• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation analysis of significance and interaction of influencing factors on mixing uniformity of double-drum recycling mixing plant

    2022-07-13 02:52:36MaDengchengGuiXueLiXuanMaChenglin

    Ma Dengcheng Gui Xue Li Xuan Ma Chenglin

    (1 National Engineering Laboratory for Road Maintenance Equipment, Chang’an University, Xi’an,710064, China)(2 Shaanxi Zhonglin Asphalt Pavement Maintenance Technology Co., Ltd., Xi’an 710000, China)

    Abstract:To examine the influence of the structural parameters and working parameters of a double-drum regeneration mixing station on its mixing uniformity, the influence of the discrete element method and response surface method on the uniformity of the aggregate mixing when the interaction between two different factors was analyzed.A mathematical model of the influence of various factors and interactions on the coefficient of variation of the aggregates was established.The matching of each parameter was optimized with the goal of minimizing the coefficient of variation.The results show that when the aggregate particle size is different, the significance of each parameter affecting its mixing uniformity is also different.Moreover, increasing the speed and reducing the axial installation angle of the blade can reduce the coefficient of variation of the three aggregates.To obtain a good mixing uniformity, the mixing-arm phase angle when the drum inclination angle is large should be smaller than the phase angle when the drum inclination angle is small, and the mixing of large particles should not be arranged with a large mixing-arm phase angle.With a blade radial installation angle of 38°, a blade axial installation angle of 35°, a drum inclination angle of 6°, a drum rotation speed of 10 r/min, and a mixing-arm phase angle of 32°, the aggregate as a whole can exhibit the best mixing uniformity.

    Key words:double-drum recycling mixing station; mixing uniformity; response surface method; discrete element method; significance and interaction analysis

    The structural and working parameters of a double drum have an important impact on the mixing uniformity of a recycled asphalt mixture.Accordingly, many scholars have conducted considerable research on this topic.Ma et al.[1]analyzed the influence of the single factor of structure parameter and working parameter on the mixing uniformity.Liu et al.[2]analyzed the inclination installation range of double-drum blades.Zhao et al.[3]matched the blade parameters of an asphalt mixer based on the discrete element method(DEM).Simons et al.[4]studied the characterization of granular mixing in a helical ribbon blade blender.Sakai et al.[5]evaluated the uniformity of solid mixing in an industrial blender based on discrete element simulation.Milstead[6]improved the shape of agitation blades on the outer wall of an inner cylinder to improve the uniformity of a mixture.Larry et al.[7]proposed a mixing chain device that can reduce the adhesion of an asphalt mixture on the outer surface of an inner cylinder to prevent the adhered aging materials from cracking and falling into a mixing chamber and hence contaminating the mixture.Wallevik et al.[8]analyzed shear rates within a concrete truck mixer.In addition, scholars have conducted relevant research on the mechanical properties, production processes, and structural characteristics of double-drum regeneration equipment[9-13].Other studies on the structural parameters of mixed equipment using the DEM have also been conducted[14-17].

    The above-mentioned studies focused on the optimization and improvement of the performance of double-drum mixing plants.The limited literature on the effect of structural parameters and working parameters on the mixing uniformity only covered the influence of a single parameter.In the actual mixing process, the uniformity of mixing is affected by the interaction of parameters, such as drum rotation speed, drum inclination angle, blade axial installation angle, blade radial installation angle, and mixing-arm phase angle.

    Therefore, based on the DEM, a simulation model with actual working conditions was established in this study.By analyzing the influence of every single factor on the uniformity of aggregate mixing, the response surface method(RSM)was used to establish a mathematical model between the discrete coefficient of aggregates and the factors.Then, the significant relationship between each factor and its interaction on the uniformity of the aggregate was analyzed.This study provides a reference for the further understanding of the mixing mechanism and reveals the movement law of particles on mixing blades.

    1 Main Influencing Parameters and Value Range

    A double drum, as shown in Fig.1, is the core component of a double-drum recycling mixing plant.

    Fig.1 Structure diagram of a double drum

    It consists of an inner cylinder and a number of outer cylinders, and the outer wall of the inner cylinder is equipped with mixing blades.New aggregates enter the inner cylinder from the feed port after proportioning and move toward the burner with the rotation of the inner cylinder.Then, the heated aggregate falls into the outer cylinder.Recycled materials, new asphalt, and powder were heated and stirred in the outer cylinder of the recycled mixture, which realizes the recycling of old recycled materials.The mixing uniformity and mixing efficiency of the asphalt mixture have many influencing factors.In addition to the characteristics of the mixture itself, the other main factors are the axial installation angle of the blade(β), blade radial installation angle(α), mixing-arm phase angle(φ), drum inclination angle(γ), drum rotation speed(n), and their influence on each other.

    According to the normal production requirements of the double-drum recycling mixing plant and Ref.[1], the parameters’ value ranges are as follows:α=31.54°~39.36°,β=33.54°~45.36°,φ=20°~60°,γ=2°~6°, andn=6~10 r/min.

    2 Simulation Analysis

    2.1 DEM contact model

    The simulation model was established based on the DEM.The contact relationship of the DEM generally includes particle to particle and particle to geometry, as shown in Fig.2.The displacement change of particles in contact is shown in Fig.3.For example, particleiis in contact with particlejat pointC.The dotted line is the initial contact position;ais the tangent overlap; andδis the normal overlap.The vibration equation can be used to express the contact problem of the particle model in the DEM.The contact relationship of particles is represented by the vibration model, as shown in Fig.4.

    Fig.2 Particle contact diagram

    Fig.3 Particle contact displacement

    (a)

    The vibration motions of particles are disintegrated into the normal and tangential directions in the process of contact.The vibration equation is

    (1)

    wherem1,2is the equivalent mass of particles;I1,2is the equivalent moment of inertia;unis the normal relative displacement;usis the tangential one;θdenotes the rotational angle;Fnis the normal components of particles acted on by the outside force;Fsis the tangential one;Mis the external moment of particles;Knis the normal elastic coefficient in the contact model;Ksis the tangential one;cnis the normal damping coefficient;csis the tangential one.

    The friction force between contacting particles has an effect on the tangential sliding and rolling of particles.Through the sliding model, the limiting conditions of tangential sliding and rolling can be obtained by

    (2)

    whereμis the friction coefficient.

    2.2 Simulation parameter settings

    The simulation model of the double-drum regeneration mixing equipment was established by the EDEM software.To improve the simulation speed, the aggregate in the mixture was simplified as a single spherical particle model.Three kinds of aggregate with different particle size ranges were used to simulate the mixture.The particle size ranges of the aggregates A1, A2, and A3 were 2.36 to 4.75, 4.75 to 9.50, and 9.50 to 19.00 mm, respectively.Based on the production efficiency and gradation, the production rates of the particle factory, aggregate A1, and aggregate A2 are 1.51, 14.73, and 20.21 kg/s, respectively.

    The complex contact forces between the asphalt and mineral aggregate, the mineral aggregate and mineral aggregate covered with asphalt, and the mineral aggregate and mixing plant include the intermolecular van der Waals force, acid-base force based on the chemical reaction, and meshing friction force.To simulate the adhesion of asphalt, Hertz Mindlin with Johnson-Kendall-Roberts cohesion contact model in the EDEM software was selected.The intrinsic parameters and contact parameters of the mixing device and material particles are set according to the guidelines in the literature[1].

    3 Influencing Factor Analysis

    3.1 Effect of n on the mixing uniformity

    In this study,β=40°,α=36°,φ=40°,γ=4°, andn=6~10 r/min.After the material flow became stable, the distribution data of the three kinds of aggregate at the outlet were extracted.The relationship betweenCv(the coefficient of variation of the aggregate)andnis shown in Fig.5.

    Fig.5 Relationship between Cv and n

    As shown in Fig.5,nhas a great influence on the mixing uniformity of the mixture.Whennincreases from 6 to 9 r/min,Cvof the three kinds of aggregate decreases, andCvof A1 and A3 decrease.Because A1 and A3 were relatively fine and coarse particles and the number of particles was relatively small, segregation could be easily produced.Whennis low, the distribution of particles is less disturbed.Withnincreases, the aggregate throwing increases correspondingly, the large-scale cross movement among particles becomes more intense, and the renewal frequency of the particle position increases.Because the number of particles in A2 is relatively large and the particle size is moderate, its particle distribution has a strong anti-interference ability and a small fluctuation range of the dispersion coefficient.Whennchanges from 9 to 10 r/min, the decrease range of theCvof A1 and A3 becomes smaller, and theCvof A2 slightly increases; that is, the influence ofnon the uniformity of the aggregate is nonlinear.Whennreaches a certain value, the mixture distribution tends to be stable, and the further increase ofnwill not have a great positive effect on the improvement of the mixing uniformity.

    3.2 Effect of γ on the mixing uniformity

    In this study,β=40°,α=36°,φ=40°,n=8 r/min, andγ=2°~6°.The relationship betweenCvandγis shown in Fig.6.

    Fig.6 Relationship between Cv and γ

    As shown in Fig.6, with the change inγ, theCvof A1 and A2 fluctuates less, and theCvof A3 relatively fluctuates more, but it is also limited within the range of 0.07.This result indicates that the change inγhas less influence on the uniformity of the mixture.Theoretically, increasingγcan prolong the retention time of the mixture in the mixing drum and increase the mixing times.However, as shown in Fig.6, the greater theγ, the greater the segregation of the mixture.

    The feed rate of the particle factory was reduced by 30%, but other parameters remained unchanged.The uniformity of the mixture was analyzed when the inclination of the roller was 6°.TheCvof A1, A2, and A3 were 0.427, 0.184, and 0.683, respectively, which are lower than those before the feed rate was reduced.This finding shows that the filling ratio of the mixing chamber is high whenγis 6° without the decrease in the feeding rate.Therefore, increasingγcan prolong the mixing time of the mixture.However, the retained mixture can easily result in a large filling ratio in the mixing drum, which is not conducive to mixing.

    Whenγis 4° andnis 9 r/min, theCvof the three aggregates is smaller than that whenγis 2°andnis 8 r/min.Therefore, to address the increase in the filling ratio of the mixing drum caused by the increase inγ,ncan be properly increased without reducing the productivity.

    3.3 Effect of β on the mixing uniformity

    In this study,α=36°,φ=40°,γ=4°,n=8 r/min, andβ=31°, 34°, 37°, 40°, 43°, 46°.The relationship between theCvof the aggregate andβis shown in Fig.7.

    Fig.7 Relationship between Cv and β

    As shown in Fig.7,βhas a great influence on the mixing uniformity.Whenβincreases from 34° to 46°, theCvof the three aggregates all increase.Whenβdecreases from 34° to 31°, theCvof A1 and A3 increase slightly.Overall, whenβ=34°, the uniformity of the mixture is the best.

    βaffects the intensity of the axial and circumferential movements of the mixture, which in turn affects the mixing uniformity.The axial average velocity(Va)and circumferential average velocity(Vc)of all particles were collected at different values ofβto analyze the effect ofβon the motion speed of the aggregate, as shown in Fig.8.

    Fig.8 Average velocity of particles with different β

    As shown in Fig.8, whenβincreases from 31° to 46°, the average axial velocity of the particles increases first and then decreases, and the maximum value is obtained whenβ=40°.The average circumferential velocity of the particles in the mixture reaches the maximum value whenβ=34° and decreases whenβincreases.As shown in Figs.7 and 8, whenβ=34°, the circumferential movement of the mixture is sufficient, which is conducive to the mixing of aggregates; the axial movement speed of the mixture is slow, which is conducive to the extension of the mixing time.

    The feed rate of the particle plant was reduced by 30%, and other parameters were unchanged.The uniformity of the mixture was analyzed whenβ=31°.The dispersion coefficients of A1, A2, and A3 were 0.363, 0.145, and 0.626, respectively, which are lower than those before the feed rate was reduced.This finding shows that the filling ratio of the mixing drum is high whenβ=31° without a decrease in the feeding rate.As shown in Fig.8, compared withβ=34°, whenβ=31°, the axial movement speed of the mixture is slower, and the filling ratio of the mixing drum is higher, which is not conducive to the cross movement between particles.The circumferential velocity of the mixture was decreased, and the particle throwing was weakened.Therefore, the axial installation angle should take into account the axial and circumferential movements of the mixture.

    3.4 Effect of φ on the mixing uniformity

    In this study,β=40°,α=36°,γ=4°, andn=8 r/min,φ=20°, 30°, 40°, 50°, 60°.The relationship between theCvof the aggregate andφis shown in Fig.9.

    Fig.9 Relationship between Cv and φ

    As shown in Fig.9, theCvof A1 changes slightly, and theCvof A2 and A3 vary greatly.Whenφ=30°,Cvof A2 and A3 are at the minimum.Whenφincreases from 30° to 60°,Cvof A2 and A3 increases gradually, butCvof A3 increases exponentially.This finding shows thatφhas a significant impact on the uniformity of large particles in the mixture.An excessively largeφis unfavorable to the mixing of the coarse aggregate.

    The feed rate of the particle plant was reduced by 30%, whereas other parameters were unchanged.The uniformity of the mixture was analyzed whenφ=60°.TheCvof A1, A2, and A3 were 0.451, 0.316, and 1.038, respectively, which are lower than those before the feed rate was reduced.Hence, when the feed rate is constant andφis 60°, the filling ratio of the mixing drum is on the high side.

    3.5 Effect of α on the mixing uniformity

    β=40°,φ=40°,γ=4°,n=8 r/min, andα=32°, 34°, 36°, 38°, 40°.The relationship between theCvof the aggregate andαis shown in Fig.10.

    Fig.10 Relationship between Cv and α

    As shown in Fig.10, theCvof A1 and A2 has little change.TheCvof A3 is largely influenced byα, but its fluctuation range is also less than 0.11.Hence,αhas little influence on the uniformity of the mixture.

    αcan separate the mixture from the inner wall of the outer cylinder, shorten the rolling distance, and reduce the segregation of the coarse particles in the rolling process.Therefore, the uniformity of A3 is greatly affected byα.Whenαis 36° and the other parameters remain unchanged, the uniformity of the aggregate is compared whenφis 60° and 40°.The results show that theCvof A1, A2, and A3 are 0.464, 0.363, and 1.298, respectively, whenφis 60°, which are higher than that whenφis 40°.

    In addition,αwill affect the movement speed of the mixture particles.To study the influence ofαon the mixture moving speed, we collected the average speed of all particles and determined the average moving speed of particles with differentα, as shown in Fig.11.

    Fig.11 Change in the average particle velocity with different α

    As shown in Fig.11, the average velocity of particles has little change; that is,αhas little influence on the velocity of the mixture.Whenαis 36°, the average veloci-ty of particles in the mixture is relatively large, and the homogeneity of the mixture is relatively good.Whenαis 40°, the average velocity of particles is slow, which is not conducive to the mixing of the mixture.

    4 RSM Analysis

    To analyze the interaction between various factors and find the best parameter match, the RSM was used for further research.

    4.1 Simulation scheme design

    Referring to the design of the structural parameters and motion parameters of the double-drum mixing equipment in the previous paper, the value ranges of five factors are set as follows: 34°≤α≤46°,32°≤β≤40°,20°≤φ≤60°,2°≤γ≤6°, and 6 r/min≤n≤10 r/min.

    Takingα,β,φ,γ, andnas the influencing factors andCvas the response value, according to the design method of the response surface experiment, the simulation scheme of the five factors and three levels was designed, as shown in Tab.1.

    Tab.1 Influencing factors and level value

    4.2 Simulation results and analysis

    According to the range of the influencing factors in Tab.1, the simulation scheme and results were obtained by the Box-Behnken design test method.The simulation results are analyzed by RSM.Each factor of aggregates is

    (3)

    whereCv1,Cv2,Cv3are the coefficients of variation of A1, A2, and A3, respectively.The significant factors and the significant relationship ofCv1aren>β>φ.In the interaction term,φandγ,φandβhave a significant influence.The significant factors and the significant relationship ofCv2aren>β>γ>φ, and among the interaction terms,φandγ,φandα,φandβhave significant influences.The significant factors and significant relationship ofCv3areφ>n>β>γ, and among the interaction terms,φandγ,φandn,φandαhave significant effects.

    4.3 Interaction factor analysis

    Among the interaction factors, the interactions ofγandφ,βandφhave a significant effect onCv1.The response surface relationship betweenCv1and the significant interaction factor of A1 is shown in Fig.12.

    The response surface relationship between the discrete coefficient and interaction factor is shown in Fig.12(a).When the phase angle of the mixing arm is 20°,Cv1decreases whenγincreases.Whenφis 60°,Cv1increases whenγincreases.As shown in Fig.12(b), ifφis any value,Cv1will decrease whenβdecreases.Among them, whenφis 60°,Cv1decreases faster.

    (a)

    Among the interaction factors, the interactions ofφandβ,αandφ,γandφhave a significant effect onCv2.The response surface relationship betweenCv2and the significant interaction factor of A2 is shown in Fig.13.

    As shown in Fig.13, the interaction betweenφandα,βhas a similar effect on the uniformity of A2.Whenφis constant, the change inα,βhas little influence onCv1.In particular, whenφis 60°, the effect is relatively obvious.With changes inφ,γhas a great influence on the uniformity of A2.Whenφis 20°,Cv2decreases whenγincreases.Whenφis 60°,Cv2increases whenγincreases.

    (a)

    Among the interaction factors, the interactions ofβandφ,γandφ,nandφhave a significant effect onCv3.The response surface relationship betweenCv3and the significant interaction factors of A3 is shown in Fig.14.

    As shown in Fig.14, whenφis 20°,β,γ, andnhave little influence onCv3.Whenφis 60°,Cv3increases whenβincreases, decreases whenγdecreases, and increases whenndecreases.Therefore, whenφis large,n,γ, andβhave an obvious influence on the uniformity of A3.As shown in Fig.14(c), whennis 10 r/min,Cv3decreases first and then increases whenφincreases, and the change range is small.Whennis 6 r/min,Cv3greatly increases whenφincreases.The results show that whenφis large andnis reduced, the segregation of A3 easily increases.

    (a)

    As shown in Figs.12(a), 13(c), and 14(b), the interaction betweenγandφhas a significant effect on theCvof the three kinds of aggregates.To improve the mixing uniformity, whenγis large,φshould be smaller thanγ.Whenγis constant,φcorresponding to the low point of the response surface of theCvof the aggregate decreases in turn; that is, a small value ofφshould be arranged for the mixing of large particles.

    Taking the minimum value ofCvas the optimization objective, the following values of each parameter are obtained:β=35°,α=38°,φ=32°,γ=6°, andn=10 r/min.

    5 Conclusions

    1)Increasing the speed and reducing the axial installation angle of the blade within the design range can reduce the discrete coefficient of the aggregates.

    2)In the case of a certain feeding rate, increasing the phase angle alone can easily cause the mixing lag of the mixture, so the filling rate of the mixing chamber is increased.

    3)To obtain a good mixing uniformity, whenγis large,φshould be a small value, and conversely, a large value should be taken.φshould be set to a large value when mixing large particles.

    4)Through the RSM, the significant relationship between the influence of every single factor and its interaction on theCvof the aggregates is obtained.Taking the minimum value ofCvas the goal, the best parameter matching is as follows:α=38°,β=35°,γ=6°,n=10 r/min, andφ=32°.

    99国产综合亚洲精品| 黄色 视频免费看| 可以免费在线观看a视频的电影网站| 90打野战视频偷拍视频| 精品久久久久久,| av国产精品久久久久影院| 在线av久久热| 国产亚洲精品久久久久5区| 日本五十路高清| 久久青草综合色| 在线观看免费日韩欧美大片| 欧美黑人欧美精品刺激| 新久久久久国产一级毛片| 国精品久久久久久国模美| 午夜老司机福利片| 99精国产麻豆久久婷婷| 一a级毛片在线观看| 国产精品综合久久久久久久免费 | 欧美大码av| 国产精品亚洲av一区麻豆| 丝袜人妻中文字幕| 日韩熟女老妇一区二区性免费视频| 巨乳人妻的诱惑在线观看| 一边摸一边抽搐一进一出视频| 亚洲精品av麻豆狂野| 在线播放国产精品三级| 国产国语露脸激情在线看| 国产精品久久久久久人妻精品电影| 视频区欧美日本亚洲| 国产一卡二卡三卡精品| 80岁老熟妇乱子伦牲交| 美女午夜性视频免费| 精品视频人人做人人爽| av欧美777| 国产一区有黄有色的免费视频| 中文亚洲av片在线观看爽 | 黄色女人牲交| 日本欧美视频一区| 日韩精品免费视频一区二区三区| 国产精品影院久久| 亚洲精品国产区一区二| 精品少妇一区二区三区视频日本电影| 曰老女人黄片| 亚洲成人手机| 丁香六月欧美| 黄色丝袜av网址大全| av片东京热男人的天堂| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品亚洲av国产电影网| 久久99一区二区三区| 国产av精品麻豆| 91精品三级在线观看| 国产精品二区激情视频| 国产91精品成人一区二区三区| 亚洲视频免费观看视频| 国产成人系列免费观看| 老熟女久久久| 日韩欧美国产一区二区入口| www日本在线高清视频| svipshipincom国产片| 91麻豆av在线| 亚洲人成伊人成综合网2020| 欧美黄色淫秽网站| 久99久视频精品免费| 午夜精品久久久久久毛片777| 91国产中文字幕| 最近最新免费中文字幕在线| 亚洲黑人精品在线| 极品教师在线免费播放| 亚洲av美国av| 亚洲视频免费观看视频| 国产xxxxx性猛交| 村上凉子中文字幕在线| 天天躁夜夜躁狠狠躁躁| 国产日韩欧美亚洲二区| 丝瓜视频免费看黄片| ponron亚洲| 亚洲伊人色综图| 天天躁夜夜躁狠狠躁躁| 激情视频va一区二区三区| 国产99白浆流出| 精品国产亚洲在线| 妹子高潮喷水视频| 999久久久国产精品视频| 建设人人有责人人尽责人人享有的| 久久精品亚洲熟妇少妇任你| 又黄又爽又免费观看的视频| 97人妻天天添夜夜摸| 在线十欧美十亚洲十日本专区| 激情在线观看视频在线高清 | 久久国产精品大桥未久av| 中文字幕另类日韩欧美亚洲嫩草| 免费观看人在逋| 中文字幕另类日韩欧美亚洲嫩草| 国产男女超爽视频在线观看| 久久人妻熟女aⅴ| 亚洲精品中文字幕一二三四区| 中国美女看黄片| 欧美日韩成人在线一区二区| 母亲3免费完整高清在线观看| 满18在线观看网站| 性色av乱码一区二区三区2| 免费人成视频x8x8入口观看| 久久人妻熟女aⅴ| 亚洲黑人精品在线| 99香蕉大伊视频| x7x7x7水蜜桃| 狂野欧美激情性xxxx| 高清av免费在线| 黑人猛操日本美女一级片| 国产aⅴ精品一区二区三区波| 国精品久久久久久国模美| 最近最新中文字幕大全电影3 | 又大又爽又粗| 欧美人与性动交α欧美精品济南到| 亚洲精品乱久久久久久| 熟女少妇亚洲综合色aaa.| 国产激情久久老熟女| 中文字幕色久视频| 99久久综合精品五月天人人| 亚洲第一欧美日韩一区二区三区| 91麻豆av在线| av网站在线播放免费| 在线观看免费日韩欧美大片| 母亲3免费完整高清在线观看| 欧美人与性动交α欧美精品济南到| 日本wwww免费看| aaaaa片日本免费| 久久久久久亚洲精品国产蜜桃av| 高清av免费在线| 国产aⅴ精品一区二区三区波| 脱女人内裤的视频| 看片在线看免费视频| 好看av亚洲va欧美ⅴa在| 欧美乱码精品一区二区三区| 欧美激情久久久久久爽电影 | 亚洲片人在线观看| 日韩精品免费视频一区二区三区| 精品乱码久久久久久99久播| 亚洲精品美女久久久久99蜜臀| 岛国毛片在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩国产mv在线观看视频| 日韩欧美在线二视频 | 亚洲精品一二三| 欧美黑人欧美精品刺激| 国产精品一区二区在线观看99| 极品教师在线免费播放| 老鸭窝网址在线观看| 麻豆av在线久日| 国产精品偷伦视频观看了| 欧美成狂野欧美在线观看| 日本a在线网址| 69av精品久久久久久| 如日韩欧美国产精品一区二区三区| 这个男人来自地球电影免费观看| 大香蕉久久成人网| 久久久国产成人免费| 欧美人与性动交α欧美精品济南到| a在线观看视频网站| 成人手机av| 精品免费久久久久久久清纯 | 亚洲欧美日韩高清在线视频| 中文字幕高清在线视频| 老司机深夜福利视频在线观看| 国产亚洲一区二区精品| 天天躁夜夜躁狠狠躁躁| 久久久国产欧美日韩av| 女人高潮潮喷娇喘18禁视频| 国产精品影院久久| avwww免费| 国产精品久久久人人做人人爽| 久久久久精品人妻al黑| 亚洲精品美女久久av网站| 一个人免费在线观看的高清视频| 精品免费久久久久久久清纯 | 黑人操中国人逼视频| 美女国产高潮福利片在线看| 女人被躁到高潮嗷嗷叫费观| 日本欧美视频一区| 黄片小视频在线播放| 久久久久精品人妻al黑| 亚洲七黄色美女视频| 男人的好看免费观看在线视频 | 精品人妻1区二区| 日韩精品免费视频一区二区三区| 中文字幕人妻丝袜一区二区| 91av网站免费观看| 久久性视频一级片| 性少妇av在线| 欧美久久黑人一区二区| 亚洲欧美一区二区三区久久| 侵犯人妻中文字幕一二三四区| 自线自在国产av| 亚洲精品久久成人aⅴ小说| 中文字幕人妻丝袜一区二区| 亚洲精品中文字幕一二三四区| 一区在线观看完整版| 一级片'在线观看视频| 看黄色毛片网站| 亚洲欧美精品综合一区二区三区| 三上悠亚av全集在线观看| 人妻 亚洲 视频| 久久久久精品人妻al黑| 久久中文字幕一级| 国产精品久久视频播放| 91国产中文字幕| 777米奇影视久久| 国精品久久久久久国模美| 色老头精品视频在线观看| av天堂在线播放| 欧美黄色片欧美黄色片| 国产有黄有色有爽视频| 精品国产一区二区久久| 怎么达到女性高潮| 少妇 在线观看| 波多野结衣av一区二区av| 天堂动漫精品| 日本a在线网址| 日韩一卡2卡3卡4卡2021年| 久久午夜综合久久蜜桃| 色综合婷婷激情| 亚洲欧美激情在线| 久久精品aⅴ一区二区三区四区| 成人亚洲精品一区在线观看| 香蕉国产在线看| 两个人看的免费小视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品一二三| 免费观看人在逋| 成人黄色视频免费在线看| 国产麻豆69| 国产片内射在线| 国产成+人综合+亚洲专区| 午夜视频精品福利| 91麻豆精品激情在线观看国产 | 亚洲性夜色夜夜综合| 一区二区三区精品91| 国产精品亚洲av一区麻豆| 精品一区二区三区av网在线观看| 国产精品久久久久成人av| 不卡一级毛片| 99re在线观看精品视频| 国产精品九九99| 男人的好看免费观看在线视频 | 黄色女人牲交| 99精国产麻豆久久婷婷| 丝袜人妻中文字幕| 大片电影免费在线观看免费| 国产免费男女视频| 亚洲美女黄片视频| 露出奶头的视频| 久久香蕉激情| 高潮久久久久久久久久久不卡| 俄罗斯特黄特色一大片| 99国产精品一区二区蜜桃av | 欧美日韩亚洲高清精品| 日本精品一区二区三区蜜桃| 久久久久国内视频| 精品欧美一区二区三区在线| 国产在视频线精品| 亚洲专区中文字幕在线| 在线免费观看的www视频| а√天堂www在线а√下载 | 侵犯人妻中文字幕一二三四区| 午夜影院日韩av| 在线免费观看的www视频| 欧美日韩乱码在线| 男人操女人黄网站| 正在播放国产对白刺激| 精品国产国语对白av| 久久久精品区二区三区| 国产一区在线观看成人免费| 亚洲中文av在线| 国产精品偷伦视频观看了| av网站在线播放免费| 真人做人爱边吃奶动态| 日本黄色视频三级网站网址 | 午夜老司机福利片| 国精品久久久久久国模美| 日韩中文字幕欧美一区二区| 国产精品久久久av美女十八| 一二三四社区在线视频社区8| 久久精品91无色码中文字幕| 午夜久久久在线观看| 一边摸一边抽搐一进一出视频| 国产在线观看jvid| 亚洲国产精品一区二区三区在线| 首页视频小说图片口味搜索| 午夜福利影视在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成77777在线视频| 一级,二级,三级黄色视频| 久久久久视频综合| 国产亚洲精品一区二区www | 国产成人精品无人区| 免费在线观看亚洲国产| 丁香六月欧美| 18禁观看日本| 成人亚洲精品一区在线观看| 极品人妻少妇av视频| 99精品在免费线老司机午夜| 午夜精品国产一区二区电影| 大香蕉久久网| 精品国产一区二区久久| 亚洲av片天天在线观看| 亚洲 国产 在线| 久久精品人人爽人人爽视色| 日本vs欧美在线观看视频| 国产精品一区二区免费欧美| 亚洲精品在线美女| 国产一卡二卡三卡精品| 久久天躁狠狠躁夜夜2o2o| 可以免费在线观看a视频的电影网站| 亚洲情色 制服丝袜| 在线观看www视频免费| 久久天堂一区二区三区四区| 狠狠狠狠99中文字幕| 视频区图区小说| 两个人看的免费小视频| 妹子高潮喷水视频| 欧美午夜高清在线| 十八禁人妻一区二区| 黄色丝袜av网址大全| 婷婷成人精品国产| 色94色欧美一区二区| 精品一区二区三区四区五区乱码| 国产在视频线精品| 国产一区有黄有色的免费视频| 日韩视频一区二区在线观看| 无人区码免费观看不卡| 色播在线永久视频| 女人高潮潮喷娇喘18禁视频| а√天堂www在线а√下载 | 日韩制服丝袜自拍偷拍| 日韩视频一区二区在线观看| 两人在一起打扑克的视频| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利在线免费观看网站| 精品久久蜜臀av无| 精品福利观看| 一本一本久久a久久精品综合妖精| 99久久国产精品久久久| 美女福利国产在线| 国产野战对白在线观看| 亚洲av第一区精品v没综合| 欧美中文综合在线视频| 精品国产亚洲在线| 日韩熟女老妇一区二区性免费视频| 国产成人一区二区三区免费视频网站| 欧美人与性动交α欧美软件| 午夜福利一区二区在线看| 中文欧美无线码| 脱女人内裤的视频| www.自偷自拍.com| 啪啪无遮挡十八禁网站| 伦理电影免费视频| 亚洲精品国产区一区二| 国产欧美日韩精品亚洲av| 18禁黄网站禁片午夜丰满| 精品国产国语对白av| 新久久久久国产一级毛片| 51午夜福利影视在线观看| 亚洲欧洲精品一区二区精品久久久| 久久婷婷成人综合色麻豆| 亚洲性夜色夜夜综合| 欧美中文综合在线视频| 999精品在线视频| 国产免费现黄频在线看| 亚洲第一欧美日韩一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 黄片小视频在线播放| 99精品久久久久人妻精品| 精品国产国语对白av| 一a级毛片在线观看| 中文欧美无线码| 亚洲中文日韩欧美视频| 亚洲欧美色中文字幕在线| 久久亚洲真实| tube8黄色片| 久久国产精品大桥未久av| 久9热在线精品视频| 高清欧美精品videossex| 精品一品国产午夜福利视频| 如日韩欧美国产精品一区二区三区| 成人精品一区二区免费| 国产成人系列免费观看| 欧美在线一区亚洲| 最近最新中文字幕大全电影3 | 中文字幕av电影在线播放| 亚洲美女黄片视频| 视频在线观看一区二区三区| 精品国内亚洲2022精品成人 | 亚洲久久久国产精品| 亚洲人成电影免费在线| 欧美日韩瑟瑟在线播放| 亚洲,欧美精品.| 99久久精品国产亚洲精品| 欧美精品亚洲一区二区| av视频免费观看在线观看| 别揉我奶头~嗯~啊~动态视频| 女人爽到高潮嗷嗷叫在线视频| 精品国产一区二区三区四区第35| 中亚洲国语对白在线视频| 亚洲成人手机| 亚洲国产精品sss在线观看 | 一a级毛片在线观看| 在线观看免费日韩欧美大片| 搡老熟女国产l中国老女人| 新久久久久国产一级毛片| a级毛片在线看网站| 精品一区二区三区av网在线观看| 乱人伦中国视频| 久久精品成人免费网站| 男男h啪啪无遮挡| 精品人妻在线不人妻| 久99久视频精品免费| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利,免费看| 可以免费在线观看a视频的电影网站| 老司机靠b影院| 天堂中文最新版在线下载| 亚洲情色 制服丝袜| 亚洲美女黄片视频| 国产成人影院久久av| 美女福利国产在线| 国产又色又爽无遮挡免费看| 91国产中文字幕| 欧美人与性动交α欧美软件| 黄片小视频在线播放| 极品人妻少妇av视频| 热99国产精品久久久久久7| 18禁国产床啪视频网站| 老司机午夜十八禁免费视频| 97人妻天天添夜夜摸| 日本黄色日本黄色录像| 免费在线观看亚洲国产| 亚洲欧美精品综合一区二区三区| 国产av精品麻豆| 搡老乐熟女国产| 午夜免费成人在线视频| av网站免费在线观看视频| av天堂久久9| 国产欧美日韩一区二区三区在线| 性色av乱码一区二区三区2| 久久人人爽av亚洲精品天堂| 一级a爱片免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 国产精品98久久久久久宅男小说| 国产一区二区激情短视频| 久久久久视频综合| 日韩有码中文字幕| 一级毛片精品| 美女午夜性视频免费| 后天国语完整版免费观看| 不卡av一区二区三区| 日本黄色日本黄色录像| 亚洲综合色网址| 亚洲 国产 在线| 久久亚洲真实| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av香蕉五月 | 精品国产超薄肉色丝袜足j| 国产伦人伦偷精品视频| 国产99久久九九免费精品| 一区福利在线观看| 极品人妻少妇av视频| 国产亚洲一区二区精品| а√天堂www在线а√下载 | 91精品三级在线观看| 国产片内射在线| 亚洲第一av免费看| bbb黄色大片| 亚洲欧美激情在线| 狠狠狠狠99中文字幕| 99精品在免费线老司机午夜| 一区二区日韩欧美中文字幕| 日本撒尿小便嘘嘘汇集6| 欧美日韩亚洲高清精品| 1024视频免费在线观看| 老司机深夜福利视频在线观看| 国产欧美亚洲国产| svipshipincom国产片| 国产亚洲精品第一综合不卡| 国产精品偷伦视频观看了| 欧美性长视频在线观看| 亚洲熟妇熟女久久| 中文字幕最新亚洲高清| 国产在线一区二区三区精| 两性夫妻黄色片| 欧美日韩精品网址| 国产精品av久久久久免费| 窝窝影院91人妻| 成年动漫av网址| 国产成人免费观看mmmm| 久久婷婷成人综合色麻豆| av超薄肉色丝袜交足视频| 久久精品国产综合久久久| 国产午夜精品久久久久久| av天堂久久9| 他把我摸到了高潮在线观看| 精品久久蜜臀av无| 99国产极品粉嫩在线观看| 亚洲人成电影免费在线| 亚洲三区欧美一区| 国产成人精品无人区| 亚洲一区二区三区不卡视频| 欧美激情极品国产一区二区三区| 一级片'在线观看视频| 老熟女久久久| 欧美日韩一级在线毛片| 欧美亚洲日本最大视频资源| 亚洲人成电影观看| 老司机在亚洲福利影院| 99国产精品一区二区蜜桃av | 18禁观看日本| 麻豆av在线久日| 亚洲色图av天堂| 性色av乱码一区二区三区2| 91在线观看av| 在线天堂中文资源库| 国产aⅴ精品一区二区三区波| av视频免费观看在线观看| 久久精品国产99精品国产亚洲性色 | 人人妻,人人澡人人爽秒播| 99精品久久久久人妻精品| 亚洲精品国产区一区二| 99riav亚洲国产免费| 国产精品1区2区在线观看. | 精品午夜福利视频在线观看一区| 国产在线一区二区三区精| 一进一出抽搐动态| 黄色 视频免费看| 在线观看免费日韩欧美大片| 亚洲五月色婷婷综合| 最近最新免费中文字幕在线| 女性被躁到高潮视频| 狠狠婷婷综合久久久久久88av| 国产成人免费无遮挡视频| 国产精品九九99| xxxhd国产人妻xxx| 欧美黄色片欧美黄色片| av一本久久久久| 精品人妻在线不人妻| 国产激情久久老熟女| 国产又色又爽无遮挡免费看| 国产精品亚洲av一区麻豆| 涩涩av久久男人的天堂| 日本撒尿小便嘘嘘汇集6| 韩国精品一区二区三区| 性少妇av在线| 午夜福利视频在线观看免费| 亚洲精品乱久久久久久| 精品一区二区三卡| 熟女少妇亚洲综合色aaa.| av欧美777| 法律面前人人平等表现在哪些方面| 国产淫语在线视频| www.精华液| 国产免费av片在线观看野外av| 成熟少妇高潮喷水视频| av在线播放免费不卡| √禁漫天堂资源中文www| 黄色女人牲交| 我的亚洲天堂| 90打野战视频偷拍视频| 精品久久久精品久久久| 久久人妻福利社区极品人妻图片| 久久精品国产综合久久久| 丝袜美腿诱惑在线| 不卡av一区二区三区| 欧美激情高清一区二区三区| 无限看片的www在线观看| 国产伦人伦偷精品视频| 欧美人与性动交α欧美软件| 亚洲av熟女| 国产乱人伦免费视频| 久久精品91无色码中文字幕| 黑人巨大精品欧美一区二区mp4| 欧美日韩成人在线一区二区| 丰满饥渴人妻一区二区三| 如日韩欧美国产精品一区二区三区| 久久久久久免费高清国产稀缺| 麻豆国产av国片精品| 999久久久国产精品视频| 免费在线观看亚洲国产| 国产亚洲精品第一综合不卡| 成年女人毛片免费观看观看9 | 久久中文字幕一级| 老司机深夜福利视频在线观看| 亚洲av熟女| 精品少妇一区二区三区视频日本电影| 欧美日韩成人在线一区二区| 女同久久另类99精品国产91| 成人手机av| 久久久久久久国产电影| 国产麻豆69| videos熟女内射| 色综合欧美亚洲国产小说| 久久精品aⅴ一区二区三区四区| av天堂久久9| 成年人免费黄色播放视频| 久久 成人 亚洲| 叶爱在线成人免费视频播放| 久久精品亚洲熟妇少妇任你| 欧美精品人与动牲交sv欧美| 亚洲中文字幕日韩| 亚洲一卡2卡3卡4卡5卡精品中文| 久久人人97超碰香蕉20202| 女人精品久久久久毛片| 丁香欧美五月| 国产精品永久免费网站| 人妻一区二区av| 色综合婷婷激情| 一夜夜www|