• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combined filter method for weakening GNSS multipath error

    2022-07-13 02:52:40GuoShusenYuXianwenLongFengyangWangJiafu

    Guo Shusen Yu Xianwen Long Fengyang Wang Jiafu

    (School of Transportation, Southeast University, Nanjing 211189, China)

    Abstract:A filter method that combines ensemble empirical modal decomposition(EEMD)and wavelet analysis methods was proposed to separate and correct the global navigation satellite system(GNSS)multipath error more effectively.In this method, the GNSS signal is first decomposed into several intrinsic mode functions(IMFs)and a residual through EEMD.Then, the IMFs and residual are classified into noise terms, mixed terms, and useful terms according to a combined classification criterion.Finally, the mixed term denoised by wavelet and the useful term are reconstructed to obtain the multipath error and thus enable an error correction model to be built.The measurement data provided by the Curtin GNSS Research Center were used for processing and analysis.Results show that the proposed method can separate multipath error from GNSS data to a great extent, thereby effectively addressing the defects of EEMD and wavelet methods on multipath error weakening.The error correction model established with the separated multipath error has a higher accuracy and provides a certain reference value for research on related signal processing.

    Key words:ensemble experience modal decomposition(EEMD); wavelet analysis; multipath error; global navigation satellite system(GNSS)

    G lobal navigation satellite system(GNSS)uses static measurement for deformation monitoring[1-2].Weakening the multipath effect through difference is difficult because of its low correlation between stations[3-4].The repetitive correction method has an efficient weakening effect on the multipath error in GNSS deformation monitoring because of the diurnal repeatability of the multipath effect[5-6], in which multipath error separation plays a key role in the whole method.Satirapod et al.[7]and Su et al.[8]used wavelet to separate the multipath error from GPS signal data, and their results verify the effectiveness of wavelet.However, the wavelet effect is limited by choice of wavelet basis, threshold, and decomposition order, which are usually determined by experience[6,9].Huang et al.[10]proposed empirical mode decomposition(EMD)to adaptively decompose a signal into a series of intrinsic mode functions(IMFs)and a residual, allowing useful information to be extracted quickly from the decomposition without prior information[11-12].Dai et al.[13]used EMD to separate GPS multipath errors, and they found that EMD can separate multipath errors more directly and effectively than wavelet.Yan et al.[14]proposed a combination of EMD and recursive least squares(RLS)filtering to separate the multipath error from GNSS data, maximizing the advantages of EMD and RLS.However, EMD is easily susceptible to the mode aliasing problem, resulting in degraded decomposition accuracy[15].Wu et al.[16]proposed ensemble empirical mode decomposition(EEMD)to overcome mode aliasing, but the effect of EEMD is limited by the amount of white noise added[17].Therefore, this paper proposed a novel method that combines wavelet and EEMD to weaken the multipath errors more effectively.In this paper, the principle of the proposed method is introduced first, and then its results, as evaluated by GNSS data, are presented.

    1 Multipath Effect

    Fig.1 shows that the multipath effect is caused by the interference between direct and reflected signals.With the assumption that the receiver receives a set of signals from a satellite, the superimposed signal formed by the reflected signal and the direct signal in this set of signals can be expressed as

    S=AScos(ωt+φ)

    (1)

    whereASis the amplitude of the superimposed signal;ωis the angular frequency;φis the multipath error, and its formula is

    (2)

    whereαis the reflection factor of the reflector, andΔis the phase delay caused by the path difference between the reflected signal and the direct signal, which can be obtained according to Fig.1.

    Fig.1 Principle of multipath effect

    (3)

    whereλis the wavelength of the signal;θis the reflection angle; andHis the receiver height.

    The typical frequencyfof the multipath effect can be expressed as

    (4)

    As a result of signal attenuation, the reflected signal can be neglected at a reflected distance greater than 50 m, implying a low multipath effect in the frequency domain[3].The operation cycle of GNSS satellites is basically maintained at 12 sidereal times.The multipath effect for two consecutive days shows a strong correlation[4], i.e., diurnal repeatability, when the surrounding environment of the station receiver changes slightly.

    2 Improved EEMD-Wavelet Combined Filter

    2.1 Wavelet analysis

    According to the principle of wavelet, the wavelet basis is stretched and shifted, and the wavelet basis is used to fit the signal to be processed at multiple scales.The wavelet transform for a signal seriesf(t)can be expressed as[7]

    (5)

    whereais the stretch factor;bis the shift factor;ψ(t)is the wavelet basis; andψ*(t)is the conjugate function ofψ(t).

    f(t)can be reconstructed by using inverse wavelet transform, which is expressed as

    (6)

    whereCψis the admissibility condition of the wavelet basis.

    The following are the specific steps for separating the multipath error from the GNSS signal using wavelet:

    1)The wavelet basis and decomposition layers are determined and are used to decompose the GNSS signal.

    2)The rule for estimating threshold is determined and is used for soft thresholding of the high-frequency wavelet coefficients of each layer; the low-frequency wavelet coefficients of each layer are not processed.

    3)The high-frequency wavelet coefficients after soft thresholding and the low-frequency wavelet coefficients are combined to reconstruct the useful signal, i.e., multipath error.

    Knowing the characteristics of the signal in advance and determining the optimal wavelet parameters according to experience are generally necessary because wavelet lacks adaptive processing ability.Typically, the GNSS signal exhibits multiscale characteristics because of the superposition of various noises, leading to a significantly increased workload of multipath error separation by wavelet.

    2.2 Ensemble empirical mode decomposition

    EEMD is an improved EMD method based on the characteristics of non-correlation, zero-mean, and uniform distribution of Gaussian white noise in time-frequency space.The EEMD effectively overcomes mode mixing with the addition of Gaussian white noise and multiple EMD processing[16].

    The following are the specific steps for separating the multipath error from the GNSS signal by using EEMD:

    1)Gaussian white noise is added to the GNSS signal to obtain the signal to be processed.

    Ym(t)=Y(t)+nm(t)

    (7)

    wherenm(t)is the Gaussian white noise series, andY(t)is the GNSS signal series.

    2)The signal series are decomposed into a series of IMFs and one residual by EMD[10].

    (8)

    wherenis the order of EMD decomposition, i.e., the number of IMFs.

    3)Steps 1 and 2 are repeatedNtimes to obtainNsets of IMFs and residuals.

    4)The average values of IMFs and residuals are calculated as the final decomposition result.

    (9)

    (10)

    5)The useful signal(multipath error)is reconstructed by analyzing the frequency and amplitude characteristics of the decomposition result.

    According to Chen et al.[17], EEMD works best when the amplitude factor of white noise is 0.01 to 0.5, and the number of EMD processing is 100 to 300.However, theoretical and data support for determining the above two parameters in multipath error separation is lacking, which most likely will lead to an unsatisfactory separation.

    2.3 Improvement of EEMD-wavelet combined filter

    In accordance with the characteristics and shortcomings of wavelets and EEMD, a combined filter was proposed for GNSS multipath error weakening, and its process is shown in Fig.2.

    Fig.2 Process of the proposed method

    The steps of the process are as follows:

    1)The GNSS signal is decomposed into several IMFs and a residual using EEMD, and the decomposition is subdivided into noiseY(t)noise, mixedY(t)mixedand useful termsY(t)useful.

    (11)

    wheret=1,2,…,m,mis the epochs.

    2)Y(t)noiseis abandoned, and wavelet is used to filterY(t)mixed.Then, theY(t)mixedafter filtering andY(t)usefulare reconstructed to obtain the useful signal, i.e., the multipath error.

    (12)

    In Eq.(11),k1andk2are the combined classification criterion indexes proposed in this paper, which are calculated as follows.

    The reconstructed signal can be expressed as

    (13)

    wherek=1, 2, …,n.

    The continuous mean square error(CMSE)criterion[11]is used to determine the first indexk1of the classification criteria.CMSE criterion is defined as follows:

    (14)

    wherek=1, 2, …,n-1;Nis the signal length.

    Eq.(14)indicates that CMSE measures the squared Euclidean distance between two consecutive reconstructions of the signal, which is equivalent to the energy density of thek-th IMF.With this quantity, the IMF order where the first significant change in energy occurs can be determined because the energy of the mixed and useful terms is much higher than that of noise.kis taken as the starting point of the mixed term when the value of thek-th CMSE is the first local minimum,k1=k.

    (15)

    The second indexk2is determined by the energy coefficient, which is defined by the product of energy density and average period, where the calculation for thek-th IMF’s product of energy density and average period is as follows

    (16)

    (17)

    (18)

    whereNis the length of thek-th IMF;Okis the number of extreme points of thek-th IMF.

    The energy coefficientCkis defined as[12]

    (19)

    wherek=2,3,…,n.

    The product of the IMF dominated by white noise is a constant.Ckis greater than the given thresholdσwhenPkincreases geometrically compared with the previous one, which implies thek-th IMF is non-constant whilst the previous IMFs are mainly dominated by noise.Accordingly,kserves as the starting point of the useful term,k2=k, as shown in Fig.3.In this paper,σ=3[13].

    Fig.3 Determination process of k2

    3 GNSS Measured Data Analysis

    3.1 Data sources and analysis

    The analysis in this subsection employed the GNSS data from three stations(CUT0, CUTB and CUTC)from July 5 to 7, 2020(DOY187, DOY188, DOY189).They were collected at 30 s intervals with millimeter accuracy and can be downloaded for free from the Curtin GNSS Research Center.First, we calculated the baseline vectors of CUTB-CUT0 and CUTB-CUTC by using the processing strategy shown in Tab.1.Then, we obtained the residual series by subtracting the true values of the baseline vectors.

    Tab.1 GNSS data processing strategy

    The residual series can be considered to consist of only multipath error and noise because CUTB-CUT0 and CUTB-CUTC are ultra-short baselines with lengths of 4.27 and 6.15 m, respectively.In this work, we considered only the residual series with a length of 2 500 epochs in the vertical direction because the height accuracy is the most interesting and important part of the deformation monitoring, where each residual series has a length of 2 500 epochs.We also calculated the trend of the residual series by using the moving average method with a moving window of 50 epochs.The residual series and their trend lines are shown in Fig.4.

    Fig.4 shows that the residual series contains high-frequency noise and low-frequency multipath error, and some abnormal jump phenomena occur randomly.We calculated the Pearson’s correlation coefficientRof the residual series in Fig.4 for correlation analysis, and the results are shown in Tab.2.

    (a)

    Tab.2 Correlation analysis results for residual series

    According to Tab.2, theRvalues of the residual series for two adjacent days are maintained at around 0.8, and theRvalues of the residual series with an interval of 1 d are maintained at around 0.68.This condition indicates the existence of significant diurnal repeatability among the residual series.

    3.2 Multipath error separation and analysis

    In this subsection, wavelet, EEMD, and the proposed method were used to separate the multipath from the residual series, and their results were compared.Wavelet adopted the Sym6 wavelet basis with five decomposition layers and the soft threshold function based on the Heursure rule.EEMD combined the mean of the standardized accumulated mode criterion[6].The proposed method is consistent with the above in the wavelet part.We used the root-mean-square error(RMSE)to evaluate the separation effect.

    (20)

    whereNis the length of the residual series;y(t)is the residual series; andu(t)is the filtered noise series in this subsection.

    The separated multipath error series is shown in Fig.5.The trend of the multipath error series obtained by the proposed method is closer to that obtained by wavelet; their multipath errors are smoother than those of EEMD.The multipath error series obtained by wavelet exhibits some significant jump phenomena, whereas the multipath error series obtained by the proposed method does not exhibit such jump phenomena.

    (a)

    The RMSE values of residual series before and after filtering are shown in Tab.3.The ratio of RMSE before and after filtering of the three methods remains at 0.6-0.9, indicating that the multipath effect dominates in the residual series.The RMSE values of wavelet and the proposed method are lower than those of EEMD, with some RMSE values of the proposed method being slightly greater than those of wavelet.

    Tab.3 RMSE of residual series before and after filtering

    The aforementioned analysis cannot fully determine which approach is the most effective in multipath error separation because the true value of the multipath error in the residual series used is unknown.Therefore, further analysis was performed on the separation effect of the three methods according to the low-frequency and diurnal repeatability of the multipath effect.

    Spectrum analysis was conducted for the residual series and its multipath error series, and the results of DOY187 are shown in Fig.6.The spectrogram of the residual series shows the presence of obvious noise in the whole frequency domain, while the multipath error is mainly concentrated in the low-frequency part of the rectangular window and its amplitude value is significantly greater than that of noise.The spectrum analysis results of the three methods in the window suggests that the multipath error of wavelet is mainly distributed at 0-0.02 and 0.06-0.2 Hz, and the multipath error of EEMD is mainly distributed at 0-0.06Hz.The multipath error of the proposed method is the lowest among the three, being mainly distributed at 0-0.02Hz.

    (a)

    The correlation analysis of the multipath error series is shown in Tab.4.The multipath effect is highly reproducible for the two adjacent days.TheRvalues of the proposed method remain at 0.66-0.85, where theRvalue between the second and third days of CUTB-CUTC is slightly lower than that of wavelet.

    Tab.4 Correlation analysis results for multipath errors

    In summary,the proposed method has better performance than wavelet and EEMD in multipath error separation, as indicated by an analysis based on intuition, low-frequency, and diurnal repeatability.

    3.3 Multipath error correction

    The correction effect of the proposed method on multipath error was determined by first using the multipath error series of the first day for modeling to correct the residual series of the second and third days.Then, the multipath error series for the first two days was used for mean modeling to correct the third day.In this subsection, we used Eq.(20)to calculate the RMSE to evaluate the correction effect, whereu(t)is the separated multipath error series.

    The RMSE values of the residual series after multipath error correction are shown in Tab.5.The correction effect for the second day is better than that for the third day, indicating that repetitive modeling based on the three methods can effectively correct the multipath error at a relatively short time interval of multipath error.The correction effect of the multipath error begins to decline as the time interval increases, while the mean modeling further corrects the multipath error compared with the former.Thus, repetitive modeling based on mean processing can effectively suppress the effect of time interval extension.The RMSE values after correction by the proposed method are lower than those of wavelet and EEMD, and we can calculate that the proposed method attains about 21.07% and 41.90% multipath error correction in the residual series of CUTB-CUT0 and CUTB-CUTC, respectively.Compared with wavelet and EEMD, the proposed method improves the correction of the residual series of CUTB-CUT0 and that of CUTB-CUTC by 5.50% and 4.45% on average, respectively.

    Tab.5 RMSE of residual series before and after multipath correction

    4 Conclusions

    1)The shortcomings of EEMD and wavelet on multipath weakening were analyzed in this work.A filter method that combines EEMD and wavelet was proposed for multipath error weakening.

    2)According to the GNSS data analysis, the evaluation indices show that the effect of the proposed method on multipath separation and correction is better than that of EEMD and wavelet.

    3)The proposed method achieved good results on multipath error weakening but has an unclear improvement effect on multipath error correction.Its effectiveness in practical application is limited to a certain extent, and thus it needs further improvement in terms of theory and algorithm.

    操出白浆在线播放| 丁香欧美五月| 久久人妻熟女aⅴ| 日韩视频一区二区在线观看| 俄罗斯特黄特色一大片| 天天躁夜夜躁狠狠躁躁| 水蜜桃什么品种好| 窝窝影院91人妻| 最新在线观看一区二区三区| 男人操女人黄网站| 国产成人影院久久av| 少妇裸体淫交视频免费看高清 | 少妇 在线观看| 黑人操中国人逼视频| 久久午夜综合久久蜜桃| 2018国产大陆天天弄谢| 精品久久久久久电影网| aaaaa片日本免费| aaaaa片日本免费| 久久久精品国产亚洲av高清涩受| 91成年电影在线观看| 大香蕉久久网| 1024香蕉在线观看| 亚洲精品一二三| 亚洲全国av大片| 大型黄色视频在线免费观看| 91字幕亚洲| 亚洲精品在线观看二区| 美女午夜性视频免费| 国产一区有黄有色的免费视频| 不卡av一区二区三区| 欧美精品啪啪一区二区三区| 国产亚洲精品第一综合不卡| 国产精品熟女久久久久浪| 国产亚洲精品一区二区www | 久久青草综合色| 99久久99久久久精品蜜桃| 咕卡用的链子| 国产在视频线精品| 色综合婷婷激情| 成人精品一区二区免费| 亚洲精品av麻豆狂野| 国产精品电影一区二区三区 | 男女边摸边吃奶| 最新的欧美精品一区二区| 69精品国产乱码久久久| 美女主播在线视频| 别揉我奶头~嗯~啊~动态视频| 极品教师在线免费播放| 亚洲一码二码三码区别大吗| 亚洲第一青青草原| 在线观看免费视频网站a站| 热99国产精品久久久久久7| 成年人黄色毛片网站| 十八禁人妻一区二区| 一边摸一边抽搐一进一小说 | av一本久久久久| 久久久国产一区二区| 18禁裸乳无遮挡动漫免费视频| 18禁裸乳无遮挡动漫免费视频| 国产成人免费观看mmmm| 国产精品亚洲av一区麻豆| 亚洲成a人片在线一区二区| 国产麻豆69| 国产一区二区在线观看av| 性少妇av在线| 国产一区二区在线观看av| e午夜精品久久久久久久| 狂野欧美激情性xxxx| 免费不卡黄色视频| 美女扒开内裤让男人捅视频| 国产精品 欧美亚洲| 两个人看的免费小视频| av一本久久久久| 色尼玛亚洲综合影院| 丰满人妻熟妇乱又伦精品不卡| 国产av又大| 在线av久久热| 伦理电影免费视频| 精品第一国产精品| 91大片在线观看| 精品国产国语对白av| 欧美乱码精品一区二区三区| 欧美精品亚洲一区二区| 亚洲熟女毛片儿| 嫩草影视91久久| 午夜免费成人在线视频| 午夜福利视频在线观看免费| 欧美精品高潮呻吟av久久| 国产男靠女视频免费网站| 国产男靠女视频免费网站| 久久久精品免费免费高清| 欧美黄色片欧美黄色片| 久久亚洲精品不卡| 国产一卡二卡三卡精品| 精品久久蜜臀av无| 国产成人av教育| 国产精品偷伦视频观看了| 国产国语露脸激情在线看| 色婷婷av一区二区三区视频| 国产97色在线日韩免费| 成人国语在线视频| 多毛熟女@视频| 欧美久久黑人一区二区| 伦理电影免费视频| 欧美大码av| 人人妻人人添人人爽欧美一区卜| 国产成人av教育| 午夜激情久久久久久久| 91大片在线观看| 丝袜美足系列| 热re99久久国产66热| 水蜜桃什么品种好| 亚洲 国产 在线| 久久精品aⅴ一区二区三区四区| 国产又色又爽无遮挡免费看| 精品少妇黑人巨大在线播放| 国产伦人伦偷精品视频| 久久久久国内视频| 国产精品秋霞免费鲁丝片| 大码成人一级视频| 国产精品一区二区免费欧美| 我的亚洲天堂| 久久久久国产一级毛片高清牌| 别揉我奶头~嗯~啊~动态视频| 日本wwww免费看| 久久久久视频综合| 人人澡人人妻人| 搡老熟女国产l中国老女人| 欧美日韩精品网址| 日韩制服丝袜自拍偷拍| 国产主播在线观看一区二区| 天堂动漫精品| 国产精品自产拍在线观看55亚洲 | 国产深夜福利视频在线观看| 啦啦啦免费观看视频1| 国产不卡av网站在线观看| 黄片小视频在线播放| 亚洲av第一区精品v没综合| 青草久久国产| 久久久久久亚洲精品国产蜜桃av| 可以免费在线观看a视频的电影网站| 国产区一区二久久| 青青草视频在线视频观看| 91九色精品人成在线观看| 在线观看免费视频日本深夜| 大型黄色视频在线免费观看| 精品国产一区二区三区四区第35| 国产淫语在线视频| 精品人妻熟女毛片av久久网站| 国产精品av久久久久免费| 免费看十八禁软件| 免费不卡黄色视频| 最新美女视频免费是黄的| 在线十欧美十亚洲十日本专区| 黄色视频在线播放观看不卡| 国产高清视频在线播放一区| 久久狼人影院| 精品乱码久久久久久99久播| 久久中文字幕一级| 丝袜人妻中文字幕| 热99re8久久精品国产| 亚洲综合色网址| 9191精品国产免费久久| 建设人人有责人人尽责人人享有的| 成人av一区二区三区在线看| 啦啦啦免费观看视频1| 国产在线视频一区二区| 国产成人精品无人区| 国产成人精品久久二区二区91| 天天操日日干夜夜撸| 亚洲天堂av无毛| 黑人猛操日本美女一级片| 男男h啪啪无遮挡| 欧美日韩av久久| 国产成人系列免费观看| 国产欧美亚洲国产| 一区二区三区精品91| 亚洲第一欧美日韩一区二区三区 | 在线观看免费高清a一片| 97人妻天天添夜夜摸| 日韩视频在线欧美| 老司机影院毛片| 日本av免费视频播放| 精品久久久久久电影网| 精品一区二区三区av网在线观看 | 亚洲国产成人一精品久久久| 精品一区二区三卡| 免费高清在线观看日韩| 国产色视频综合| 国产精品欧美亚洲77777| 搡老熟女国产l中国老女人| 国产高清视频在线播放一区| 亚洲视频免费观看视频| 18禁美女被吸乳视频| 女警被强在线播放| 国产人伦9x9x在线观看| 亚洲一区中文字幕在线| 国产欧美日韩一区二区三区在线| 丁香六月天网| 亚洲av电影在线进入| 69精品国产乱码久久久| 50天的宝宝边吃奶边哭怎么回事| 国产1区2区3区精品| 色播在线永久视频| 在线观看www视频免费| 免费少妇av软件| 国产欧美亚洲国产| 国产黄频视频在线观看| 国产亚洲午夜精品一区二区久久| 色视频在线一区二区三区| 亚洲欧美日韩另类电影网站| 国产精品香港三级国产av潘金莲| 1024香蕉在线观看| 日韩人妻精品一区2区三区| 国产亚洲欧美精品永久| 午夜福利影视在线免费观看| 久久久久久人人人人人| 18禁国产床啪视频网站| 国产精品久久久久久精品古装| 久久人妻av系列| 黄色视频在线播放观看不卡| 亚洲第一av免费看| 国产三级黄色录像| 日本av免费视频播放| av一本久久久久| 777久久人妻少妇嫩草av网站| 国产日韩欧美视频二区| 国产精品久久久人人做人人爽| 国产男女超爽视频在线观看| 汤姆久久久久久久影院中文字幕| 三级毛片av免费| 亚洲欧美日韩高清在线视频 | 精品国产一区二区三区久久久樱花| 夜夜爽天天搞| 成人国产av品久久久| 妹子高潮喷水视频| 1024香蕉在线观看| 色精品久久人妻99蜜桃| 国产成人免费观看mmmm| 国产免费视频播放在线视频| 12—13女人毛片做爰片一| 亚洲视频免费观看视频| 亚洲精华国产精华精| 成年女人毛片免费观看观看9 | 91av网站免费观看| 男人操女人黄网站| 人人澡人人妻人| 亚洲五月色婷婷综合| 人妻 亚洲 视频| 欧美日韩亚洲综合一区二区三区_| 男女边摸边吃奶| 成人国语在线视频| 午夜日韩欧美国产| 纯流量卡能插随身wifi吗| 免费在线观看完整版高清| 亚洲欧美一区二区三区黑人| 十分钟在线观看高清视频www| 色视频在线一区二区三区| 亚洲熟女毛片儿| 精品一区二区三卡| 性色av乱码一区二区三区2| 国产成人av教育| xxxhd国产人妻xxx| 亚洲熟女毛片儿| 在线永久观看黄色视频| 51午夜福利影视在线观看| 精品久久久久久电影网| 日日爽夜夜爽网站| 嫩草影视91久久| 91成年电影在线观看| 国产成人一区二区三区免费视频网站| 99热网站在线观看| 免费在线观看日本一区| 999久久久精品免费观看国产| 国产高清视频在线播放一区| 国产精品九九99| 久久九九热精品免费| 男女高潮啪啪啪动态图| 曰老女人黄片| 男女无遮挡免费网站观看| 精品国产乱码久久久久久男人| aaaaa片日本免费| 中文字幕高清在线视频| 自线自在国产av| 天堂动漫精品| 国产色视频综合| 欧美久久黑人一区二区| 亚洲成人免费电影在线观看| 欧美老熟妇乱子伦牲交| 国产成人影院久久av| 国产高清videossex| 一级黄色大片毛片| 国产91精品成人一区二区三区 | 搡老熟女国产l中国老女人| 免费看a级黄色片| 性色av乱码一区二区三区2| 国产成人欧美在线观看 | 国产av国产精品国产| 久久久久久久大尺度免费视频| 亚洲久久久国产精品| 午夜精品久久久久久毛片777| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费电影在线观看| 人妻 亚洲 视频| 国产午夜精品久久久久久| 99riav亚洲国产免费| 亚洲欧洲精品一区二区精品久久久| 又黄又粗又硬又大视频| 下体分泌物呈黄色| 国产不卡一卡二| 午夜福利在线观看吧| 国产精品一区二区在线不卡| 亚洲精品中文字幕在线视频| 岛国毛片在线播放| 18禁裸乳无遮挡动漫免费视频| 一区二区三区乱码不卡18| 97在线人人人人妻| 午夜福利免费观看在线| 国产麻豆69| 亚洲专区字幕在线| 另类亚洲欧美激情| 欧美乱妇无乱码| 少妇猛男粗大的猛烈进出视频| 欧美+亚洲+日韩+国产| 午夜福利在线免费观看网站| 无人区码免费观看不卡 | 亚洲精品一二三| 69精品国产乱码久久久| 亚洲中文日韩欧美视频| 日韩成人在线观看一区二区三区| 久热这里只有精品99| 亚洲色图 男人天堂 中文字幕| svipshipincom国产片| 妹子高潮喷水视频| 日韩欧美三级三区| 精品国产乱码久久久久久小说| 国产精品一区二区免费欧美| 999精品在线视频| 51午夜福利影视在线观看| 亚洲av国产av综合av卡| 丰满迷人的少妇在线观看| 亚洲国产成人一精品久久久| 丝袜美腿诱惑在线| 免费久久久久久久精品成人欧美视频| 成年人午夜在线观看视频| 国产精品国产av在线观看| 中文欧美无线码| 男男h啪啪无遮挡| 国产在线观看jvid| 久久精品成人免费网站| 久久 成人 亚洲| 无遮挡黄片免费观看| 国产精品 国内视频| 两个人看的免费小视频| 嫩草影视91久久| 欧美日韩亚洲综合一区二区三区_| 国产一区二区在线观看av| 欧美人与性动交α欧美软件| 欧美精品高潮呻吟av久久| 1024视频免费在线观看| 亚洲 欧美一区二区三区| 国产亚洲精品第一综合不卡| 老鸭窝网址在线观看| 色播在线永久视频| 女人高潮潮喷娇喘18禁视频| 热99久久久久精品小说推荐| 国产有黄有色有爽视频| 大香蕉久久成人网| 熟女少妇亚洲综合色aaa.| 中文字幕高清在线视频| 在线观看www视频免费| 丁香欧美五月| 极品教师在线免费播放| 日本av免费视频播放| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品美女久久av网站| 精品福利永久在线观看| 日本撒尿小便嘘嘘汇集6| 99精品在免费线老司机午夜| 女性被躁到高潮视频| 少妇粗大呻吟视频| 蜜桃在线观看..| 黄频高清免费视频| 久久这里只有精品19| 一级毛片女人18水好多| 侵犯人妻中文字幕一二三四区| 久久婷婷成人综合色麻豆| 国产av一区二区精品久久| 精品国产乱码久久久久久男人| 操出白浆在线播放| 五月天丁香电影| 亚洲男人天堂网一区| 亚洲人成伊人成综合网2020| 国产精品国产高清国产av | av天堂在线播放| 男女边摸边吃奶| 成人精品一区二区免费| avwww免费| 国产av又大| 热99国产精品久久久久久7| 国产不卡av网站在线观看| 久久久国产成人免费| 热99国产精品久久久久久7| 高清视频免费观看一区二区| 日本撒尿小便嘘嘘汇集6| 国产视频一区二区在线看| 国产三级黄色录像| 久久久久国产一级毛片高清牌| 超碰成人久久| 男女床上黄色一级片免费看| 亚洲国产av影院在线观看| 在线观看免费视频日本深夜| 欧美激情高清一区二区三区| 国产在线精品亚洲第一网站| 国产精品影院久久| 18在线观看网站| 王馨瑶露胸无遮挡在线观看| 国产精品久久久人人做人人爽| 两性夫妻黄色片| 亚洲自偷自拍图片 自拍| 一二三四社区在线视频社区8| 亚洲熟女精品中文字幕| 香蕉久久夜色| 天堂动漫精品| 精品午夜福利视频在线观看一区 | 搡老岳熟女国产| 日本一区二区免费在线视频| a级毛片黄视频| 国产午夜精品久久久久久| 熟女少妇亚洲综合色aaa.| 人人妻,人人澡人人爽秒播| 十八禁人妻一区二区| www日本在线高清视频| 国产一区二区激情短视频| av天堂久久9| 成人av一区二区三区在线看| 极品教师在线免费播放| 国产一区二区 视频在线| tube8黄色片| 香蕉国产在线看| 精品少妇一区二区三区视频日本电影| 啦啦啦 在线观看视频| 亚洲精品国产一区二区精华液| 丰满饥渴人妻一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 夜夜夜夜夜久久久久| 国产成人欧美| 亚洲黑人精品在线| 欧美乱码精品一区二区三区| 亚洲av美国av| √禁漫天堂资源中文www| 精品人妻1区二区| 亚洲熟女精品中文字幕| 岛国在线观看网站| 亚洲精品国产精品久久久不卡| 国产成人欧美在线观看 | 麻豆成人av在线观看| 国产亚洲精品久久久久5区| 亚洲av片天天在线观看| 高清视频免费观看一区二区| 高清av免费在线| 我要看黄色一级片免费的| 麻豆成人av在线观看| 欧美日韩亚洲综合一区二区三区_| 日本vs欧美在线观看视频| 在线观看66精品国产| 亚洲av日韩在线播放| av国产精品久久久久影院| 久久av网站| 国产成人啪精品午夜网站| 国产成人系列免费观看| 菩萨蛮人人尽说江南好唐韦庄| 久热爱精品视频在线9| 男女之事视频高清在线观看| 亚洲午夜理论影院| 亚洲中文av在线| 淫妇啪啪啪对白视频| 午夜福利一区二区在线看| 18禁裸乳无遮挡动漫免费视频| 少妇粗大呻吟视频| 男人操女人黄网站| 国产精品免费视频内射| 久久中文字幕一级| 久久 成人 亚洲| 日本精品一区二区三区蜜桃| 久久久精品94久久精品| 亚洲国产看品久久| 国产精品亚洲av一区麻豆| 日韩欧美国产一区二区入口| 欧美日韩一级在线毛片| 动漫黄色视频在线观看| 99riav亚洲国产免费| 777久久人妻少妇嫩草av网站| 人人妻人人澡人人爽人人夜夜| 最新美女视频免费是黄的| 男女无遮挡免费网站观看| aaaaa片日本免费| 999久久久国产精品视频| 久久香蕉激情| 亚洲欧美激情在线| 又大又爽又粗| 曰老女人黄片| 日本a在线网址| 又黄又粗又硬又大视频| 国产精品自产拍在线观看55亚洲 | av天堂久久9| 欧美黑人精品巨大| 2018国产大陆天天弄谢| 午夜福利视频在线观看免费| 亚洲人成伊人成综合网2020| 三上悠亚av全集在线观看| 波多野结衣一区麻豆| 丰满饥渴人妻一区二区三| 久久天躁狠狠躁夜夜2o2o| 午夜激情av网站| 久久中文字幕一级| 色综合婷婷激情| 国产成人精品在线电影| 亚洲精品av麻豆狂野| 岛国毛片在线播放| 色视频在线一区二区三区| 国产不卡av网站在线观看| 亚洲欧洲日产国产| 精品一区二区三卡| 精品午夜福利视频在线观看一区 | a级片在线免费高清观看视频| 免费不卡黄色视频| 国产深夜福利视频在线观看| 一进一出抽搐动态| 三上悠亚av全集在线观看| av福利片在线| 蜜桃国产av成人99| 成人黄色视频免费在线看| 中文字幕制服av| 三级毛片av免费| 国产在线一区二区三区精| 亚洲国产av影院在线观看| 国产在线一区二区三区精| 一区在线观看完整版| 热re99久久精品国产66热6| 大香蕉久久成人网| 亚洲精品在线美女| 久久性视频一级片| 激情视频va一区二区三区| 日本av免费视频播放| 老司机靠b影院| 精品熟女少妇八av免费久了| 久久久久久久国产电影| 热99re8久久精品国产| 国产精品98久久久久久宅男小说| 精品视频人人做人人爽| 国产精品久久电影中文字幕 | 高清欧美精品videossex| 俄罗斯特黄特色一大片| 男男h啪啪无遮挡| 日本黄色日本黄色录像| 久久ye,这里只有精品| 精品国产一区二区三区四区第35| 一夜夜www| 91大片在线观看| 嫩草影视91久久| 青草久久国产| 精品少妇内射三级| 国产xxxxx性猛交| 精品国产一区二区三区久久久樱花| 亚洲一区二区三区欧美精品| 国产男女内射视频| 黑人巨大精品欧美一区二区mp4| 两个人免费观看高清视频| bbb黄色大片| 亚洲精品在线美女| 欧美精品一区二区大全| 大片免费播放器 马上看| 欧美老熟妇乱子伦牲交| 最新在线观看一区二区三区| 国产精品久久久久久精品古装| 十八禁网站网址无遮挡| 国产精品久久电影中文字幕 | 在线观看免费日韩欧美大片| 午夜91福利影院| 天天影视国产精品| 午夜精品久久久久久毛片777| 老司机深夜福利视频在线观看| 久久久欧美国产精品| 777米奇影视久久| 99久久人妻综合| 中文欧美无线码| 一级黄色大片毛片| 人成视频在线观看免费观看| 亚洲av成人一区二区三| 老汉色av国产亚洲站长工具| 国产高清videossex| av在线播放免费不卡| 精品一区二区三区四区五区乱码| 亚洲色图av天堂| 亚洲精华国产精华精| 国产一区二区三区视频了| 日本wwww免费看| 在线观看人妻少妇| 久久久精品94久久精品| 精品人妻熟女毛片av久久网站| 亚洲欧美日韩高清在线视频 | 成人影院久久| 亚洲精品美女久久av网站| 亚洲av成人一区二区三| 99国产精品一区二区蜜桃av | 在线 av 中文字幕| 免费看十八禁软件| 欧美日韩av久久| 日本av免费视频播放| 老熟女久久久| 亚洲综合色网址| 国产精品免费一区二区三区在线 | 男人操女人黄网站|