• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A second-order convergent and linearized difference scheme for the initial-boundary value problem of the Korteweg-de Vries equation

    2022-07-13 06:33:52WangXupingSunZhizhong

    Wang Xuping Sun Zhizhong

    (School of Mathematics, Southeast University, Nanjing 210096, China)

    Abstract:To numerically solve the initial-boundary value problem of the Korteweg-de Vries equation, an equivalent coupled system of nonlinear equations is obtained by the method of reduction of order.Then, a difference scheme is constructed for the system.The new variable introduced can be separated from the difference scheme to obtain another difference scheme containing only the original variable.The energy method is applied to the theoretical analysis of the difference scheme.Results show that the difference scheme is uniquely solvable and satisfies the energy conservation law corresponding to the original problem.Moreover, the difference scheme converges when the step ratio satisfies a constraint condition, and the temporal and spatial convergence orders are both two.Numerical examples verify the convergence order and the invariant of the difference scheme.Furthermore, the step ratio constraint is unnecessary for the convergence of the difference scheme.Compared with a known two-level nonlinear difference scheme, the proposed difference scheme has more advantages in numerical calculation.

    Key words:Korteweg-de Vries(KdV)equation; linearized difference scheme; conservation; convergence

    The Korteweg-de Vries(KdV)equation was derived by Korteweg and de Vries[1]in 1895 and has a history of more than 130 years.The KdV equation is one of the classical mathematical physics equations.The KdV equation plays an important role in nonlinear dispersive waves and has a wide range of applications.Many scholars have investigated its solutions from the point of view of analysis and numerical value.Moreover, the general solutions of the KdV equation are difficult to obtain.Therefore, many numerical methods, such as the finite difference method[2-6], finite element method[7-10], spectral method[11-12], and meshless method[13-16], have been applied to solve the KdV equation.Among them, the finite difference method is simple and easy to implement on computers.The finite difference method is an important method for solving nonlinear evolution equations.Meanwhile, the theoretical analysis of the difference scheme is relatively difficult, particularly for the initial-boundary value problem.Consequently, we will use the finite difference method to solve the initial-boundary value problem of the KdV equation in this study.

    When solving nonlinear evolution equations, we need to consider the corresponding initial and boundary value conditions.The three main types of problems are the initial, periodic boundary, and initial-boundary value problems.Currently, many studies on solving nonlinear evolution equations using the finite difference method have been conducted.Some of them analyzed the initial value problems.For this class of problems, difference schemes were conveniently established by adding homogeneous boundary conditions to the boundary in the practical computation, which is a Dirichlet boundary value problem.If the highest order of the spatial derivative of the equation for the space variablexis two, then the addition of homogeneous boundary conditions will not affect the construction and analysis of difference schemes, such as Burgers’ equation:

    ut+uux=νuxx

    whereνis a positive constant.The difference scheme has the same form at all inner grid points.If the highest order of the spatial derivatives is over two, then the difference will be significant because of the presence of derivative boundary conditions, such as the KdV equation:

    ut+γuux+uxxx=0

    whereγis a constant whose boundary conditions[17]are

    u(0,t)=u(L,t)=ux(L,t)=0t≥0

    The boundary condition is asymmetric, which means that the difference scheme will also be asymmetric.Therefore, for the initial-boundary value problem of the KdV equation, the construction and analysis of difference schemes need to be more detailed.Studies of the periodic boundary problems of the KdV equation using the finite difference method have also been conducted.However, because of the existence of derivative boundary conditions, similarly generalizing the method for the periodic boundary value problems to the initial-boundary value problems of the KdV equation is difficult.

    Recently, we established two finite difference schemes for the KdV equation with the initial-boundary value conditions in Ref.[5].One was a nonlinear difference scheme and the other was a linearized difference scheme.The nonlinear difference scheme was proven to be unconditionally convergent, whereas the linearized difference scheme was conditionally convergent.The accuracy of these two finite difference schemes was the first order in space.Subsequently, in Ref.[6], we established a nonlinear difference scheme and proved that its spatial convergence order was two.In the numerical examples, we solved the nonlinear difference scheme using the Newton iterative method, which increased the computational cost at each time level.To improve computational efficiency and keep the convergence order unchanged, we consider establishing a linearized difference scheme for solving the initial-boundary problem of the KdV equation.

    In this study, we construct a three-level linearized difference scheme for the following problem:

    ut+γuux+uxxx=0 0

    (1a)

    u(x,0)=φ(x) 0

    (1b)

    u(0,t)=u(L,t)=ux(L,t)=0 0≤t≤T

    (1c)

    whereφ(0)=φ(L)=φ′(L)=0,γis a constant.We also establish the difference scheme and illustrate the truncation errors in detail.Then, we will present its conservation law, prove its unique solvability and conditional convergence, and provide some numerical simulations to verify our theoretical results and compare them with those of the nonlinear difference scheme in Ref.[6].

    1 Difference Scheme

    In this section, we will use the method of reduction of order to establish the difference scheme for Problem(1)and illustrate the truncation errors in detail.

    1.1 Notation

    Before presenting the difference scheme, we introduce the notations used.

    We take two positive integersmandn.Then, we leth=L/m,xj=jh, 0≤j≤m;τ=T/n,tk=kτ, 0≤k≤n;Ωh={xj|0≤j≤m}.Ωτ={tk|0≤k≤n}.Moreover, we let

    Vh={v|v∈Uhandv0=vm=0}

    For anyu,v∈Uh, we introduce the following notations:

    Then, we let

    For anyw∈Sτ, we introduce the following notations:

    It is easy to know that

    1.2 Derivation of the difference scheme

    We construct the difference scheme using the method of reduction of order.

    Let

    v=ux0≤x≤L, 0≤t≤T

    Then Problem(1)is equal to the following problem of coupled equations:

    ut+γuux+vxx=0 0

    (2a)

    v=ux0

    (2b)

    u(x,0)=φ(x) 0≤x≤L

    (2c)

    u(0,t)=u(L,t)=0 0

    (2d)

    v(L,t)=0 0≤t≤T

    (2e)

    Then, we denote

    0≤j≤m, 0≤k≤n

    Considering Eq.(2a)at points(xj,t1/2)and(xj,tk)and using the Taylor expansion, we obtain

    1≤j≤m-1

    (3)

    and

    1≤j≤m-1, 1≤k≤n-1

    (4)

    The constantc1>0 exists, such that

    1≤j≤m-1, 1≤k≤n-1

    (5)

    We consider Eq.(2b)at points(xj+1/2,tk)and use the Taylor expansion to obtain

    Lemma1[6]We denote

    0≤j≤m-2, 0≤k≤n

    The constantc2>0 exists, such that

    Considering the initial and boundary value conditions expressed in Eqs.(2c)to(2e), we obtain

    (7)

    (8)

    (9)

    By omitting the small terms in Eqs.(3),(4), and(6)and combining them with Eqs.(7)to(9), we construct a three-level linearized difference scheme for Problem(2), as follows:

    (10a)

    1≤j≤m-1, 1≤k≤n-1

    (10b)

    (10c)

    (10d)

    (10e)

    (10f)

    1.3 Calculation of the difference scheme

    For ease of calculation, we separate the variables for Eq.(10).

    Theorem1The difference scheme expressed in Eq.(10)is equivalent to the following system of equations:

    1≤j≤m-2

    (11a)

    (11b)

    1≤j≤m-2, 1≤k≤n-1

    (11c)

    1≤k≤n-1

    (11d)

    (11e)

    (11f)

    and

    (12a)

    j=m-1,m-2,…,0; 0≤k≤n

    (12b)

    ProofⅠ)Based on Eqs.(10)to(12), first, we determine that Eqs.(10d)and(10e)are equivalent to Eqs.(11e)and(11f), respectively, and Eq.(10f)is equivalent to Eq.(12a).Moreover, Eq.(10c)is equivalent to Eq.(12b), and Eq.(10a)is equivalent to

    (13a)

    (13b)

    Based on Eq.(10c), we derive

    (14)

    By substituting Eq.(14)into Eq.(13a), we derive Eq.(11a).

    Similarly,based on Eq.(10f), we derive

    Then, we obtain

    By substituting the obtained equality into Eq.(13b)and using Eq.(14), we derive Eq.(11b).

    Similarly, we obtain Eqs.(11c)and(11d)from Eqs.(10b),(10c), and(10f).

    Ⅱ)Based on Eqs.(10)to(12), we determine that Eqs.(11e)and(11f)are equivalent to Eqs.(10d)and(10e), respectively, and Eq.(12a)is equivalent to Eq.(10f).Based on Eq.(12), we derive Eq.(10c)and

    (15a)

    (15b)

    Based on Eq.(15), we obtain

    By substituting the obtained equation into Eq.(11b), we derive

    (16)

    which is Eq.(10a)withj=m-1.By substituting Eq.(15b)into Eq.(11a), we obtain

    that is

    By combining the obtained equation with Eq.(16), we derive

    which is Eq.(10a)with 1≤j≤m-2.

    Similarly, we obtain Eq.(10b)from Eqs.(11c),(11d), and(12).

    The proof is completed.

    We denote

    Based on Eq.(11e), we obtainu0.Then, we computeu1using Eqs.(11a),(11b), and(11f).We letw=u1/2.If we determinew, then we can obtainu1using the following expression:

    u1=2w-u0

    Based on Eqs.(11a),(11b), and(11f), we can obtain the system of equations forw, as follows:

    The value ofwcan be obtained by solving the aforementioned system of quatic diagonal linear equations using the double-sweep method.

    uk+1=2w-uk-1

    Based on Eqs.(11c),(11d), and(11f), we can obtain the system of equations forw, as follows:

    The value ofwcan be obtained by solving the aforementioned system of quadratic diagonal linear equations using the sweep method.

    Furthermore,Theorem 1 illustrates that analyzing Eq.(10)is equivalent to analyzing Eq.(11).

    2 Theoretical Analysis

    In this section, we will analyze the conservation, unique solvability, and convergence of the difference scheme expressed in Eq.(10).

    2.1 Conservation and Unique solvability

    First, we provide several lemmas, which will be subsequently used.

    Lemma2[18]For ?u∈Uhandv∈Vh, we have

    (ψ(u,v),v)=0

    Lemma3[6]We letv∈Uhandu∈Vhsatisfy

    vm=0,vj+1/2=δxuj+1/20≤j≤m-1

    Then, we derive

    For the continuous problem expressed in Eq.(1), conservation exists.

    Theorem2[5]Supposing thatu(x,t)is the solution to Problem(1), we denote

    Then, we derive

    Similarly,the difference scheme expressed in Eq.(10)has an invariant.

    1≤k≤n

    Then, we derive

    Ek=‖u0‖21≤k≤n

    ProofⅠ)Taking the inner product of Eq.(10a)withu1/2, we obtain

    Together with Lemmas 2 and 3, we derive

    That is,

    (17)

    1≤k≤n-1

    Together with Lemmas 2 and 3, we derive

    1≤k≤n-1

    That is,

    1≤k≤n-1

    By adding the equality expressed in Eq.(17)to the obtained equality, we derive

    0≤k≤n-1

    This completes the proof.

    Then, we prove the unique solvability.

    Theorem4The difference scheme expressed in Eq.(10)has a unique solution.

    ProofWe obtainu0using Eq.(10d)andv0using Eqs.(10c)and(10f).

    Based on Eqs.(10a),(10c),(10e), and(10f), we deriveu1andv1.Considering the system of homogeneous equations, we obtain

    (18a)

    (18b)

    (18c)

    (18d)

    Taking the inner product of Eq.(18a)withu1, we derive

    Together with Lemmas 2 and 3, we obtain

    Then, we have

    ‖u1‖=0

    which follows

    From Eq.(18b)and Eq.(18d), we can get

    That is, Eqs.(10a),(10c),(10e)and(10f)have the unique solutionsu1andv1.

    We suppose thatuk,uk-1andvk,vk-1are known.Based on Eqs.(10b),(10c),(10e)and(10f), we determineuk+1andvk+1.Considering the system of homogeneous equations, we obtain

    1≤j≤m-1

    (19a)

    (19b)

    (19c)

    (19d)

    Taking an inner product of Eq.(19a)with 2uk+1, we get

    Using Lemmas 2 and 3, we obtain

    Then, we have

    ‖uk+1‖=0

    which follows

    Based on Eqs.(19b)and(19d), we obtain

    That is, Eqs.(10b), Eq.(10c), Eq.(10e), and Eq.(10f)have the unique solutionsuk+1andvk+1.

    This completes the proof.

    2.2 Convergence

    0≤j≤m, 0≤k≤n

    By subtracting Scheme(10)from Eqs.(3),(4), and(6)to(9), we derive the following system of error equations:

    (20a)

    1≤j≤m-1

    (20b)

    (20c)

    (20d)

    (20e)

    (20f)

    Before obtaining the convergence result, we present the following two lemmas.

    Lemma4From the proof of Theorem 4.3 in Ref.[5], it follows that the following equality holds:

    Lemma5From the proof of Theorem 4.1 in Ref.[6], it follows that the following equality holds:

    We denote

    Theorem5We let

    Ifλ<1, then we have

    ‖ek‖≤c4(τ2+h2) 0≤k≤n

    ProofⅠ)It follows from Eq.(20d)that

    ‖e0‖=0

    (21)

    Taking the inner product of Eq.(20a)with 2e1/2, we derive

    That is,

    (22)

    It follows from Lemma 5 that

    By substituting the previously derived equality into Eq.(22)and combining it with Lemma 1, Lemma 5, and the truncation error expressed in(5), we obtain

    That is,

    (23)

    That is,

    1≤k≤n-1

    (24)

    It follows from Lemma 5 that

    By substituting the previously derived equality into Eq.(24)and combining it with Lemmas 4 and 1, we obtain

    Then, we derive

    Using the truncation error expressed in Eq.(5), we obtain

    (25)

    We let

    It follows that

    Ifλ<1, then we derive

    It follows from inequality(25)that

    That is,

    (1-c3τ)Ek+1≤(1+c3τ)Ek+

    1≤k≤n-1

    Using the Gronwall inequality, we obtain

    By substituting Eqs.(21)and(23)into the previously derived inequality, we obtain

    It is easy to know that

    Consequently,

    ‖ek‖≤c4(τ2+h2) 1≤k≤n

    This completes the proof.

    3 Numerical Examples

    In this section, we present two numerical examples.The numerical results illustrate the efficiency of the difference scheme expressed in Eq.(11).

    In Ref.[6], we presented the following two-level nonlinear difference scheme:

    (26a)

    (26b)

    (26c)

    (26d)

    and solved it using the Newton iterative method.

    We denote the error as follows:

    Whenτis sufficiently small, the spatial convergence order is defined as follows:

    Whenhis sufficiently small, the temporal convergence order is defined as follows:

    Example1In Problem(1), we takeT=1,L=1,γ=-6,φ(x)=x(x-1)2(x3-2x2+2).The exact solution is unknown.

    The difference scheme expressed in Eq.(11)will be employed to numerically solve this problem.The numerical accuracy of the difference scheme in space and time will be verified.

    By varying step sizehwith the sufficiently small step sizeτ=1/12 800 and varying step sizeτwith the sufficiently small step sizeh=1/12 800, the numerical errors and convergence orders for Scheme(11)are listed in Tabs.1 and 2.From these tables, we determine that the numerical convergence orders of Scheme(11)can achieveO(τ2+h2), which is consistent with Theorem 5.

    Tab.1 Errors and space convergence orders of Example 1(τ=1/12 800)

    Tab.2 Errors and time convergence orders of Example 1(h=1/12 800)

    Furthermore, we observe that the difference scheme expressed in Eq.(11)is more computationally efficient than the nonlinear difference scheme expressed in Eq.(26).

    Fig.1 indicates that the energy of Scheme(11)is conserved for Example 1.

    Fig.1 Energy conservation law of Example 1

    We denote

    and

    Example2We conduct a numerical experiment with the exact solution of a solitary wave[19], as follows:

    u(x,t)=4sech2(x-4t-4)

    0≤x≤20, 0≤t≤1

    The corresponding parameter isγ=3.

    Similarly, we compute the example using the difference scheme expressed in Eq.(11)and observe the convergence.First, we fix the time step size as 1/3 200 and calculate the errors and convergence orders in the space directions, as shown in Tab.3.Then, we fix the space step size as 1/3 200 and calculate the errors and convergence orders in the time directions, as shown in Tab.4.

    Tab.3 Errors and space convergence orders of Example 2

    Tab.4 Errors and time convergence orders of Example 2

    Notably, the numerical results are consistent with the theoretical analysis.In Fig.2, the numerical and exact solution curves are plotted fort=0.25,0.5,0.75,1.0.Fig.2 shows that the numerical solutions are consistent with the exact solutions.

    (a)

    4 Conclusions

    In this study, we consider the numerical solution to the initial-boundary value problem of the KdV equation using the finite difference method.With the use of the method of reduction of order, we establish a three-level linearized difference scheme and show that it is more computationally efficient than the two-level nonlinear difference scheme through numerical simulations while retaining the same convergence orders.Using the energy analysis method, we prove the conservation, unique solvability, and conditional convergence of the difference scheme.

    In Theorem 5, the convergence of the difference scheme was proven under the constraint of the step size ratio.This difference scheme may be unconditionally convergent.Indeed, we found from Example 1 that the restriction of step size ratio is unnecessary for ensuring that the convergence result holds.However, we have not yet discovered a better method to prove the unconditional convergence and will continue our research in future work.

    亚洲中文字幕日韩| 男女那种视频在线观看| 最近最新中文字幕大全电影3| 亚洲精品乱码久久久v下载方式 | 此物有八面人人有两片| 亚洲国产精品999在线| 国产高清激情床上av| 欧美午夜高清在线| 丰满乱子伦码专区| 国产伦人伦偷精品视频| 亚洲黑人精品在线| www.www免费av| 一个人观看的视频www高清免费观看| 天美传媒精品一区二区| 嫩草影院入口| 真人一进一出gif抽搐免费| 国产精品亚洲av一区麻豆| 日本在线视频免费播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产成人aa在线观看| av女优亚洲男人天堂| 欧美日韩亚洲国产一区二区在线观看| 最新美女视频免费是黄的| av专区在线播放| 好看av亚洲va欧美ⅴa在| 欧美日韩瑟瑟在线播放| 1000部很黄的大片| 五月伊人婷婷丁香| 亚洲国产欧洲综合997久久,| 国产一区二区三区在线臀色熟女| 一边摸一边抽搐一进一小说| 亚洲欧美激情综合另类| 丰满人妻熟妇乱又伦精品不卡| 国产在视频线在精品| 欧美最黄视频在线播放免费| 亚洲无线观看免费| 国产精品一区二区三区四区免费观看 | 好男人在线观看高清免费视频| 国产成人aa在线观看| 精品99又大又爽又粗少妇毛片 | 国产高清有码在线观看视频| 十八禁人妻一区二区| 精品熟女少妇八av免费久了| 又爽又黄无遮挡网站| 丰满人妻熟妇乱又伦精品不卡| 成人一区二区视频在线观看| 又黄又粗又硬又大视频| 又紧又爽又黄一区二区| 国产精品综合久久久久久久免费| 最好的美女福利视频网| 国产蜜桃级精品一区二区三区| АⅤ资源中文在线天堂| 在线观看美女被高潮喷水网站 | 色在线成人网| 色噜噜av男人的天堂激情| 88av欧美| 亚洲欧美一区二区三区黑人| 色播亚洲综合网| 中国美女看黄片| 三级毛片av免费| 国产久久久一区二区三区| 国产伦精品一区二区三区四那| 国产精品国产高清国产av| 悠悠久久av| 成人三级黄色视频| 亚洲精品美女久久久久99蜜臀| 欧美性感艳星| 美女cb高潮喷水在线观看| 女人被狂操c到高潮| 午夜久久久久精精品| 欧美乱色亚洲激情| 熟女电影av网| 男女午夜视频在线观看| 国产91精品成人一区二区三区| 久久久久久久午夜电影| 日韩av在线大香蕉| 亚洲国产色片| 中出人妻视频一区二区| 高潮久久久久久久久久久不卡| 欧美乱色亚洲激情| 精品国产亚洲在线| 日韩成人在线观看一区二区三区| 免费av毛片视频| 最近视频中文字幕2019在线8| 欧美黑人巨大hd| 国产麻豆成人av免费视频| 日本三级黄在线观看| 天堂网av新在线| 看片在线看免费视频| 又黄又粗又硬又大视频| 精品一区二区三区人妻视频| 国产一区二区在线观看日韩 | 狂野欧美白嫩少妇大欣赏| 亚洲第一电影网av| 国产又黄又爽又无遮挡在线| 51午夜福利影视在线观看| 久久香蕉国产精品| av在线天堂中文字幕| 美女黄网站色视频| 国产欧美日韩精品亚洲av| 久久久国产精品麻豆| 他把我摸到了高潮在线观看| 国产精品一及| 欧美日韩国产亚洲二区| 免费在线观看日本一区| 亚洲av中文字字幕乱码综合| 欧美日韩综合久久久久久 | 性色av乱码一区二区三区2| 欧美日韩一级在线毛片| 成人亚洲精品av一区二区| 午夜日韩欧美国产| 亚洲精品在线美女| 亚洲片人在线观看| 深爱激情五月婷婷| 一级作爱视频免费观看| 中文在线观看免费www的网站| 日本熟妇午夜| av天堂在线播放| 国产国拍精品亚洲av在线观看 | 搞女人的毛片| 日本精品一区二区三区蜜桃| 欧美丝袜亚洲另类 | 亚洲国产欧美网| 亚洲成人精品中文字幕电影| a在线观看视频网站| 免费在线观看日本一区| 色在线成人网| 午夜精品在线福利| 老司机深夜福利视频在线观看| eeuss影院久久| 一边摸一边抽搐一进一小说| 少妇的逼水好多| 日本与韩国留学比较| 99国产精品一区二区蜜桃av| 亚洲欧美日韩高清在线视频| 亚洲欧美日韩无卡精品| 日本一二三区视频观看| 小蜜桃在线观看免费完整版高清| 成人三级黄色视频| 成人无遮挡网站| 欧美一级a爱片免费观看看| 91字幕亚洲| 亚洲五月天丁香| 欧美中文综合在线视频| 午夜福利高清视频| 国产精品女同一区二区软件 | 久久久久性生活片| 少妇熟女aⅴ在线视频| 久久婷婷人人爽人人干人人爱| 久久性视频一级片| 亚洲成av人片在线播放无| www日本黄色视频网| 一本久久中文字幕| 国产伦在线观看视频一区| 搡女人真爽免费视频火全软件 | 亚洲国产欧美网| 中文字幕人成人乱码亚洲影| 精品一区二区三区视频在线 | 中国美女看黄片| 国产激情欧美一区二区| 亚洲片人在线观看| 久久久久性生活片| 国产精品1区2区在线观看.| 88av欧美| 人妻久久中文字幕网| 亚洲国产高清在线一区二区三| 国产一区二区亚洲精品在线观看| 亚洲第一电影网av| 亚洲美女黄片视频| 给我免费播放毛片高清在线观看| 熟妇人妻久久中文字幕3abv| 国产欧美日韩精品亚洲av| 色视频www国产| 国产精品99久久99久久久不卡| 五月玫瑰六月丁香| 亚洲av电影不卡..在线观看| 悠悠久久av| 国产伦人伦偷精品视频| 国产激情欧美一区二区| www.色视频.com| 操出白浆在线播放| h日本视频在线播放| 亚洲精品美女久久久久99蜜臀| 亚洲一区高清亚洲精品| 日本黄色视频三级网站网址| 日本a在线网址| 中文在线观看免费www的网站| 亚洲精品亚洲一区二区| 久久久久九九精品影院| 99国产精品一区二区三区| 美女黄网站色视频| 国产97色在线日韩免费| 1000部很黄的大片| 久久天躁狠狠躁夜夜2o2o| 美女被艹到高潮喷水动态| 国产真人三级小视频在线观看| 午夜福利视频1000在线观看| 757午夜福利合集在线观看| 天堂动漫精品| 又爽又黄无遮挡网站| 久久精品亚洲精品国产色婷小说| 好男人电影高清在线观看| 一级a爱片免费观看的视频| 琪琪午夜伦伦电影理论片6080| 亚洲最大成人手机在线| 国产av一区在线观看免费| 精品福利观看| 日本 av在线| 岛国在线免费视频观看| 中出人妻视频一区二区| 欧美绝顶高潮抽搐喷水| 日韩欧美精品v在线| 极品教师在线免费播放| 一级黄片播放器| 少妇的逼水好多| 好男人电影高清在线观看| 国产精品日韩av在线免费观看| 三级毛片av免费| 看片在线看免费视频| 91字幕亚洲| 一个人免费在线观看的高清视频| 三级毛片av免费| a级一级毛片免费在线观看| 国内精品美女久久久久久| 波多野结衣高清作品| 美女cb高潮喷水在线观看| 真实男女啪啪啪动态图| 一区二区三区激情视频| 丰满人妻一区二区三区视频av | 久久久精品大字幕| 欧美日韩黄片免| 欧美黄色片欧美黄色片| tocl精华| 成人一区二区视频在线观看| 91久久精品电影网| 成年女人永久免费观看视频| 亚洲成人久久爱视频| 麻豆一二三区av精品| 大型黄色视频在线免费观看| 久久精品影院6| 一级作爱视频免费观看| a级一级毛片免费在线观看| 久久精品人妻少妇| 亚洲av电影在线进入| 夜夜夜夜夜久久久久| 无限看片的www在线观看| 亚洲国产精品sss在线观看| 日本免费a在线| 国产v大片淫在线免费观看| 欧美精品啪啪一区二区三区| 五月伊人婷婷丁香| 啪啪无遮挡十八禁网站| svipshipincom国产片| 三级男女做爰猛烈吃奶摸视频| 丰满的人妻完整版| 午夜老司机福利剧场| 一级毛片女人18水好多| 精品人妻偷拍中文字幕| 欧美日韩中文字幕国产精品一区二区三区| bbb黄色大片| 欧美乱码精品一区二区三区| 丁香欧美五月| 91久久精品国产一区二区成人 | 亚洲电影在线观看av| 国产欧美日韩精品亚洲av| 国产精品美女特级片免费视频播放器| 午夜日韩欧美国产| 日韩成人在线观看一区二区三区| 日日干狠狠操夜夜爽| 日本在线视频免费播放| 日韩中文字幕欧美一区二区| 国产精品一区二区三区四区久久| 一级作爱视频免费观看| 国产亚洲精品综合一区在线观看| 国产野战对白在线观看| 欧美成人a在线观看| 人妻久久中文字幕网| 欧美日韩综合久久久久久 | 波多野结衣高清作品| 午夜精品在线福利| 少妇的逼水好多| 亚洲精品亚洲一区二区| 一夜夜www| 在线播放国产精品三级| 精品一区二区三区视频在线观看免费| 有码 亚洲区| 最新在线观看一区二区三区| 老司机在亚洲福利影院| 亚洲精品色激情综合| 国产精品美女特级片免费视频播放器| 欧美高清成人免费视频www| 老熟妇仑乱视频hdxx| 国产一区二区三区在线臀色熟女| 亚洲精品456在线播放app | 很黄的视频免费| 亚洲国产精品合色在线| 91麻豆精品激情在线观看国产| 最近在线观看免费完整版| 国产亚洲精品综合一区在线观看| 一级a爱片免费观看的视频| 国模一区二区三区四区视频| 国产探花在线观看一区二区| 此物有八面人人有两片| 男女之事视频高清在线观看| 成人18禁在线播放| 一区二区三区高清视频在线| 国产成人福利小说| 最新在线观看一区二区三区| www日本在线高清视频| av欧美777| 18美女黄网站色大片免费观看| 人妻丰满熟妇av一区二区三区| 日韩精品青青久久久久久| 91在线精品国自产拍蜜月 | 国产精品,欧美在线| av女优亚洲男人天堂| 一本综合久久免费| 草草在线视频免费看| 欧美xxxx黑人xx丫x性爽| 99精品在免费线老司机午夜| av天堂在线播放| 亚洲av熟女| 观看免费一级毛片| 欧美+亚洲+日韩+国产| 69人妻影院| 国产色爽女视频免费观看| 男女午夜视频在线观看| 欧美在线一区亚洲| 中文字幕人妻熟人妻熟丝袜美 | 99精品久久久久人妻精品| 久久久久免费精品人妻一区二区| 国产不卡一卡二| 午夜福利视频1000在线观看| 国产亚洲精品综合一区在线观看| 色噜噜av男人的天堂激情| 一本一本综合久久| 国产成+人综合+亚洲专区| 国产精品久久久人人做人人爽| 精品熟女少妇八av免费久了| 免费看光身美女| 美女黄网站色视频| 日本撒尿小便嘘嘘汇集6| 欧美日韩精品网址| 哪里可以看免费的av片| 首页视频小说图片口味搜索| 亚洲人成网站在线播放欧美日韩| 色综合站精品国产| 99热这里只有精品一区| 人妻夜夜爽99麻豆av| 午夜亚洲福利在线播放| 两个人看的免费小视频| 男女午夜视频在线观看| 免费看十八禁软件| 中文字幕av在线有码专区| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区精品| 天天一区二区日本电影三级| 中文字幕人妻丝袜一区二区| 日本黄色片子视频| 亚洲中文字幕日韩| 18禁在线播放成人免费| 一本精品99久久精品77| 亚洲精品在线观看二区| 日韩高清综合在线| 18+在线观看网站| 国产蜜桃级精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧美人成| 法律面前人人平等表现在哪些方面| 人妻夜夜爽99麻豆av| 成人午夜高清在线视频| 国产激情欧美一区二区| 最新中文字幕久久久久| 午夜激情欧美在线| h日本视频在线播放| 欧美黑人欧美精品刺激| 色综合欧美亚洲国产小说| av在线蜜桃| 久久久久久久精品吃奶| 日日摸夜夜添夜夜添小说| 精品国产三级普通话版| 美女 人体艺术 gogo| 麻豆成人av在线观看| 欧美性猛交╳xxx乱大交人| 日韩欧美国产在线观看| 久久人人精品亚洲av| 男插女下体视频免费在线播放| 99国产精品一区二区三区| 老汉色av国产亚洲站长工具| 91麻豆av在线| 久久久久久九九精品二区国产| 91久久精品国产一区二区成人 | 国产男靠女视频免费网站| 久久久久九九精品影院| 内射极品少妇av片p| 变态另类丝袜制服| 日本三级黄在线观看| 日本五十路高清| 亚洲五月婷婷丁香| 国产精品乱码一区二三区的特点| 一二三四社区在线视频社区8| 国产精品久久电影中文字幕| 大型黄色视频在线免费观看| 亚洲精品久久国产高清桃花| 国产午夜精品论理片| АⅤ资源中文在线天堂| 日韩欧美在线二视频| 最好的美女福利视频网| 亚洲最大成人手机在线| 99久久九九国产精品国产免费| 亚洲无线在线观看| 黑人欧美特级aaaaaa片| 中文字幕人成人乱码亚洲影| 午夜激情福利司机影院| 久久精品91蜜桃| 亚洲黑人精品在线| 欧美乱码精品一区二区三区| 波多野结衣高清作品| 法律面前人人平等表现在哪些方面| 日韩精品青青久久久久久| 美女cb高潮喷水在线观看| 激情在线观看视频在线高清| 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看| 国产一区二区在线观看日韩 | tocl精华| 一个人看视频在线观看www免费 | 窝窝影院91人妻| 一进一出好大好爽视频| 成年女人毛片免费观看观看9| 亚洲精品亚洲一区二区| 一本一本综合久久| 在线观看66精品国产| 亚洲av第一区精品v没综合| 窝窝影院91人妻| 久久久久久久久久黄片| 熟女少妇亚洲综合色aaa.| 中文字幕av成人在线电影| 国产精华一区二区三区| 亚洲av二区三区四区| 天美传媒精品一区二区| 看黄色毛片网站| 国产精品一区二区三区四区久久| 制服人妻中文乱码| 国产一区二区在线观看日韩 | 日韩国内少妇激情av| 国产一区二区在线av高清观看| 在线观看免费午夜福利视频| 九九在线视频观看精品| 久久6这里有精品| 欧美日本视频| 琪琪午夜伦伦电影理论片6080| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品999在线| 中文字幕精品亚洲无线码一区| 日本黄大片高清| 国模一区二区三区四区视频| 国产探花极品一区二区| 国产一区二区三区在线臀色熟女| 精品一区二区三区av网在线观看| 黄色女人牲交| 蜜桃亚洲精品一区二区三区| 免费看a级黄色片| 女警被强在线播放| 老汉色∧v一级毛片| 桃红色精品国产亚洲av| 国产乱人伦免费视频| 免费观看人在逋| 真人做人爱边吃奶动态| 欧美黑人欧美精品刺激| 级片在线观看| 男女下面进入的视频免费午夜| 首页视频小说图片口味搜索| 91字幕亚洲| 国产淫片久久久久久久久 | 一级毛片高清免费大全| 国产高清视频在线观看网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品成人久久久久久| 国产精品亚洲av一区麻豆| 亚洲精品在线观看二区| 熟女人妻精品中文字幕| 悠悠久久av| 真人一进一出gif抽搐免费| 亚洲中文字幕日韩| 日韩欧美精品免费久久 | 国产高潮美女av| 欧美成狂野欧美在线观看| 日韩中文字幕欧美一区二区| 久久6这里有精品| 老司机深夜福利视频在线观看| 国产精品自产拍在线观看55亚洲| 一级毛片高清免费大全| 床上黄色一级片| 最近最新中文字幕大全电影3| eeuss影院久久| 免费看日本二区| 国产真人三级小视频在线观看| 免费看日本二区| 国产真实伦视频高清在线观看 | 天堂动漫精品| 国产成人a区在线观看| 国产精品免费一区二区三区在线| 国产精品永久免费网站| 一区福利在线观看| 色视频www国产| 神马国产精品三级电影在线观看| 久9热在线精品视频| 欧美区成人在线视频| 免费看十八禁软件| 婷婷精品国产亚洲av| 久久精品91无色码中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品成人综合色| 又黄又爽又免费观看的视频| 亚洲av第一区精品v没综合| 久久精品亚洲精品国产色婷小说| 舔av片在线| 一本综合久久免费| 日韩欧美免费精品| 国产成+人综合+亚洲专区| 亚洲av一区综合| 成人永久免费在线观看视频| 日韩欧美免费精品| 内射极品少妇av片p| 18禁美女被吸乳视频| www日本在线高清视频| 久久6这里有精品| 欧美日韩精品网址| 中亚洲国语对白在线视频| 亚洲专区国产一区二区| 一本久久中文字幕| 国产午夜福利久久久久久| 精品欧美国产一区二区三| 99久久久亚洲精品蜜臀av| 欧美日韩福利视频一区二区| 中文字幕av成人在线电影| 在线免费观看不下载黄p国产 | 久久久久精品国产欧美久久久| 国产91精品成人一区二区三区| 久久人妻av系列| 长腿黑丝高跟| 日日夜夜操网爽| 成人特级av手机在线观看| 午夜日韩欧美国产| 亚洲av电影在线进入| 亚洲国产日韩欧美精品在线观看 | 人人妻人人看人人澡| 露出奶头的视频| 色综合婷婷激情| 18禁在线播放成人免费| 欧美精品啪啪一区二区三区| 岛国在线免费视频观看| 黄色成人免费大全| 桃红色精品国产亚洲av| 人妻夜夜爽99麻豆av| 99精品久久久久人妻精品| 男人舔奶头视频| 国产成人欧美在线观看| 日本 av在线| 观看免费一级毛片| 床上黄色一级片| 亚洲成av人片在线播放无| 深爱激情五月婷婷| 亚洲国产精品合色在线| 免费看十八禁软件| 老汉色∧v一级毛片| 欧美日韩福利视频一区二区| 女人高潮潮喷娇喘18禁视频| 亚洲精品456在线播放app | 免费av观看视频| 精品免费久久久久久久清纯| 黄色日韩在线| 久久午夜亚洲精品久久| 日韩精品青青久久久久久| 又爽又黄无遮挡网站| 男女做爰动态图高潮gif福利片| 制服人妻中文乱码| 小蜜桃在线观看免费完整版高清| 亚洲真实伦在线观看| svipshipincom国产片| 久久久久久久久久黄片| 看黄色毛片网站| 日日干狠狠操夜夜爽| 在线观看66精品国产| 给我免费播放毛片高清在线观看| 嫩草影视91久久| 又紧又爽又黄一区二区| 禁无遮挡网站| 亚洲精品在线观看二区| 欧美一级毛片孕妇| 久久精品国产自在天天线| 欧美一级a爱片免费观看看| 俄罗斯特黄特色一大片| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美日韩一区二区精品| 午夜福利18| 韩国av一区二区三区四区| 久9热在线精品视频| 黄色成人免费大全| 俄罗斯特黄特色一大片| 欧美乱妇无乱码| 97超级碰碰碰精品色视频在线观看| 久久精品国产自在天天线| 午夜福利成人在线免费观看| 草草在线视频免费看| 国产色婷婷99| 综合色av麻豆| 波野结衣二区三区在线 | 国产亚洲精品久久久com| 亚洲一区二区三区色噜噜| 亚洲人成伊人成综合网2020| 国产免费av片在线观看野外av| 淫妇啪啪啪对白视频|