徐超 柳欣 黃毅彬 肖武鵬 黃邦欽
摘要 海洋是地表系統(tǒng)最大的碳庫(kù)和重要碳匯區(qū)。海洋生物泵通過(guò)一系列復(fù)雜的生物地球化學(xué)過(guò)程將CO2轉(zhuǎn)化成顆粒有機(jī)碳(Particulate Organic Carbon,POC)并輸送到深海,是海洋儲(chǔ)碳的重要途徑。弱光層(真光層底部到1 000 m)的生物異養(yǎng)過(guò)程消耗了超過(guò)70%從真光層輸出的POC通量,決定了生物泵的儲(chǔ)碳效率,因此準(zhǔn)確定量弱光層的再礦化速率對(duì)評(píng)估海洋碳匯有重要意義。本文針對(duì)海洋生物泵儲(chǔ)碳問(wèn)題,聚焦弱光層異養(yǎng)過(guò)程對(duì)海洋儲(chǔ)碳的影響機(jī)制,對(duì)全球弱光層再礦化定量工作進(jìn)行評(píng)述,綜合分析弱光層POC的衰減、再礦化等問(wèn)題,并展望了相關(guān)新技術(shù)的應(yīng)用。
關(guān)鍵詞海洋儲(chǔ)碳;碳中和;海洋生物泵;異養(yǎng)過(guò)程;再礦化;弱光層
工業(yè)革命以來(lái),人類活動(dòng)向大氣中排放了過(guò)量了CO2,引發(fā)了一系列氣候和環(huán)境問(wèn)題。實(shí)現(xiàn)碳中和目標(biāo)是應(yīng)對(duì)全球氣候變化的關(guān)鍵舉措(Chen,2021;Wang et al.,2021)。海洋是地表最大的碳庫(kù),同時(shí)亦是地球系統(tǒng)的重要碳匯區(qū)。根據(jù)近10 a的平均數(shù)據(jù),海洋每年可吸收約10 Pg的CO2,約占人為排放量的26%,同時(shí)具有巨大的增匯潛力(Gruber et al.,2019;Friedlingstein et al.,2020)。海洋生物泵是海洋儲(chǔ)碳的重要途徑,能顯著調(diào)控大氣CO2濃度并影響全球氣候。根據(jù)生物地球化學(xué)模型的估算,如果海洋生物泵關(guān)閉,地球上CO2的濃度將上升200 ppm(Parekh et al.,2006;1 ppm=10-6)。海洋生物泵包括浮游植物將真光層中的溶解無(wú)機(jī)碳通過(guò)光合作用同化為顆粒有機(jī)碳(Particulate Organic Carbon,POC)(固碳過(guò)程)和將POC向深海垂直輸送(儲(chǔ)碳過(guò)程)兩個(gè)過(guò)程,被認(rèn)為至少是在百年至千年尺度實(shí)現(xiàn)碳封存的有效途徑(Belcher et al.,2016;Siegel et al.,2016;Claustre et al.,2020;Alcolombri et al.,2021)。
真光層POC輸出由真光層中浮游植物主導(dǎo)的凈初級(jí)生產(chǎn)和細(xì)菌、浮游動(dòng)物等的再礦化作用共同控制,弱光層中的再礦化主要由浮游生物的異養(yǎng)過(guò)程主導(dǎo)(Lutz et al.,2002;黃邦欽等,2011)。全球真光層輸出的POC通量約為5~12 Pg·a-1(以碳質(zhì)量計(jì),下同)(Boyd and Trull,2007;Henson et al.,2011),70%~85%從真光層底部輸出的POC通量在弱光層被異養(yǎng)生物的再礦化作用消耗,最終達(dá)到深海的碳通量只有2~4 Pg·a-1(Friedlingstein et al.,2020;圖1)。弱光層的再礦化速率決定了海洋生物泵的儲(chǔ)碳效率(Buesseler et al.,2007,2020;Boscolo-Galazzo et al.,2021),揭示弱光層異養(yǎng)過(guò)程對(duì)生物泵的調(diào)控作用、準(zhǔn)確估算其再礦化速率,對(duì)評(píng)估海洋碳匯潛力具有重要意義。然而,當(dāng)前對(duì)弱光層生物泵異養(yǎng)過(guò)程的研究還較少,少量的弱光層再礦化速率研究主要以開闊大洋為主,邊緣海研究相對(duì)不足(Hedges and Keil,1995;黃邦欽和柳欣,2015;黃邦欽等,2019;Martin et al.,2020)。弱光層生物泵過(guò)程的研究不足,使我們對(duì)海洋儲(chǔ)碳能力難以有準(zhǔn)確、全面的認(rèn)識(shí)。
本文聚焦弱光層異養(yǎng)過(guò)程這一影響海洋儲(chǔ)碳的關(guān)鍵過(guò)程,回顧了目前全球海洋于弱光層再礦化速率的研究工作,簡(jiǎn)要介紹了定量弱光層再礦化速率的方法,總結(jié)了當(dāng)前弱光層異養(yǎng)過(guò)程研究中遇到的挑戰(zhàn)和展望了若干新技術(shù)的應(yīng)用。
1 弱光層POC衰減及其影響因素
上層沉降的POC為深海提供了主要的物質(zhì)來(lái)源,對(duì)維持深海生態(tài)系統(tǒng)有重要作用(Giering et al.,2014;Alcolombri et al.,2021)。目前最為普遍的是將POC在弱光層的衰減用冪律方程來(lái)描述,其一般形式為:
Fz=Fmzzm-b。(1)
其中:Fz表示z深度的POC通量;zm表示參考深度(一般為真光層深度);Fm表示在zm深度的POC通量;z為任意深度;衰減系數(shù)b為描述POC衰減快慢的參數(shù)。此公式即通常所說(shuō)的“馬丁曲線”(Martin curve;Martin et al.,1987)。但也有一些學(xué)者認(rèn)為,馬丁曲線對(duì)參考深度的選取過(guò)于敏感,提出用指數(shù)方程擬合的方法(Boyd and Trull,2006;Buesseler and Boyd,2009),其一般形式為:
Fz=F0exp(z-z0)z*。(2)
其中:z0表示參考深度(一般為真光層深度),F(xiàn)0為z0處的POC通量;z*表示再礦化的長(zhǎng)度尺度。
POC在弱光層的衰減受多種因素調(diào)控。POC的類型及其特性(粒徑大小、有機(jī)物和礦物的相對(duì)含量、組分構(gòu)成、可利用性、沉降速度和密度等),沉降顆粒之間的相互作用(破碎和聚集),生物作用(生物的再礦化、浮游動(dòng)物的攝食、重新包裝和排泄等)以及周圍水體的理化性質(zhì)(溫度、壓力、含氧量等)都可以解釋下沉POC在弱光層的衰減(Steinberg et al.,2008;Giering et al.,2014;Marsay et al.,2015;Steinberg and Landry,2017)。POC的沉降速度被認(rèn)為是影響POC再礦化的重要因素,擁有較快沉降速度的顆粒能降低沉降過(guò)程中被礦化的概率,從而提高了POC的輸出效率(McDonnell et al.,2015)。原核生物可以附著在沉降顆粒物表面,通過(guò)水解酶將POC轉(zhuǎn)為溶解有機(jī)碳(Dissolved Organic Carbon,DOC),然后被自身以呼吸形試?yán)?,或者釋放到水體中,供“懸浮”態(tài)的細(xì)菌利用(Cho and Azam,1988)。已有很多研究表明原核微生物的再礦化作用對(duì)弱光層中POC通量的衰減貢獻(xiàn)顯著,約占50%~93%(Steinberg et al.,2008;Giering et al.,2014)。浮游動(dòng)物呼吸對(duì)POC通量的衰減作用較低,在北太平洋ALOHA站和亞北極太平洋K2站,弱光層浮游動(dòng)物呼吸分別占弱光層生物呼吸的16.0%和23.2%(Steinberg et al.,2008)。浮游動(dòng)物除直接攝食POC外,還可以通過(guò)其攝食過(guò)程,將較大的POC顆粒破碎成粒徑較小、沉降速度較慢的懸浮顆粒物(Briggs et al.,2020),或者轉(zhuǎn)化成DOC釋放到水體中(Giering et al.,2014;Steinberg and Landry,2017)。Giering et al.(2014)在北大西洋結(jié)合現(xiàn)場(chǎng)觀測(cè)和模型模擬發(fā)現(xiàn),雖然浮游動(dòng)物呼吸只占弱光層生物總呼吸的16.5%,但其通過(guò)攝食作用,可將約40%的沉降顆粒破碎成小顆?;蛘逥OC,極大地刺激了弱光層的微食物環(huán)活性,為弱光層的原核生物呼吸提供了有機(jī)底物。Briggs et al.(2020)利用全球的25個(gè)生物地球化學(xué)剖面浮標(biāo)(Biogeochemical profiling floats,BGC-Argo浮標(biāo))數(shù)據(jù)分析發(fā)現(xiàn),這種攝食破碎作用可以解釋(49%±22%)的POC損失。根據(jù)新陳代謝理論,溫度是影響生物新陳代謝的關(guān)鍵因素,因此也對(duì)弱光層異養(yǎng)生物的再礦化速率有顯著影響(López-Urrutia et al.,2006)。Marsay et al.(2015)總結(jié)了全球不同站位馬丁衰減系數(shù)b和0~500 m溫度中位數(shù),發(fā)現(xiàn)兩者之間有顯著的正相關(guān)關(guān)系,溫度越高的區(qū)域b值越大,即衰減速度越快。這表示低緯度地區(qū)POC的衰減速率高于高緯度地區(qū),高緯度地區(qū)有著更高的POC傳輸效率。在未來(lái)全球變暖的背景下,海洋溫度的升高將很有可能導(dǎo)致POC的淺層再礦化,從而降低CO2在海洋中的封存。
2 弱光層再礦化
對(duì)弱光層的再礦化速率進(jìn)行準(zhǔn)確定量是估算海洋碳匯能力的重要一環(huán)。目前直接估計(jì)弱光層再礦化速率的方法主要以培養(yǎng)法和物質(zhì)通量模型為主。培養(yǎng)法主要有三種:1)測(cè)定溶解氧消耗;2)電子傳遞系統(tǒng)(ETS)活力測(cè)定;3)基于細(xì)菌生產(chǎn)力(BP)和經(jīng)驗(yàn)性的細(xì)菌生長(zhǎng)效率(BGE)反推細(xì)菌呼吸。其基本原理都是對(duì)采集的自然海水樣品進(jìn)行一定時(shí)間的培養(yǎng),根據(jù)單位時(shí)間內(nèi)氧氣或者其他表征物的變化來(lái)定量呼吸速率(Packard et al.,1971;Carlucci and Williams,1978;Dufour and Colon,1992;Martínez-García et al.,2009;Shen et al.,2020)。培養(yǎng)法是定量呼吸最直接、應(yīng)用最為廣泛的方法,但是較長(zhǎng)的培養(yǎng)時(shí)間可能會(huì)引起海水樣品中生物群落的改變,一些經(jīng)驗(yàn)公式參數(shù)和轉(zhuǎn)化系數(shù)(如BGE)也存在較大的不確定性(Martínez-García et al.,2009)。此外,培養(yǎng)法一般依托于船基定點(diǎn)采樣,其時(shí)間空間分辨率也較低。物質(zhì)通量模型是一種基于質(zhì)量守恒定律的分析方法,通過(guò)計(jì)算傳入和輸出的物質(zhì)通量,來(lái)估算系統(tǒng)中難以直接測(cè)量的過(guò)程。一般利用與生物過(guò)程密切相關(guān)的化學(xué)元素(如O2,硝酸鹽NO-3,溶解無(wú)機(jī)碳DIC等)的變化速率來(lái)定量弱光層生物的再礦化速率(Emerson et al.,1995;Bushinsky and Steven,2015)。物質(zhì)通量模型一般都具有較高的時(shí)間空間分辨率,但是無(wú)法很好剝離掉物理過(guò)程的影響(Martz et al.,2008;Hennon et al.,2016;Billheimer et al.,2021)。此外,還可以通過(guò)間接方法估算再礦化速率,如通過(guò)浮游動(dòng)物生物量和經(jīng)驗(yàn)公式估算浮游生物的呼吸速率(ZR)(Ikeda,1985;Steinberg et al.,2008;Siegel et al.,2014),或者通過(guò)POC通量在弱光層中的衰減速率反推再礦化速率(假設(shè)系統(tǒng)處于穩(wěn)態(tài),兩個(gè)水層之間POC衰減通量等于異養(yǎng)生物再礦化通量)(Martin et al.,1987)。
對(duì)目前全球基于培養(yǎng)法和物質(zhì)通量模型的弱光層呼吸速率研究進(jìn)行了匯總(圖2)。整體來(lái)看,培養(yǎng)法不同方法量值之間的變異很大(均值±標(biāo)準(zhǔn)差,(8.4±8.8) mol·m-2·a-1)。Arístegui et al.(2003)匯總了各海域基于ETS法的弱光層再礦化速率,估算全球弱光層(200 m到海底)的平均再礦化速率約為5 mol·m-2·a-1。Giering et al.(2014)對(duì)東北大西洋Porcupine Abyssal Plain 50~1 000 m細(xì)菌呼吸和浮游動(dòng)物的呼吸速率進(jìn)行了定量分析,得到弱光層生物呼吸速率約為2.6 mol·m-2·a-1,這與基于ETS方法估算的東北大西洋弱光層原核生物呼吸((22.8±2.9) mol·m-2·a-1)相差一個(gè)數(shù)量級(jí)(Arístegui et al.,2005)??紤]到區(qū)域差異,對(duì)比了同在ALOHA站位ETS法和BR+ZR法之間的再礦化量值,分別為12.7 mol·m-2·a-1和1.8 mol·m-2·a-1,也存在數(shù)量級(jí)差異(Steinberg et al.,2008;Martínez-García,2017)。相反,基于物質(zhì)通量模型的結(jié)果則普遍較為接近((4.0±0.3) mol·m-2·a-1)。Jenkins(1982)通過(guò)估計(jì)凈氧氣消耗率(OUR),估算北大西洋亞熱帶流渦區(qū)100~1 000 m的再礦化水柱積分約為4.5 mol·m-2·a-1。后續(xù)Feely et al.(2004)利用OUR估算了太平洋不同水團(tuán)的200~1 000 m平均再礦化速率水柱積分在1.2~2.5 mol·m-2·a-1,并由此得到全太平洋弱光層的再礦化量約為(5.1±1.0) Pg·a-1。同在西北大西洋的馬尾藻海和BATS站,分別基于OUR和BGC-Argo浮標(biāo)的弱光層再礦化速率量值也具有較高的一致性(Stanley et al.,2012;Hennon et al.,2016;Billheimer et al.,2021)。
3 挑戰(zhàn)與展望
弱光層再礦化速率和海洋儲(chǔ)碳能力緊密相關(guān)。通過(guò)對(duì)全球的弱光層再礦化研究進(jìn)行簡(jiǎn)單回顧,發(fā)現(xiàn)主要還有以下問(wèn)題:1)研究數(shù)據(jù)時(shí)空分布不足,尤其在受人類活動(dòng)影響顯著的邊緣海數(shù)據(jù)稀缺;2)同一海區(qū)再礦化速率的測(cè)定結(jié)果差異大,不同方法之間的準(zhǔn)確性有待評(píng)估;3)浮游動(dòng)物垂直遷移對(duì)弱光層碳收支的貢獻(xiàn)還不明確。這些問(wèn)題尚未得到很好解決,這無(wú)疑對(duì)我們理解弱光層生物泵過(guò)程,評(píng)估海洋儲(chǔ)碳能力造成了很大障礙。未來(lái)海洋新觀測(cè)技術(shù)的發(fā)展為解決上述問(wèn)題提供了新的方向。
海洋自動(dòng)化觀測(cè)平臺(tái)的應(yīng)用對(duì)解決傳統(tǒng)科考船采樣數(shù)據(jù)量不足,時(shí)空分辨率低的問(wèn)題提供了新的途徑(Claustre et al.,2020)。自動(dòng)化的海洋觀測(cè)平臺(tái)(如BGC-Argo浮標(biāo)和海洋滑翔機(jī)等),裝備有生物地球化學(xué)探頭,可觀測(cè)葉綠素a濃度、溶解氧含量、pH、硝酸鹽濃度和顆粒物后向散射系數(shù)等關(guān)鍵生物地球化學(xué)參數(shù),具有很高的時(shí)間和空間分辨率。未來(lái),可利用大量的基于BGC-Argo浮標(biāo)觀測(cè)的生物地球化學(xué)數(shù)據(jù),結(jié)合機(jī)器學(xué)習(xí)反演算法擴(kuò)大弱光層異養(yǎng)過(guò)程研究的空間覆蓋,涵蓋不同類型海域梯度,對(duì)邊緣海-開放大洋,低緯度-中緯度-高緯度,寡營(yíng)養(yǎng)-富營(yíng)養(yǎng)海域的弱光層異養(yǎng)過(guò)程進(jìn)行對(duì)比和集成分析,有助于我們更加深入了解不同生態(tài)系統(tǒng)下弱光層異養(yǎng)過(guò)程對(duì)生物泵儲(chǔ)碳的影響機(jī)制。
選擇準(zhǔn)確的方法對(duì)弱光層的再礦化速率進(jìn)行評(píng)估是定量弱光層再礦化速率的關(guān)鍵。目前各種方法之間不確定性較大,因此有必要在同一海區(qū)進(jìn)行多種方法的交叉比較,評(píng)估不同方法的準(zhǔn)確性,但目前還未見到類似工作的開展。在同一海區(qū)開展多種方法定量弱光層再礦化速率,并引入基于多種方法(234Th-238U,210Po-210Pb,中性浮力沉積物捕獲器,衛(wèi)星遙感等)的POC輸出通量作為參考值,以此評(píng)估不同方法的準(zhǔn)確性,從而選擇相對(duì)準(zhǔn)確的方法應(yīng)用在以后的研究工作中。
海洋中型浮游動(dòng)物垂直遷移被認(rèn)為是平衡真光層碳輸出和弱光層碳需求的重要機(jī)制,但準(zhǔn)確定量其垂直遷移通量一直是海洋碳收支估算過(guò)程中的難題(Hansen and Visser,2016;Kelly et al.,2019;Conroy et al.,2020)。目前對(duì)浮游動(dòng)物垂直遷移觀測(cè)主要利用多聯(lián)網(wǎng)(MultiNet)進(jìn)行分水層采樣,然后通過(guò)顯微鏡鏡檢或者浮游動(dòng)物圖像掃描分析系統(tǒng)(ZooScan)對(duì)浮游動(dòng)物進(jìn)行分類定量。近年來(lái),水下自動(dòng)化成像平臺(tái)和圖像識(shí)別技術(shù)的發(fā)展,為浮游動(dòng)物觀測(cè)提供了新的角度(Luo et al.,2018;Giering et al.,2020;Guo et al.,2020;Orenstein et al.,2020)。水下自動(dòng)化成像平臺(tái)(如水下圖像剖面儀,UVP)通過(guò)對(duì)浮游動(dòng)物進(jìn)行原位成像,可以獲得大量具有高時(shí)間空間分辨率的圖像,更可以對(duì)浮游動(dòng)物的垂直遷移活動(dòng)進(jìn)行直接觀測(cè)。在對(duì)后續(xù)原位圖像或ZooScan圖像的處理上,通過(guò)卷積神經(jīng)網(wǎng)絡(luò)等深度學(xué)習(xí)算法可實(shí)現(xiàn)對(duì)浮游動(dòng)物的自動(dòng)分類,在保證準(zhǔn)確率的前提下大大節(jié)省人力(Guo et al.,2020;Orenstein et al.,2020)。傳統(tǒng)的科考船拖網(wǎng)與原位成像技術(shù)相結(jié)合,能幫助我們對(duì)浮游動(dòng)物垂直遷移通量進(jìn)行更準(zhǔn)確估算。
在此背景下,我國(guó)未來(lái)研究應(yīng)在中國(guó)近海真光層生物泵現(xiàn)場(chǎng)實(shí)測(cè)和研究的基礎(chǔ)上,聚焦弱光層異養(yǎng)過(guò)程對(duì)生物泵碳輸出問(wèn)題,采用定點(diǎn)連續(xù)觀測(cè)、受控實(shí)驗(yàn)、遙感和生態(tài)模型相結(jié)合的技術(shù)手段,重點(diǎn)研究弱光層微生物礦化、中型浮游動(dòng)物垂直遷移等過(guò)程和影響機(jī)制,闡明弱光層生物泵過(guò)程和調(diào)控機(jī)制,以降低海洋儲(chǔ)碳估算的不確定性,為國(guó)家海洋碳匯評(píng)估和碳中和提供科技支撐。
參考文獻(xiàn)(References)
Alcolombri U,Peaudecerf F J,F(xiàn)ernandez V I,et al,2021.Sinking enhances the degradation of organic particles by marine bacteria[J].Nat Geosci,14(10):775-780.doi:10.1038/S41561-021-00817-X.
Arístegui J,Agustí S,Duarte C M,2003.Respiration in the dark ocean[J].Geophys Res Lett,30(2).doi:10.1029/2002GL016227.
Arístegui J,Duarte C M,Gasol J M,et al.,2005.Active mesopelagic prokaryotes support high respiration in the subtropical Northeast Atlantic Ocean[J].Geophys Res Lett,32(3):608-1.doi:10.1029/2004GL021863.
Belcher A,Iversen M,Giering S,et al.,2016.Depth-resolved particle-associated microbial respiration in the Northeast Atlantic[J].Biogeosciences,13(17):4927-4943.doi:10.5194/bg-13-4927-2016.
Billheimer S,Talley L D,Martz T R,2021.Oxygen seasonality,utilization rate,and impacts of vertical mixing in the eighteen degree water region of the sargasso sea as observed by profiling biogeochemical floats[J].Global Biogeochem Cycles,35(3):e06824.
Boscolo-Galazzo F,Crichton K A,Ridgwell A,et al.,2021.Temperature controls carbon cycling and biological evolution in the ocean twilight zone[J].Science,371(6534):1148-1152.doi:10.1126/science.abb6643.
Boyd P W,Trull T W,2006.Understanding the export of biogenic particles in oceanic waters:Is there consensus?[J].Prog Oceanogr,72(4):276-312.doi:10.1016/j.pocean.2006.10.007.
Briggs N,DallOlmo G,Claustre H,2020.Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans[J].Science,367(6479):791-793.doi:10.1126/science.aay1790.
Buesseler K O,Boyd P W,2009.Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean[J].Limnol Oceanogr,54(4):1210-1232.doi:10.4319/lo.2009.54.4.1210.
Buesseler K O,Lamborg C H,Boyd P W,et al.,2007.Revisiting carbon flux through the oceans twilight zone[J].Science,316(5824):567-570.doi:10.1126/science.1137959.
Buesseler K O,Boyd P W,Black E E,et al.,2020.Metrics that matter for assessing the ocean biological carbon pump[J].PNAS,117(18):9679-9687.doi:10.1073/pnas.1918114117.
Bushinsky S M,Steven E,2015.Marine biological production from in situ oxygen measurements on a profiling float in the subarctic Pacific Ocean[J].Glob Biogeochem Cycles,29(12):2050-2060.doi:10.1002/2015GB005251.
Carlucci A F,Williams P M,1978.Simulated in situ growth rates of pelagic marine bacteria[J].Naturwissenschaften,65(10):541-542.doi:10.1007/BF00439804.
Chen J M,2021.Carbon neutrality:toward a sustainable future[J].The Innovation,2(3):100127.doi:10.1016/j.xinn.2021.100127.
Cho B C,Azam F,1988.Major role of bacteria in biogeochemical fluxes in the oceans interior[J].Nature,332:441.doi:10.1038/332441a0.
Claustre H,Johnson K S,Takeshita Y,2020.Observing the global ocean with biogeochemical-Argo[J].Annu Rev Mar Sci,12:23-48.doi:10.1146/annurev-marine-010419-010956.
Conroy J A,Steinberg D K,Thibodeau P S,et al.,2020.Zooplankton diel vertical migration during Antarctic summer[J].Deep Sea Res Part I,162:103324.doi:10.1016/j.dsr.2020.103324.
Dufour P,Colon M,1992.The tetrazolium reduction method for assessing the viability of individual bacterial cells in aquatic environments:improvements,performance and applications[J].Hydrobiologia,232(3):211-218.doi:10.1007/BF00013706.
Emerson S,Quay P D,Stump C,et al.,1995.Chemical tracers of productivity and respiration in the subtropical Pacific Ocean[J].J Geophys Res Oceans,100(C8):15873-15887.doi:10.1029/95JC01333.
Feely R A,Sabine C L,Schlitzer R,et al.,2004.Oxygen utilization and organic carbon remineralization in the upper water column of the Pacific Ocean[J].J Oceanogr,60(1):45-52.doi:10.1023/B:JOCE.0000038317.01279.aa.
Friedlingstein P,OSullivan M,Jones M W,et al,2020.Global carbon budget 2020[J].Earth Syst Sci Data,12(4):3269-3340.doi:10.5194/essd-12-3269-2020.
Giering S L C,Richard S,Lampitt R S,et al.,2014.Reconciliation of the carbon budget in the oceans twilight zone[J].Nature,507(7493):480-3.doi:10.1038/nature13123.
Giering S L C,Cavan E L,Basedow S L,et al,2020.Sinking organic particles in the ocean-flux estimates from in situ optical devices[J].Front Mar Sci,6:834.
Gruber N,Landschützer P,Lovenduski N S,2019.The variable southern ocean carbon sink[J].Annu Rev Mar Sci,11:159-186.doi:10.1146/annurev-marine-121916-063407.
Guo B Y,Lisa N,Nayak A R,et al.,2020.Automated plankton classification from holographic imagery with deep convolutional neural networks[J].Limnol Oceanogr Methods,19(1):21-36.doi:10.1002/LOM3.10402.
Hansen A N,Visser A W,2016.Carbon export by vertically migrating zooplankton:an optimal behavior model[J].Limnol Oceanogr,61(2):701-710.doi:10.1002/lno.10249.
Hedges J I,Keil R G,1995.Sedimentary organic matter preservation:an assessment and speculative synthesis[J].Mar Chem,49(2):137-139.doi:10.1016/0304-4203(95)00013-H.
Hennon T D,Riser S C,Mecking S,2016.Profiling float-based observations of net respiration beneath the mixed layer[J].Global Biogeochem Cycles,30(6):920-932.
Henson S A,Sanders R,Madsen E,et al.,2011.A reduced estimate of the strength of the oceans biological carbon pump[J].Geophys Res Lett,38(4):L04606-1.doi:10.1029/2011GL046735.
黃邦欽,柳欣,2015.邊緣海浮游生態(tài)系統(tǒng)對(duì)生物泵的調(diào)控作用[J].地球科學(xué)進(jìn)展,30(3):385-395. Huang B Q,Liu X,2015.Review on planktonic ecosystem and its control on biological pump in the marginal seas[J].Adv Earth Sci,30(3):385-395.doi:10.11867/j.issn.1001-8166.2015.03.0385.(in Chinese).
黃邦欽,胡俊,柳欣,等,2011.全球氣候變化背景下浮游植物群落結(jié)構(gòu)的變動(dòng)及其對(duì)生物泵效率的影響[J].廈門大學(xué)學(xué)報(bào)(自然科學(xué)版),50(2):402-410. Huang B Q,Hu J,Liu X,et al.,2011.Review on phytoplankton community structure and its coupling with biological carbon pump under global climate changes[J].J Xiamen Univ Nat Sci,50(2):402-410.(in Chinese).
黃邦欽,邱勇,陳紀(jì)新,2019.海洋生物泵研究的若干新進(jìn)展與展望[J].應(yīng)用海洋學(xué)學(xué)報(bào),38(4):474-483. Huang B Q,Qiu Y,Chen J X,2019.Progress and prospects on the study of marine biological pump[J].J Appl Oceanogr,38(4):474-483.doi:10.3969/J.ISSN.2095-4972.2019.04.003.(in Chinese).
Ikeda T,1985.Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature[J].Mar Biol,85(1):1-11.doi:10.1007/BF00396409.
Jenkins W J,1982.Oxygen utilization rates in North Atlantic subtropical gyre and primary production in oligotrophic systems[J].Nature,300(5889):246-248.doi:10.1038/300246a0.
Kelly T B,Davison P C,Ralf G,et al.,2019.The importance of mesozooplankton diel vertical migration for sustaining a mesopelagic food web[J].Front Mar Sci,6.doi:10.3389/fmars.2019.00508.
López-Urrutia A,San Martin E,Harris R P,et al.,2006.Scaling the metabolic balance of the oceans[J].PNAS,103(23):8739-8744.doi:10.1073/pnas.0601137103.
Luo J Y,Irisson J,Graham B,et al.,2018.Automated plankton image analysis using convolutional neural networks[J].Limnol Oceanogr Methods,16(12):814-827.doi:10.1002/lom3.10285.
Lutz M,Dunbar R,Caldeira K,2002.Regional variability in the vertical flux of particulate organic carbon in the ocean interior[J].Glob Biogeochem Cycles,16(3):11-1.doi:10.1029/2000GB001383.
Marsay C M,Sanders R J,Henson S A,et al.,2015.Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean[J].Proc Natl Acad Sci U S A,112(4):1089-94.doi:10.1073/pnas.1415311112.
Martin A,Boyd P,Buesseler K,et al.,2020.The oceans twilight zone must be studied now,before it is too late[J].Nature,580(7801):26-28.doi:10.1038/d41586-020-00915-7.
Martin J H,Knauer G A,Karl D M,et al.,1987.VERTEX:carbon cycling in the Northeast Pacific[J].Deep Sea Res A Oceanogr Res Pap,34(2):267-285.doi:10.1016/0198-0149(87)90086-0.
Martínez-García S,2017.Microbial respiration in the mesopelagic zone at station ALOHA[J].Limnol Oceanogr,62(1):320-333.doi:10.1002/lno.10397.
Martínez-García S,F(xiàn)ernández E,Aranguren-Gassis M,et al.,2009.In vivo electron transport system activity:a method to estimate respiration in natural marine microbial planktonic communities[J].Limnol Oceanogr Methods,7(6):459-469.doi:10.4319/lom.2009.7.459.
Martz T R,Johnson K S,Riser S C,2008.Ocean metabolism observed with oxygen sensors on profiling floats in the South Pacific[J].Limnol Oceanogr,53(5):2094-2111.
McDonnell A M P,Boyd P W,Buesseler K O,2015.Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone[J].Glob Biogeochem Cycles,29(2):175-193.doi:10.1002/2014GB004935.
Orenstein E C,Devin R,Christian B,et al.,2020.The Scripps Plankton Camera system:a framework and platform for in situ microscopy[J].Limnol Oceanogr Methods,18(11):681-695.doi:10.1002/lom3.10394.
Packard T T,Healy M L,Richards F A,1971.Vertical distribution of the activity of the respiratory electron transport system in marine plankton[J].Limnol Oceanogr,16(1):60-70.doi:10.4319/lo.1971.16.1.0060.
Parekh P,Dutkiewicz S,F(xiàn)ollows M J,et al.,2006.Atmospheric carbon dioxide in a less dusty world[J].Geophys Res Lett,33(3):3610-1.doi:10.1029/2005GL025098.
Shen J,Jiao N,Dai M,et al,2020.Laterally transported particles from margins serve as a major carbon and energy source for dark ocean ecosystems[J].Geophys Res Lett,47(18):e2020GL088971.doi:10.1029/2020GL088971.
Siegel D A,Buesseler K O,Doney S C,et al.,2014.Global assessment of ocean carbon export by combining satellite observations and food-web models[J].Global Biogeochem Cycles,28(3):181-196.
Siegel D A,Buesseler K O,Behrenfeld M J,et al.,2016.Prediction of the export and fate of global ocean net primary production:the exports science plan[J].Front Mar Sci,3:22.doi:10.3389/fmars.2016.00022.
Stanley R H R,Doney S C,Jenkins W J,et al.,2012.Apparent oxygen utilization rates calculated from tritium and helium-3 profiles at the Bermuda Atlantic Time-series Study site[J].Biogeosciences,9(108):1969-1983.doi:10.5194/bg-9-1969-2012.
Steinberg D K,Landry M R,2017.Zooplankton and the ocean carbon cycle[J].Annu Rev Mar Sci,9(1):413-444.doi:10.1146/annurev-marine-010814-015924.
Steinberg D K,van Mooy B A S,Buesseler K O,et al.,2008.Bacterial vs Zooplankton control of sinking particle flux in the oceans twilight zone[J].Limnol Oceanogr,53(4):1327-1338.
Wang F,Harindintwali J D,Yuan Z Z,et al.,2021.Technologies and perspectives for achieving carbon neutrality[J].Innov N Y N Y,2(4):100180.doi:10.1016/j.xinn.2021.100180.
Effects of heterotrophic processes in the twilight zone on oceanic carbon sequestration:advances,challenges and perspectives
XU Chao,LIU Xin,HUANG Yibin,XIAO Wupeng,HUANG Bangqin
State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology,Xiamen University,Xiamen 361102,China
Ocean is the largest carbon pool on Earth and has huge potential for the carbon sink.The biologically-mediated transfer of particulate organic carbon (POC) to the deep sea,aka oceanic biological carbon pump,is a key pathway for oceanic carbon sequestration.The heterotrophic processes in the twilight zone (typically defined as the depth between the bottom of the euphotic zone and 1 000 m) consume more than 70% of the POC exported from the euphotic zone,and determine the carbon sequestration efficiency of the biological carbon pump.Therefore,quantification of the remineralization rate in the twilight zone is essential for the ocean budget assessment.Aiming at the carbon storage problem of marine biological pump,this paper focuses on the influence mechanism of heterotrophic processes in the twilight zone on marine carbon storage,reviews the global studies for remineralization rate estimation in the twilight zone,comprehensively analyzes the attenuation and remineralization of POC in the twilight zone,and looks forward to the application of relevant novel technologies.
oceanic carbon sequestration;carbon neutral;oceanic biological carbon pump;heterotrophic process;remineralization;mesopelagic zone
doi:10.13878/j.cnki.dqkxxb.20220228004
(責(zé)任編輯:張福穎)