1.21,5.29,18.33,24.12 and 15.82,respectively.In the parameter region of figure 5 there may be other resonances that are too narrow to be clearly resolved.

    5.Summary

    We calculate the scattering amplitude and two-atom loss rate for the ultracold gases of173Yb atoms with interaction being modulated with the Floquet-engineering approach proposed in [19].We use the energy-independent two-channel Huang-Yang pseudopotential to model the bare interaction between these two atoms.A more quantitatively accurate may be derived via the calculations with quantum defect theory.

    Our results show that for the cases with typical shaking angular frequency λ ~(2π)kHz,the time-averaging approximation is applicable and the two-body loss rate K2is lowenough only when the shaking amplitude δ0is low enough.When δ0is too large,the inter-atomic scattering amplitude would be quite different from the one given by the simple time-averaged potential,and K2can be enhanced to the order of 10-10cm3·s-1,which is quite large for typical ultracold gases.

    According to these results,when our system is used for the simulations of closed quantum systems,the shaking amplitude δ0should be small enough so that the two-body loss effect is weak enough.On the other hand,since one can increase the two-body loss rate by increasing δ0,this system may be used for the studies of open systems with particlenumber dissipations.

    精品国产三级普通话版| 18禁裸乳无遮挡免费网站照片| 少妇熟女欧美另类| 精品久久久久久久久久久久久| kizo精华| 欧美一区二区精品小视频在线| 亚洲av男天堂| 一本久久中文字幕| 国产精品麻豆人妻色哟哟久久 | 啦啦啦啦在线视频资源| 欧美高清成人免费视频www| 色哟哟哟哟哟哟| 国产精品一及| 春色校园在线视频观看| 丝袜喷水一区| 亚洲欧美精品自产自拍| 久久人人爽人人爽人人片va| 99久国产av精品国产电影| 亚洲国产精品久久男人天堂| 伦理电影大哥的女人| 日产精品乱码卡一卡2卡三| 国产精品人妻久久久影院| 毛片一级片免费看久久久久| 亚洲精品乱码久久久v下载方式| 中国美白少妇内射xxxbb| 欧美一区二区精品小视频在线| 亚洲av成人av| 日韩高清综合在线| 亚洲在线观看片| 美女脱内裤让男人舔精品视频 | 久久精品国产亚洲网站| 国产成人一区二区在线| av免费观看日本| 欧美性猛交╳xxx乱大交人| 久99久视频精品免费| 大又大粗又爽又黄少妇毛片口| 欧美三级亚洲精品| 国产一区亚洲一区在线观看| 国产片特级美女逼逼视频| 中文字幕人妻熟人妻熟丝袜美| 人妻制服诱惑在线中文字幕| 久久99精品国语久久久| 国产精品爽爽va在线观看网站| 最近的中文字幕免费完整| 欧美最黄视频在线播放免费| 亚洲中文字幕日韩| 久久久久久久久久黄片| 一区二区三区免费毛片| 日本一二三区视频观看| 国产片特级美女逼逼视频| 简卡轻食公司| 久久久国产成人精品二区| 精品99又大又爽又粗少妇毛片| 真实男女啪啪啪动态图| 麻豆一二三区av精品| 色5月婷婷丁香| 国语自产精品视频在线第100页| 99视频精品全部免费 在线| 国产一级毛片七仙女欲春2| 2022亚洲国产成人精品| 亚洲欧美中文字幕日韩二区| 国产美女午夜福利| 欧洲精品卡2卡3卡4卡5卡区| 欧美潮喷喷水| 欧美潮喷喷水| 女人十人毛片免费观看3o分钟| av在线天堂中文字幕| 欧美在线一区亚洲| 午夜精品在线福利| 国产单亲对白刺激| 国产高清三级在线| 91狼人影院| 亚洲一区二区三区色噜噜| 婷婷色综合大香蕉| 国产精品一区二区三区四区久久| 亚洲av免费在线观看| 婷婷六月久久综合丁香| 成年女人永久免费观看视频| 午夜爱爱视频在线播放| 看黄色毛片网站| 国产精品久久久久久亚洲av鲁大| 成人漫画全彩无遮挡| 99热这里只有是精品在线观看| 青春草视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 哪里可以看免费的av片| 国产单亲对白刺激| 少妇高潮的动态图| 日日撸夜夜添| 一级黄片播放器| 91精品一卡2卡3卡4卡| 日产精品乱码卡一卡2卡三| 又粗又硬又长又爽又黄的视频 | 在线免费十八禁| 一级毛片aaaaaa免费看小| 91久久精品电影网| 免费观看人在逋| 国产精品久久久久久久久免| .国产精品久久| 亚洲综合色惰| 国产真实乱freesex| 人人妻人人看人人澡| 神马国产精品三级电影在线观看| 99九九线精品视频在线观看视频| 午夜福利成人在线免费观看| 亚洲国产高清在线一区二区三| 日日撸夜夜添| 日韩 亚洲 欧美在线| 97超碰精品成人国产| 亚洲欧美精品专区久久| 欧美成人a在线观看| 国产综合懂色| 免费观看在线日韩| 国产黄a三级三级三级人| 国产淫片久久久久久久久| 联通29元200g的流量卡| 亚洲乱码一区二区免费版| 午夜亚洲福利在线播放| 级片在线观看| 男女啪啪激烈高潮av片| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av天美| 老熟妇乱子伦视频在线观看| 少妇被粗大猛烈的视频| 亚洲av免费高清在线观看| 国产精品麻豆人妻色哟哟久久 | 欧美最新免费一区二区三区| 精品久久国产蜜桃| 欧美3d第一页| 国产亚洲精品久久久久久毛片| 国产国拍精品亚洲av在线观看| 午夜激情福利司机影院| 婷婷亚洲欧美| 久久精品影院6| 麻豆精品久久久久久蜜桃| 欧美激情久久久久久爽电影| av又黄又爽大尺度在线免费看 | 91精品国产九色| .国产精品久久| 亚洲18禁久久av| 国产精品美女特级片免费视频播放器| 亚洲国产精品合色在线| 日韩三级伦理在线观看| 久久精品久久久久久久性| 国产精品乱码一区二三区的特点| 国产精品国产三级国产av玫瑰| 成人性生交大片免费视频hd| 久久久久国产网址| 中文精品一卡2卡3卡4更新| 最近2019中文字幕mv第一页| 人人妻人人澡人人爽人人夜夜 | 一进一出抽搐gif免费好疼| 久久久精品94久久精品| 国产69精品久久久久777片| 国产毛片a区久久久久| 国产精品久久久久久精品电影| 1024手机看黄色片| 伊人久久精品亚洲午夜| 亚洲18禁久久av| 99热这里只有是精品在线观看| 免费无遮挡裸体视频| 国产精品免费一区二区三区在线| 欧美xxxx性猛交bbbb| 搞女人的毛片| 波多野结衣高清作品| 久久人人爽人人片av| 老熟妇乱子伦视频在线观看| 综合色av麻豆| 精品人妻一区二区三区麻豆| 日本与韩国留学比较| 卡戴珊不雅视频在线播放| 亚洲欧美日韩高清在线视频| av免费观看日本| 男插女下体视频免费在线播放| 亚洲人成网站在线观看播放| 亚洲成人中文字幕在线播放| 可以在线观看的亚洲视频| 啦啦啦观看免费观看视频高清| 波野结衣二区三区在线| 成年女人看的毛片在线观看| 欧美日本亚洲视频在线播放| 有码 亚洲区| 能在线免费看毛片的网站| 亚洲av电影不卡..在线观看| a级一级毛片免费在线观看| 国产熟女欧美一区二区| 99久久九九国产精品国产免费| 22中文网久久字幕| 亚洲一级一片aⅴ在线观看| 国模一区二区三区四区视频| 欧洲精品卡2卡3卡4卡5卡区| 色综合色国产| 国产高清激情床上av| 久久韩国三级中文字幕| 日本撒尿小便嘘嘘汇集6| 免费人成在线观看视频色| 国产精品福利在线免费观看| 欧美成人一区二区免费高清观看| 麻豆一二三区av精品| 亚洲欧洲国产日韩| 最近的中文字幕免费完整| 少妇高潮的动态图| 欧美性感艳星| 日本一本二区三区精品| 黄片wwwwww| 亚洲国产精品成人久久小说 | 国产精品久久久久久av不卡| 在线国产一区二区在线| 91麻豆精品激情在线观看国产| 精品一区二区三区视频在线| 黄色配什么色好看| 久久久久久久午夜电影| 国产 一区 欧美 日韩| 国产精品久久久久久亚洲av鲁大| 亚洲精品久久国产高清桃花| 免费av观看视频| 日韩欧美一区二区三区在线观看| 亚洲精品456在线播放app| 夜夜看夜夜爽夜夜摸| 中文字幕熟女人妻在线| 欧美一级a爱片免费观看看| 国产在线男女| 1000部很黄的大片| 欧美最黄视频在线播放免费| 少妇人妻一区二区三区视频| 成年女人看的毛片在线观看| 亚洲国产欧美在线一区| 简卡轻食公司| 18+在线观看网站| 日韩人妻高清精品专区| 两个人视频免费观看高清| 免费黄网站久久成人精品| 久久精品国产亚洲av涩爱 | 欧美zozozo另类| 国产一区二区激情短视频| 免费黄网站久久成人精品| av.在线天堂| 在线国产一区二区在线| 国产91av在线免费观看| 日韩欧美精品免费久久| 99国产极品粉嫩在线观看| 国产伦在线观看视频一区| 99热这里只有是精品在线观看| 狂野欧美激情性xxxx在线观看| www.色视频.com| 色综合色国产| 在线观看av片永久免费下载| 卡戴珊不雅视频在线播放| 男女那种视频在线观看| 久久人人精品亚洲av| 久久6这里有精品| 国产 一区 欧美 日韩| 天天躁夜夜躁狠狠久久av| 在线观看美女被高潮喷水网站| 亚洲不卡免费看| 一进一出抽搐gif免费好疼| 在线观看美女被高潮喷水网站| 色尼玛亚洲综合影院| 国产高潮美女av| 免费观看人在逋| 国内久久婷婷六月综合欲色啪| 国产女主播在线喷水免费视频网站 | 久久午夜福利片| 联通29元200g的流量卡| 国产精品久久久久久精品电影| 51国产日韩欧美| 日韩,欧美,国产一区二区三区 | 国产高清有码在线观看视频| 欧美最黄视频在线播放免费| 九九久久精品国产亚洲av麻豆| 人妻少妇偷人精品九色| 国产毛片a区久久久久| 国产成人福利小说| av在线老鸭窝| 国产一区二区在线观看日韩| 最近2019中文字幕mv第一页| 在线观看66精品国产| 国产精品三级大全| 精品人妻一区二区三区麻豆| 欧美日韩精品成人综合77777| 日本一二三区视频观看| 成人永久免费在线观看视频| 亚洲av成人av| 亚洲精品乱码久久久v下载方式| 麻豆久久精品国产亚洲av| 天美传媒精品一区二区| 人人妻人人看人人澡| 久久久成人免费电影| 精品欧美国产一区二区三| 国产伦一二天堂av在线观看| 中文精品一卡2卡3卡4更新| 美女高潮的动态| 国产亚洲精品久久久久久毛片| 欧美性猛交╳xxx乱大交人| 老师上课跳d突然被开到最大视频| 日本五十路高清| 亚洲va在线va天堂va国产| 尾随美女入室| 国产精品三级大全| 久久久久久久亚洲中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 国产极品精品免费视频能看的| 中文精品一卡2卡3卡4更新| 秋霞在线观看毛片| 欧洲精品卡2卡3卡4卡5卡区| 国产单亲对白刺激| 成熟少妇高潮喷水视频| 在线免费十八禁| 简卡轻食公司| 国产淫片久久久久久久久| 国产真实乱freesex| 26uuu在线亚洲综合色| 亚洲精品日韩在线中文字幕 | 色噜噜av男人的天堂激情| 日本黄色视频三级网站网址| 亚洲精华国产精华液的使用体验 | 天天一区二区日本电影三级| 色综合色国产| 色综合站精品国产| 99热精品在线国产| 久久中文看片网| 中出人妻视频一区二区| 成人三级黄色视频| 少妇熟女欧美另类| 欧美一区二区精品小视频在线| 亚洲精品久久国产高清桃花| 久久精品国产亚洲av涩爱 | 久久精品国产亚洲av涩爱 | 久久鲁丝午夜福利片| 精品久久久久久久久av| 久久久a久久爽久久v久久| www日本黄色视频网| 久久精品国产亚洲网站| 国内少妇人妻偷人精品xxx网站| 国模一区二区三区四区视频| 黄色一级大片看看| 舔av片在线| 欧美最黄视频在线播放免费| 亚洲自偷自拍三级| 国产精品麻豆人妻色哟哟久久 | 2022亚洲国产成人精品| 在线免费十八禁| 日本成人三级电影网站| 我要看日韩黄色一级片| 欧美一级a爱片免费观看看| 丰满的人妻完整版| 国产精品久久电影中文字幕| 久久国产乱子免费精品| 桃色一区二区三区在线观看| ponron亚洲| 亚洲精品久久国产高清桃花| 久久久久国产网址| 免费观看人在逋| 在线国产一区二区在线| 一边亲一边摸免费视频| 国产乱人偷精品视频| 久久国产乱子免费精品| 男人狂女人下面高潮的视频| 日产精品乱码卡一卡2卡三| 久久九九热精品免费| 黄色一级大片看看| 日本av手机在线免费观看| 国产欧美日韩精品一区二区| av又黄又爽大尺度在线免费看 | 国产精品麻豆人妻色哟哟久久 | 亚洲精品日韩在线中文字幕 | 亚洲自拍偷在线| 精品欧美国产一区二区三| 网址你懂的国产日韩在线| 综合色av麻豆| 欧美高清成人免费视频www| 久久久久久久久久黄片| 国产亚洲av片在线观看秒播厂 | 婷婷亚洲欧美| 91在线精品国自产拍蜜月| 日韩欧美在线乱码| 国国产精品蜜臀av免费| 欧美潮喷喷水| 淫秽高清视频在线观看| 一级毛片aaaaaa免费看小| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91久久精品电影网| 免费观看的影片在线观看| 一个人看的www免费观看视频| 在线观看一区二区三区| 国产国拍精品亚洲av在线观看| 欧美性猛交黑人性爽| 久久韩国三级中文字幕| 久久韩国三级中文字幕| av女优亚洲男人天堂| 非洲黑人性xxxx精品又粗又长| 亚洲av不卡在线观看| 美女 人体艺术 gogo| 男人狂女人下面高潮的视频| 国产精品麻豆人妻色哟哟久久 | 蜜臀久久99精品久久宅男| 国产精品一区二区性色av| 男人舔奶头视频| 99久久久亚洲精品蜜臀av| 少妇人妻一区二区三区视频| 九九热线精品视视频播放| 精品人妻熟女av久视频| 可以在线观看毛片的网站| 永久网站在线| 色综合站精品国产| 欧美变态另类bdsm刘玥| 麻豆国产97在线/欧美| 国产色爽女视频免费观看| 美女国产视频在线观看| 老女人水多毛片| 亚洲欧美成人综合另类久久久 | 亚洲,欧美,日韩| 激情 狠狠 欧美| 成人欧美大片| 国国产精品蜜臀av免费| 少妇的逼水好多| 欧美精品国产亚洲| 精品国内亚洲2022精品成人| 国产一区二区亚洲精品在线观看| 免费一级毛片在线播放高清视频| 99在线人妻在线中文字幕| 最近最新中文字幕大全电影3| 搡女人真爽免费视频火全软件| 人妻久久中文字幕网| 亚洲成人精品中文字幕电影| 国产精品久久电影中文字幕| 99久久精品热视频| 别揉我奶头 嗯啊视频| 久久这里只有精品中国| 国产综合懂色| 久久久久久国产a免费观看| 大又大粗又爽又黄少妇毛片口| 亚洲av免费在线观看| 久久久久久久亚洲中文字幕| 国产精品三级大全| av在线亚洲专区| a级毛片a级免费在线| 国产在线男女| 少妇高潮的动态图| 亚洲婷婷狠狠爱综合网| 国产精品一区二区性色av| 精品人妻熟女av久视频| 男女啪啪激烈高潮av片| 久久久国产成人精品二区| 国产又黄又爽又无遮挡在线| 青春草视频在线免费观看| 在线观看免费视频日本深夜| av又黄又爽大尺度在线免费看 | av免费观看日本| 一个人免费在线观看电影| 午夜爱爱视频在线播放| 99精品在免费线老司机午夜| 国产精品久久久久久久电影| 丰满乱子伦码专区| 精品人妻熟女av久视频| av天堂中文字幕网| 超碰av人人做人人爽久久| 久久久精品大字幕| 免费看a级黄色片| 久久国内精品自在自线图片| 成年女人看的毛片在线观看| 午夜爱爱视频在线播放| 亚洲自拍偷在线| 亚洲精品乱码久久久v下载方式| 国产私拍福利视频在线观看| 亚洲人成网站高清观看| 久久人人爽人人爽人人片va| 啦啦啦观看免费观看视频高清| 亚洲精品粉嫩美女一区| 小蜜桃在线观看免费完整版高清| 国产黄片视频在线免费观看| 国产精品.久久久| 国产成人a∨麻豆精品| 成人亚洲欧美一区二区av| 男人的好看免费观看在线视频| 边亲边吃奶的免费视频| 三级毛片av免费| 2022亚洲国产成人精品| 中出人妻视频一区二区| 国产高清激情床上av| 九九爱精品视频在线观看| 免费av毛片视频| 亚洲三级黄色毛片| 久久久精品欧美日韩精品| 亚洲无线观看免费| 日本av手机在线免费观看| 夫妻性生交免费视频一级片| 日本欧美国产在线视频| 日本黄大片高清| 成人av在线播放网站| 人人妻人人澡欧美一区二区| 精品久久久久久久久久久久久| 国产精品,欧美在线| 久久久久久久亚洲中文字幕| 噜噜噜噜噜久久久久久91| 看黄色毛片网站| 精品久久久久久久久av| 国产精品麻豆人妻色哟哟久久 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲一区二区三区色噜噜| 禁无遮挡网站| 人人妻人人澡人人爽人人夜夜 | 国产色爽女视频免费观看| 男女下面进入的视频免费午夜| 国产单亲对白刺激| 村上凉子中文字幕在线| 春色校园在线视频观看| 国产老妇女一区| 好男人视频免费观看在线| 国产精品国产高清国产av| 国产av不卡久久| 99热这里只有精品一区| 亚洲激情五月婷婷啪啪| 春色校园在线视频观看| 波野结衣二区三区在线| 日韩成人av中文字幕在线观看| 久久久久免费精品人妻一区二区| 男女做爰动态图高潮gif福利片| 色视频www国产| 天天躁夜夜躁狠狠久久av| 国产精品嫩草影院av在线观看| 成人亚洲欧美一区二区av| 国产精品久久久久久精品电影小说 | 女同久久另类99精品国产91| 国产人妻一区二区三区在| 国产极品天堂在线| 内地一区二区视频在线| 精品午夜福利在线看| 日日摸夜夜添夜夜添av毛片| 欧美日韩乱码在线| 国产白丝娇喘喷水9色精品| 99九九线精品视频在线观看视频| 99热精品在线国产| 长腿黑丝高跟| 极品教师在线视频| 国产在视频线在精品| 午夜福利高清视频| 熟女人妻精品中文字幕| 人体艺术视频欧美日本| 一级二级三级毛片免费看| 日韩视频在线欧美| 国产真实伦视频高清在线观看| 最近2019中文字幕mv第一页| 国产精品一区二区性色av| 97热精品久久久久久| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 亚洲欧美日韩高清在线视频| 亚州av有码| 美女被艹到高潮喷水动态| 日本av手机在线免费观看| 日本-黄色视频高清免费观看| 麻豆乱淫一区二区| 91av网一区二区| 老女人水多毛片| 九色成人免费人妻av| 亚洲性久久影院| 美女内射精品一级片tv| 此物有八面人人有两片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧洲日产国产| 岛国毛片在线播放| 最近手机中文字幕大全| av在线观看视频网站免费| 国产精品麻豆人妻色哟哟久久 | 26uuu在线亚洲综合色| 免费人成在线观看视频色| 成人午夜高清在线视频| 国内精品美女久久久久久| 啦啦啦啦在线视频资源| av免费在线看不卡| 国产在线男女| 毛片一级片免费看久久久久| 国产三级中文精品| 成年av动漫网址| 少妇的逼好多水| 国产精品1区2区在线观看.| 在线免费观看不下载黄p国产| 国产精品久久久久久精品电影| 免费av观看视频| 岛国在线免费视频观看| 国产午夜福利久久久久久| 免费看av在线观看网站| 97超视频在线观看视频| 熟妇人妻久久中文字幕3abv| 国产成人影院久久av| av在线观看视频网站免费| 国产色爽女视频免费观看| 日韩成人av中文字幕在线观看| 亚洲电影在线观看av| 免费看av在线观看网站| 亚洲av成人av| .国产精品久久| 精品无人区乱码1区二区| 日日撸夜夜添| 特级一级黄色大片| 亚洲最大成人手机在线| 深夜a级毛片| 99久久精品一区二区三区| 18禁在线无遮挡免费观看视频| 男人舔奶头视频| 国产成人a区在线观看| 黄色视频,在线免费观看| 亚洲精品自拍成人| 久久精品国产鲁丝片午夜精品| 亚洲av一区综合| 在线天堂最新版资源| 麻豆乱淫一区二区| 亚州av有码| 两性午夜刺激爽爽歪歪视频在线观看| 国产美女午夜福利| 99久久精品热视频| 国产探花极品一区二区| 毛片女人毛片| 婷婷六月久久综合丁香|