孟德安,郭鈿祥,朱成成,董淵哲,趙升噸
低頻振動對塑性成形表面微觀形貌的影響
孟德安1a,郭鈿祥1a,朱成成1b,董淵哲1b,趙升噸2
(1.長安大學(xué) a.汽車學(xué)院;b.工程機(jī)械學(xué)院,西安 710064;2.西安交通大學(xué) 機(jī)械工程學(xué)院,西安 710049)
通過對塑性成形界面施加縱向和法向低頻振動,探究不同振動參數(shù)對成形過程中表面質(zhì)量的影響規(guī)律。采用自主設(shè)計的低頻振動發(fā)生器完成縱向振動作用下的摩擦實驗和法向振動作用下的壓縮實驗,統(tǒng)計材料表面變形區(qū)域的平均粗糙度,評價成形質(zhì)量。在干摩擦條件下,不同頻率(0~50 Hz)的縱向小振幅(0.1 mm)振動有利于提高成形界面的表面質(zhì)量,變形區(qū)域的表面粗糙度與頻率成反比,但是較大振幅(0.4 mm)的縱向振動會增加接觸面的材料磨損,降低表面質(zhì)量;不同頻率(0~50 Hz)和不同振幅(0~0.4 mm)的法向振動均有利于提高干摩擦成形界面的表面質(zhì)量,在0.2 mm振幅條件下表面粗糙度下降最為明顯,振幅超過0.2 mm后,增加振幅對提升表面質(zhì)量的影響不明顯。低頻振動對成形界面微觀形貌影響較大,合理優(yōu)化低頻振動工藝參數(shù)可顯著提高成形界面的表面質(zhì)量。
低頻振動;塑性成形;微觀形貌
振動輔助成形是一種新興的金屬塑性加工技術(shù),該技術(shù)在降低流動應(yīng)力、降低成形界面摩擦力和提高表面質(zhì)量方面均存在有益效果,因此被廣泛用于多種不同成形制造工藝中。超聲波振動輔助成形技術(shù)因其對金屬材料具有顯著的軟化效果而備受關(guān)注,并在微拉深、微擠壓、焊接等領(lǐng)域應(yīng)用廣泛[1-6]。隨著試樣尺寸的增加,超聲振動產(chǎn)生的軟化效果逐漸減弱。伺服電機(jī)或液壓激振系統(tǒng)產(chǎn)生的低頻振動(頻率小于100 Hz)具有激振力大、能量高的特點[7]。近年來,含有較高振動能量的低頻振動越來越多地應(yīng)用于塑性加工領(lǐng)域。許多實驗研究發(fā)現(xiàn),低頻振動在降低成形載荷、降低材料流動應(yīng)力、減少接觸面摩擦、提高產(chǎn)品表面質(zhì)量等方面具有相當(dāng)大的作用[8-13]。
Maeno等[14]在鋁合金厚板壓縮過程中發(fā)現(xiàn),當(dāng)沖頭疊加4 Hz低頻振動時,成形載荷最大可降低50%,沖頭的移動方式為前進(jìn)0.23 mm、后退0.15 mm,他們認(rèn)為成形力下降的主要原因是振動使模具與坯料之間的接觸產(chǎn)生了間隙,從而促進(jìn)了潤滑劑的流入,改善了潤滑條件。Matsumoto等[15]也報道了類似的結(jié)果,他們提出了一種利用伺服壓力機(jī)以脈沖和步進(jìn)相結(jié)合的方式改善深孔成形摩擦條件的新方法,使用這種方法可以生產(chǎn)出高精度的深孔。Kriechenbauer等[16]介紹了德國Fraunhofer IWU目前正在使用的全新伺服壓力機(jī),該壓力機(jī)通過電機(jī)頻繁的正反轉(zhuǎn)在滑塊和壓邊板上產(chǎn)生高頻振動(最高可達(dá)50 Hz),并以此為基礎(chǔ)開發(fā)了低頻振動拉深工藝,有效提高了材料的拉延比,抑制了褶皺的產(chǎn)生。Hu等[17]提出了一種電液顫振技術(shù),并將其應(yīng)用于鋁合金6061的冷擠壓工藝中,實驗結(jié)果表明,當(dāng)模具疊加頻率為100 Hz和振幅為0.013 mm的縱向振動時,擠壓載荷可減少5.65%,摩擦因數(shù)的降低被認(rèn)為是負(fù)載降低的主要原因。Zhang等[18]和Ben等[19]提出了一種新的振動冷鍛花鍵軸成形方法,該方法下的成形力相比普通冷鍛的成形力可降低25%。Meng等[20]開發(fā)了一種齒形離合器轂振動成形新工藝,實驗結(jié)果表明,低頻振動能降低成形載荷,在高的激振頻率下載荷下降更明顯。Lin等[21]設(shè)計了一種新型低頻振動輔助鐓粗裝置,可提供頻率為0~50 Hz、振幅為0~0.4 mm的振動,研究結(jié)果表明,施加振動能顯著降低材料流動應(yīng)力,并且在變形區(qū)發(fā)生更均勻的變形,低頻振動的應(yīng)用有助于提高塑性變形質(zhì)量。
從以上研究可以看出,低頻振動已經(jīng)逐漸應(yīng)用于大型零件的體積成形和板材成形工藝中,模具疊加振動可以將連續(xù)的大變形優(yōu)化為多頻次、小進(jìn)給量的漸進(jìn)式運動,進(jìn)而改善成形過程中的應(yīng)力狀態(tài)和摩擦條件。很少有學(xué)者通過實驗定量分析低頻振動對成形接觸面微觀形貌的影響規(guī)律。文中設(shè)計了振動實驗臺,通過振動摩擦實驗,系統(tǒng)研究了縱向振動和法向振動對材料表面微觀形貌的影響,研究結(jié)果可以為低頻振動輔助成形工藝提供有益參考。
在振動輔助塑性成形工藝中,根據(jù)振動方向與模具和坯料相對滑動方向之間的關(guān)系,振動的施加方式可以分為3個正交方向:振動方向在模具和坯料滑動面內(nèi)且與滑動方向平行,即縱向(longitudinal);振動方向在模具和坯料滑動面內(nèi)且與滑動方向垂直,即橫向(transverse);振動方向在模具和坯料滑動面外且與滑動方向垂直,即法向(normal)。在體積成形和板材成形中,縱向和法向是低頻振動最主要的施加方向,因此文中主要分析這2個方向的振動對成形界面微觀形貌的影響。
振動實驗裝置如圖1所示,包含縱向和法向振動實驗裝置,2套振動實驗裝置共用1個振動發(fā)生器,分別如圖1a和圖1b所示。振動發(fā)生器在豎直方向上具有穩(wěn)定的振動輸出,頻率和振幅輸出范圍分別為0~100 Hz和0~0.4 mm,振幅和頻率可單獨調(diào)節(jié)。縱向振動實驗裝置中振動發(fā)生器的輸出端與夾具相連,摩擦頭為直徑6 mm的圓塊,材料為普通模具鋼,經(jīng)淬火處理,其表面硬度為58HRC、表面粗糙度為0.2 μm,壓板上固定有3個滾子軸承,壓板背面與4個彈簧連接,螺桿可以調(diào)節(jié)彈簧的下壓量,進(jìn)而調(diào)節(jié)正壓力大小。實驗中,壓板上的滾子軸承與金屬板接觸,在彈簧的作用下將金屬板壓在摩擦頭上,摩擦頭背部安裝有力傳感器,可以實時讀取和記錄正壓力的大小,實驗中使用彈性系數(shù)為150 N/mm的彈簧,4根彈簧提供的最大正壓力可達(dá)2 400 N。Instron拉伸實驗機(jī)可以控制金屬板的運動速度,并且實時記錄位移–載荷的變化。法向振動實驗裝置中振動發(fā)生器的輸出端與下壓頭相連,上壓頭與Instron實驗機(jī)相連,實驗中將圓柱形壓縮試樣置于上下壓頭之間,并保持上下壓頭與圓柱形試樣上下表面貼合。實驗中選擇4個頻率(12.5、25、37.5、50 Hz)和3個振幅(0.1、0.2、0.4 mm)作為主要變量,用于研究振動對表面形貌的影響。
縱向振動實驗使用矩形金屬板試樣,其尺寸為2 mm×32 mm×150 mm(厚寬長),法向振動實驗使用圓柱形壓縮試樣,其尺寸為5 mm×3 mm,2個試樣的材料均為DC04。試樣統(tǒng)一用砂紙去除鐵銹,并將表面粗糙度控制在同一水平。在縱向振動和法向振動實驗中,與坯料接觸的模具表面粗糙度約為0.4 μm,模具與實驗材料接觸面均未添加潤滑劑,界面摩擦狀態(tài)為干摩擦。實驗后通過彩色3D激光顯微鏡(VK9710K)觀測金屬板試樣表面形貌,并計算變形區(qū)域輪廓算術(shù)平均偏差,通過反映表面粗糙程度。
圖1 低頻振動實驗裝置
2.1.1 頻率
固定縱向振動實驗裝置的正壓力為400 N,調(diào)節(jié)振動發(fā)生器振幅為0.1 mm,實驗機(jī)運動速度為120 mm/min,不同振動頻率摩擦實驗后的試樣表面形貌如圖2所示。在無振動摩擦實驗中,當(dāng)施加法向壓力后,試樣表面的微凸體被模具壓平,由于此時名義壓強(qiáng)約為14 MPa,所以只有少量微凸體發(fā)生塑性變形,實際接觸面積要遠(yuǎn)小于名義接觸面積。當(dāng)疊加振動后,模具與坯料之間的相對運動速度增大,單位時間內(nèi)模具與坯料之間的接觸次數(shù)增多,微凸體的平均高度相對無振動時變低,并且隨著振動頻率的升高磨損加劇。由于模具表面硬度遠(yuǎn)高于試樣,因此振動中模具對試樣表面產(chǎn)生“研磨”效果。隨著振動頻率的升高,研磨效果也愈加明顯,進(jìn)而降低了表面粗糙度,提高了表面質(zhì)量。表面粗糙度在不同頻率下的統(tǒng)計結(jié)果如圖2d所示,在50 Hz時表面粗糙度最大可提升46.4%。
圖2 不同頻率縱向振動作用下表面粗糙度
2.1.2 振幅
固定振動發(fā)生器的振動頻率為50 Hz,控制正壓力為400 N,調(diào)整振幅分別為0.1、0.2、0.4 mm,振動摩擦后試樣表面形貌如圖3所示。結(jié)果表明,當(dāng)振幅小于0.2 mm時,振幅增加有利于試樣表面粗糙度降低;當(dāng)振幅為0.4 mm時,試樣表面出現(xiàn)嚴(yán)重劃痕,并且表面粗糙度迅速升高。從摩擦實驗中可觀測到,當(dāng)施加0.4 mm的振幅振動時,明顯出現(xiàn)了摩擦力反向的現(xiàn)象,50 Hz時的摩擦因數(shù)要大于無振動時的摩擦因數(shù),此時表面粗糙度的升高可以作為摩擦力增加的主要原因。振動幅值過大會引起表面磨損加劇,坯料表面的微凸體剝離坯料并累積黏附在模具表面,磨損試樣表面,導(dǎo)致表面質(zhì)量下降。
圖3 不同振幅縱向振動作用下表面粗糙度
2.2.1 頻率
對圓柱形試樣進(jìn)行振動壓縮實驗,實驗機(jī)下壓速度為1.2 mm/min,實驗過程持續(xù)時間為5 s,固定振幅為0.1 mm,調(diào)整電機(jī)轉(zhuǎn)速使振動頻率在12.5~50 Hz內(nèi)變化。無振動壓縮后試樣表面形貌如圖4a所示,疊加振動后的表面形貌變化如圖4b—d所示。疊加振動壓縮后,試樣表面粗糙度與無振動時相比有較大幅度提升,并隨著振動頻率的增加,表面粗糙度逐漸降低。當(dāng)振動頻率從0到50 Hz變化時,試樣表面粗糙度與振動頻率近似呈線性關(guān)系。
2.2.2 振幅
改變振動發(fā)生器振幅大小,得到的壓縮試樣表面粗糙度變化如圖5所示。常規(guī)壓縮實驗由于沒有疊加振動,表面粗糙度具有較大值,當(dāng)振幅從0.1 mm遞增至0.4 mm時,表面波峰明顯被壓平,凹坑逐漸被填滿,說明隨著振幅的增加,表面塑性變形加劇,表面粗糙度降低。由圖5a—c可知,振幅為0.4 mm時具有最小的表面粗糙度,無明顯的波峰波谷。從圖5d可以看出,當(dāng)振幅為0~0.2 mm時,表面粗糙度下降最為明顯,當(dāng)振幅為0.2~0.4 mm時,表面粗糙度下降有限,這主要是因為當(dāng)振幅達(dá)到0.2 mm時,表面微凸體基本全部發(fā)生塑性變形,此時微凸體變形已經(jīng)基本飽和,繼續(xù)增大振幅,微凸體不再變形。
圖4 不同頻率法向振動作用下表面粗糙度
Fig.4 Surface roughness under different frequencies of normal vibration
圖5 不同振幅法向振動作用下的表面粗糙度
在小振幅條件下,不同頻率的縱向振動均有利于提高干摩擦成形界面的表面質(zhì)量,振動增加了單位時間內(nèi)模具與坯料之間的接觸次數(shù),當(dāng)振動頻率為50 Hz時,表面粗糙度最大可提升46.4%。較小振幅(0~0.2 mm)的縱向振動有利于干摩擦成形界面表面質(zhì)量的提高,且其效果與振幅成正比,但是較大振幅的縱向振動會增加接觸面材料磨損,降低表面質(zhì)量。在小振幅條件下,不同頻率的法向振動均有利于提高干摩擦成形界面的表面質(zhì)量,表面粗糙度與振動頻率呈近似線性關(guān)系,當(dāng)振動頻率為50 Hz時,表面粗糙度最大可提升48.3%。振幅為0~0.4 mm時的法向振動均有利于提高干摩擦成形界面的表面質(zhì)量,其效果與振幅成正比,在0~0.2 mm振幅范圍內(nèi),表面粗糙度下降最為明顯,當(dāng)振幅超過0.2 mm后,增加振幅對提升表面質(zhì)量的影響不明顯。
[1] 王春舉, 郭斌, 單德彬, 等. 高頻/超聲振動輔助微成形技術(shù)研究進(jìn)展與展望[J]. 精密成形工程, 2015, 7(3): 7-16.
WANG Chun-ju, GUO Bin, SHAN De-bin, et al. Research Progress and Outlook of High-Frequency/Ult-rasonic Vibration Assisted Microforming[J]. Journal of Netshape Forming Engineering, 2015, 7(3): 7-16.
[2] 張海棟, 鄧?yán)? 王新云, 等. 振動輔助塑性成形機(jī)理及應(yīng)用研究進(jìn)展[J]. 航空制造技術(shù), 2020, 63(16): 22-31.
ZHANG Hai-dong, DENG Lei, WANG Xin-yun, et al. Research Progress on Mechanism and Application of Vibration Assisted Plastic Forming[J]. Aeronautical Manufacturing Technology, 2020, 63(16): 22-31.
[3] 仲崇凱, 管延錦, 姜良斌, 等. 金屬超聲振動塑性成形技術(shù)研究現(xiàn)狀及其發(fā)展趨勢[J]. 精密成形工程, 2015, 7(1): 9-15.
ZHONG Chong-kai, GUAN Yan-jin, JIANG Liang-bin, et al. Research Status and Development Tendency of Ultrasonic-Vibration Assisted Metal Plastic Forming[J]. Journal of Netshape Forming Engineering, 2015, 7(1): 9-15.
[4] SHAO Guang-da, LI Hong-wei, ZHAN Mei. A Review on Ultrasonic-Assisted Forming: Mechanism, Model, and Process[J]. Chinese Journal of Mechanical Engineering, 2021, 34(5): 147- 170.
[5] YAO Zhe-he, YONG K G, LEANN F, et al. Effects of Superimposed High-Frequency Vibration on Deformation of Aluminum in Micro/Meso-Scale Upsetting[J]. Journal of Materials Processing Tech, 2011, 212(3): 640-646.
[6] YAO Zhe-he, KIM G Y, WANG Zhi-hua, et al. Acoustic Softening and Residual Hardening in Aluminum: Modeling and Experiments[J]. International Journal of Plasticity, 2012, 39: 75-87.
[7] OSAKADA K, MORI K, ALTAN T, et al. Mechanical Servo Press Technology for Metal Forming[J]. CIRP Annals, 2011, 60(2): 651-672.
[8] 李盼, 王新云, 張茂, 等. 低頻振動模式下紫銅壓縮變形行為及尺寸效應(yīng)[J]. 鍛壓技術(shù), 2017, 42(8): 140-145.
LI Pan, WANG Xin-yun, ZHANG Mao, et al. Compression Deformation Behavior and Size Effect of Copper under Low-Frequency Vibration[J]. Forging & Stamping Technology, 2017, 42(8): 140-145.
[9] 楊慶華, 覃鄭永, 王志恒, 等. 二維電液顫振對冷擠壓成形的影響[J]. 中國機(jī)械工程, 2019, 30(5): 621-629.
YANG Qing-hua, QIN Zheng-yong, WANG Zhi-heng, et al. Influences of Two-Dimensional Electro-Hydraulic Flutters on Cold Extrusion Forming[J]. China Mechanical Engineering, 2019, 30(5): 621-629.
[10] 王艷陽, 王勇, 鄭彬峰, 等. 軸向振動輔助冷擠壓花鍵套成形力分析[J]. 塑性工程學(xué)報, 2020, 27(5): 174-182.
WANG Yan-yang, WANG Yong, ZHENG Bin-feng, et al. Forming Force Analysis in Axial Vibration Assisted Cold Extrusion for Spline Sleeve[J]. Journal of Plasticity Engineering, 2020, 27(5): 174-182.
[11] MENG De-an, ZHAO Xu-zhe, ZHAO Sheng-dun, et al. Effects of Vibration Direction on the Mechanical Behavior and Microstructure of a Metal Sheet Undergoing Vibration-Assisted Uniaxial Tension[J]. Materials Science & Engineering A, 2018, 743: 472-481.
[12] MERKLEIN M, ALLWOOD J M, BEHRENS B A, et al. Bulk Forming of Sheet Metal[J]. CIRP Annals-Manuf-acturing Technology, 2012, 61(2): 725-745.
[13] POLITIS D J, POLITIS N J, LIN Jian-guo, et al. A Review of Force Reduction Methods in Precision Forging Axisymmetric Shapes[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5/6/7/8): 2809-2833.
[14] MAENO T, OSAKADA K, MORI K. Reduction of Friction in Compression of Plates by Load Pulsation[J]. International Journal of Machine Tools and Manufacture, 2011, 51(7): 612-617.
[15] MATSUMOTO R, JEON J Y, UTSUNOMIYA H. Shape Accuracy in the Forming of Deep Holes with Retreat and Advance Pulse Ram Motion on a Servo Press[J]. Journal of Materials Processing Technology, 2013, 213(5): 770-778.
[16] KRIECHENBAUER S, MAUERMANN R, MULLER P. Deep Drawing with Superimposed Low-Frequency Vibrations on Servo-Screw Presses[J]. Procedia Engineering, 2014, 81: 905-913.
[17] HU Xin-hua, WANG Zhi-heng, BAO Guan-jun, et al. Influences of Electric-Hydraulic Chattering on Backward Extrusion Process of 6061 Aluminum Alloy[J]. Transact-ions of Nonferrous Metals Society of China, 2015, 25(9): 3056-3063.
[18] ZHANG Qi, BEN Ning-yu, YANG Kai. Effect of Variational Friction and Elastic Deformation of Die on Oscillating Cold Forging for Spline Shaft[J]. Journal of Materials Processing Technology, 2016, 244: 166-177.
[19] BEN Ning-yu, ZHANG Qi, MENG De-an, et al. Analysis of Real Contact Area and Re-Lubrication in Oscillating Bulk Forming Process by Corrosion Method[J]. Journal of Materials Processing Technology, 2017, 253: 178-194.
[20] MENG De-an, ZHU Cheng-cheng, ZHAO Xu-zhe, et al. Applying Low-Frequency Vibration for the Experimental Investigation of Clutch Hub Forming[J]. Materials, 2018, 11(6): E928.
[21] LIN Jun, CATALIN P, ZHU Li-hua, et al. Deformation Behavior and Microstructure in the Low-Frequency Vibration Upsetting of Titanium Alloy[J]. Journal of Materials Processing Technology, 2022, 299: 117360
Effect of Low-frequency Vibration on the Microstructure of Plastic Forming Interface
MENG De-an1a, GUO Dian-xiang1a, ZHU Cheng-cheng1b, DONG Yuan-zhe1b, ZHAO Sheng-dun2
(1. a. School of Automobile; b. School of Construction Machinery, Chang'an University, Xi'an 710064, China; 2. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China)
The work aims to study the effect of different vibration parameters on the surface quality during forming by applying longitudinal and normal low-frequency vibration on the plastic forming interface. The independently designed low-frequency vibration generator was used to complete the sliding experiment under the action of longitudinal vibration and the compression experiment under the action of normal vibration, and the average roughness of the deformation area was calculated to evaluate the forming quality. Under the condition of dry friction, different frequencies (0-50 Hz) of longitudinal vibration with small amplitude (0.1 mm) were beneficial to improving the surface quality of the forming interface, and the surface roughness of the deformation area was inversely proportional to the frequency, but the longitudinal vibration with larger amplitude (0.4 mm) increased the material wear of the contact surface and reduced the surface quality. Different frequencies (0-50 Hz) of normal vibration with various amplitudes (0-0.4 mm) were conductive to improving the surface quality of forming interface under dry friction. The surface roughness decreased most obviously when the amplitude was 0.2 mm, but when the amplitude exceeded 0.2 mm, the effect of increasing the amplitude on improving the surface quality was not obvious. Low-frequency vibration has a great effect on the microstructure of the forming interface, and reasonable low-frequency vibration process parameters can significantly improve the surface quality of the forming interface.
low-frequency vibration; plastic forming; microstructure
10.3969/j.issn.1674-6457.2022.07.007
TG301
A
1674-6457(2022)07-0051-07
2022–05–17
陜西省自然科學(xué)基礎(chǔ)研究計劃(2021JQ–250,2021JQ–278);陜西省科技重大專項(2019ZDLGY15–01,2020zdzx06–01–01);國家自然科學(xué)基金(52105398)
孟德安(1989—),男,博士,講師,主要研究方向為振動輔助成形。
責(zé)任編輯:蔣紅晨