• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reduced nonlocal integrable mKdV equations of type (-λ,λ) and their exact soliton solutions

    2022-08-02 02:47:26WenXiuMa
    Communications in Theoretical Physics 2022年6期

    Wen-Xiu Ma

    Department of Mathematics,Zhejiang Normal University,Jinhua 321004,China

    Department of Mathematics,King Abdulaziz University,Jeddah 21589,Saudi Arabia

    Department of Mathematics and Statistics,University of South Florida,Tampa,FL 33620-5700,United States of America

    School of Mathematical and Statistical Sciences,North-West University,Mafikeng Campus,Private Bag X2046,Mmabatho 2735,South Africa

    Abstarct We conduct two group reductions of the Ablowitz–Kaup–Newell–Segur matrix spectral problems to present a class of novel reduced nonlocal reverse-spacetime integrable modified Korteweg–de Vries equations.One reduction is local,replacing the spectral parameter with its negative and the other is nonlocal,replacing the spectral parameter with itself.Then by taking advantage of distribution of eigenvalues,we generate soliton solutions from the reflectionless Riemann–Hilbert problems,where eigenvalues could equal adjoint eigenvalues.

    Keywords:nonlocal integrable equation,soliton solution,Riemann–Hilbert problem

    1.Introduction

    Group reductions of matrix spectral problems can produce nonlocal integrable equations and keep the corresponding integrable structures that the original integrable equations possess [1–3].If one group reduction is taken,we can obtain three kinds of nonlocal nonlinear Schr?dinger equations and two kinds of nonlocal modified Kortweweg-de Vries(mKdV)equations[1,4].Recently,we have shown that a new kind of nonlocal integrable equations could be generated by conducting two group reductions simultaneously.The inverse scattering transform,Darboux transformation and the Hirota bilinear method can be applied to analysis of soliton solutions to nonlocal integrable equations [5–7].

    The Riemann–Hilbert technique has been proved to be another powerful method to solve integrable equations,and especially to construct their soliton solutions [8,9].Various kinds of integrable equations have been investigated via analyzing the associated Riemann–Hilbert problems and we refer the interested readers to the recent studies [10–12]and[3,13–15]for details in the local and nonlocal cases,respectively.In this paper,we would like to present a kind of novel reduced nonlocal integrable mKdV equations by taking two group reductions and construct their soliton solutions through the relectionless Riemann–Hilbert problems.

    The rest of this paper is structured as follows.In section 2,we make two group reductions of the Ablowitz–Kaup–Newell–Segur (AKNS) matrix spectral problems to generate type(-λ,λ)reduced nonlocal integrable mKdV equations.Two scalar examples are

    and

    whereσ=δ=±1.In section 3,based on distribution of eigenvalues,we establish a formulation of solutions to the corresponding reflectionless Riemann–Hilbert problems,where eigenvalues could equal adjoint eigenvalues,and compute soliton solutions to the resulting reduced nonlocal integrable mKdV equations.In the last section,we gives a conclusion,together with a few concluding remarks.

    2.Reduced nonlocal integrable mKdV equations

    2.1.The matrix AKNS integrable hierarchies revisited

    Let us recall the AKNS hierarchies of matrix integrable equations,which will be used in the subsequent analysis.As normal,letλdenote the spectral parameter,and assume thatm,n≥1 are two given integers andp,qare two matrix potentials:

    The matrix AKNS spectral problems are defined as follows:

    Here the constant square matrices Λ and Ω are defined by

    withIsbeing the identity matrix of sizes,andα1,α2andβ1,β2being two arbitrary pairs of distinct real constants.The other two involved square matrices of sizem+nare defined by

    called the potential matrix,and

    wherea[s],b[s],c[s]andd[s]are defined recursively as follows:

    with zero constants of integration being taken.Particularly,we can obtain

    and

    whereα=α1-α2,β=β1-β2andIm,n=diag (Im,-In).The relations in (6) also imply that

    solves the stationary zero curvature equation

    which is crucial in defining an integrable hierarchy.

    The compatibility conditions of the two matrix spectral problems in (2),i.e.the zero curvature equations

    generate one so-called matrix AKNS integrable hierarchy(see,e.g.[16]):

    which has a bi-Hamiltonian structure.The second (r=3)nonlinear integrable equations in the hierarchy give us the AKNS matrix mKdV equations:

    where the two matrix potentials,pandq,are defined by (1).

    2.2.Reduced nonlocal integrable mKdV equations

    We would like to construct a kind of novel reduced nonlocal integrable mKdV equations by taking two group reductions for the matrix AKNS spectral problems in(2).One reduction is local while the other is nonlocal (see also [17]for the local case).

    Let Σ1,Δ1and Σ2,Δ2be two pairs of constant invertible symmetric matrices of sizesmandn,respectively.We consider two group reductions for the spectral matrixU:

    and

    where the two constant invertible matrices,Σ andΔ,are defined by

    These two group reductions lead equivalently to

    and

    respectively.More precisely,they enable us to make the reductions for the matrix potentials:

    and

    respectively.It then follows that to satisfy both group reductions in (12) and (13),an additional constraint is required for the matrix potentialp:

    Moreover,we notice that under the group reductions in (12)and (13),we have that

    which implies that

    and

    where s≥0.

    Consequently,we see that under the potential reductions(15) and (16),the integrable matrix AKNS equations in (10)withr=2s+1,s≥0,reduce to a hierarchy of nonlocal reverse-spacetime integrable matrix mKdV type equations:

    wherepis anm×nmatrix potential which satisfies (19),Σ1,Δ1are a pair of arbitrary invertible symmetric matrices of sizem,and Σ2,Δ2are a pair of arbitrary invertible symmetric matrices of sizen.Each reduced equation in the hierarchy(23) with a fixed integers≥ 0 possesses a Lax pair of the reduced spatial and temporal matrix spectral problems in (2)withr=2s+1,and infinitely many symmetries and conservation laws reduced from those for the integrable matrix AKNS equations in (10) withr=2s+1.

    If we fixs=1,i.e.r=3,then the reduced matrix integrable mKdV type equations in (23) give a kind of reduced nonlocal integrable matrix mKdV equations:

    wherepis anm×nmatrix potential satisfying (19).

    In what follows,we would like to present a few examples of these novel reduced nonlocal integrable matrix mKdV equations,by taking different values form,nand appropriate choices for Σ,Δ.

    Let us first considerm=1 andn=2.We take

    whereσandδare real constants and satisfyσ2=δ2=1.Then the potential constraint (19) requires

    wherep=(p1,p2),and thus,the corresponding potential matrixPreads

    Further,the corresponding novel reduced nonlocal integrable mKdV equations become

    whereσ=±1.These two equations are quite different from the ones studied in [1,18,19],in which only one nonlocal factor appears.Similarly,if we take

    whereσandδare real constants and satisfyσ2=δ2=1 again,then we obtain another pair of novel scalar nonlocal integrable mKdV equations:

    whereδ=±1.This pair has a different nonlocality pattern from the one in (28).Moreover,in each of these two equations,there are two nonlocal nonlinear terms,but in each of their counterparts in[1,18,19],there is only one nonlocal nonlinear term.

    Let us second considerm=1 andn=4.We take

    whereσjandδjare real constants and satisfyσ2j=δ2j=1,j=1,2.Then the potential constraint (19)generates

    wherep=(p1,p2,p3,p4),and so the corresponding potential matrixPbecomes

    This enables us to obtain a class of two-component reduced nonlocal integrable mKdV equations:

    whereσjare real constants and satisfyσ2j=1,j=1,2.

    Let us third considerm=2 andn=2.We take

    whereσandδare real constants and satisfyσ2=δ2=1.Then the potential constraint (19) tells

    and so the corresponding matrix potentials reads

    This enables us to get another class of two-component reduced nonlocal integrable mKdV equations:

    whereσ=±1.The pattern of the second nonlocal nonlinear terms in these two equations is different from the one in(34).

    In the second and third cases,we can also take other similar choices forΣ andΔ as did in the first case,and generate different two-component reduced integrable mKdV equations.

    3.Soliton solutions

    3.1.Distribution of eigenvalues

    Under the group reduction in(12)(or(13)),we can see thatλis an eigenvalue of the matrix spectral problems in (2) if and only if=-λ(or=λ) is an adjoint eigenvalue,i.e.the adjoint matrix spectral problems hold:

    wherer=2s+1,s≥0.Consequently,we can assume to have eigenvaluesλ:μ,-μ,and adjoint eigenvalues:-μ,μ,whereμ∈ C.

    Moreover,under the group reduction in (12) (or (13)),ifφ(λ)is an eigenfunction of the matrix spectral problems in(2)associated with an eigenvalueλ,thenφT(-λ)Σ (orφT(-x,-t,λ)Δ) presents an adjoint eigenfunction associated with the same eigenvalueλ.

    3.2.General solutions to reflectionless Riemann–Hilbert problems

    We would like to present a formulation of solutions to the corresponding reflectionless Riemann–Hilbert problems.

    LetN1,N2≥0be two integers such thatN=2N1+N2≥1.First,we takeNeigenvaluesλkandNadjoint eigenvaluesas follows:

    and

    whereμk∈ C,1 ≤k≤N1,andνk∈ C,1 ≤k≤N2,and assume that their corresponding eigenfunctions and adjoint eigenfunctions are given by

    respectively.We point out that in the current nonlocal case,we do not have the property

    and thus,we need generalized solutions to reflectionless Riemann–Hilbert problems.Such solutions are provided by

    whereMis a square matrixM=(mkl)N×Nwith its entries defined by

    As shown in[14],these two matricesG+(λ)andG-(λ)solve the reflectionless Riemann–Hilbert problem:

    when the orthogonal condition:

    is satisfied.

    As a consequence of the matrix spectral problems in (2)with zero potentials,we can derive

    and based on the preceding analysis,we can take

    wherewk,1 ≤k≤N,are constant column vectors.In this way,the orthogonal condition (46) becomes

    where 1 ≤k,l≤N.

    Now,making an asymptotic expansion

    asλ→∞,we obtain

    and further,substituting this into the matrix spatial spectral problems,we obtain

    This give rise to theN-soliton solutions to the matrix AKNS equation (13):

    Here for each 1 ≤k≤N,we have made the splittings,whereandare column and row vectors of dimensionm,respectively,whilevk2and ?vk2are column and row vectors of of dimensionn,respectively.

    To presentN-soliton solutions for the reduced nonlocal integrable mKdV equation (23),we need to check ifG+1defined by (51) satisfies the involution properties:

    These mean that the resulting potential matrixPgiven by(52)will satisfy the two group reduction conditions in (15) and(16).Therefore,the aboveN-soliton solutions to the matrix AKNS equation (10) reduce to the following class ofN-soliton solutions:

    to the reduced nonlocal integrable mKdV equation (23).

    3.3.Realization

    Let us now check how to realize the involution properties in (54).

    First,following the preceding analysis in section 3.1,all adjoint eigenfunctions,1 ≤k≤2N1,can be determined by

    and

    These choices in (56) (or (57)) engender the selections onwk,1 ≤k≤N:

    We emphasize that all these selections aim to satisfy the reduction conditions in (15) and (16).

    Now,note that when the solutions to the reflectionless Riemann–Hilbert problems,defined by(43)and(44),possess the involution properties in (54),the corresponding relevant matrixG+1will satisfy the involution properties in(54),which are consequences of the group reductions in (12) and (13).Therefore,when the selections in (58) are made and the orthogonal condition forwkin (49) is satisfied,the formula(55),together with (43),(44),(47) and (48),gives rise toN-soliton solutions to the reduced nonlocal matrix integrable mKdV equation (23).

    Finally,let us consider the case ofm=n/ 2=s=N=1.We takeλ1=ν,=-ν,ν∈C,and choose

    wherew1,1,w1,2,w1,3are arbitrary complex numbers andSuch a situation leads to a class of one-soliton solutions to the reduced nonlocal integrable mKdV equation(28):

    whereν∈Cis arbitrary andw1,1,w1,2∈C are arbitrary but need to satisfywhich is a consequence of the involution properties in (54).

    4.Concluding remarks

    Type(-λ,λ)reduced nonlocal reverse-spacetime integrable mKdV hierarchies and their soliton solutions were presented.The analysis is based on two group reductions,one of which is local while the other is nonlocal.The resulting nonlocal integrable mKdV hierarchies are different from the existing ones in the literature.

    We remark that it would also be interesting to search for other kinds of reduced nonlocal integrable equations from different kinds of Lax pairs [20],integrable couplings [21]and variable coefficient integrable equations [22].In the pair of the considered two group reductions,we can also take

    and

    with the shifted potentials,wherex0,x0′,t0,t0′are arbitrary constants(see,e.g.[23]).Another interesting topic is to study dynamical properties of exact solutions,including lump solutions [24],soliton solutions [25–27],rogue wave solutions [28,29],solitonless solutions [30]and algebro-geometric solutions [31,32],from a perspective of Riemann–Hilbert problems.All this will greatly enrich the mathematical theory of nonlocal integrable equations.

    Acknowledgments

    The work was supported in part by NSFC under the grants 11975145,11972291 and 51771083,the Ministry of Science and Technology of China (G2021016032L),and the Natural Science Foundation for Colleges and Universities in Jiangsu Province (17 KJB 110020).

    五月伊人婷婷丁香| 久久久国产一区二区| 偷拍熟女少妇极品色| 五月天丁香电影| 亚洲国产精品国产精品| 黄色日韩在线| 亚洲天堂av无毛| 久久久精品欧美日韩精品| 国语对白做爰xxxⅹ性视频网站| 国产精品蜜桃在线观看| 免费看光身美女| 日本与韩国留学比较| 久久精品综合一区二区三区| 精品一区二区三区视频在线| 夜夜爽夜夜爽视频| 亚洲成色77777| 五月伊人婷婷丁香| 亚洲精品影视一区二区三区av| 天堂俺去俺来也www色官网| 日韩欧美一区视频在线观看 | 晚上一个人看的免费电影| 日日摸夜夜添夜夜添av毛片| 少妇人妻一区二区三区视频| 丝袜美腿在线中文| 日日啪夜夜爽| 最近中文字幕2019免费版| 成人国产麻豆网| 欧美性猛交╳xxx乱大交人| 国产成人aa在线观看| 国产免费又黄又爽又色| 日本-黄色视频高清免费观看| 久久久久久伊人网av| 国产成人a∨麻豆精品| 中文字幕亚洲精品专区| av福利片在线观看| 18禁裸乳无遮挡动漫免费视频 | 交换朋友夫妻互换小说| 一边亲一边摸免费视频| 少妇 在线观看| 可以在线观看毛片的网站| 午夜福利在线观看免费完整高清在| 亚洲av男天堂| 好男人在线观看高清免费视频| 国产亚洲av片在线观看秒播厂| 亚洲成色77777| 精品国产三级普通话版| 一区二区三区乱码不卡18| 国产乱人偷精品视频| 一个人看的www免费观看视频| eeuss影院久久| 91在线精品国自产拍蜜月| 亚洲,欧美,日韩| 欧美亚洲 丝袜 人妻 在线| a级毛片免费高清观看在线播放| 精品久久久久久久末码| 777米奇影视久久| 久久女婷五月综合色啪小说 | 国产又色又爽无遮挡免| 人人妻人人爽人人添夜夜欢视频 | 26uuu在线亚洲综合色| 菩萨蛮人人尽说江南好唐韦庄| 国产精品人妻久久久影院| 嫩草影院精品99| 亚洲高清免费不卡视频| 国产成人精品一,二区| 国产一区二区三区综合在线观看 | 日本三级黄在线观看| 国产成人精品一,二区| 国产黄片美女视频| 精品人妻视频免费看| 有码 亚洲区| 一区二区三区免费毛片| 丝袜脚勾引网站| 亚洲人成网站在线播| 亚洲丝袜综合中文字幕| 99re6热这里在线精品视频| 国内少妇人妻偷人精品xxx网站| 国产伦精品一区二区三区视频9| 国产成人精品婷婷| 国产高清有码在线观看视频| 日韩亚洲欧美综合| 一级黄片播放器| 欧美 日韩 精品 国产| 国产成人精品一,二区| 99re6热这里在线精品视频| 日本黄大片高清| 久久久久精品久久久久真实原创| 午夜福利视频1000在线观看| 欧美潮喷喷水| 黄片无遮挡物在线观看| 久久午夜福利片| 亚洲精品456在线播放app| 亚洲在线观看片| 91狼人影院| 成年女人看的毛片在线观看| 男女边摸边吃奶| 亚洲av男天堂| 精品人妻熟女av久视频| 欧美激情国产日韩精品一区| 深夜a级毛片| 日韩强制内射视频| av国产久精品久网站免费入址| 久久精品夜色国产| 能在线免费看毛片的网站| 热re99久久精品国产66热6| 久久人人爽人人片av| 国产在线一区二区三区精| 国产精品一区二区三区四区免费观看| 久久久久久九九精品二区国产| 亚州av有码| 天天躁日日操中文字幕| 最近的中文字幕免费完整| 欧美97在线视频| 久久女婷五月综合色啪小说 | 久久人人爽人人爽人人片va| 搡老乐熟女国产| 欧美成人一区二区免费高清观看| 狂野欧美激情性bbbbbb| 欧美成人午夜免费资源| 欧美高清成人免费视频www| 午夜福利网站1000一区二区三区| 午夜免费鲁丝| 久久久a久久爽久久v久久| 国产高潮美女av| 2018国产大陆天天弄谢| 蜜桃亚洲精品一区二区三区| 亚洲成人av在线免费| 日韩三级伦理在线观看| 国产中年淑女户外野战色| 伦精品一区二区三区| 国产精品福利在线免费观看| 日本wwww免费看| 日日摸夜夜添夜夜添av毛片| 欧美+日韩+精品| 成人高潮视频无遮挡免费网站| 人妻一区二区av| 插逼视频在线观看| 亚洲精品日韩av片在线观看| 亚洲内射少妇av| 亚洲高清免费不卡视频| 香蕉精品网在线| 人人妻人人澡人人爽人人夜夜| 国产欧美另类精品又又久久亚洲欧美| 国产乱来视频区| 国产欧美亚洲国产| 中国三级夫妇交换| 亚洲精品中文字幕在线视频 | 少妇熟女欧美另类| 天天一区二区日本电影三级| 啦啦啦在线观看免费高清www| 狂野欧美激情性bbbbbb| .国产精品久久| 2018国产大陆天天弄谢| 国产欧美日韩一区二区三区在线 | 99热这里只有是精品在线观看| 久久鲁丝午夜福利片| 中国三级夫妇交换| 蜜桃亚洲精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 精品一区在线观看国产| 国产日韩欧美亚洲二区| 蜜臀久久99精品久久宅男| 国产淫语在线视频| 精品国产乱码久久久久久小说| 美女cb高潮喷水在线观看| 国产又色又爽无遮挡免| 久久99热这里只有精品18| 国产片特级美女逼逼视频| 国产伦在线观看视频一区| 国产精品秋霞免费鲁丝片| 男人和女人高潮做爰伦理| kizo精华| 亚洲精品色激情综合| 建设人人有责人人尽责人人享有的 | 欧美潮喷喷水| 精品一区二区免费观看| 国产精品一二三区在线看| 国产精品一区二区在线观看99| 啦啦啦在线观看免费高清www| 啦啦啦啦在线视频资源| 制服丝袜香蕉在线| 午夜亚洲福利在线播放| 国产探花在线观看一区二区| 亚洲怡红院男人天堂| 麻豆成人午夜福利视频| av福利片在线观看| 午夜亚洲福利在线播放| 日韩欧美一区视频在线观看 | 日日啪夜夜撸| 天天躁日日操中文字幕| 亚洲性久久影院| 免费av毛片视频| 欧美xxxx性猛交bbbb| 黄色一级大片看看| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线播| 麻豆久久精品国产亚洲av| 欧美一区二区亚洲| 亚洲三级黄色毛片| 精品久久久久久电影网| 最近2019中文字幕mv第一页| 免费观看av网站的网址| 女人十人毛片免费观看3o分钟| 一级爰片在线观看| 日韩精品有码人妻一区| 美女高潮的动态| 国产男女超爽视频在线观看| 国产一区亚洲一区在线观看| 久久韩国三级中文字幕| 视频区图区小说| 一级a做视频免费观看| 一级毛片电影观看| 成年人午夜在线观看视频| 一级毛片aaaaaa免费看小| 一级毛片黄色毛片免费观看视频| 黄片无遮挡物在线观看| 有码 亚洲区| 精品一区二区三区视频在线| 成人综合一区亚洲| 日本-黄色视频高清免费观看| 国产精品国产三级国产av玫瑰| 婷婷色综合www| 国产伦在线观看视频一区| 免费不卡的大黄色大毛片视频在线观看| 韩国高清视频一区二区三区| 永久免费av网站大全| 免费观看性生交大片5| 老师上课跳d突然被开到最大视频| 国产成人精品久久久久久| 欧美少妇被猛烈插入视频| 少妇熟女欧美另类| 亚洲在久久综合| 日韩不卡一区二区三区视频在线| 99久久精品国产国产毛片| 另类亚洲欧美激情| 欧美日韩精品成人综合77777| 亚洲婷婷狠狠爱综合网| 丝袜喷水一区| 五月开心婷婷网| 欧美日韩视频精品一区| 日日摸夜夜添夜夜爱| 国产精品久久久久久久久免| 特级一级黄色大片| 亚洲天堂av无毛| 国模一区二区三区四区视频| 国产成人精品福利久久| 久久综合国产亚洲精品| 成人午夜精彩视频在线观看| 欧美精品国产亚洲| 午夜精品国产一区二区电影 | 啦啦啦在线观看免费高清www| 国产欧美日韩一区二区三区在线 | 亚洲精品乱码久久久v下载方式| 中文字幕av成人在线电影| 精品久久久精品久久久| 久久久久久久久久成人| 91久久精品国产一区二区三区| av黄色大香蕉| 亚洲av成人精品一二三区| 一级黄片播放器| 天堂中文最新版在线下载 | 亚洲无线观看免费| 丰满乱子伦码专区| 可以在线观看毛片的网站| 亚洲av.av天堂| 亚洲精品456在线播放app| 22中文网久久字幕| 亚洲四区av| 三级经典国产精品| 国精品久久久久久国模美| 国产精品人妻久久久久久| xxx大片免费视频| 久久精品国产亚洲av天美| 国产乱人视频| 中文乱码字字幕精品一区二区三区| 99re6热这里在线精品视频| 亚洲综合色惰| 亚洲av国产av综合av卡| 一级毛片 在线播放| 国产精品女同一区二区软件| 欧美高清性xxxxhd video| 午夜福利网站1000一区二区三区| 在线观看一区二区三区| 黄色怎么调成土黄色| 中文字幕免费在线视频6| 免费大片黄手机在线观看| 国产精品av视频在线免费观看| 国产免费一区二区三区四区乱码| 久久久精品免费免费高清| 美女国产视频在线观看| 欧美日韩亚洲高清精品| 日本午夜av视频| 一级黄片播放器| 亚洲精品aⅴ在线观看| 亚洲综合精品二区| 免费av不卡在线播放| 亚洲av一区综合| 久热这里只有精品99| av又黄又爽大尺度在线免费看| 免费黄网站久久成人精品| 深夜a级毛片| 99热6这里只有精品| 天堂中文最新版在线下载 | 亚洲av成人精品一区久久| 日韩制服骚丝袜av| 欧美成人午夜免费资源| 成人国产麻豆网| 久久精品国产亚洲网站| 成人一区二区视频在线观看| 日韩av在线免费看完整版不卡| 美女xxoo啪啪120秒动态图| 亚洲成人一二三区av| h日本视频在线播放| 97超视频在线观看视频| 免费黄网站久久成人精品| 久久国产乱子免费精品| 性色av一级| 亚洲一区二区三区欧美精品 | 亚洲成人精品中文字幕电影| 成年免费大片在线观看| 亚洲一区二区三区欧美精品 | 中文欧美无线码| 欧美日韩国产mv在线观看视频 | 特级一级黄色大片| 日本wwww免费看| 午夜爱爱视频在线播放| 国产伦在线观看视频一区| 少妇人妻久久综合中文| 色婷婷久久久亚洲欧美| 日韩在线高清观看一区二区三区| 免费观看a级毛片全部| 一本久久精品| 精品久久久久久久人妻蜜臀av| 深夜a级毛片| 亚洲欧美清纯卡通| 九草在线视频观看| 久久久久久久精品精品| 免费大片黄手机在线观看| 天美传媒精品一区二区| 中文字幕久久专区| 欧美bdsm另类| 热99国产精品久久久久久7| 日日摸夜夜添夜夜添av毛片| 在线观看一区二区三区| 亚洲国产色片| 九草在线视频观看| 日韩制服骚丝袜av| 国产视频内射| av天堂中文字幕网| 激情 狠狠 欧美| 别揉我奶头 嗯啊视频| av网站免费在线观看视频| 嫩草影院精品99| 99热这里只有是精品50| 亚洲av免费在线观看| 中文字幕人妻熟人妻熟丝袜美| 又大又黄又爽视频免费| 久久精品国产a三级三级三级| 亚洲欧洲国产日韩| 直男gayav资源| 国产伦精品一区二区三区视频9| 99热这里只有精品一区| 国产精品久久久久久精品电影| 久久久久久久久久久丰满| 国产精品av视频在线免费观看| 内地一区二区视频在线| 国产成人91sexporn| 国产久久久一区二区三区| 国产精品av视频在线免费观看| 欧美高清性xxxxhd video| 搡女人真爽免费视频火全软件| 欧美成人午夜免费资源| 色吧在线观看| 青春草视频在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 韩国高清视频一区二区三区| 国产真实伦视频高清在线观看| 国产精品久久久久久精品古装| 国产亚洲5aaaaa淫片| 国产精品一二三区在线看| 亚洲欧美精品专区久久| 亚洲精品国产av蜜桃| 欧美日韩精品成人综合77777| 在线亚洲精品国产二区图片欧美 | 老师上课跳d突然被开到最大视频| 久久99热这里只有精品18| 九九爱精品视频在线观看| 日本wwww免费看| 97在线人人人人妻| 国产成人精品婷婷| 亚洲精华国产精华液的使用体验| 日韩成人av中文字幕在线观看| 久久鲁丝午夜福利片| 女人十人毛片免费观看3o分钟| 大香蕉久久网| 日韩欧美精品免费久久| 欧美xxⅹ黑人| 国产黄色视频一区二区在线观看| av播播在线观看一区| 干丝袜人妻中文字幕| 五月伊人婷婷丁香| 久久精品国产亚洲av天美| 亚洲av.av天堂| 国产成人a区在线观看| 国产男人的电影天堂91| 18+在线观看网站| 青春草亚洲视频在线观看| 99re6热这里在线精品视频| 国产高清有码在线观看视频| 国产高清不卡午夜福利| 亚洲四区av| 久久久久久九九精品二区国产| 99热6这里只有精品| 中文欧美无线码| 国产精品蜜桃在线观看| 七月丁香在线播放| av专区在线播放| 青春草亚洲视频在线观看| 一个人看视频在线观看www免费| 久久6这里有精品| av福利片在线观看| 成年人午夜在线观看视频| 91午夜精品亚洲一区二区三区| a级毛色黄片| av国产免费在线观看| 亚洲国产成人一精品久久久| 久久久久久久久大av| 国产免费又黄又爽又色| 中国国产av一级| 成人高潮视频无遮挡免费网站| 美女内射精品一级片tv| 永久网站在线| 国产精品国产三级国产专区5o| 亚洲精品日韩av片在线观看| 又爽又黄a免费视频| 亚洲精品色激情综合| 午夜免费观看性视频| 一级二级三级毛片免费看| 亚洲欧美日韩东京热| av国产久精品久网站免费入址| 国产精品久久久久久久电影| 久久久久国产精品人妻一区二区| 精华霜和精华液先用哪个| 日日啪夜夜爽| 亚洲国产欧美人成| 日韩,欧美,国产一区二区三区| 久久午夜福利片| 人妻夜夜爽99麻豆av| 免费在线观看成人毛片| 少妇被粗大猛烈的视频| 又黄又爽又刺激的免费视频.| 国产黄a三级三级三级人| 亚洲国产精品999| 久久韩国三级中文字幕| 成人毛片60女人毛片免费| 国产人妻一区二区三区在| 国产伦在线观看视频一区| 亚洲自偷自拍三级| 亚洲精品国产av蜜桃| 永久免费av网站大全| 亚洲婷婷狠狠爱综合网| 伊人久久精品亚洲午夜| 精品一区在线观看国产| 在线观看一区二区三区激情| 日韩不卡一区二区三区视频在线| 色视频www国产| 亚洲精品视频女| 国产精品一二三区在线看| 最新中文字幕久久久久| 欧美97在线视频| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 韩国高清视频一区二区三区| 91午夜精品亚洲一区二区三区| 精品一区二区三区视频在线| 国产免费福利视频在线观看| 18禁裸乳无遮挡免费网站照片| 99视频精品全部免费 在线| av国产精品久久久久影院| 99re6热这里在线精品视频| 一区二区三区免费毛片| 男女啪啪激烈高潮av片| 熟妇人妻不卡中文字幕| 日韩av免费高清视频| 国产伦在线观看视频一区| 好男人视频免费观看在线| 国产精品久久久久久久电影| 亚洲精品国产av成人精品| av.在线天堂| 插阴视频在线观看视频| 欧美日韩综合久久久久久| 天天躁日日操中文字幕| 国产毛片a区久久久久| 一区二区三区四区激情视频| 伊人久久精品亚洲午夜| 久久ye,这里只有精品| 国产亚洲av片在线观看秒播厂| 欧美bdsm另类| 国产久久久一区二区三区| 91午夜精品亚洲一区二区三区| 精品久久久精品久久久| 亚洲av中文av极速乱| 成年av动漫网址| 高清av免费在线| 免费看光身美女| 大香蕉97超碰在线| 亚洲欧美日韩无卡精品| 99热这里只有是精品50| 少妇裸体淫交视频免费看高清| 99视频精品全部免费 在线| 在线免费观看不下载黄p国产| 国内揄拍国产精品人妻在线| 秋霞伦理黄片| 卡戴珊不雅视频在线播放| 边亲边吃奶的免费视频| 亚洲av不卡在线观看| 亚洲精品色激情综合| 麻豆成人av视频| 欧美成人一区二区免费高清观看| freevideosex欧美| 极品少妇高潮喷水抽搐| 嫩草影院精品99| 欧美日韩综合久久久久久| 秋霞在线观看毛片| 亚洲av.av天堂| 国产精品不卡视频一区二区| 国语对白做爰xxxⅹ性视频网站| 2022亚洲国产成人精品| 极品少妇高潮喷水抽搐| 舔av片在线| 人体艺术视频欧美日本| 麻豆精品久久久久久蜜桃| 久久久久久久久大av| 亚洲精品一二三| 69av精品久久久久久| 国产精品.久久久| 亚洲精品国产av成人精品| 身体一侧抽搐| 男人爽女人下面视频在线观看| 国产爱豆传媒在线观看| 99热6这里只有精品| 91aial.com中文字幕在线观看| 18禁动态无遮挡网站| 国产伦精品一区二区三区视频9| 新久久久久国产一级毛片| av免费在线看不卡| 国产成人午夜福利电影在线观看| av国产精品久久久久影院| 三级经典国产精品| 狂野欧美激情性bbbbbb| 99热网站在线观看| 人人妻人人爽人人添夜夜欢视频 | 少妇被粗大猛烈的视频| 精品久久久久久久人妻蜜臀av| 好男人视频免费观看在线| 蜜臀久久99精品久久宅男| 最近最新中文字幕大全电影3| 舔av片在线| av.在线天堂| 国产精品久久久久久久久免| 日本猛色少妇xxxxx猛交久久| 国产黄片美女视频| 99热全是精品| 亚洲av免费在线观看| 国产一区二区三区综合在线观看 | 80岁老熟妇乱子伦牲交| 王馨瑶露胸无遮挡在线观看| 2021天堂中文幕一二区在线观| 熟妇人妻不卡中文字幕| 大码成人一级视频| 赤兔流量卡办理| 视频中文字幕在线观看| 国产成人精品福利久久| 日韩强制内射视频| 久久精品国产亚洲av涩爱| 日日摸夜夜添夜夜爱| 日韩av在线免费看完整版不卡| 中文字幕人妻熟人妻熟丝袜美| 综合色丁香网| 国产女主播在线喷水免费视频网站| 内地一区二区视频在线| 国产精品精品国产色婷婷| 精品熟女少妇av免费看| 国产精品久久久久久久久免| 男女边吃奶边做爰视频| av天堂中文字幕网| 成人鲁丝片一二三区免费| 国产成人精品婷婷| .国产精品久久| 干丝袜人妻中文字幕| 国产成人福利小说| 国产老妇女一区| 嘟嘟电影网在线观看| 亚洲国产欧美人成| 国产有黄有色有爽视频| 亚洲精品456在线播放app| 高清av免费在线| 久久久久久久久久人人人人人人| 建设人人有责人人尽责人人享有的 | 亚洲精品日韩在线中文字幕| 又黄又爽又刺激的免费视频.| 69av精品久久久久久| 免费高清在线观看视频在线观看| 男女那种视频在线观看| 国产成人免费无遮挡视频| 免费看a级黄色片| 国产探花在线观看一区二区| 久久午夜福利片| 日本色播在线视频| 国产精品国产av在线观看| 久久国内精品自在自线图片| 国内揄拍国产精品人妻在线| 国产伦理片在线播放av一区| 亚洲国产精品成人久久小说| 国产成人免费观看mmmm|