• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Majorana’s stellar representation for the quantum geometric tensor of symmetric states

    2022-08-02 02:47:34XingyuZhangJianchengPeiLibinFuandXiaoguangWang
    Communications in Theoretical Physics 2022年6期

    Xingyu Zhang,Jiancheng Pei,Libin Fu and Xiaoguang Wang,3

    1 Zhejiang Institute of Modern Physics,Department of Physics,Zhejiang University,Hangzhou 310027,China

    2 National Laboratory of Science and Technology on Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3 Graduate School of China Academy of Engineering Physics,Beijing 100193,China

    Abstract Majorana’s stellar representation provides an intuitive picture in which quantum states in highdimensional Hilbert space can be observed using the trajectory of Majorana stars.We consider the Majorana’s stellar representation of the quantum geometric tensor for a spin state up to spin-3/2.The real and imaginary parts of the quantum geometric tensor,corresponding to the quantum metric tensor and Berry curvature,are therefore obtained in terms of the Majorana stars.Moreover,we work out the expressions of quantum geometric tensor for arbitrary spin in some important cases.Our results will benefit the comprehension of the quantum geometric tensor and provide interesting relations between the quantum geometric tensor and Majorana’s stars.

    Keywords:quantum geometric tensor,Berry curvature,quantum metric tensor,Majorana's stellar representation

    1.Introduction

    It is well known that a spin-1/2 state(or a two-level state)can be described by a point in the sphere,which is called the Bloch representation.Quantum dynamics of the spin-1/2 system can be studied geometrically via the trajectory of a point in the Bloch sphere.Extension of this representation to a higher dimensional quantum state has been brilliantly resolved by Majorana [1].The main spirit is to represent a generic spin-J state (equivalent to n body two-mode boson state with n=2J or a symmetric n qubit state)by 2J points in a two-dimensional Majorana sphere rather than a higher dimensional sphere.Then the evolution of the generic spin-J state can be intuitively described by 2J points in the Majorana sphere [2],in which the 2J points are called Majorana stars.The Majorana’s stellar representation (MSR) has attracted much attention in various fields[3–6],such as the many-body phenomenon [5,7,8],spinor Bose–Einstein condensation[4,9],non-Hermitian multiband systems [10,11],geometric phases [12–15]and different physical models [16–19].

    Now we introduce the Majorana stellar representation.Majorana has given a wonderful relation between the generic spin-J state and n=2J points in the Majorana sphere,so a generic spin-J state can also be represented by [1,13,14]

    where P means the sum of all permutations of the 2J points.Here,|uk〉is a spin-1/2 state,and the corresponding θkand φkare determined by the following procedure.In the Schwinger representation,a spin-J state induces a star equation [13]:

    The quantum geometric tensor (QGT),comprising the Berry curvature and the quantum metric tensor,exhibits the geometric property of a quantum state.It has played an indispensable role in many frontier topics of quantum information and condensed matter physics [11,20–24].The gauge-invariant QGT was first proposed by Provost and Vallee in 1980[25].Its real part is in the form of the quantum metric tensor,whereas its imaginary part corresponds to the Berry curvature [26,27].Both the real and imaginary parts have been discussed in various contexts.For example,the Berry curvature,which emerges during a cyclic evolution,has contributed to the correction of Bloch electron group velocity[28,29]and the dynamical quantum Hall effect in the parameter space [30].As for the quantum metric tensor,not only does it play a central role in the quantum metrology known as Fisher information [31,32],but also manifests the superfluid’s stiffness with respect to magnetic gradients in the hydrodynamics of spinor condensates [4].

    The gauge-invariant quantity,QGT,can be written as[25]

    where |χ〉 is a normalized state,and α and β are two parameters in the parameter space of the Hamiltonian.It is easy to show the real part of the QGT is its symmetric part,which is a quarter of the quantum Fisher information matrix [21]

    where the Fαβis the well-known quantum Fisher information matrix.As for the imaginary part of the QGT,it is the antisymmetric part and is equivalent to the Berry curvature except for a constant coefficient [22,23]

    The expression in the square bracket in the last equation is exactly the Berry curvature.As a result,the quantum geometric tensor combines two extremely important geometric quantities in one expression.

    In the past decades,there have been lots of advances in the representation of the Berry phase using the MSR.The individual motions of the Majorana stars and the correlations between stars have been thought to be linked with the Berry phase and quantum entanglement [13,14,33].As for the quantum metric tensor,its diagonal elements have been identified with the CPNmodel for a general spin J=n/2 [4],and it also reveals some intrinsic relations with quantum phase transition [21,22,34–36].However,the direct representation of the QGT by the MSR has not been studied.

    In this article,we will use the spherical coordinates to obtain the relations between the quantum state and the Bloch vector.Using these relations,we further derive the MSR of QGT up to spin-3/2 situation.Our method is essentially identified with that of the[4],and the real and imaginary parts of our results are the same with those respectively.

    This article is organized as follows.In section 2,we introduce the spherical coordinates representation of an arbitrary two-level state.Furthermore,we get a set of relations between the two-level state and the Bloch vector and give the simple expression of the QGT using MSR with respect to spin-1/2 and spin-1 situations.In section 3,we derive the QGT of the spin-3/2 and discuss two simple cases to demonstrate the MSR for QGT.In section 4,we use a simple Lipkin–Meshkov–Glick (LMG) model to verify the correctness of the results in section 3.In section 5,the results of special situations of the arbitrary spin state are given.A brief conclusion is given in section 6.

    2.Spherical coordinate representation of one or twoqubit and its application

    As a well-known fact,a general spin-1/2 pure state can be described as:

    and then the pure state |u〉can be represented as(θ,φ) in the Bloch sphere.We next define a state orthogonal to |u〉:

    where a global phase factor has been ignored and it corresponds to a point(π-θ,π+φ)in the Bloch sphere.Then the state|u〉can be represented as=(s inθcosφ,sinθsinφ,cosθ) in the spherical coordinate representation,whereas the orthogonal state |u⊥〉 corresponds to→.We further introduce two mutually orthogonal vectors which are also perpendicular to the Bloch vector:=(cosθcosφ,cosθsinφ,-sinθ),=(-s inφ,cosφ,0),and theconstitutes righthanded Cartesian coordinate system.Furthermore,we define two vectors analogous to the creation and annihilation operators:It is easy to show

    where α is an arbitrary parameter.Given the above definitions,we have

    Since we have the above properties,the relation between a pure state and the Bloch vector can be more clear now:

    The Berry connection for the 1-qubit pure state becomes

    In addition,using those properties,we can get:

    The equation (13) is actually the diagonal element of the quantum metric tensor for spin-1/2 states.And there are three useful equations in the calculation of QGT:

    We are now in a position to start the calculation of the MSR for QGT.For an unnormalized state?|uP(2)〉 ?…|uP(N)〉,the corresponding normalized state isAnd the QGT for this case becomes [8]

    We will begin from the simplest case with spin-1/2.In this situation,we can let∣χ〉==∣u〉.The state has been normalized for the case of spin-1/2.Then we obtain the QGT

    The real and imaginary part gives the quantum metric and Berry curvature respectively.

    When it comes to spin-1 situation,a generic spin-1 pure state can be written as the permutation form:

    where the normalization coefficient [8,14]is

    In order to get the QGT,we need to calculate several terms utilizing the relations above:

    The last line in equation(21)is nothing but swapping the subscripts 1 and 2 in the above four terms So we just need to calculate the first two lines.Besides,we still need to calculate the two-star Berry connection

    After calculating these terms using the equations in section 2,we can obtain the explicit form of QGT represented by Bloch vectors.Since the full expression of the QGT is not so brief,we just give its real and imaginary parts individually.The real part of the QGT can be simplified as

    and the imaginary part of the QGT is

    This result is identified with that of the [4],whereas we obtain it from the expression of QGT rather than the direct calculation of the Berry curvature and the quantum metric tensor.

    The situation in the spin-1 is still clear.The quantum geometric tensor includes the contribution not only from each Majorana stars but from the interaction between them.The case in spin-3/2 is basically the same,but the interaction part is more complex.

    3.MSR of the QGT for three-qubit case

    3.1.Calculation for the three-qubit case

    Following the same procedure,a generic spin-3/2 pure state is

    where now the normalization coefficient becomes

    Since we already have the normalization coefficient,we just need to figure out the following two expressions respectively,i.e.The calculation is tedious,so we only list our main results here.

    This term is complex but straightforward,and we need to substitute those vector formulas into the inner products of states of the equation(27).This term can be explicitly written as

    There are some terms concerning aαiand aβi,which do not satisfy the gauge variance.Since the QGT is gauge-invariant,this kind of term must be finally canceled.

    Next,we just need to calculate the term

    Once we obtain these two terms,the concrete form of the QGT for spincase can be summarized as the equation(31).Apparently,this Berry-connection-like term is also gaugedependent.The MSR of the second term reads

    Those gauge-variant terms in equations (28) and (30) are mutually canceled when calculating the final QGT,which stems from the gauge invariance of QGT.

    The total formula of MSR for the QGT should be the equation(31)divided by N34.We can see that the subtrahend in the last line of equation (31) reduces to zero when

    For the sake of simplicity,we define

    and

    The real part of the QGT is

    while the imaginary part of QGT becomes

    Specifically,we can see that if we choose the antipodal points to all the Majorana stars,i.e.→→=-,the real part of the quantum geometric tensor stays unchanged,while the imaginary part becomes opposite.

    3.2.Two simple demonstrations for three-qubit QGT

    In this subsection,we will give some specific cases of the QGT in terms of the instantaneous state.We discuss two specific cases for spin-3/2 as in figure 1.

    When there are two stars fixed in the north pole and one star travels along the equator (figure 1(a)),i.e.we are interested in Qωω.In this case,the QGT does not have the antisymmetric part,and the symmetric part is its real part,which is the quantum Fisher information for ω.The QGT reads

    Figure 1.Illustration of two simple stars’ structures.(a)When there are two stars fixed at the north pole and one star travels along the equator.(b)When the three stars locate at the equator uniformly and rotate along the equator together.

    The second interesting example is the GHZ-type states[13],where the three stars locate at the equator uniformly and rotate along the equator together (figure 1(b)).The stars hold the relationall the time and the QGT with respect to rotating frequency is

    Since the real part of QGT gives the quantum Fisher information,this means the second example is better to estimate the rotating frequency than the first one.

    4.Applications to the LMG model

    In order to show that our results are convincing,we examine a simple example and illustrate how the MSR works.The research on the QGT of the LMG model has attracted much attention [37–39].Now we consider the anisotropic case of the LMG model [40]:

    where α <0 and β <0.

    We are concerned with the spincase.This Hamiltonian can be written as the following matrix of the equation (39)under the bases

    and

    Then we take care of the two lower eigenstates.The first one is in the subspace of |0〉,|1〉:

    where the coefficients

    Figure 2.Qαβ of the first lower eigenstate of LMG model for spin-3/2.It becomes divergent when α=β=0.

    The Majorana stars are obtainedThe spherical coordinates of the three stars are (0,sinθ,cosθ),(0,-sinθ,cosθ) and (0,0,1),whereThen we substitute these vectors in the expression of the real and imaginary part of QGT,we obtain the explicit form of QGT:

    The relation between the QGT and the parameters is shown in figure 2.The QGT only becomes divergent when α=β=0.This is obvious since the Hamiltonian vanishes in this case,which means the trivial degeneracy of energy levels.

    Similarly,the second lower eigenstate is in the subspace of |2〉,|3〉:

    where

    The divergence is similar to the first case,and this example testifies the validity of our results.

    5.Extensions to arbitrary spin

    After discussing the spin-1 and spin-3/2 cases,we will give some properties of arbitrary spin state.For arbitrary spin,the MSR for QGT is difficult to obtain,but we can know it in some simple situation.

    For example,the QGT of the ferromagnetic state,in which all stars coincide at one point and will remain coincident for a moment:can be easily calculated as

    The typical example is still the spin coherent state for the arbitrary spin

    The QGT possesses rotating invariance with respect to φ.Since its real part vanishes,the spin coherent state cannot be used to measure θ and φ from the perspective of quantum metrology.The same result can be also derived from equation (52).However,the process is tedious and needs to solve the series.The direct calculation verifies the correctness of the equation (53).

    We begin to discuss the second important case for an arbitrary spin.When it has J+m coincident points at=(s inθcosφ,sinθsinφ,cosθ),and J-m coincident antipodal points at-,the QGT reads

    The corresponding state is a spin in a uniform magnetic field[13]:

    If we still choose θ and φ as parameters,the QGT of this state becomes

    in which the well-known Berry curvature emerges.When m=J,it recovers the expression of equation (53).In particular,when there are nearly one half of the stars remain to beand the others are,the result can be obtained from equation (54).For example,if there are 2N stars,N of which arewhile the others are,i.e.m=0 and J=N is integer,the MSR of QGT becomes

    The imaginary part,or the Berry curvature,vanishes in this case.However,the real part is not zero in general,unless we take θ and φ as parameters.When there are 2N+1 stars,N+1 of which arewhile the others are,i.e.andis half-integer,

    The imaginary part identifies with that of one-star situation,thus resulting to the same geometric quantities such as the Berry phase or Chern number under this configuration.

    The third special case is an extension of the first case in section 3.2.We consider the situation where N-1 stars are always located at0and the remaining one starmove in a plane perpendicular to0.The QGT is

    It reduces to the equation(36)when N=3 and α=β=ω.It is provoking that the Qαβdoes not depend on the stationary star0.This reminds us of the rotation invariance of the MSR for the QGT,which originates from the gauge invariance of the QGT.Then we can draw the following proposition.

    Proposition.The parameter-independent global rotation of the Majorana stars will not change the MSR for QGT.

    Proof.For the parameter-independent global rotation,we can write the corresponding unnormalized state as

    where U is a two-dimensional unitary matrix anduis the direct product of N two-dimensional unitary matrices U.Sinceuis also a unitary matrix and parameter-independent,it does not influence the result of QGT in equation (18).□

    This proposition can help us when the Majorana stars do not possess certain symmetry.We can rotate all the stars to some special positions to simplify the calculation.And it also explains the reason why the QGT does not contain vectors of those stationary stars.

    We can also deduce from the above proposition that when all the stars fix on a parameter-independent plane,they can be rotated to the x–z plane,which makes its Berry curvature vanish,such as the examples in section 4.

    6.Conclusion

    The MSR has been a promising tool to study the many-body phenomena and higher spin states.In this article,we use this representation to study the quantum geometric tensor.The latter is vital in the research of quantum phase transition and quantum topological aspects.We give the results of the QGT up to spin-3/2 states and a general expression of arbitrary spin remains to be found.The result of MSR for QGT is already complex in the spin-3/2 case,and the higher spin situ ation will be difficult to obtain.However,the results(34)and(35) are easy to calculate on a computer once we obtain the explicit form of MSR.From the results of section 4,we can see that some special states are represented as simple star structures in the MSR,which simplifies the calculation of the QGT of MSR.Some chosen parameters,such as θ and φ,make the real part or the imaginary part vanish,thus leading to the loss of metrology capability or geometric properties.There are also some questions to be addressed.For example,the general formulation of MSR for QGT to arbitrary spin is needed.There is no doubt that the interaction between Majorana stars will become more intricate in higher spin states.Moreover,the deep connection between the MSR for QGT and the topological quantities [11]remains to be explored.Indeed the Majorana stars have been proven to facilitate the definition of the topological quantities,which somehow provide surprisingly useful results[10].Besides the use of the MSR for metric tensor in the spinor condensates[4],other applications of MSR for the metric tensor in topological quantum numbers are still an open question.As a whole,the MSR for the QGT will find more applications in topological physics.It is also interesting to use MSR to study the band topological problems.We believe our results will pave the way to further research on relations between the topological quantum mechanics and MSR.

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China(Grants No.2017YFA0304202 and No.2017YFA0205700),the NSFC (Grants No.11875231 and No.11935012),and the Fundamental Research Funds for the Central Universities through Grant No.2018FZA3005.

    ORCID iDs

    草草在线视频免费看| 日韩欧美在线二视频| 黄色片一级片一级黄色片| 亚洲精品久久国产高清桃花| 亚洲一码二码三码区别大吗| 久久久水蜜桃国产精品网| 国产欧美日韩一区二区三| 亚洲,欧美精品.| 中文字幕人妻丝袜一区二区| 免费电影在线观看免费观看| 91麻豆精品激情在线观看国产| 欧美av亚洲av综合av国产av| 午夜福利在线在线| 人人妻,人人澡人人爽秒播| 国产av在哪里看| 久久欧美精品欧美久久欧美| 18禁观看日本| 在线观看www视频免费| 日韩中文字幕欧美一区二区| 亚洲自偷自拍图片 自拍| 亚洲av片天天在线观看| 黄色毛片三级朝国网站| 日本三级黄在线观看| 欧美日韩亚洲国产一区二区在线观看| 十分钟在线观看高清视频www| 久久久国产成人精品二区| 国产视频内射| 国产麻豆成人av免费视频| 亚洲成av人片免费观看| 老司机午夜福利在线观看视频| 欧美色欧美亚洲另类二区| 99热6这里只有精品| 老司机午夜十八禁免费视频| 91国产中文字幕| 真人一进一出gif抽搐免费| 国产日本99.免费观看| e午夜精品久久久久久久| 国产亚洲欧美98| 久久人妻av系列| 精品国内亚洲2022精品成人| 黄色毛片三级朝国网站| 香蕉久久夜色| 久久国产亚洲av麻豆专区| 最近最新中文字幕大全电影3 | 18禁裸乳无遮挡免费网站照片 | 久久久久国产一级毛片高清牌| 成年免费大片在线观看| 麻豆国产av国片精品| 一本久久中文字幕| 制服丝袜大香蕉在线| 亚洲欧美一区二区三区黑人| 亚洲精品中文字幕一二三四区| 久久人妻福利社区极品人妻图片| 黄色视频,在线免费观看| 69av精品久久久久久| 黄频高清免费视频| 午夜福利视频1000在线观看| 久99久视频精品免费| 久久久精品国产亚洲av高清涩受| 在线av久久热| 欧美一级毛片孕妇| 亚洲男人的天堂狠狠| 欧美国产日韩亚洲一区| 黄色a级毛片大全视频| 一区二区三区国产精品乱码| 99国产精品一区二区三区| 婷婷亚洲欧美| 国产精品亚洲美女久久久| 色播在线永久视频| 美国免费a级毛片| 婷婷精品国产亚洲av| 日本五十路高清| 亚洲av美国av| 欧美激情极品国产一区二区三区| а√天堂www在线а√下载| 久久精品91无色码中文字幕| 成年人黄色毛片网站| 成熟少妇高潮喷水视频| 中文字幕精品免费在线观看视频| 国产精品免费视频内射| 丝袜在线中文字幕| 午夜福利欧美成人| 国产三级黄色录像| 亚洲性夜色夜夜综合| 黑丝袜美女国产一区| 色播亚洲综合网| 91国产中文字幕| 性欧美人与动物交配| 国内久久婷婷六月综合欲色啪| 日日摸夜夜添夜夜添小说| 波多野结衣巨乳人妻| 老鸭窝网址在线观看| 90打野战视频偷拍视频| 成人手机av| 性欧美人与动物交配| 女人爽到高潮嗷嗷叫在线视频| 久久久久亚洲av毛片大全| 午夜福利免费观看在线| 国产熟女午夜一区二区三区| 人妻丰满熟妇av一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲,欧美精品.| 国产精品久久视频播放| 99精品久久久久人妻精品| 国产精品亚洲av一区麻豆| 亚洲 欧美一区二区三区| 国产免费男女视频| 亚洲专区国产一区二区| 老司机靠b影院| 99国产极品粉嫩在线观看| 亚洲第一青青草原| 亚洲av第一区精品v没综合| 成人手机av| 色综合欧美亚洲国产小说| 真人做人爱边吃奶动态| 欧美三级亚洲精品| av中文乱码字幕在线| 亚洲av美国av| 久久精品91无色码中文字幕| 久久久久国产一级毛片高清牌| 国产精品野战在线观看| 中文亚洲av片在线观看爽| 亚洲熟女毛片儿| 美女大奶头视频| 亚洲av成人av| 免费一级毛片在线播放高清视频| 亚洲在线自拍视频| 日韩欧美国产在线观看| 欧美绝顶高潮抽搐喷水| 91字幕亚洲| 一a级毛片在线观看| 亚洲精品美女久久av网站| 男女之事视频高清在线观看| 久久九九热精品免费| 色综合欧美亚洲国产小说| 亚洲国产欧美网| 国产精品二区激情视频| 别揉我奶头~嗯~啊~动态视频| 亚洲欧洲精品一区二区精品久久久| 视频区欧美日本亚洲| 免费无遮挡裸体视频| 国产一区二区三区在线臀色熟女| 亚洲精品在线美女| 性欧美人与动物交配| 女性生殖器流出的白浆| 久久精品人妻少妇| 一区二区三区国产精品乱码| 这个男人来自地球电影免费观看| 亚洲精品色激情综合| 免费无遮挡裸体视频| 禁无遮挡网站| 亚洲激情在线av| 午夜福利18| 看片在线看免费视频| av福利片在线| 久久精品91无色码中文字幕| 国产精品精品国产色婷婷| 免费av毛片视频| 免费在线观看影片大全网站| 免费无遮挡裸体视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧洲精品一区二区精品久久久| 人人妻人人澡人人看| 午夜免费激情av| 国产精品av久久久久免费| 久久久国产欧美日韩av| 亚洲国产高清在线一区二区三 | 国产1区2区3区精品| 可以免费在线观看a视频的电影网站| 一本一本综合久久| 免费人成视频x8x8入口观看| av在线天堂中文字幕| 亚洲成av片中文字幕在线观看| netflix在线观看网站| 人妻丰满熟妇av一区二区三区| 国产精品永久免费网站| 老司机午夜十八禁免费视频| 欧美成人一区二区免费高清观看 | 欧美日韩福利视频一区二区| 1024视频免费在线观看| 丝袜美腿诱惑在线| 亚洲精品美女久久久久99蜜臀| 一区二区日韩欧美中文字幕| 人人妻人人澡欧美一区二区| 午夜视频精品福利| 黄网站色视频无遮挡免费观看| 亚洲一区二区三区不卡视频| 我的亚洲天堂| 美女扒开内裤让男人捅视频| 午夜精品久久久久久毛片777| 成年人黄色毛片网站| 精品久久久久久久末码| 久久久久久久精品吃奶| 日韩视频一区二区在线观看| 国产三级黄色录像| 哪里可以看免费的av片| 午夜福利一区二区在线看| 亚洲精品久久成人aⅴ小说| av在线播放免费不卡| 久热这里只有精品99| 久久亚洲精品不卡| 色在线成人网| 国内揄拍国产精品人妻在线 | 久久婷婷人人爽人人干人人爱| 国产主播在线观看一区二区| 亚洲片人在线观看| 哪里可以看免费的av片| 一区二区三区精品91| 最近在线观看免费完整版| 欧美色视频一区免费| 久9热在线精品视频| 中文字幕人妻熟女乱码| 好男人在线观看高清免费视频 | av电影中文网址| 国产精品乱码一区二三区的特点| 天天躁夜夜躁狠狠躁躁| 亚洲一区二区三区色噜噜| 亚洲精品在线美女| 久久久久久人人人人人| 97碰自拍视频| 免费看a级黄色片| 免费看a级黄色片| 男女下面进入的视频免费午夜 | 淫秽高清视频在线观看| 亚洲一码二码三码区别大吗| 在线观看午夜福利视频| 首页视频小说图片口味搜索| 欧美成人免费av一区二区三区| 最新在线观看一区二区三区| 日本三级黄在线观看| 日韩精品中文字幕看吧| 波多野结衣av一区二区av| 99国产综合亚洲精品| 最近在线观看免费完整版| 精品熟女少妇八av免费久了| 久9热在线精品视频| 亚洲成人久久爱视频| 免费在线观看亚洲国产| www国产在线视频色| 国产v大片淫在线免费观看| 制服诱惑二区| 亚洲精品中文字幕一二三四区| 欧美日韩亚洲综合一区二区三区_| 一二三四社区在线视频社区8| 国产三级在线视频| 一级黄色大片毛片| 国产成人精品久久二区二区免费| 欧美乱色亚洲激情| 少妇熟女aⅴ在线视频| 国产精品国产高清国产av| 一二三四在线观看免费中文在| 黑人巨大精品欧美一区二区mp4| 身体一侧抽搐| 天天躁狠狠躁夜夜躁狠狠躁| 黄片小视频在线播放| 欧美日韩乱码在线| 一本一本综合久久| 熟女少妇亚洲综合色aaa.| 99精品在免费线老司机午夜| 欧美不卡视频在线免费观看 | 亚洲午夜精品一区,二区,三区| 一区二区三区高清视频在线| 日本 av在线| 成人免费观看视频高清| 日韩高清综合在线| 两人在一起打扑克的视频| 午夜久久久久精精品| 亚洲中文日韩欧美视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美亚洲日本最大视频资源| 久久国产精品男人的天堂亚洲| 美女高潮到喷水免费观看| 中亚洲国语对白在线视频| 夜夜夜夜夜久久久久| 免费观看精品视频网站| 少妇熟女aⅴ在线视频| 久久久久久人人人人人| 国产精品久久久久久精品电影 | 亚洲精品国产一区二区精华液| 男男h啪啪无遮挡| 国产精品亚洲一级av第二区| 亚洲成人精品中文字幕电影| 久久久水蜜桃国产精品网| 国产黄色小视频在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品永久免费网站| 国产免费男女视频| 亚洲国产高清在线一区二区三 | 国产精品二区激情视频| 国产精品久久久久久人妻精品电影| 中文字幕精品亚洲无线码一区 | 又黄又爽又免费观看的视频| 成人国产一区最新在线观看| 亚洲第一青青草原| 日日干狠狠操夜夜爽| 欧美黄色淫秽网站| 亚洲 欧美一区二区三区| 国产视频一区二区在线看| 日韩 欧美 亚洲 中文字幕| 香蕉丝袜av| 久久这里只有精品19| 精品久久久久久久久久免费视频| 欧美精品亚洲一区二区| 亚洲第一av免费看| 丝袜美腿诱惑在线| 无人区码免费观看不卡| 我的亚洲天堂| 欧美三级亚洲精品| 精品乱码久久久久久99久播| 麻豆av在线久日| 校园春色视频在线观看| 超碰成人久久| 男女下面进入的视频免费午夜 | 午夜免费激情av| www国产在线视频色| 亚洲一区二区三区不卡视频| 日韩欧美国产一区二区入口| 黄色视频不卡| 午夜精品久久久久久毛片777| xxx96com| 亚洲电影在线观看av| 18禁国产床啪视频网站| 一个人观看的视频www高清免费观看 | 母亲3免费完整高清在线观看| 99热6这里只有精品| 一级毛片女人18水好多| 夜夜看夜夜爽夜夜摸| 老汉色av国产亚洲站长工具| 母亲3免费完整高清在线观看| 婷婷丁香在线五月| 在线观看舔阴道视频| 欧美一区二区精品小视频在线| 免费av毛片视频| 亚洲精华国产精华精| 精品日产1卡2卡| 亚洲国产精品合色在线| 午夜影院日韩av| 淫秽高清视频在线观看| 女警被强在线播放| 国产激情欧美一区二区| 精品一区二区三区视频在线观看免费| 1024香蕉在线观看| 亚洲精品久久国产高清桃花| 欧美国产日韩亚洲一区| www日本在线高清视频| 欧美av亚洲av综合av国产av| 精品国产乱码久久久久久男人| 99热6这里只有精品| 看黄色毛片网站| 老熟妇仑乱视频hdxx| 美女高潮到喷水免费观看| 久99久视频精品免费| 国内精品久久久久精免费| 国产成人欧美| www.999成人在线观看| 成人手机av| 黄片播放在线免费| 不卡一级毛片| 男女床上黄色一级片免费看| 亚洲五月婷婷丁香| xxx96com| 国产99白浆流出| 岛国视频午夜一区免费看| 大香蕉久久成人网| 我的亚洲天堂| 一区二区三区高清视频在线| 国产亚洲欧美在线一区二区| www.www免费av| 国产成人一区二区三区免费视频网站| 精品欧美国产一区二区三| 精品乱码久久久久久99久播| 欧美成人午夜精品| 国内精品久久久久精免费| 国产亚洲欧美精品永久| 国产精品久久电影中文字幕| 欧美日本视频| 男女午夜视频在线观看| 制服丝袜大香蕉在线| 精品午夜福利视频在线观看一区| 日韩精品中文字幕看吧| 97人妻精品一区二区三区麻豆 | 国产极品粉嫩免费观看在线| 波多野结衣巨乳人妻| 久久欧美精品欧美久久欧美| 日韩视频一区二区在线观看| 国产区一区二久久| 日韩国内少妇激情av| 一区福利在线观看| 亚洲五月天丁香| 亚洲欧美日韩高清在线视频| 色哟哟哟哟哟哟| 亚洲中文av在线| 香蕉国产在线看| 精品国内亚洲2022精品成人| 国产爱豆传媒在线观看 | 国产一卡二卡三卡精品| 嫁个100分男人电影在线观看| 久久人妻av系列| 久久久久久人人人人人| 露出奶头的视频| www国产在线视频色| 日韩国内少妇激情av| 日本 av在线| 国产精华一区二区三区| 日韩欧美国产在线观看| 亚洲电影在线观看av| 亚洲精品美女久久av网站| 中文字幕精品亚洲无线码一区 | 精品国产超薄肉色丝袜足j| 亚洲精品粉嫩美女一区| 免费在线观看黄色视频的| 日日夜夜操网爽| 啦啦啦免费观看视频1| 国产高清有码在线观看视频 | 日韩视频一区二区在线观看| 成人国语在线视频| 老司机深夜福利视频在线观看| 日韩欧美一区视频在线观看| 一边摸一边抽搐一进一小说| 黄色丝袜av网址大全| 999久久久精品免费观看国产| a级毛片a级免费在线| 久99久视频精品免费| 欧美绝顶高潮抽搐喷水| 一区二区日韩欧美中文字幕| 老鸭窝网址在线观看| 伦理电影免费视频| 亚洲三区欧美一区| 视频区欧美日本亚洲| 免费看日本二区| 757午夜福利合集在线观看| 亚洲成人久久性| 国产欧美日韩一区二区三| 特大巨黑吊av在线直播 | 美女午夜性视频免费| 免费人成视频x8x8入口观看| 国产av一区在线观看免费| 麻豆久久精品国产亚洲av| 久久久国产精品麻豆| 亚洲精品中文字幕一二三四区| 色综合站精品国产| 日韩一卡2卡3卡4卡2021年| 搡老熟女国产l中国老女人| 一区福利在线观看| 成人手机av| 韩国av一区二区三区四区| 黄色女人牲交| 欧美色视频一区免费| 美国免费a级毛片| 日本 av在线| 精品熟女少妇八av免费久了| 超碰成人久久| 日韩欧美三级三区| 18禁黄网站禁片午夜丰满| 亚洲最大成人中文| 宅男免费午夜| 亚洲成a人片在线一区二区| 白带黄色成豆腐渣| 亚洲av美国av| 精品午夜福利视频在线观看一区| 国产精品一区二区精品视频观看| 免费高清视频大片| 十分钟在线观看高清视频www| 国产精品99久久99久久久不卡| 88av欧美| 成年女人毛片免费观看观看9| 曰老女人黄片| 国产真人三级小视频在线观看| 久久久国产精品麻豆| www.www免费av| 欧美另类亚洲清纯唯美| 色综合婷婷激情| 成人国产一区最新在线观看| 亚洲精品色激情综合| 99国产精品一区二区蜜桃av| 无人区码免费观看不卡| 久久青草综合色| 少妇 在线观看| 人人妻,人人澡人人爽秒播| 亚洲中文av在线| 在线观看免费日韩欧美大片| 99热这里只有精品一区 | 欧美成人一区二区免费高清观看 | 亚洲一区高清亚洲精品| 黄色毛片三级朝国网站| 变态另类成人亚洲欧美熟女| 亚洲 国产 在线| 老汉色av国产亚洲站长工具| 欧美成狂野欧美在线观看| 国内久久婷婷六月综合欲色啪| 99久久99久久久精品蜜桃| 免费在线观看影片大全网站| 91麻豆精品激情在线观看国产| 两性夫妻黄色片| 国产免费男女视频| 天堂动漫精品| 成年免费大片在线观看| 亚洲色图av天堂| 亚洲精品美女久久av网站| 中出人妻视频一区二区| 精品国产亚洲在线| 听说在线观看完整版免费高清| 正在播放国产对白刺激| av中文乱码字幕在线| 亚洲精品久久国产高清桃花| 一级毛片女人18水好多| 在线视频色国产色| 最近在线观看免费完整版| 亚洲自偷自拍图片 自拍| 国产精品一区二区三区四区久久 | 看免费av毛片| www日本黄色视频网| 在线观看免费午夜福利视频| 欧美日韩瑟瑟在线播放| 啦啦啦 在线观看视频| 正在播放国产对白刺激| 国产野战对白在线观看| 日韩有码中文字幕| 老司机在亚洲福利影院| 欧美日韩亚洲综合一区二区三区_| 成人18禁高潮啪啪吃奶动态图| 波多野结衣av一区二区av| 后天国语完整版免费观看| 不卡av一区二区三区| 国产一区二区在线av高清观看| 国产成人啪精品午夜网站| 国内少妇人妻偷人精品xxx网站 | 少妇熟女aⅴ在线视频| 亚洲中文av在线| 国产精品一区二区免费欧美| 国产真人三级小视频在线观看| 97超级碰碰碰精品色视频在线观看| 熟女电影av网| 欧美zozozo另类| 亚洲午夜理论影院| 久久中文看片网| 日韩欧美在线二视频| 国产精品久久久久久亚洲av鲁大| 久久九九热精品免费| 国产精品乱码一区二三区的特点| av有码第一页| 国产在线精品亚洲第一网站| 国产精品香港三级国产av潘金莲| e午夜精品久久久久久久| 久久婷婷成人综合色麻豆| 一边摸一边抽搐一进一小说| 日韩国内少妇激情av| 亚洲av日韩精品久久久久久密| 欧美最黄视频在线播放免费| 黄色视频不卡| 久久热在线av| av欧美777| 精品欧美一区二区三区在线| 97碰自拍视频| 国产真实乱freesex| 成人特级黄色片久久久久久久| 久久亚洲真实| 欧美性长视频在线观看| av在线天堂中文字幕| 麻豆一二三区av精品| 老汉色av国产亚洲站长工具| 一本精品99久久精品77| 搡老岳熟女国产| 美女 人体艺术 gogo| 不卡一级毛片| 19禁男女啪啪无遮挡网站| 国产高清videossex| 巨乳人妻的诱惑在线观看| 国产97色在线日韩免费| 男人舔奶头视频| 无人区码免费观看不卡| 99久久久亚洲精品蜜臀av| 真人一进一出gif抽搐免费| 动漫黄色视频在线观看| 成人手机av| 成人特级黄色片久久久久久久| 嫁个100分男人电影在线观看| 变态另类成人亚洲欧美熟女| 免费人成视频x8x8入口观看| 少妇熟女aⅴ在线视频| 亚洲精品中文字幕一二三四区| 熟妇人妻久久中文字幕3abv| 欧美日韩乱码在线| 成人永久免费在线观看视频| 免费女性裸体啪啪无遮挡网站| 国产伦一二天堂av在线观看| 国产一区二区三区在线臀色熟女| 亚洲国产欧美网| 天天添夜夜摸| 亚洲专区字幕在线| 久久久久久久午夜电影| 亚洲 欧美一区二区三区| 国产在线观看jvid| 一本久久中文字幕| 好看av亚洲va欧美ⅴa在| 国产av一区二区精品久久| 真人一进一出gif抽搐免费| 曰老女人黄片| 亚洲中文av在线| 级片在线观看| 午夜免费成人在线视频| 高清毛片免费观看视频网站| 国产伦在线观看视频一区| 亚洲国产欧洲综合997久久, | 免费无遮挡裸体视频| 淫秽高清视频在线观看| 男女那种视频在线观看| 亚洲精品在线观看二区| 成人手机av| 女性被躁到高潮视频| 国产一区二区激情短视频| 亚洲天堂国产精品一区在线| 亚洲真实伦在线观看| 久9热在线精品视频| 国产亚洲av高清不卡|