• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Using Pantheon and Hubble parameter data to constrain the Ricci dark energy in a Bianchi I Universe

    2022-08-02 02:48:06NajafiandHossienkhani
    Communications in Theoretical Physics 2022年6期

    A Najafi and H Hossienkhani

    1 Department of Physics,Technical and Vocational University (TVU),Tehran,Iran

    2 Department of Physics,Hamedan Branch,Islamic Azad University,Hamedan,Iran

    Abstract In this work,we use the most recent publicly available type Ia supernova (SNIa) compilations and H(z) data.A well formulated cosmological model based on Bianchi type I (BI) metric is implemented in the presence of the Ricci dark energy model.Using the maximum likelihood technique,we estimate the present value of Hubble’s constant H0=70.339±0.743,matter density parameter Ω m0=0.297±0.031,anisotropy parameterΩ σ0=-0.004 01±0.001 07 within 1σ′ confidence level by bounding our derived model with recent joint Pantheon and H(z)data.We have constrained the present value of the equation of state parameter as ωde=-1.17 joint with the observational data.The present value of the deceleration parameter of the Universe in the derived model is obtained as q0=-.Transition redshift is also derived as ztr ~ 0.551with the recent observations (Pantheon+H(z)) datasets.Finally,we compare the anisotropy effects on the evolution of H(z) for the proposed model under consideration with different observational datasets.

    Keywords:Bianchi type I,Pantheon data,Hubble parameter,Ricci dark energy

    1.Introductions

    Today we are entering a new Universe of precise cosmic progress.The cosmological parameters are tightly constrained by observations such as type Ia supernovae(SNIa)[1],baryon acoustic oscillations (BAO) [2],cosmic microwave background (CMB) [3],gravitational lensing systems [4],gravitational waves [5].Contrary to the standard cosmological model,observations have shown that the Universe is expanding in an accelerated way.This late-time acceleration era is known as the dark energy (DE) era,and until today remains a mystery on its driving force.The approach of Λcold dark matter (ΛCDM) cosmology is probably the best fitted cosmological model in which the cosmological constant Λ accelerates the expansion of our Universe.This approach is established based on the observational results.Different kinds of theoretical models have already been implemented to interpret the accelerating Universe.Comprehensive studies have been conducted on these subjects in [6–8].Due to the complex nature of the acceleration of the Universe and the fact that their underlying physical mechanism has not yet been fully understood,different methods are widely applied in order to study them.

    Over the last twenty years,DE models have been proposed to explain the acceleration of the Universe(see[9–11]).Holographic dark energy (HDE) models are established on the holographic principle [12].The approach of the HDE model is developed to describe the late-time acceleration,quantitatively [10,13–17].It is also in agreement with observational data[18–22].Therefore,many extensions of the basic scenario have appeared in the related context,mainly based on the use of different horizons as the largest distance(i.e.the radius of the Universe) [23–31].Later,Gao et al suggested that the DE density might be inversely proportional to the Ricci scalar curvature (R) [32].This model was called the Ricci dark energy (RDE) model.In the RDE model,the future event horizon has been replaced by the inverse of the Ricci scalar curvature.Furthermore,the RDE models have been developed into well-known models such as the extended RDE [33].The evolution of the various cosmological parameters in the RDE model were studied in the light of supernovae,SDSS and recent Planck data [34].Researchers have shown the RDE model is suitable for describing the current acceleration of the Universe [35–37].

    Besides the DE problem,the concept of anisotropy is also adopted by current cosmology.The isotropic Friedmann–Robertson–Walker (FRW) model alongside the spatially homogeneous model describe the nature of the current Universe,completely.But,the recent observational data supports the existence of an anisotropic phase in the past eras of the Universe [38].This fact confirmed that the early anisotropic Universe turned into the present isotropic Universe [39,40].The Bianchi type cosmological models represent the homogeneous and anisotropic Universe,where their isotropic nature of them may also be studied with the passage of time.The approach of the Bianchi I (BI) model utilizes semi-analytical calculations.The basic effects available in anisotropic models are also captured in the BI model by considering important common properties between them and direction-dependent expansion rates.The anisotropic Bianchi type cosmological model was investigated from different perspectives by many authors [41–45].Wang et al used the Joint Light curve Analysis (JLA) sample to constrain the anisotropic Universe with the BI model and found that the model was consistent with the isotropic Universe [46].Hossienkhani et al have investigated an anisotropic BI Universe in the DE models[47–49].They studied different observational data and evolutionary stages of cosmic expansion.Some useful applications of the anisotropic Universe compatible with astrophysical observations are described in [50–56].

    We develop the evolution of RDE in an anisotropic BI model of the Universe by considering the latest observational data.In section 2 the metric and the field equations for the RDE model are described.Section 3 is devoted to reviewing the observational data and the applied techniques.The results are discussed in section 4.In section 5,the effects of anisotropy are investigated on the evolution of the Hubble parameter,the equation of state (EoS) parameter and the deceleration parameter.Finally,the conclusion is presented in section 6.

    2.Metric and the cosmological model

    As discussed in the introduction,we shall restrict our attention to space-times of BI model.The line element in such a spacetime is given by

    where ρmis matter energy density,ρdeand pdeare the energydensity and the pressure of RDE model,respectively.Also uiis 4-velocity of the fluid which is normalized as uiui=1.Einstein’s field equations

    where α is a dimensionless constant,H is the mean Hubble parameter andH˙is its derivative with respect to cosmic time.In a BI Universe,the important physical quantities like the spatial volume V,the expansion scalar θ,the mean Hubble expansion factor H and the shear scalar σ2for the metric (1),can be written as follows

    where an overdot denotes derivative with respect to cosmic time t.The field equation (4) for space-time (1) are given by[57,58]

    Note that the isotropic case now corresponds to σ=0.The density parameters Ωm,Ωdeand Ωσare defined by

    Therefore,using equation(10)the mean Hubble parameter H(z) is derived as follows

    One time there was a call from the till asking for a price and I didn’t know. So I went to the till, took the goods8 back and found the price from the shelf.

    Table 1.68% CL parameters of RDE in BI model from different observational datasets.

    In the case of α=2 is not a viable DE model.Once one has α ≠2,it can be seen from equation (14) that the RDE contains three terms:the first one behaves like cold dark matter,the second one behaves like anisotropy DE and the last term behaves like an exotic energy component whose properties are determined by the parameter α.Requiring the consistency of (13) at z=0,gives

    The conservation law for matter,RDE and shear scalar are given by

    in which ωde=pde/ρderepresents the RDE EoS parameter.Now we describe the EoS ωde(z) and the deceleration parameterwhich in general depends on the redshift z.Using the BI equations(10)and(11),we can express ω(z) and q(z) in terms of H(z),dH/dz,Ω0σand Ωm0

    being P=(Ωm0;Ωσ0;H0;α),the free parameter vector to be fitted by the data.We use theP mean values in the last expression to reconstruct the EoS parameter and the deceleration parameter.We also investigate whether the RDE model is consistent with a late cosmic acceleration.Regarding the validity of generalized BI equations in modified gravity models,equation (20) can be useful in characterizing the expansion history but it should not be interpreted as a property of an energy substance.When the anisotropy density goes to zero,i.e.σ0→0,and Ωσ0→0(i.e.spatially isotropic Universe),the EoS parameter (19) is reduced to that of the [59–64].

    3.Observational analysis

    Following the derivation of the Hubble parameter obtained in equation (13),here we estimate the best fit of the model parametersΩm0,Ω0σ,H0and α with the combined data set consisting of the supernovae type Ia from the Pantheon Sample [1]and observational Hubble data.Using the χ2minimization technique,we estimate the model parameters,which will give us a reasonable idea about the evolutionary status of the Universe in RDE of BI model.In order to figure out the observational constraints,we employ the maximum likelihood estimation (MLE) method.

    3.1.Type Ia supernovae

    We use the most updated compilation of SNIa,the Pantheon Sample,which contains a set of 1048 spectroscopically confirming SNIa[1]ranging from redshift 0.01 to 2.3,along with a covariance matrix (including statistical and systematic errors).The Pantheon catalog contains measurements of peak magnitudes in the B-band’s rest frame,mB,which are related to the distance modulus with μobs=mB-M,where M is a nuisance parameter corresponding to the absolute B-band magnitude of a fiducial SNIa.Following [65],we define the theoretical magnitude of a supernova to be

    whereμ0=42.384-5 loghwith h the Hubble constant H0in units of 100 km/s/Mpc and the Hubble-free luminosity distance DLis

    In this equation,zhelis the heliocentric redshift,and zcmbis the CMB-frame redshift.Finally,the corresponding likelihood reads

    where mi=μobs,i-μth(zi).Finally,the marginalized χ2function of SNIa can be written as [66–68]

    whereμobs,i=μSN(M;zi),μth(zi)=μ(Ωm0,Ωσ0,H0;z).σ′μ,i,σ′intandσ′lensare the standard errors of the peak magnitude,the intrinsic dispersion error of each SNIa and the intrinsic scatter due to gravitational lensing,respectively.

    3.2.Hubble parameter data

    In addition to the SNIa observations,we also considered observational Hubble data from the cosmic chronometers(CC) and baryon acoustic oscillations (BAO) measurements.CC are measurements of the Hubble rate,based on the estimation of the differential age of passive evolving galaxies[69].In the second method,called ‘BAO measurements’,the Hubble parameter measurements depend on BAO scale [70].In this work,we considered the updated list compiled by Magaea et al [71]which contains 31 points from CC,20 points from BAO measurements and also a data point based on the local value of Hubble parameter H0provided from results (R19) [72].The likelihood function based on the maximum likelihood method is as follows:

    whereσ′idenote the standard error in experimental values of Hubble’s function H.The χ2function is defined as follows:

    3.3.Joint analysis

    We employ N cosmological datasets to obtain the joint observational constraints on the cosmological scenario.We first introduce the total likelihood function as

    There is no correlation between the data sets used.The total χ2function is then given by

    For the combined dataset (Pantheon+H(z)),we estimate the best-fit values of the model parameters by minimizing χ2.Then,we use the maximum likelihood method and take the combined likelihood function as e22L (P)=-χ.The best-fit parameter valuesP are those that minimize the likelihood function.We can now plot the contours for different confidence levels,e.g.1σ′ (68.3%)with Δχ2=2.3 and2σ′ (95.4%)with Δχ2=6.17 where Δχ2=χ2(P)-(P)andis the minimum value of χ2.An important quantity that could be used for the data ftiting process aswhere ‘dof’ is the degree of freedom,Ntotis the total observational data and k is the free parameters.If Δχ2≤1,then the fit is good and the data are consistent with the considered model.In what follows,we discuss the results obtained from the statistical analysis of the above mentioned datasets.

    4.Results and observational constraints

    RDE in BI model has five unknown parameters to be estimated from H(z),Pantheon,and their joint combination.The base parameters set for this model is

    To examine the validity of the model on fitting datasets,we calculatewith N=1048,52,1100 represents the data set points.We notice that the model is compatible with the reasonable value of the goodness of freedom(dof).In table 1,we show values Ωm0,Ωσ0,α,H0,M,andconstrained from the Pantheon and H(z) datasets,together with bounds on the free parameters in the RDE model with an anisotropic Universe.One-dimensional (1D) posterior probability distributions and two-dimensional (2D) confidence regions of the cosmological parameters for the five parameters of the RDE model are obtained in figures 1–3,in magenta(Pantheon),green (H(z)) and gray (Pantheon+H(z)).The figure indicates that both H0and M are insensitive to Pantheon SN data.Adding H(z) data to Pantheon lowers and tightens the constraint on each of these two parameters.From table 1,it is found that the values ofexhibit a significant difference between the H(z)data and the Pantheon data in the RDE model with the BI Universe.In these two instances,it is seen that the Pantheon data in the RDE model with a good value ofis much supported by the current observations.Subsequently,there is no significant difference between comparing the value ofin the Pantheon data with those in the Pantheon+H(z)datasets in the RDE model.For RDE in dency to 1.238 [73].The goodness of fit i.eobtained from Pantheon+H(z) datasets for RDE in the BI model is 0.944 which is well fitted to the considered observational data.It has been observed from table 1 that the estimated constraints on H0applying the value of the joint dataset a flat FRW Universe,the value ofhas a constant ten-Ωm0=0.259,α=0.436,Ωm0=0.312,α=0.334and(Pantheon+H(z)) as 0.0719 G yr-1~70.339 km s-1Mpc-1are well compatible with other investigations [74–76].Furthermore,assuming the H(z) data,we obtain H0=73.294 as well.One can guess that H0value is well fitted with SNIa one i.e.H0=74.03±1.23 km s-1Mpc-1[72].Since the Hubble parameter is constrained only from the H(z) data and H0is not restricted by the distance modulus from SNIa directly,the values of H0in the Pantheon data is larger than the other two datasets.Based on RDE models,the best-fit values of Ωm0and α obtained for Pantheon data,H(z) data,and Pantheon+H(z) dataset are Ωm0=0.297,α=0.405,respectively.It is interesting to make a comparison with results obtained by Komatsu et al[77].They applied the approach WMAP 7 year data combined with BAO and H(z)data and then obtained Ωm0=0.273in a FRW Universe with the flat ΛCDM model.Therefore,the best constraints onΩm0are achieved for the full dataset combinations.Also,according to the observational constraints from the joint analysis of data of SN+BAO+WMAP5,the best fit of the index obtained is α=0.359±0.024,which is matchable with the RDE model in an anisotropic Universe [20].

    Table 2.The minimum value of χ2,AIC and BIC of the ΛCDM and Ricci DE models in an anisotropic Universe,by using the Pantheon and Pantheon+H(z) data.

    Our joint analysis indicates that the anisotropy parameter change between5.08× 10-3≤Ωσ0≤-2.94×10-3at 68% error which is 100 times larger than the level of anisotropies,~10-3,observed in the CMB measurements.We obtained the constraint Ωσ0<10-3for the joint combination Pantheon+H(z) data.We conclude the approach of our method is compatible with the direct-model independent observational results [46,53].

    In the following,we apply the known Akaike information criterion (AIC) [78]and the Bayesian information criterion(BIC)[79],to examine the quality of the fittings and the relevant observational compatibility of the scenarios.The AIC model selection function can be expressed as [78,80]

    withLmaxthe maximum likelihood of the datasets,k is the number of parameters of the given model and Ntotthe total data points.For a large number of data points Ntot,it reduces toAIC?-2 ln Lmax+2k.On the other hand,the BIC criterion is an estimator of the Bayesian evidence[79–81],given by

    It is obvious that a model consistent with observations should satisfy small AIC and BIC.In [82],the RDE model is investigated with the AIC and BIC criteria and the RDE model is concluded to be ruled out.Reference [83]evaluatedof ΛCDM model in an anisotropic Universe with Pantheon (Pantheon+H(z)) datasets and found that the ΛCDM in the BI model has aof 1012.55(1039.31).By adopting the AIC and BIC,table 2 also shows that,compared with ΛCDM model,the RDE model in BI Universe is slightly favored by AIC for the joint combination Pantheon+H(z)data.But RDE model is not favored by BIC,though this model has slightly smallerthan the ΛCDM of the BI model.

    5.Physical properties of the RDE of BI Universe

    The study of cosmological parameters is an important tool to describe various properties of the Universe.The parameterizations of some functions,alongside some simple numbers,are employed to describe the properties of cosmological parameters.These parameters are describing the global dynamics of the Universe,i.e.the expansion rate and the curvature.We have studied some of the basic parameters such as the Hubble parameter,the EoS parameter and the deceleration parameter of our present RDE model in an anisotropic Universe.

    5.1.Hubble parameter

    In figure 4,we show the evolution of the Hubble parameter H(z) within a 1σ′ confidence level for our model.We compare the latest 52 points of H(z)dataset[71,72]with the Pantheon and H(z) data.The solid line in the figures represents the theoretical curve for the best-fit values determined by the joint analysis using Pantheon and H(z) data,which is in good agreement with the observational data.

    Following equations(13)and(21),the distance modulus for different redshifts and the evolution of the Hubble parameter for RDE in the BI model are computed by adopting the above mentioned parameter values.Figure 5 illustrates the distance module by taking the best values of the free parameters fixed by Pantheon and H(z) data in an anisotropic Universe.Our results show the predicted μ(z) are similar in three datasets.Moreover,we conclude that at large redshift,the results of the RDE model with both H(z)and Pantheon+H(z) are consistent with the data.

    Figure 1.One-dimensional marginalized distribution and two-dimensional contours with 68% CL and 95% CL for RDE in BI model are performed by using Pantheon data.H0, Ωm0,Ωσ0,α and M are the Hubble parameter,the DM density parameter,the anisotropy parameter,the dimensionless parameter,and the nuisance parameter of SNIa data,respectively.The best-fitted values of these parameters are indicated in the second column of table 1.

    Figure 2.One-dimensional marginalized distribution and two-dimensional contours with 68%CL and 95%CL for RDE in BI model using H(z)data.H0, Ωm0,Ωσ0,α and M are the Hubble parameter,the DM density parameter,the anisotropy parameter,the dimensionless parameter,and the nuisance parameter of SNIa data,respectively.The best-fitted values of these parameters are listed in the third column of table 1.

    Figure 3.One-dimensional marginalized distribution and two-dimensional contours with 68% CL and 95% CL for RDE in BI model using Pantheon+H(z) data.H0, Ωm0,Ωσ0,α and M are the Hubble parameter,the DM density parameter,the anisotropy parameter,the dimensionless parameter,and the nuisance parameter of SNIa data,respectively.The best-fitted values of these parameters are displayed in the last column of table 1.

    Figure 4.Evolution of the Hubble parameter(in units of km s-1 Mpc-1)with redshift z based on the RDE model in an anisotropy Universe by using the Pantheon(in magenta),H(z)(in green)and Panteon+H(z)(in gray)data.The colored regions show the1σ′region,whereas the black dots and bars correspond to the 52 H(z) data points.The cosmological parameters are indicated in of table 1.

    Figure 5.Evolution of the supernova distance modulus with redshift z based on the RDE model in an anisotropy Universe by using the Pantheon(in magenta),H(z)(in green)and Panteon+H(z)(in gray)data.The cosmological parameters are provided in table 1.

    Figure 6.Plots of ωde(z) versus z for the model parameters obtained from bounding the derived model with Pantheon (left panel),H(z)(middle)and Pantheon+H(z)data(right panel).In these plots,the black curves correspond the evolution of ωde(z)for the best-fit case and the colored regions indicate 1σ′ error region.

    Figure 7.Plots of q(z)versus z for the model parameters obtained from bounding the derived model with Pantheon(left panel),H(z)(middle)and Pantheon+H(z)data(right panel).In these plots,the black curves correspond the evolution of q(z)for the best-fit case and the colored regions indicate 1σ′ error region.

    5.2.EoS parameter

    Assuming equations (13) and (19) for the best-fit values,we plot the EoS parameter of RDE in an anisotropic Universe.They are shown in figure 6.It is also observed that the RDE of the BI model does cross the phantom divide line.In other words,in the distant future,the EoS parameter approaches ω <-1,and the Universe evolves into the phantom-dominated epoch.The present values ωde(z=0)=-1.22,-1.51 and-1.17 can be calculated for the best-fit values of parameters with Pantheon,H(z) and Pantheon+H(z),respectively.These values are comparatively smaller than that predicted by the joint analysis of WMAP+BAO+H(z)+SNIa data which is around-0.93.

    5.3.Deceleration parameter

    Finally,the best fit curve of q(z) at 68% confidence level is shown in figure 7.Using our anisotropic model,the present value of deceleration parameter are estimated asq0=-0.686,q0=-1.079andq0=-0.749fti with Pantheon,H(z)and Pantheon+H(z)data,respectively.It is worthwhile to note that in [84],the authors have obtained q0=-0.56±0.04 which is bigger than the value of q0,constrained in this work.Therefore,in the proposed model,the results are compatible with recent observations.Moreover,we observe that the early Universe was in a decelerated phase of expansion while the current Universe repels its ingredient RDE of BI model with acceleration.Hence,the Universe with derived model represents a model of a transiting Universe that has signature filpping atztr=0.552ztr=0.504andztr=0.551with respect to Pantheon,H(z) and Pantheon+H(z) data,respectively.These transition redshift values are compatible with the recently constrained valueztr=0.60of[85].From the Pantheon and the combination of H(z)and Pantheon datasets,we note that the transition from deceleration to acceleration in the RDE of the BI expansion process occurs at a redshift ofztr~ 0.55which is consistent with the results of [86,87].So,we observe that in all three cases,our model support the recent scientific findings,as well.

    6.Conclusion

    In the present work,we have investigated the BI anisotropic Universe using a well formulated RDE model against the most recent publicly available SNIa compilations.In order to reduce the correlation with background cosmology,we have used the H(z)constraint on the free cosmological parameters.Based on a non-parametric assumption of the kinematic parameters,we reconstructed the Hubble,deceleration and the EoS parameter from a χ2minimisation technique with 52 data points for observational H(z) values in the redshift range 0 ≤z ≤2.36 which was used to obtain the free parameters of the RDE model in an anisotropic Universe.We also carried out an analysis from the Pantheon compilation data from 1048 SNIa apparent magnitude measurements including 276 SNIa in the low-redshift range 0.3 ≤z ≤0.65.It is interesting to further explore the more intimate connection between the log-marginal likelihood and the.The main result of the statistical analysis is given in table 1.Thus,we concluded the present Pantheon and H(z) data provides well constrained values of H0and therefore our model has good consistency with recent observations.The conclusion that 70.3 km s-1Mpc-1is close to Planck and not close to previous SNe measurements might be an overstatement,as it sits quite cleanly in the middle.From the joint analysis,it is obtained that the anisotropy parameter of the RDE model changed between5.08× 10-3≤Ωσ0≤-2.94×10-3at 68% confidence level.This result is not in good agreement with what was obtained from recent CMB observations which indicated the anisotropy parameter is of an order of ~10-5.In fact,this parameter is important in the study of the early Universe i.e at high redshifts when the anisotropy plays a more effective role in the structure formation of our Universe.From figures 1–3,it has been observed that these best-fit values of the model parameters were well in agreement with the predictions of the RDE model.The reducedobtained for the RDE model fitted extremely well to the considered observational data.In particular,for the Pantheon and H(z) data combination,we confirmed a reasonable and fairly restrictive summary value of Ωm0=0.297±0.031which was in good agreement with many other recent measurements (e.g.0.315±0.007 from Planck Collaboration [3]).

    The study of the evolution of different cosmological parameters like the Hubble parameter,the distance modulus,the EoS of the RDE,and the cosmic deceleration parameter showed that the BI model highly matches observations and followed the standard scenario of the context of the Universe’s evolution.Applying best-fit values alongside Pantheon data combined with H(z) data was employed to represent the transition value of the redshift(ztr=0.551),the current of the deceleration parameter (q0=-0.749) and the EoS parameter(ωde(z=0)=-1.17)in the RDE of BI model.Finally,the behavior of the model was in good agreement with the modern cosmological observations.In the absence of anisotropy effects,i.e.σ0=0,and Ωσ0=0(i.e.spatially flat FRW Universe),the RDE is reduced to that of[17,20,32,88,89].Comparing the results obtained in the RED model of FRW in [17,20,32,88,89],it was observed that the presence of anisotropy effects leads improves the data fitting in the RDE model.

    极品少妇高潮喷水抽搐| 好男人电影高清在线观看| 亚洲精品在线美女| 一二三四在线观看免费中文在| 久久精品国产a三级三级三级| 成人午夜精彩视频在线观看| 男女床上黄色一级片免费看| 这个男人来自地球电影免费观看| 免费久久久久久久精品成人欧美视频| 天天躁日日躁夜夜躁夜夜| 久久久精品区二区三区| 久久亚洲精品不卡| 香蕉丝袜av| 婷婷色综合大香蕉| 校园人妻丝袜中文字幕| 超碰97精品在线观看| 少妇被粗大的猛进出69影院| 国产免费福利视频在线观看| 成人国产av品久久久| 免费高清在线观看视频在线观看| 国产成人欧美在线观看 | 男女之事视频高清在线观看 | 国产无遮挡羞羞视频在线观看| 国产精品香港三级国产av潘金莲 | 亚洲欧美激情在线| 国产不卡av网站在线观看| 欧美精品人与动牲交sv欧美| 精品国产一区二区久久| 精品少妇内射三级| 老熟女久久久| 久久国产精品大桥未久av| 国产极品粉嫩免费观看在线| 日日爽夜夜爽网站| 中文字幕制服av| 高清视频免费观看一区二区| 只有这里有精品99| 91老司机精品| 免费看av在线观看网站| 91精品三级在线观看| 久久99精品国语久久久| 欧美久久黑人一区二区| 韩国高清视频一区二区三区| 欧美黄色片欧美黄色片| 久久精品亚洲av国产电影网| 青春草亚洲视频在线观看| 狂野欧美激情性bbbbbb| 亚洲人成网站在线观看播放| 汤姆久久久久久久影院中文字幕| 欧美精品av麻豆av| 激情视频va一区二区三区| 91麻豆精品激情在线观看国产 | 国产精品久久久人人做人人爽| 99国产精品一区二区蜜桃av | 日韩精品免费视频一区二区三区| 大型av网站在线播放| xxx大片免费视频| 国产精品久久久久成人av| 91成人精品电影| 国产av精品麻豆| 亚洲五月婷婷丁香| 午夜免费鲁丝| 女人被躁到高潮嗷嗷叫费观| 女人久久www免费人成看片| 欧美日韩一级在线毛片| 亚洲成人手机| 91成人精品电影| 免费观看人在逋| 狂野欧美激情性xxxx| 我要看黄色一级片免费的| 午夜福利视频在线观看免费| 欧美xxⅹ黑人| 午夜久久久在线观看| 黄色视频在线播放观看不卡| 两个人免费观看高清视频| 色精品久久人妻99蜜桃| 两个人看的免费小视频| 欧美成人午夜精品| tube8黄色片| videos熟女内射| 一区在线观看完整版| av又黄又爽大尺度在线免费看| 国产一区二区 视频在线| 亚洲国产欧美网| 亚洲精品第二区| 乱人伦中国视频| 蜜桃在线观看..| 人人妻人人爽人人添夜夜欢视频| 大陆偷拍与自拍| 亚洲激情五月婷婷啪啪| 久久久精品国产亚洲av高清涩受| av又黄又爽大尺度在线免费看| 黄色怎么调成土黄色| 午夜激情av网站| 999久久久国产精品视频| 在线观看一区二区三区激情| 一本一本久久a久久精品综合妖精| 岛国毛片在线播放| 亚洲七黄色美女视频| 一区在线观看完整版| 9色porny在线观看| 九色亚洲精品在线播放| 韩国精品一区二区三区| 老司机靠b影院| 男女无遮挡免费网站观看| 欧美激情极品国产一区二区三区| 久久免费观看电影| 欧美日韩视频精品一区| 多毛熟女@视频| 免费在线观看视频国产中文字幕亚洲 | 午夜福利免费观看在线| 久久国产精品大桥未久av| 午夜老司机福利片| av一本久久久久| 水蜜桃什么品种好| 乱人伦中国视频| 看免费成人av毛片| 国产伦理片在线播放av一区| 日韩av不卡免费在线播放| 成年人黄色毛片网站| svipshipincom国产片| 欧美人与性动交α欧美软件| 亚洲五月色婷婷综合| 欧美黑人精品巨大| 亚洲欧美一区二区三区黑人| av片东京热男人的天堂| 国产av国产精品国产| 夜夜骑夜夜射夜夜干| 国产高清视频在线播放一区 | 成人亚洲欧美一区二区av| 亚洲av男天堂| 久久国产精品人妻蜜桃| 中文字幕精品免费在线观看视频| 自线自在国产av| 欧美黑人欧美精品刺激| 这个男人来自地球电影免费观看| 国产成人欧美在线观看 | 一本综合久久免费| 最近手机中文字幕大全| 好男人视频免费观看在线| 精品亚洲乱码少妇综合久久| 国产成人一区二区在线| 天天操日日干夜夜撸| e午夜精品久久久久久久| av电影中文网址| 亚洲图色成人| 80岁老熟妇乱子伦牲交| 亚洲国产日韩一区二区| 视频区欧美日本亚洲| 亚洲精品日韩在线中文字幕| 久久精品久久久久久噜噜老黄| av天堂久久9| 久久精品亚洲熟妇少妇任你| 日韩制服丝袜自拍偷拍| 亚洲人成网站在线观看播放| 亚洲欧美一区二区三区黑人| 极品人妻少妇av视频| 久久青草综合色| 一边摸一边做爽爽视频免费| 青春草视频在线免费观看| 99精国产麻豆久久婷婷| 国产成人影院久久av| 午夜久久久在线观看| 亚洲精品第二区| 国产三级黄色录像| 欧美亚洲日本最大视频资源| 国产精品九九99| 亚洲欧美成人综合另类久久久| 我要看黄色一级片免费的| 国产欧美日韩一区二区三 | 美女主播在线视频| 激情五月婷婷亚洲| 午夜福利视频精品| 欧美日韩国产mv在线观看视频| 日本五十路高清| 大陆偷拍与自拍| 永久免费av网站大全| 精品久久久久久电影网| 欧美日韩视频高清一区二区三区二| 丝袜脚勾引网站| 亚洲国产毛片av蜜桃av| 一级毛片我不卡| 另类精品久久| 1024香蕉在线观看| 性色av乱码一区二区三区2| 国产精品国产三级专区第一集| 狂野欧美激情性xxxx| 亚洲欧美清纯卡通| 黄网站色视频无遮挡免费观看| 国产免费又黄又爽又色| 少妇裸体淫交视频免费看高清 | 国产高清videossex| 亚洲精品日本国产第一区| 亚洲图色成人| 成年人免费黄色播放视频| 国产成人影院久久av| 精品欧美一区二区三区在线| 99九九在线精品视频| 韩国精品一区二区三区| 国产在线免费精品| 亚洲熟女精品中文字幕| 欧美中文综合在线视频| 在现免费观看毛片| 老熟女久久久| 大香蕉久久网| 亚洲精品久久久久久婷婷小说| 夫妻午夜视频| 色婷婷久久久亚洲欧美| 精品视频人人做人人爽| 丝袜美腿诱惑在线| 成人国产av品久久久| 只有这里有精品99| 精品国产一区二区久久| 国产av国产精品国产| 亚洲三区欧美一区| 嫩草影视91久久| 99久久99久久久精品蜜桃| 久久久久久免费高清国产稀缺| 国产精品免费视频内射| avwww免费| 亚洲九九香蕉| 国产精品秋霞免费鲁丝片| 亚洲色图综合在线观看| 精品国产超薄肉色丝袜足j| 午夜福利一区二区在线看| 精品福利永久在线观看| 国产精品三级大全| 亚洲熟女毛片儿| 国产一区二区三区综合在线观看| 欧美日韩一级在线毛片| 久久国产精品人妻蜜桃| 久久久久视频综合| 女性被躁到高潮视频| 国产91精品成人一区二区三区 | 午夜福利影视在线免费观看| 国产免费又黄又爽又色| 欧美精品人与动牲交sv欧美| 国产精品一区二区在线不卡| 国产高清视频在线播放一区 | 在线精品无人区一区二区三| 在线亚洲精品国产二区图片欧美| 深夜精品福利| 如日韩欧美国产精品一区二区三区| 啦啦啦在线免费观看视频4| 欧美亚洲日本最大视频资源| 亚洲中文av在线| 日韩制服骚丝袜av| 热99国产精品久久久久久7| 1024香蕉在线观看| 如日韩欧美国产精品一区二区三区| 男男h啪啪无遮挡| 丝袜喷水一区| 母亲3免费完整高清在线观看| 久久人人爽av亚洲精品天堂| 女人被躁到高潮嗷嗷叫费观| 叶爱在线成人免费视频播放| 免费在线观看黄色视频的| 中文字幕av电影在线播放| 成年av动漫网址| 九草在线视频观看| 又大又黄又爽视频免费| 大片免费播放器 马上看| 亚洲专区中文字幕在线| 久久国产精品大桥未久av| 亚洲成国产人片在线观看| 亚洲国产欧美网| 男女午夜视频在线观看| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美在线一区| 午夜日韩欧美国产| 国产在线观看jvid| 免费看十八禁软件| 中文字幕精品免费在线观看视频| 成人亚洲精品一区在线观看| xxxhd国产人妻xxx| 国产精品国产av在线观看| 18禁裸乳无遮挡动漫免费视频| 少妇粗大呻吟视频| 只有这里有精品99| 侵犯人妻中文字幕一二三四区| 一本色道久久久久久精品综合| 啦啦啦啦在线视频资源| 男的添女的下面高潮视频| 大片免费播放器 马上看| 男女床上黄色一级片免费看| 亚洲精品国产色婷婷电影| 国产在线观看jvid| 男人操女人黄网站| 97人妻天天添夜夜摸| 美女脱内裤让男人舔精品视频| 午夜免费鲁丝| 午夜福利,免费看| 亚洲综合色网址| av线在线观看网站| 国产欧美日韩综合在线一区二区| 一区二区三区激情视频| 日韩大码丰满熟妇| 国产老妇伦熟女老妇高清| 亚洲av电影在线进入| 久久久久久久久免费视频了| 国产91精品成人一区二区三区 | 亚洲欧洲国产日韩| 丝袜在线中文字幕| 大香蕉久久成人网| 久久久久国产精品人妻一区二区| 久久99一区二区三区| 91九色精品人成在线观看| 九草在线视频观看| 日日夜夜操网爽| 亚洲国产精品999| svipshipincom国产片| 天天影视国产精品| 国产一区亚洲一区在线观看| 波多野结衣av一区二区av| 国产成人一区二区三区免费视频网站 | 不卡av一区二区三区| 看免费成人av毛片| 精品一区在线观看国产| 男人舔女人的私密视频| 亚洲色图 男人天堂 中文字幕| 精品少妇一区二区三区视频日本电影| 天天躁夜夜躁狠狠久久av| 超碰成人久久| 免费观看av网站的网址| 日韩免费高清中文字幕av| 国产一区二区激情短视频 | 妹子高潮喷水视频| 久久性视频一级片| 国产精品一二三区在线看| 一级,二级,三级黄色视频| 在现免费观看毛片| 最近最新中文字幕大全免费视频 | 丝袜人妻中文字幕| 国产黄色视频一区二区在线观看| 精品福利永久在线观看| 黄色视频在线播放观看不卡| 亚洲国产欧美一区二区综合| 亚洲欧美精品综合一区二区三区| 亚洲激情五月婷婷啪啪| 国产亚洲av高清不卡| 欧美精品人与动牲交sv欧美| 亚洲中文日韩欧美视频| 少妇被粗大的猛进出69影院| 交换朋友夫妻互换小说| 男女床上黄色一级片免费看| 91老司机精品| 老司机在亚洲福利影院| 国产精品二区激情视频| 成人三级做爰电影| 乱人伦中国视频| 国产黄频视频在线观看| 我要看黄色一级片免费的| 国产精品二区激情视频| 国产精品欧美亚洲77777| 十八禁高潮呻吟视频| 免费观看a级毛片全部| 王馨瑶露胸无遮挡在线观看| 老汉色av国产亚洲站长工具| 亚洲欧洲日产国产| 国产精品麻豆人妻色哟哟久久| 亚洲人成电影免费在线| 亚洲欧美激情在线| 国产伦人伦偷精品视频| 中文字幕av电影在线播放| 赤兔流量卡办理| 两人在一起打扑克的视频| 蜜桃国产av成人99| 日韩av在线免费看完整版不卡| 国语对白做爰xxxⅹ性视频网站| 少妇被粗大的猛进出69影院| 国产成人欧美在线观看 | 美女中出高潮动态图| 国产精品秋霞免费鲁丝片| 中文乱码字字幕精品一区二区三区| 90打野战视频偷拍视频| 色视频在线一区二区三区| 精品人妻在线不人妻| 一本—道久久a久久精品蜜桃钙片| 中文字幕亚洲精品专区| 国产黄色免费在线视频| 亚洲欧美一区二区三区久久| 在线精品无人区一区二区三| 免费久久久久久久精品成人欧美视频| 十八禁高潮呻吟视频| 中文欧美无线码| 一边摸一边抽搐一进一出视频| 亚洲成色77777| 50天的宝宝边吃奶边哭怎么回事| 嫩草影视91久久| 嫁个100分男人电影在线观看 | 久久人妻福利社区极品人妻图片 | 成年人免费黄色播放视频| 欧美少妇被猛烈插入视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av成人精品一二三区| 建设人人有责人人尽责人人享有的| 丝袜美腿诱惑在线| 啦啦啦中文免费视频观看日本| 国产精品久久久人人做人人爽| 一级毛片 在线播放| 亚洲三区欧美一区| 久久女婷五月综合色啪小说| 久久国产精品人妻蜜桃| 国产xxxxx性猛交| 老司机午夜十八禁免费视频| 国产高清视频在线播放一区 | 十八禁人妻一区二区| 老司机影院成人| 肉色欧美久久久久久久蜜桃| 99久久99久久久精品蜜桃| 亚洲成av片中文字幕在线观看| 亚洲精品国产一区二区精华液| 91成人精品电影| 如日韩欧美国产精品一区二区三区| 国产精品免费视频内射| 国产高清不卡午夜福利| 制服人妻中文乱码| tube8黄色片| 老司机午夜十八禁免费视频| 国产亚洲av高清不卡| 免费女性裸体啪啪无遮挡网站| 99久久综合免费| 国产精品二区激情视频| av网站在线播放免费| 少妇粗大呻吟视频| 丝袜人妻中文字幕| 久久久久网色| 老司机影院毛片| 亚洲免费av在线视频| 欧美 日韩 精品 国产| 久久精品成人免费网站| 午夜福利影视在线免费观看| 国产精品九九99| 精品第一国产精品| 亚洲精品久久成人aⅴ小说| 性少妇av在线| 亚洲国产毛片av蜜桃av| 男女国产视频网站| 国产一区二区三区综合在线观看| 亚洲欧美一区二区三区久久| 欧美在线一区亚洲| 亚洲成人免费电影在线观看 | 久久人人97超碰香蕉20202| 一级毛片 在线播放| 男女无遮挡免费网站观看| 搡老乐熟女国产| 99re6热这里在线精品视频| 日日摸夜夜添夜夜爱| 亚洲九九香蕉| 成年人午夜在线观看视频| 亚洲精品日韩在线中文字幕| 欧美日韩亚洲高清精品| 18禁裸乳无遮挡动漫免费视频| 亚洲精品久久成人aⅴ小说| 精品第一国产精品| 90打野战视频偷拍视频| 久久久久网色| 欧美成狂野欧美在线观看| 999久久久国产精品视频| 成人国产av品久久久| 又紧又爽又黄一区二区| 别揉我奶头~嗯~啊~动态视频 | 亚洲av电影在线进入| 日本欧美国产在线视频| 久久99精品国语久久久| 日韩制服丝袜自拍偷拍| 一级片'在线观看视频| 亚洲精品一二三| 国产99久久九九免费精品| 最近中文字幕2019免费版| 亚洲欧美中文字幕日韩二区| 成年人黄色毛片网站| av线在线观看网站| www.精华液| 亚洲精品美女久久久久99蜜臀 | 麻豆av在线久日| 婷婷成人精品国产| 久久久久久亚洲精品国产蜜桃av| 精品人妻在线不人妻| 黄色怎么调成土黄色| 99精国产麻豆久久婷婷| 亚洲五月色婷婷综合| 欧美日韩视频精品一区| 日本91视频免费播放| 黑人猛操日本美女一级片| 91精品三级在线观看| 一级毛片我不卡| 日韩一本色道免费dvd| 亚洲精品中文字幕在线视频| 亚洲av男天堂| 亚洲视频免费观看视频| 亚洲成人手机| 母亲3免费完整高清在线观看| 国产一级毛片在线| 首页视频小说图片口味搜索 | 亚洲中文日韩欧美视频| 亚洲黑人精品在线| 晚上一个人看的免费电影| 国产成人欧美在线观看 | 国产免费视频播放在线视频| 亚洲七黄色美女视频| 国产精品一二三区在线看| 国产麻豆69| 久久精品熟女亚洲av麻豆精品| 色视频在线一区二区三区| 大陆偷拍与自拍| 久热爱精品视频在线9| 免费在线观看黄色视频的| 国产又爽黄色视频| 国产一区二区 视频在线| 国产高清不卡午夜福利| 久久国产精品影院| 精品一区二区三区四区五区乱码 | 亚洲av男天堂| 1024香蕉在线观看| 亚洲欧美一区二区三区久久| 又大又爽又粗| 亚洲av在线观看美女高潮| svipshipincom国产片| 美女高潮到喷水免费观看| 中文乱码字字幕精品一区二区三区| 成年人黄色毛片网站| 国产亚洲av片在线观看秒播厂| 亚洲欧洲精品一区二区精品久久久| 视频区欧美日本亚洲| 午夜激情av网站| 国产欧美日韩综合在线一区二区| 在线观看免费视频网站a站| 国产av国产精品国产| 国产成人精品久久二区二区91| 国产无遮挡羞羞视频在线观看| 日韩大片免费观看网站| 午夜福利,免费看| 最近手机中文字幕大全| 两性夫妻黄色片| 无遮挡黄片免费观看| 精品第一国产精品| 国产亚洲精品久久久久5区| 丰满饥渴人妻一区二区三| 亚洲免费av在线视频| 尾随美女入室| 老司机深夜福利视频在线观看 | 我的亚洲天堂| 国产免费福利视频在线观看| 妹子高潮喷水视频| 大码成人一级视频| 91精品三级在线观看| 在现免费观看毛片| 99香蕉大伊视频| 国产xxxxx性猛交| 啦啦啦中文免费视频观看日本| 亚洲av日韩在线播放| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美在线一区| 国产欧美亚洲国产| 午夜激情av网站| 亚洲国产av新网站| 国产精品国产av在线观看| av国产久精品久网站免费入址| 汤姆久久久久久久影院中文字幕| 国产野战对白在线观看| 久久国产精品人妻蜜桃| 天堂中文最新版在线下载| 亚洲国产欧美日韩在线播放| 免费久久久久久久精品成人欧美视频| 成人免费观看视频高清| 精品少妇一区二区三区视频日本电影| 亚洲免费av在线视频| 男女床上黄色一级片免费看| 女性被躁到高潮视频| 99热国产这里只有精品6| 成人午夜精彩视频在线观看| 午夜91福利影院| 十八禁人妻一区二区| 亚洲国产毛片av蜜桃av| 亚洲色图综合在线观看| a级毛片在线看网站| 97在线人人人人妻| 国产成人av激情在线播放| 久久99一区二区三区| 成年av动漫网址| 国产人伦9x9x在线观看| 免费观看av网站的网址| 午夜视频精品福利| 男女高潮啪啪啪动态图| 一级毛片黄色毛片免费观看视频| 悠悠久久av| 美女扒开内裤让男人捅视频| 国产免费现黄频在线看| 建设人人有责人人尽责人人享有的| 成年女人毛片免费观看观看9 | 在线观看国产h片| 肉色欧美久久久久久久蜜桃| 国产高清视频在线播放一区 | 麻豆乱淫一区二区| 日韩中文字幕视频在线看片| 国产一区二区三区综合在线观看| 国产黄色视频一区二区在线观看| 国产97色在线日韩免费| 日韩,欧美,国产一区二区三区| 日韩 亚洲 欧美在线| 女人精品久久久久毛片| 亚洲精品美女久久av网站| 国产精品一区二区精品视频观看| 国产成人免费观看mmmm| 十八禁网站网址无遮挡| 午夜激情av网站| 久久久久久亚洲精品国产蜜桃av| 日韩,欧美,国产一区二区三区| 亚洲专区国产一区二区| 亚洲免费av在线视频| 黄色视频不卡| 精品少妇一区二区三区视频日本电影| 少妇的丰满在线观看| 黄色一级大片看看| 亚洲成人免费电影在线观看 |