• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scattering amplitude and two-body loss of ultracold alkaline-earth atoms in a shaking synthetic magnetic field

    2022-08-02 02:48:24ShuYangYueChenandPengZhang
    Communications in Theoretical Physics 2022年6期

    Shu Yang,Yue Chen and Peng Zhang,2,3

    1 Department of Physics,Renmin University of China,Beijing 100872,China

    2 Beijing Computational Science Research Center,Beijing 100084,China

    3 Beijing Key Laboratory of Opto-electronic Functional Materials &Micro-nano Devices,Renmin University of China,Beijing 100872,China

    Abstract The idea of manipulating the interaction between ultracold fermionic alkaline-earth (like)atoms via a laser-induced periodical synthetic magnetic field was proposed in Kanász-Nagy et al (2018 Phys.Rev.B 97,155156).In that work,it was shown that in the presence of the shaking synthetic magnetic field,two atoms in 1S0 and 3P0 states experience a periodical interaction in a rotated frame,and the effective inter-atomic interaction was approximated as the time-averaged operator of this time-dependent interaction.This technique is supposed to be efficient for 173Yb atoms which have a large natural scattering length.Here we examine this time-averaging approximation and derive the rate of the two-body loss induced by the shaking of the synthetic magnetic field,by calculating the zero-energy inter-atomic scattering amplitude corresponding to the explicit periodical interaction.We find that for the typical cases with shaking angular frequency λ of the synthetic magnetic field being of the order of (2π)kHz,the time-averaging approximation is applicable only when the shaking amplitude is small enough.Moreover,the two-body loss rate increases with the shaking amplitude,and is of the order of 10-10 cm3·s-1 or even larger when the time-averaging approximation is not applicable.Our results are helpful for the quantum simulations with ultracold gases of fermionic alkaline-earth (like) atoms.

    Keywords:ultracold atom,spin-exchange interaction,Floquet engineering

    1.Introduction

    In recent years,the ultracold gases of alkaline-earth (like)atoms attracted much interest from both theorists and experimentalists [1,2].These atoms can be prepared in not only the electronic-orbit ground state(the1S0state)but also some longlived electronic-orbit excited states (the3P0and3P2states).In addition,there is a spin-exchange interaction between two fermionic alkaline-earth (like) atoms in1S0and3P0states,respectively.Explicitly,the nuclear-spin states of these two atoms can be exchanged during collision (figure 1(a)) [3–18].Therefore,the ultracold alkaline-earth(like)atoms can be used in quantum simulations for many-body physics related to the spin-exchange processes [19–28],e.g.the Kondo effects.To implement these quantum simulations,it is important to control the spin-exchange interaction between two atoms in1S0and3P0states,respectively.People have proposed various approaches to control this interaction with confinement potential or laser beams and experimentally realized the former in a quasi-(1+0)dimensional system of ultracold173Yb atoms [13–21].

    In 2018,an optical-control approach for the above spinexchange interaction is proposed by Kana′sz-Nagy et al for173Yb atoms[19],which has relatively large natural scattering length.In this scheme,a single laser beam is applied to far-off-resonantly couple the3P0states to the3D1states.This beam induces a nuclear-spin-dependent AC-Stark shifts for the3P0states(figure 1(b)),which are proportional to the laser intensity and can be regarded as the effective Zeeman energies (EZEs) of a synthetic magnetic field.These EZEs can couple the scattering channels with respect to nuclear-spin singlet and triplet states.In this method,the laser intensity is periodically modulated,and thus the laser-induced EZEs for3P0are ‘shaking’.By changing the shaking amplitude and frequency,one can tune the effective inter-atomic interaction,i.e.realize a Floquet engineering.

    Figure 1.(a)A schematic of spin-exchange scattering process of two alkaline-earth (like) atoms in 1S0 and 3P0 states,respectively,with different nuclear-spin states.(b) A schematic of the laser-induced nuclear-spin dependent AC-Stark shifts(i.e.the EZEs)of 3P0 states of an 173Yb atom.A detailed discussion is given in appendix C of [19].

    Explicitly,in the presence of the shaking EZEs,there is a rotated frame where the free Hamiltonian of each atom is time-independent and the two-body interaction potential is a periodical function of time,which depends on the shaking of the EZEs.Moreover,in [19]the effective inter-atomic interaction is approximated to be the time-averaged value of this explicit periodical interaction potential.

    In this work we investigate the system of this scheme,and try to answer the following two questions:

    (i) How good is the above‘time-averaging approximation’for the effective inter-atomic interaction?

    (ii) How serious is the two-body loss (i.e.the heating effect) induced by the shaking of the laser intensity?

    To this end,we calculate the inter-atomic zero-energy scattering amplitudes corresponding to the explicit timedependent interaction potential for the173Yb atoms,via the Floquet scattering approach.We answer question (i) by comparing the results with the scattering amplitudes given by the time-averaged interaction potential and answer question(ii)by deriving the two-body loss rate from the imaginary part of the zero-energy scattering amplitudes.

    We study the typical cases with the shaking angular frequency λ ~kHz.We find that for these cases the time-averaging approximation is applicable only when the shaking amplitude of the EZE is small enough.In addition,the two-body loss rate K2increases with δ0.when the time-averaging approximation is not applicable we have K2?10-10cm3·s-1,which yields that for ultracold gases with typical density(1013–1014)/cm3the lifetime can be decreased to the order of (0.1–1) ms.

    Our results yield that,in the quantum simulations for a closed system (e.g.the quantum simulations for Kondo physics),the shaking amplitude δ0should be smaller enough so that the two-body loss rate is low enough.In this parameter region,the time-averaging approximation is usually applicable.On the other hand,since the two-body loss rate can be controlled by the amplitude and frequency of the shaking field,this system may be used for the studies of open quantum many-body systems with atom-number dissipation.

    The remainder of this paper is organized as follows.In section 2,we introduce the principle of the control for the interaction between alkaline-earth(like)atoms in1S0and3P0,respectively,with shaking EZEs.In section 3 we show the Floquet scattering approach for the calculation of inter-atomic zero-energy scattering amplitude.Our results are discussed in section 4 and a brief summary is given in section 5.

    2.Control of inter-atomic interaction with a shaking laser beam

    In this section,we introduce the interaction-manipulation scheme proposed in [19].

    2.1.System and inter-atomic interaction

    As shown in figure 1(a),we consider two ultracold173Yb atoms in the1S0-(g-)and3P0(e-)states,respectively.In the two-body problem,these two atoms can be considered as two distinguishable atoms,i.e.the g-atom and e-atom.We further assume that the nuclear-spin state of each atom can be either ↑or ↓,with magnetic quantum numbersmF(↑)ormF(↓),respectively,while the nuclear-spin states of the g-and e-atoms are different.Therefore,for our system,the two-atom internal state could be either

    or

    Furthermore,in the presence of a natural magnetic field B and a laser beam which can induce nuclear-spin dependent ACStark shifts (i.e.the EZEs) for the3P0states (figure 1(b)).Therefore,the total Zeeman energies Eα(β)of the state|α(β)〉is the summation of the one given by the natural magnetic field and the laser-induced EZE,and thus the Zeeman-energy difference between these two states is

    where δBis the difference of the Zeeman energies induced by the real magnetic field for states|β〉and|α〉,and δLis the EZE difference between these two states.Explicitly,we have

    where μe(g)is the nuclear magnetic moment of the e-(g-)atom andis the laser-induced AC-Stark shift of the3P0state with a magnetic quantum numbermI(↑)(mI(↓)).

    Now we consider the inter-atomic interaction of these two atoms.The bare interaction of these two atoms is diagonal on the basis of nuclear-spin singlet and triplet states,i.e.

    and thus can be expressed as

    where r ≡|r|with r is the relative position of these two atoms,and V±(r) is the interaction potential corresponding to the states |±〉.In this work,we consider the low-energy cases where both the relative kinetic energy of the two atoms and the amplitude and shaking frequency of the Zeeman energy gap δ are much smaller than the characteristic energy(the van der Waals energy) of the inter-atomic interaction potential5This low-energy condition is satisfied by the current experiments.For instance,for ultracold gases of 173Yb atoms EvdW is about ?(2π)3 MHz,while in the experiments the two-body relative kinetic energy is on the order of ?(2π)104 Hz,and the energy gap δ is also of this order when the magnetic field B is below 100 G..Therefore,we model the interaction potential(r) with the energy-independent Huang-Yang pseudopotential (HYP),i.e.we have (?=m=1,with m being the single-atom mass)

    where a±are the scattering lengths of the two atoms in states|±〉.In our calculation we take a+=1900a0and a-=200a0,which are approximations of the theoretical computations or the experimentally measured values [4–6].

    According to the above discussions,the total Hamiltonian for the relative motion of these two atoms is given by

    2.2.Shaking of δ and rotated frame

    In this scheme,the intensity of the laser beam is periodically modulated,and thus the EZE difference δLof equation(5)can be expressed as

    with δ0>0 and λ>0 being the shaking amplitude and frequency,respectively.In addition,we further assume that the real magnetic field is tuned so that the difference δBof the real Zeeman energies of states |α〉 and |β〉 satisfies

    Thus,the total energy gap δ between these two states is

    Therefore,in the Schr?dinger picture,the time-dependent Hamiltonian H of our two-body problem is given by equation (9),with δ andV? (r) being given by equation (12)and equations(7),(8),respectively.Nevertheless,as[19],we do our calculation in the rotated frame induced by the unitary transformation

    Explicitly,the state |ψ(t)〉(R)in the rotated frame is related to the state |ψ〉(S)in the Schro¨dinger picture via

    Direct calculation shows that in this frame the evolution of|ψ(t)〉(R)satisfies

    where the Hamiltonianin the rotated frame is given by

    with

    Here the operatoris defined as

    with

    and Jn(z)being the nth order first-type Bessel function.Notice that in the rotated frame the two-body spin states before and after spin-exchanging (e.g.|α〉 and |β〉) are degenerate when the two atoms are far away with each other.

    In the rotated frame the inter-atomic interaction is described by the time-dependent two-component pseudopotential,which depends on the amplitude δ0and the shaking frequency λ of the laser beam.Therefore,one can control the inter-atomic interaction via this laser beam.

    2.3.Time-averaging approximation

    Nevertheless,it is not easy to directly use the pseudopotentialin the many-body calculations.Therefore,it would be useful ifcan be approximated by an effective interaction in the rotated frame.In [19]the authors use the time average ofas the effective potential,which can be denoted asand is given by

    with

    3.Floquet scattering

    In this section,we show our approach for the calculation of the inter-atomic zero-energy scattering amplitude and the two-body loss rate.To perform these calculations,we require to solve the scattering problem with respect to the Hamiltonianof equation (16).Since the interaction potentialof this Hamiltonian is a periodic function of time,we use Floquet scattering theory with the formalism of Sykes,Landa,and Petrov in [29].

    3.1.Scattering with incident channel |α〉

    We first consider the scattering of the g-atom with nuclear spin ↓and the e-atom with nuclear-spin ↑,i.e.the scattering process incident from spin channel |α〉.This scattering is described by the Floquet scattering wave function |Ψ(α)(r,t)〉which satisfies

    and the out-going boundary condition in the limit r→∞,and thus can be expressed as:

    where r=|r| and

    Substituting the wave function |Ψ(α)(r,t)〉 into the Schro¨dinger equation (15),and using the relation=-4πδ(r),we can find that Ψ(α)(r,t)〉 should also satisfy the Bethe-Peierls boundary condition (BPC)

    Hereis the inverse operator of ‘scattering length matrix’defined in equation (18).Substituting equation (24) into (26),we derive the linear algebraic equations for the amplitudes fα(β)←αand:

    Numerically solving equations (27)–(29),we can derive elastic scattering amplitude fα←αand the spin-exchanging amplitude fβ←α.

    3.2.Scattering with incident channel |β〉

    Similarly,we can also consider the zero-energy scattering of the g-atom with nuclear spin ↑and the e-atom with nuclearspin ↓,i.e.the scattering process incident from spin channel|β〉.This process is described by the Floquet scattering wave function |Ψ(β)(r,t)〉 which satisfies

    and the out-going boundary condition in the limit r→∞.Thus,this wave function can be expressed as:

    Figure 2.The scattering amplitudes of 173Yb atoms,as a function of δ0 for λ=(2π)3 kHz,λ=(2π)5 kHz,and λ=(2π)10 kHz.(a1)–(a3):Re[fα←α](black solid line)and (blue dotted line).(b1)–(b3):Re[fβ←α](black solid line)and(blue dotted line).The insets show the behavior of each quantity for δ0 ≤5 kHz.

    Numerically solving equations (33)–(36),we can derive elastic scattering amplitude fβ←βand the spin-exchanging amplitude fβ←α.

    3.3.Two-atom loss rate

    Our above calculation shows that due to the shaking of the interactionthe atoms have some probability to be scattered to the Floquet bands which differs from the incoming one.This is described by the terms with n>0 in equations (24),(32).When the shaking frequency λ is high,the out-going momentum knfor these bands are also very large.As a result,the atoms scattered to these bands can escape from the trap.This is the two-body loss induced by the shaking of the control beam of our system.

    According to the optical theorem,for our system,the two-body loss rate of atoms in state |α〉 and in state |β〉 are 8πIm[fα←α]and8πIm[fβ←β],respectively.Furthermore,the direct calculation for the above equations (36) and (29)show that fα←α=fβ←β.Thus,the two-body loss rate of our system can be expressed as

    4.Results

    Figure 3.Im[fβ←α]/|fβ←α| of 173Yb atoms as a function of δ0,for λ=(2π) 3 kHz (red solid line),λ=(2π) 5 kHz (blue dashed line),and λ=(2π) 10 kHz (green dotted line).Here we show the results for (a):δ0 ≤(2π)100 kHz and (b):δ0 ≤(2π)4 kHz.

    In this section,we use the results given by the calculations of section 3 to address the questions (i) and (ii) of section 1.We first notice that,according to direct calculations,the zero-energy scattering amplitudesfrom channel|l〉to|j〉(l,j=α,β) with respect tocan be expressed as

    On the other hand,the zero-energy scattering amplitudes fl←j(l,j=α,β)derived by the Floquet scattering approach satisfy fα←α=fβ←βand fβ←α=fα←β.

    The above facts yield that to answer the question (i),i.e.examine the applicability of the time-averaging approximation,we just require to compare fα←αand fβ←αwithand,respectively.In figures 2 and 3 we perform this comparison for cases with typical shaking angular frequency λ=(2π) 3 kHz,λ=(2π) 5 kHz,and λ=(2π) 10 kHz.Our results show that the time-averaging approximation is applicable only when the shaking amplitude δ0is small enough,or roughly speaking,under the condition δ0?λ.As shown in figure 2,when this condition is violated,either Re[fα←α]or Re[fβ←α]would be quite different fromor,respectively.Furthermore,as shown in figure 3,when δ0is too largeIm[fβ←α]becomes comparable with the norm of fβ←α,while the time-averaging approximation yields=0.

    Figure 4.The two-body loss rate K2 of 173Yb atoms as a function of δ0.Here we show the results for (a):δ0 ≤(2π)100 kHz and (b):δ0 ≤(2π)5 kHz.

    In figure 4 we show the two-body loss rate K2for these three cases,which is calculated by the Floquet scattering approach.It is shown that K2increases with the shaking amplitude δ0,and can be enhanced to the order of 10-10cm3·s-1or even larger when δ0is so large that the timeaveraging approximation is not applicable.

    In addition,figure 2 also shows that a scattering resonance occurs for λ=(2π) 3 kHz and δ0≈(2π) 6.58 kHz,where both the scattering amplitude and the two-body loss rate are significantly enhanced.To understand this resonance more clearly,in figure 5 we illustrate the real parts of the scattering amplitudes fα←αand fβ←αas a function of λ for fixed shaking amplitude δ0=(2π) 6.58 kHz.Five significant resonances A,B,C,D and E are clearly shown in this figure,which occur at λ ≈(2π)6.16 kHz,λ ≈(2π)3.00 kHz,λ ≈(2π)1.99 kHz,λ ≈(2π)1.49 kHz and λ ≈(2π)1.19 kHz,respectively.The resonance B is just the one in figure 2.These resonances are due to the coupling between the incident channel and other Floquet channels corresponding to the terms proportional to e-iωnt(n ≠0) of equation (32).

    In the following,we provide more discussion on these resonances.We first notice that,for our Floquet scattering problem the total Hilbert space can be expressed as H=Hr?HS?HF,with Hrand HSbeing the Hilbert space for the two-atom relative motion and internal states,respectively,andFH being the space of periodical functions of time,i.e.the space spanned by the functions e-iωnt(n=0,±1,±2,...).Here we formally denote the states inSH,FH,and HS? HFwith |〉,|〉Fand |〉SF,respectively,and denote the functions e-iωnt(n=0,±1,±2,...)as|n).With these notations,the Schro¨dinger equation (23) can be re-expressed as

    Figure 5.The scattering amplitudes of 173Yb atoms,as a function of λ for δ0=(2π) 6.58 kHz.(a):Re[fα←α](black solid line) and (blue dotted line).(b):Re[fβ←α](black solid line) and (blue dotted line).The insets show the behavior of each quantity for λ ≤0.8 kHz.

    where |ψ(r)〉SFis the scattering wave function,

    and

    Hereandare defined as:

    and

    In our problem,the atoms are incident from the channel |0〉Fwith zero kinetic energy,and the channels |n〉Fwith n≥0 and n <0 are open and closed channels,respectively.Furthermore,direct calculations also show that for each given n <0,the self Hamiltonianof the closed channel can support two bound states with energies

    In the weak-inter-channel-coupling cases with small shaking amplitude δ0,the scattering resonances can occur when these closed-channel bound states are resonant with the zero-energy incident state,i.e.when any one of the following equations

    is approximately satisfied by δ0and λ.Here we say ‘a(chǎn)pproximately’ because the resonance points can actually be slightly shifted from the solutions of equation(46)by the inter-channel couplings,i.e.the inter-channel coupling can contribute to Lamb shifts for the self-energies of the closed-channel bound states.This physical picture is justified by our results of figure 5.Using direct calculations we find that the values of (δ0,λ)corresponding to the resonances A,B,C,D and E of this figure approximately satisfy equation (46) with ζ=+and n=1.21,5.29,18.33,24.12 and 15.82,respectively.In the parameter region of figure 5 there may be other resonances that are too narrow to be clearly resolved.

    5.Summary

    We calculate the scattering amplitude and two-atom loss rate for the ultracold gases of173Yb atoms with interaction being modulated with the Floquet-engineering approach proposed in [19].We use the energy-independent two-channel Huang-Yang pseudopotential to model the bare interaction between these two atoms.A more quantitatively accurate may be derived via the calculations with quantum defect theory.

    Our results show that for the cases with typical shaking angular frequency λ ~(2π)kHz,the time-averaging approximation is applicable and the two-body loss rate K2is lowenough only when the shaking amplitude δ0is low enough.When δ0is too large,the inter-atomic scattering amplitude would be quite different from the one given by the simple time-averaged potential,and K2can be enhanced to the order of 10-10cm3·s-1,which is quite large for typical ultracold gases.

    According to these results,when our system is used for the simulations of closed quantum systems,the shaking amplitude δ0should be small enough so that the two-body loss effect is weak enough.On the other hand,since one can increase the two-body loss rate by increasing δ0,this system may be used for the studies of open systems with particlenumber dissipations.

    国产又黄又爽又无遮挡在线| 在线a可以看的网站| 无人区码免费观看不卡| 超碰av人人做人人爽久久| 日本 av在线| 麻豆久久精品国产亚洲av| 9191精品国产免费久久| 免费在线观看亚洲国产| 午夜a级毛片| 757午夜福利合集在线观看| 欧美性猛交╳xxx乱大交人| 搡老岳熟女国产| 特级一级黄色大片| 观看美女的网站| 国产91精品成人一区二区三区| 日韩免费av在线播放| 亚洲三级黄色毛片| 欧美乱妇无乱码| 我要搜黄色片| 亚洲熟妇中文字幕五十中出| 午夜福利高清视频| 欧美精品啪啪一区二区三区| 色av中文字幕| 成人av在线播放网站| 日本三级黄在线观看| 舔av片在线| 亚洲精品一区av在线观看| 欧美绝顶高潮抽搐喷水| 欧美极品一区二区三区四区| 久久九九热精品免费| 琪琪午夜伦伦电影理论片6080| 97碰自拍视频| 久久久久久久久中文| 亚洲久久久久久中文字幕| 51国产日韩欧美| 给我免费播放毛片高清在线观看| 国产高清视频在线观看网站| 人人妻,人人澡人人爽秒播| 国产精品亚洲美女久久久| 18禁黄网站禁片午夜丰满| 在线观看美女被高潮喷水网站 | 悠悠久久av| 99久久99久久久精品蜜桃| 久久99热6这里只有精品| 夜夜爽天天搞| 亚州av有码| 神马国产精品三级电影在线观看| 在线十欧美十亚洲十日本专区| 蜜桃久久精品国产亚洲av| 亚洲成人久久爱视频| 色哟哟·www| 国产高清激情床上av| 动漫黄色视频在线观看| 中文字幕久久专区| 女人十人毛片免费观看3o分钟| 九色成人免费人妻av| 国产野战对白在线观看| 亚洲中文字幕日韩| 国产亚洲精品av在线| 很黄的视频免费| 日韩av在线大香蕉| 亚洲精品色激情综合| 亚洲国产精品sss在线观看| 国产老妇女一区| 日韩国内少妇激情av| 久久久久精品国产欧美久久久| 国产亚洲av嫩草精品影院| 色哟哟·www| 亚洲成人精品中文字幕电影| 全区人妻精品视频| 日本一本二区三区精品| 婷婷丁香在线五月| 国产真实乱freesex| 69人妻影院| 极品教师在线免费播放| 亚州av有码| 好男人电影高清在线观看| 午夜两性在线视频| 国产午夜精品论理片| 真实男女啪啪啪动态图| 日本撒尿小便嘘嘘汇集6| 毛片一级片免费看久久久久 | 性色av乱码一区二区三区2| 一级a爱片免费观看的视频| 国产老妇女一区| 老司机深夜福利视频在线观看| 99热精品在线国产| 97超级碰碰碰精品色视频在线观看| 午夜老司机福利剧场| 免费大片18禁| 国产一区二区激情短视频| 精品人妻1区二区| 欧美区成人在线视频| 99热精品在线国产| 欧美xxxx性猛交bbbb| 99国产精品一区二区蜜桃av| 丰满人妻一区二区三区视频av| 国产精品av视频在线免费观看| 久久热精品热| 波野结衣二区三区在线| 国产精品99久久久久久久久| 国产在线男女| 高潮久久久久久久久久久不卡| 国内久久婷婷六月综合欲色啪| 99久久无色码亚洲精品果冻| 黄色视频,在线免费观看| 亚洲第一欧美日韩一区二区三区| 波多野结衣高清无吗| 亚洲,欧美,日韩| 中文亚洲av片在线观看爽| 亚洲在线观看片| 麻豆av噜噜一区二区三区| 欧美日韩乱码在线| 波多野结衣高清作品| 日韩中字成人| 国产精品久久久久久久电影| 国产综合懂色| 老司机福利观看| 国产亚洲欧美98| 国产成人av教育| 97热精品久久久久久| 久久久久久久精品吃奶| 90打野战视频偷拍视频| 深夜a级毛片| 亚洲 国产 在线| 国产精品国产高清国产av| 可以在线观看毛片的网站| 脱女人内裤的视频| 日韩欧美国产在线观看| 丰满人妻熟妇乱又伦精品不卡| 欧美3d第一页| 国产av不卡久久| 少妇人妻一区二区三区视频| 国产三级在线视频| 欧美三级亚洲精品| 亚洲中文字幕日韩| 亚洲电影在线观看av| 久久国产精品影院| 亚洲无线观看免费| 91狼人影院| 国产精品99久久久久久久久| 在线播放无遮挡| 久久久国产成人精品二区| 一本一本综合久久| 桃红色精品国产亚洲av| 在线观看午夜福利视频| 欧美激情在线99| 亚洲av一区综合| 国产精品自产拍在线观看55亚洲| 深夜精品福利| 国产精品久久久久久精品电影| 少妇被粗大猛烈的视频| 婷婷六月久久综合丁香| 久久久久亚洲av毛片大全| 夜夜看夜夜爽夜夜摸| 一个人看的www免费观看视频| 看免费av毛片| 久久国产精品人妻蜜桃| 真实男女啪啪啪动态图| 日本三级黄在线观看| 欧美日韩福利视频一区二区| 免费观看的影片在线观看| www.www免费av| 国产精品久久久久久人妻精品电影| 亚洲av第一区精品v没综合| 欧美一区二区国产精品久久精品| 色综合站精品国产| 亚洲av成人av| 欧美黑人欧美精品刺激| 五月玫瑰六月丁香| 久久久精品欧美日韩精品| 日本精品一区二区三区蜜桃| 国产免费av片在线观看野外av| 国产不卡一卡二| 少妇人妻一区二区三区视频| 成人三级黄色视频| av国产免费在线观看| av在线观看视频网站免费| 动漫黄色视频在线观看| 亚洲第一区二区三区不卡| 国产精品久久久久久久电影| 淫妇啪啪啪对白视频| 久久九九热精品免费| 日本熟妇午夜| 两性午夜刺激爽爽歪歪视频在线观看| 真人做人爱边吃奶动态| 小蜜桃在线观看免费完整版高清| 18+在线观看网站| 麻豆一二三区av精品| 中文字幕高清在线视频| 嫩草影院入口| 亚洲国产欧美人成| 国产伦精品一区二区三区视频9| 一区福利在线观看| 精品国产三级普通话版| 亚洲美女视频黄频| 久久精品影院6| 欧美黑人欧美精品刺激| 在线免费观看的www视频| 97超视频在线观看视频| 日韩欧美国产一区二区入口| 成人三级黄色视频| 国产伦精品一区二区三区视频9| 国产欧美日韩精品亚洲av| 舔av片在线| 欧美黑人巨大hd| 亚洲最大成人手机在线| 成人性生交大片免费视频hd| 日韩高清综合在线| 日韩有码中文字幕| 嫩草影院新地址| а√天堂www在线а√下载| 欧美xxxx黑人xx丫x性爽| 国产成人影院久久av| 国产真实伦视频高清在线观看 | 性欧美人与动物交配| 亚洲精品影视一区二区三区av| av在线天堂中文字幕| 九九久久精品国产亚洲av麻豆| 亚洲av美国av| 宅男免费午夜| 久久久久久久久久黄片| 国内精品美女久久久久久| 91午夜精品亚洲一区二区三区 | 中文字幕熟女人妻在线| 国产精品三级大全| 男女下面进入的视频免费午夜| eeuss影院久久| 国产精品久久久久久精品电影| 久久人人爽人人爽人人片va | 美女 人体艺术 gogo| 国产亚洲精品久久久com| 性色avwww在线观看| 亚洲av第一区精品v没综合| 少妇裸体淫交视频免费看高清| 欧美zozozo另类| 免费人成视频x8x8入口观看| 嫩草影院入口| 少妇的逼好多水| 久久精品综合一区二区三区| 亚洲av熟女| 俺也久久电影网| 一区二区三区四区激情视频 | 99久久精品国产亚洲精品| 久久久久久久精品吃奶| 日韩欧美免费精品| 亚洲国产欧美人成| 亚洲av日韩精品久久久久久密| 欧美性猛交黑人性爽| a级毛片免费高清观看在线播放| 久久久久久久午夜电影| 天堂动漫精品| 变态另类丝袜制服| 丰满乱子伦码专区| 十八禁网站免费在线| 日本黄色视频三级网站网址| 一级黄色大片毛片| av天堂中文字幕网| 伊人久久精品亚洲午夜| 色视频www国产| 在线免费观看不下载黄p国产 | 久久久久九九精品影院| 嫩草影院精品99| 乱人视频在线观看| 午夜福利免费观看在线| 一个人免费在线观看的高清视频| 欧美成人性av电影在线观看| a级毛片免费高清观看在线播放| 亚洲自偷自拍三级| 九九热线精品视视频播放| 国产伦人伦偷精品视频| 精品免费久久久久久久清纯| 99riav亚洲国产免费| 99国产精品一区二区蜜桃av| 成人特级av手机在线观看| 3wmmmm亚洲av在线观看| 嫩草影视91久久| 欧美三级亚洲精品| 欧美又色又爽又黄视频| 免费观看精品视频网站| 久久久久免费精品人妻一区二区| 亚洲精品一卡2卡三卡4卡5卡| 国产一级毛片七仙女欲春2| 人人妻人人澡欧美一区二区| 91麻豆精品激情在线观看国产| 男女床上黄色一级片免费看| 日韩欧美免费精品| 日韩欧美精品免费久久 | 在线播放国产精品三级| 中文在线观看免费www的网站| 欧美一级a爱片免费观看看| 欧美绝顶高潮抽搐喷水| 两个人的视频大全免费| 午夜福利18| 久久亚洲精品不卡| 精品乱码久久久久久99久播| 美女xxoo啪啪120秒动态图 | 色尼玛亚洲综合影院| 在线播放国产精品三级| 91麻豆av在线| 国产又黄又爽又无遮挡在线| 久久久久免费精品人妻一区二区| 国产白丝娇喘喷水9色精品| 永久网站在线| 国产精品综合久久久久久久免费| 国产野战对白在线观看| 搡女人真爽免费视频火全软件 | 成人高潮视频无遮挡免费网站| 国产精品伦人一区二区| 两人在一起打扑克的视频| 99久国产av精品| 一本精品99久久精品77| 精品一区二区三区av网在线观看| 天天一区二区日本电影三级| 亚洲精品亚洲一区二区| 久久精品久久久久久噜噜老黄 | 久久久精品大字幕| 中文字幕久久专区| 久久久精品大字幕| 搞女人的毛片| 精品人妻视频免费看| 非洲黑人性xxxx精品又粗又长| av专区在线播放| 给我免费播放毛片高清在线观看| 99热这里只有是精品在线观看 | 亚洲国产色片| 亚洲乱码一区二区免费版| 免费看a级黄色片| 怎么达到女性高潮| 欧美国产日韩亚洲一区| 99riav亚洲国产免费| 国产成人影院久久av| 国产精品嫩草影院av在线观看 | 日韩精品中文字幕看吧| 日韩精品中文字幕看吧| 午夜激情福利司机影院| 亚洲五月天丁香| 能在线免费观看的黄片| 亚洲第一电影网av| 可以在线观看毛片的网站| 99久久精品热视频| 国产蜜桃级精品一区二区三区| 久久人人爽人人爽人人片va | 精品国内亚洲2022精品成人| 国产色婷婷99| 老司机深夜福利视频在线观看| 免费av不卡在线播放| 我的老师免费观看完整版| 免费在线观看影片大全网站| 亚洲av成人av| 一区二区三区四区激情视频 | 99久国产av精品| 一进一出抽搐gif免费好疼| 国产精品亚洲一级av第二区| 久久久久久久久中文| 婷婷精品国产亚洲av| 成人av一区二区三区在线看| 久久精品国产自在天天线| 免费av毛片视频| 亚洲无线在线观看| 国产真实乱freesex| 国产成人啪精品午夜网站| 一本综合久久免费| 精品国产亚洲在线| 少妇的逼水好多| 国产又黄又爽又无遮挡在线| 精品一区二区三区av网在线观看| 精品不卡国产一区二区三区| 在线播放无遮挡| 欧美性猛交黑人性爽| 欧美+日韩+精品| 精品福利观看| 成人国产一区最新在线观看| 精品人妻视频免费看| 女生性感内裤真人,穿戴方法视频| 桃红色精品国产亚洲av| 午夜激情福利司机影院| netflix在线观看网站| 一区二区三区高清视频在线| 男人舔女人下体高潮全视频| 男女之事视频高清在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品合色在线| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久大精品| 亚洲欧美清纯卡通| 久久精品国产亚洲av天美| 成人国产综合亚洲| 国产精品一及| 毛片女人毛片| 国产高清三级在线| av福利片在线观看| 亚洲专区中文字幕在线| 精品午夜福利在线看| 男人的好看免费观看在线视频| 亚洲久久久久久中文字幕| 在线十欧美十亚洲十日本专区| 色在线成人网| 综合色av麻豆| 亚洲欧美日韩高清专用| 精品人妻一区二区三区麻豆 | 欧美中文日本在线观看视频| 国产色爽女视频免费观看| 在线a可以看的网站| 国产午夜精品久久久久久一区二区三区 | 熟女人妻精品中文字幕| 男女之事视频高清在线观看| 两个人视频免费观看高清| 国产国拍精品亚洲av在线观看| 91久久精品国产一区二区成人| 日本一二三区视频观看| 美女高潮的动态| 午夜日韩欧美国产| 国产精品98久久久久久宅男小说| 99国产极品粉嫩在线观看| 综合色av麻豆| 亚洲人与动物交配视频| 窝窝影院91人妻| 网址你懂的国产日韩在线| 日韩欧美 国产精品| 黄片小视频在线播放| 男插女下体视频免费在线播放| 亚洲第一欧美日韩一区二区三区| 国产亚洲欧美98| 中文字幕人妻熟人妻熟丝袜美| 老熟妇乱子伦视频在线观看| av天堂中文字幕网| av在线观看视频网站免费| 少妇的逼好多水| 国产真实乱freesex| 波多野结衣巨乳人妻| 国产黄片美女视频| 久久热精品热| 少妇丰满av| 亚洲精品色激情综合| 俺也久久电影网| 欧美中文日本在线观看视频| 老司机午夜福利在线观看视频| 国产真实乱freesex| 亚洲精品乱码久久久v下载方式| 色综合婷婷激情| 国语自产精品视频在线第100页| 91午夜精品亚洲一区二区三区 | 国产精品一区二区免费欧美| 欧美精品啪啪一区二区三区| 亚洲精品亚洲一区二区| a级毛片a级免费在线| 亚洲黑人精品在线| 亚洲av一区综合| 精品一区二区三区视频在线| 精品无人区乱码1区二区| 欧美黄色淫秽网站| 成人欧美大片| 成人国产综合亚洲| 亚洲成人久久性| 黄片小视频在线播放| 久久婷婷人人爽人人干人人爱| www.999成人在线观看| 午夜精品在线福利| 免费人成在线观看视频色| 99久久成人亚洲精品观看| 一级作爱视频免费观看| 国产色爽女视频免费观看| 动漫黄色视频在线观看| 99热只有精品国产| av在线观看视频网站免费| 中文字幕av在线有码专区| 精品99又大又爽又粗少妇毛片 | 国产亚洲精品久久久久久毛片| 国产一区二区在线观看日韩| 色播亚洲综合网| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 色av中文字幕| 亚洲av二区三区四区| 中文字幕人成人乱码亚洲影| 久久久久久久精品吃奶| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品在线观看二区| 精品免费久久久久久久清纯| 欧美高清性xxxxhd video| 国产极品精品免费视频能看的| 久久人人爽人人爽人人片va | 怎么达到女性高潮| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 色5月婷婷丁香| 欧美精品国产亚洲| 欧美xxxx性猛交bbbb| 亚洲最大成人中文| 色综合站精品国产| 首页视频小说图片口味搜索| 天天一区二区日本电影三级| 国产精品三级大全| 中文字幕精品亚洲无线码一区| 国产在线男女| 婷婷色综合大香蕉| 亚洲精品久久国产高清桃花| 免费av观看视频| 免费看a级黄色片| 岛国在线免费视频观看| 亚洲美女搞黄在线观看 | 久久国产精品影院| 亚洲18禁久久av| 中文字幕精品亚洲无线码一区| 国产精品伦人一区二区| 国产精品98久久久久久宅男小说| 久久婷婷人人爽人人干人人爱| 97热精品久久久久久| 国产激情偷乱视频一区二区| 3wmmmm亚洲av在线观看| 最近在线观看免费完整版| 亚洲av成人精品一区久久| 国内少妇人妻偷人精品xxx网站| 成人无遮挡网站| 99久久精品一区二区三区| 国产真实伦视频高清在线观看 | 18+在线观看网站| 亚洲国产精品sss在线观看| 成人av在线播放网站| 少妇高潮的动态图| 波多野结衣高清作品| 91麻豆av在线| 亚洲国产日韩欧美精品在线观看| 天堂√8在线中文| 欧美中文日本在线观看视频| 又紧又爽又黄一区二区| 国产三级黄色录像| 精品久久久久久成人av| 伊人久久精品亚洲午夜| 国产精品三级大全| 欧美日韩亚洲国产一区二区在线观看| 在线天堂最新版资源| 天美传媒精品一区二区| 免费黄网站久久成人精品 | 精品久久国产蜜桃| 九色国产91popny在线| 亚洲 国产 在线| 啪啪无遮挡十八禁网站| 国产在线男女| 99热只有精品国产| 国产av一区在线观看免费| 亚洲av成人不卡在线观看播放网| 国产精品久久久久久人妻精品电影| 天堂av国产一区二区熟女人妻| 3wmmmm亚洲av在线观看| 久久九九热精品免费| 在线观看舔阴道视频| 久久中文看片网| 亚洲av电影不卡..在线观看| 久久久久久九九精品二区国产| 岛国在线免费视频观看| 中文资源天堂在线| 亚洲自偷自拍三级| 日本三级黄在线观看| 亚洲成人中文字幕在线播放| 夜夜爽天天搞| 91在线观看av| 亚洲熟妇熟女久久| 国内久久婷婷六月综合欲色啪| 亚洲精品亚洲一区二区| 热99re8久久精品国产| 成年女人看的毛片在线观看| 91在线精品国自产拍蜜月| 精品久久久久久久人妻蜜臀av| 嫩草影视91久久| 精品熟女少妇八av免费久了| 九九在线视频观看精品| 狠狠狠狠99中文字幕| 久久国产精品人妻蜜桃| 精品一区二区免费观看| 在线看三级毛片| 身体一侧抽搐| 欧美成人a在线观看| 国产午夜精品论理片| 久久久久久大精品| av在线老鸭窝| 亚洲国产精品sss在线观看| 精品熟女少妇八av免费久了| 亚洲色图av天堂| 亚洲,欧美精品.| 好男人在线观看高清免费视频| 中文亚洲av片在线观看爽| 久久6这里有精品| 首页视频小说图片口味搜索| 午夜日韩欧美国产| 亚洲av成人av| 日日摸夜夜添夜夜添小说| 国产国拍精品亚洲av在线观看| 久久久久精品国产欧美久久久| 久久中文看片网| 国产精品永久免费网站| 天堂网av新在线| 午夜a级毛片| 直男gayav资源| 88av欧美| 成人一区二区视频在线观看| 欧美性猛交黑人性爽| 国产精品人妻久久久久久| 黄色视频,在线免费观看| 国产成+人综合+亚洲专区| 国产黄色小视频在线观看| 欧美不卡视频在线免费观看| 国模一区二区三区四区视频| 又紧又爽又黄一区二区| 美女cb高潮喷水在线观看| 欧美一区二区精品小视频在线| 亚洲欧美激情综合另类| 国产三级在线视频| 久久草成人影院| 九九久久精品国产亚洲av麻豆| 直男gayav资源| 亚洲精品色激情综合| 成人一区二区视频在线观看| 久久久精品欧美日韩精品| 国产伦在线观看视频一区|