• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized nested logit-based stochasticuser equilibrium model with distance constraint of electric vehicles

    2022-07-13 06:33:36YanDongmeiGuoJianhuaParkBrian

    Yan Dongmei Guo Jianhua Park B.Brian

    (1Intelligent Transportation System Research Center, Southeast University, Nanjing 211189, China)(2Department of Engineering Systems and Environment, University of Virginia, Charlottesville 22904, USA)

    Abstract:Considering the range anxiety issue caused by the limited driving range and the scarcity of battery charging stations, the conventional multinomial logit(MNL)model with the overlapping path issue was used in route choice modeling to describe the route choice behavior of travelers effectively.Furthermore, the generalized nested logit-based stochastic user equilibrium(GNL-SUE)model with the constraints of multiple user classes and distance limits was proposed.A mathematical model was developed and solved by the method of successive averages.The mathematical model was proven to be analytically equivalent to the modified GNL-SUE model, and the uniqueness of the solution was also confirmed.The proposed mathematical model was tested and compared with the GNL-SUE model without a distance limit and the MNL-SUE model with a distance limit.Results show that the proposed mathematical model can effectively handle the range anxiety and overlapping path challenges.

    Key words:traffic engineering; stochastic user equilibrium; generalized nested logit; multinomial logit; method of successive averages; distance limit

    Road traffic is one of the main sources of energy consumption and environmental pollution because vehicles on the road are dependent on oil-derived fuels in conventional gasoline vehicles(GVs).These fuels accelerate energy consumption and generate large amounts of tailpipe emissions of pollutants, such as NOxand VOCs[1].Instead of gasoline-powered automobiles, automotive manufacturers and research institutes are striving to look for new types of vehicles, such as electric vehicles(EVs), to cope with these problems[2].Compared with conventional GVs, EVs, especially battery EVs(BEVs), can significantly reduce greenhouse emissions and mitigate excessive consumption of fossil fuels[3-5].BEVs are also known to rely entirely on electricity.The electricity consumption of BEVs is generally proportional to the driving distance, and the driving range of BEVs is limited by the battery capacity.BEVs cannot be driven any farther longer once their driving distance is larger than their driving distance limitation because the battery storage of BEVs has been exhausted, and public electricity-charging stations of BEVs are insufficient[6].In this case, the fear of running out of batteries while traveling has led to the so-called range anxiety issue.Battery storage and charging technologies have experienced significant progress, and the number of new public charging stations is also increasing.However, range anxiety remains to be one of the main barriers hindering the widespread acceptance and adoption of BEVs[7].A general belief is that range anxiety might not be completely eliminated in the near future[8-9].Range anxiety will continue to affect the travel choices of BEV drivers.Therefore, the range anxiety issue must be properly addressed in the process of traffic assignment modeling, particularly for regions where BEVs are expected to grow rapidly.

    Studies on incorporating range anxiety issues into the traffic assignment model have been conducted in the literature.Jiang et al.[8]proposed a user equilibrium(UE)model with a distance limit, which is described by setting the path flow to zero when the path length exceeds the driving range limit.Jiang et al.[10]further extended the model to investigate the coexistence of GVs and BEVs, as well as their combined choices of destination, route, and parking, which are affected by the distance limit.Jiang et al.[6]formulated a network equilibrium problem regarding the selection of modes and routes based on travelers who own GVs and BEVs and analyzed the effects of operation costs and distance limits on vehicle and route choices of these travelers.However, these studies did not consider the behaviors of BEV users at the charging stations.To this end, He et al.[9]and Xie et al.[11]considered the time required for recharging and incorporated the relay requirement of EVs in their long-haul trips, which is typically beyond the distance limit.Xu et al.[12]developed a mathematical model for the UE problems by considering battery swapping stations and road grade constraints.On this basis, Liu et al.[13]presented the UE conditions to describe the route choice behaviors of BEV drivers considering flow-dependent electricity consumption.Tran et al.[14]developed a bi-level optimization framework to determine the optimal location of public fast-charging stations.Notably, the abovementioned traffic assignment models are mainly in the UE context.In this regard, Jing et al.[15]formulated a general MNL-based SUE model with a distance limit to extend the UE model.Riemann et al.[16]proposed a mixed-integer nonlinear model to determine the optimal location of wireless charging facilities for EVs.The model considers the interaction between the facility location and the traffic flow pattern captured by the MNL-based SUE model.Yang et al.[17]proposed a stochastic UE model for EVs by considering travel time, energy consumption, and charging service time.Huan et al.[18]proposed a dynamic traffic flow assignment model considering the en-route fast-charging behavior of users.Gao et al.[19]proposed a bilevel model to investigate the interaction between traffic flow distribution and the location of charging stations in a hybrid network of EVs and traditional GVs.

    Traffic assignment is a fundamental technique for transportation management.The stochastic user equilibrium(SUE)-based traffic assignment model has been widely adopted to deal with various perceptions of travelers.Most SUE models in the literature use the multinomial logit(MNL)route choice model.However, the assignment results are generally inadequate or impossible to account for similarities between different paths, that is, the overlapping path issue, due to the well-known IIA property of the MNL model[20], Daganzo et al.[21]proposed the multinomial probit(MNP)model, which has an advantage that the similarity between alternatives can be considered.However, the MNP model is computationally unattractive because its probability function is not a closed form.In addition, other discrete choice models that can capture similarity among various routes have been extensively studied.The first category is modifications to MNL, such as C-logit[22-23]and path-size logit[24-25], which capture similarities through additional terms in the systematic utilities of the various routes.The second category is the generalized extreme value theory, such as the paired combinatorial logit(PCL)model[26-27], cross-nested logit(CNL)model[28-30], and generalized nested logit(GNL)model[31],which capture similarities by allowing additional general correlation structures.Notably, the PCL and CNL models are special cases of the GNL model.Furthermore, some researchers have adopted the GNL-based route choice model in the SUE modeling process.Bekhor et al.[31]proposed a mathematical formulation of the SUE model with GNL by adding an entropy term to the objective function.Li et al.[32]extended the model in Ref.[31]to formulate a GNL-based multiclass multicriteria SUE model.From a different perspective, Koppelman et al.[33]proposed a heterogeneous GNL model that allows for heterogeneity in error variance and covariance structure to represent the complex behavioral processes involved in choice decision-making.

    The range anxiety and overlapping path issues are essential or critical for traffic assignment with motor vehicles involving BEVs.Numerous studies were proposed to address the overlapping path and the range anxiety issues in traffic assignment.However, none of these models addressed the two issues together.Thus, this paper aims to develop and evaluate a framework addressing the two issues simultaneously.Hence, a generalized nested logit-based SUE(GNL-SUE)model with multiple user classes(i.e., GV and BEV users)and distance limits was designed.In addition, the analytical solution was proposed to solve this modified GNL-SUE model.

    1 Generalized Nested Logit Model Review

    The GNL model is described as a two-level nesting structure.Specifically, the upper layer comprises all links(nests)in the network, and the lower layer includes all paths(alternatives)in the path set.Assuming that this structure is adopted, the probability of choosing pathkfor user classibetween O-D pairwis then given by

    ?w,i,k

    (1)

    Eq.(1)can be further decomposed into marginal and conditional probabilities, and the expression may be rewritten as

    (2)

    The marginal probability can be described as

    ?w,i,m

    (3)

    and the conditional probability may be given by the following equation:

    (4)

    2 Proposed Mathematical Model for the Modified GNL-SUE Model

    2.1 Modified GNL-SUE model

    The conventional GNL-SUE model is modified in this paper by incorporating the constraints of multiple user classes of GVs and BEVs and the distance limit of BEVs to handle the range anxiety and overlapping path issues jointly.To simplify the complexity of the modified GNL-SUE model, a series of assumptions are proposed:

    1)The travel demand population includes only GV and BEV users.

    2)The total travel demand for each type of vehicle at each origin is predetermined.

    3)GV and BEV users have the same travel time on the same path.

    4)Without loss of generality, all EVs are fully charged at their origins.

    2.2 Proposed mathematical model

    minZ=Z1+Z2+Z3

    where

    (5)

    s.t.

    (6)

    (7)

    (8)

    (9)

    (10)

    Eq.(6)represents the flow conservation constraints; that is, the flow on all paths connecting each O-D pair must be equal to the O-D trip demand for user classi.Eq.(7)indicates that if the path length is less than or equal to the distance limit for a given user classi, then the flow on that path is positive; otherwise, the path flow should be equal to zero.Eq.(8)denotes the incidence relationship between link-path flows.Eq.(9)is a summation of the link flows of the user classi, while Eq.(10)is the flow of nonnegativity constraint.

    2.3 Equivalence and uniqueness conditions

    Proposition1The proposed mathematical model is equivalent to the modified GNL-SUE model with multiple user classes and distance limits.

    ProofAny flow pattern obtained by solving Eqs.(5)to(10)is generally acknowledged to satisfy the SUE condition.The Lagrangian of the proposed mathematical model can be formulated as

    (11)

    The first-order conditions of the proposed mathematical model are equivalent to the first-order conditions of Lagrangian.Therefore, the following conditions must hold at the stationary point of the Lagrangian considering the path-flow variable, that is,

    (12)

    The partial derivatives ofL(f,μ,λ)considering the path-flow variable is then given by

    (13)

    L(f,μ,λ)must be minimized considering nonnegative path flows.Thus, the expression can be rewritten as

    (14)

    (15)

    Submitting Eq.(15)into Eq.(14)and multiplying both sides byθi, the following is obtained:

    (16)

    (17)

    Summing the above expression by pathk, the following is obtained:

    (18)

    (19)

    Summing Eq.(19)by link(nest)m,

    (20)

    Dividing Eq.(19)by Eq.(20), the marginal probability that nestmwill be chosen is obtained as shown below.

    (21)

    Dividing Eq.(18)by Eq.(19),

    (22)

    Thus, the conditional probability of pathkwill be chosen in nestm.

    Proposition2The proposed mathematical model has a unique solution.

    ProofDemonstrating that the Hessian matrix of the objective function of the proposed mathematical model is positive definite is sufficient to prove the uniqueness of the solution.The feasible region ofZ1is the same as Fisk’s formulation; thus, it is convex.The second derivative ofZ2andZ3can be calculated as follows:

    (23)

    (24)

    2.4 MSA-based solution to the proposed mathematical model

    The method of successive average(MSA)is adopted to solve the proposed mathematical model.The application steps of the MSA algorithm to solve the proposed mathematical model are presented below.

    Step1Parameter settings.Determine a feasible path set.Meanwhile, set the distance limitDand the convergence toleranceε.

    Step2Initialization.Calculate inclusion coefficientsαand nesting coefficientsμ.Find an initial path flowf(1).Set iteration countern=1.

    Step3Update.Calculate the link flowx(n)based on the current path flowf(n).Update the link travel timec(x(n))and path travel timeT(n).

    Step4Direction finding.Perform a stochastic network loading based on the current set of path travel timeT(n), yielding an auxiliary solutionY(n).

    Step5Move.Setf(n+1)=f(n)+(1/n)(Y(n)-f(n)).Notably, the step size is the reciprocal of the number of iterations.

    Step6Convergence test.If ‖f(n+1)-f(n)‖/‖f(n)‖≤ε, then stop; else, setn=n+1 and go to Step 3.

    3 Numerical Examples

    Two road networks are selected in this section for testing the purpose of this paper.Specifically, a small network containing overlapping and nonoverlapping paths is first selected to show the performance of the proposed mathematical model handling the overlapping path issue.The result indicates that the distance limit has an important impact on the path and link flows at equilibrium.The well-known Nguyen-Dupuis network is selected to demonstrate the performance of the proposed mathematical model handling the range anxiety issue by analyzing the effect of changes in distance limits on the path flows of GV and BEV.

    3.1 Small network: Performance for overlapping path issue

    The small network comprises 1 O-D pair, 5 links, and 3 paths, as shown in Fig.1.The total demand is equal to 1000.In addition, the BPR function is used to calculate link travel time, in which its coefficients are set toα=0.15 andβ=4.The distance limit of BEVs is set to 10 herein, and the distance limit of GVs is unlimited.The market share for GVs and BEVs is defined as 0.5 and 0.5,respectively.The dispersion parameters of GV and BEV users are respectively set to 0.3 and 0.5.The iteration accuracy of the MSA-based solution algorithm is defined asε=0.000 1.The free-flow travel time and capacity for each link on this small network are shown in Tab.1, and the path composition and length are exhibited in Tab.2.The values in Tabs.1 and 2 are adopted from Li et al[32].

    Tab.1 Link characteristics of the small network

    Tab.2 Path composition and path length

    Fig.1 Small network

    The path and link flows calculated by the proposed mathematical model(i.e., the GNL-SUE model with a distance limit), the GNL-SUE model without a distance limit, and the MNL-SUE model with a distance limit are also shown in Figs.2(a),(b), and(c), respectively.

    Fig.2 shows that the path and link flows assigned by the proposed mathematical model are different from the GNL-SUE model without a distance limit and the MNL-SUE model with a distance limit.This difference is due to the consideration of the distance limit of the BEVs and the similarities between paths by the proposed model.More specifically, Figs.2(a)and(b)reveal the results of path flows assigned by the proposed mathematical model and the GNL-SUE model without a distance limit, wherein GV flow is assigned to paths 1, 2, and 3, while BEV flow is not assigned to paths 1 and 2.GV users are unaffected by the distance limit, while the length of paths 1 and 2 are greater than the distance limit of BEVs.Therefore, no BEV users travel on the two paths.

    (a)

    Additionally,Fig.2(c)shows that the link flows assigned by the proposed mathematical model on links 1 and 5 are smaller than those of the MNL-SUE model with a distance limit.Meanwhile, the link flows assigned by the proposed mathematical model on links 2 and 4 are larger than those of the MNL-SUE model with a distance limit.This finding is due to the MNL-SUE model with a distance limit, which does not consider the similarities between the paths.Therefore, the flows of the overlapping links are overestimated.By contrast, the proposed mathematical model overcomes the IIA drawback of the MNL-SUE model with a distance limit by considering the similarity among various paths.Therefore, the links with multiple overlapping paths are assigned fewer flows than the MNL-SUE model with a distance limit.

    3.2 Nguyen-Dupuisnet work: Performance for range anxiety issues

    The Nguyen-Dupuis network is selected to analyze the effect of the distance limit parameter on the path flows of GVs and BEVs.This network includes 4 O-D pairs, 13 nodes, 19 links, and 25 paths, as shown in Fig.3.The total demand for each O-D pair isq1-2=660,q1-3=495,q4-2=412.5, andq4-3=495.Other corresponding parameters are the same as those set in the small network.The free-flow travel time and capacity for each link on the Nguyen-Dupuis network are shown in Tab.3.The values in Tab.3 are adopted from Xu et al[36].The path composition and length are exhibited in Tab.4.The values in Tab.4 are adopted from Jiang et al[6].

    Fig.3 Nguyen-Dupuis network

    Tab.3 Link characteristics

    Tab.4 Path composition and path length

    The variation of the path flows of GV and BEV with distance limits is depicted in Fig.4 to examine the impacts of the distance limit on the path flows of GV and BEV in each O-D pair.

    Fig.4 shows that only 2 to 4 paths in each OD pair are available and carry BEV flows whenDtightens.BEV flows are assigned to additional paths due to the increase in the number of paths available whenDloosens, and the BEV flows gradually tend to stabilize.By contrast, the GV flows are assigned to each path in four O-D pairs because no distance limit exists.Moreover, the GV and BEV flows on some paths(e.g., paths 1, 10, 16, and 20)show opposite variations asDincreases.This phenomenon may be explained by the strong influence of distance limits on the route choice behavior of BEV users.In other words, BEV users are not allowed to travel on

    (a)

    paths restricted by distance; thus, they tend to choose short paths to complete their trips.These short paths will then become oversaturated due to the entry of BEV users, which causes a significant decline in the capacity of the links contained in those paths and a substantial increase in path travel time.Therefore, GV users prefer to use these unsaturated paths to reduce their travel time.

    4 Conclusions

    1)A modified GNL-SUE model is proposed by incorporating the constraints of multiple user classes with distance limits on BEVs.An equivalent mathematical model and associated solutions were also provided for the proposed model.

    2)The distance limit has an impact on the path and link flows at equilibrium, and the proposed mathematical model can overcome the IIA drawback of the MNL-SUE model with distance limits by handling the overlapping path issue.

    3)Results using the Nguyen-Dupuis network show that the proposed approach can handle the range anxiety issue by selecting different distance limit parameters in traffic assignment.

    搡老岳熟女国产| 亚洲精品一卡2卡三卡4卡5卡| 伊人久久大香线蕉亚洲五| 18禁国产床啪视频网站| 欧美黑人巨大hd| 在线观看免费午夜福利视频| 级片在线观看| 国内精品一区二区在线观看| 男女午夜视频在线观看| 深夜精品福利| 十八禁人妻一区二区| 日本撒尿小便嘘嘘汇集6| 欧美一级a爱片免费观看看| 99热这里只有是精品50| 丁香六月欧美| 国产伦一二天堂av在线观看| 超碰成人久久| 日本熟妇午夜| 欧美日韩瑟瑟在线播放| 黄色日韩在线| 麻豆久久精品国产亚洲av| 国产精品久久久久久久电影 | 成年版毛片免费区| 成人国产综合亚洲| 一二三四在线观看免费中文在| 成人国产综合亚洲| 亚洲色图av天堂| 欧美不卡视频在线免费观看| 成年女人看的毛片在线观看| 波多野结衣高清无吗| 日韩精品青青久久久久久| 日韩人妻高清精品专区| 午夜福利高清视频| 欧美+亚洲+日韩+国产| 日本免费一区二区三区高清不卡| 久久中文看片网| 日韩av在线大香蕉| 国产69精品久久久久777片 | 国产成人影院久久av| 老司机福利观看| 国产亚洲精品av在线| 日韩欧美 国产精品| 1024香蕉在线观看| 国产成人影院久久av| www.精华液| av黄色大香蕉| 亚洲av五月六月丁香网| 丰满的人妻完整版| 久久久久国内视频| 色尼玛亚洲综合影院| 757午夜福利合集在线观看| av天堂在线播放| 久久婷婷人人爽人人干人人爱| 少妇裸体淫交视频免费看高清| 中文字幕精品亚洲无线码一区| 欧美一级a爱片免费观看看| 全区人妻精品视频| 97超视频在线观看视频| 欧美乱妇无乱码| 中文在线观看免费www的网站| 激情在线观看视频在线高清| 精品国产美女av久久久久小说| 欧美zozozo另类| 97超级碰碰碰精品色视频在线观看| 成人欧美大片| 国产高潮美女av| 老汉色av国产亚洲站长工具| 男人和女人高潮做爰伦理| 国产高清videossex| 日韩精品中文字幕看吧| 丁香欧美五月| 国产成人精品无人区| 欧美黄色淫秽网站| 手机成人av网站| 国产又色又爽无遮挡免费看| 又大又爽又粗| xxx96com| 999久久久国产精品视频| 一二三四社区在线视频社区8| 久久中文字幕一级| 很黄的视频免费| 国产精品野战在线观看| 国产精品综合久久久久久久免费| 亚洲国产欧美人成| 成人性生交大片免费视频hd| 国产亚洲精品一区二区www| 亚洲av成人不卡在线观看播放网| 免费观看人在逋| 欧美丝袜亚洲另类 | 美女高潮喷水抽搐中文字幕| 熟女人妻精品中文字幕| 黑人操中国人逼视频| 国产男靠女视频免费网站| 综合色av麻豆| 婷婷丁香在线五月| 无限看片的www在线观看| av中文乱码字幕在线| 天天添夜夜摸| 又爽又黄无遮挡网站| 日韩国内少妇激情av| 在线视频色国产色| 国产伦人伦偷精品视频| 国内久久婷婷六月综合欲色啪| 国产精品一区二区三区四区免费观看 | 手机成人av网站| 国内揄拍国产精品人妻在线| 久久久久国内视频| 国产在线精品亚洲第一网站| 日韩免费av在线播放| 久久香蕉国产精品| 99久久精品国产亚洲精品| 国产亚洲精品一区二区www| 久久人人精品亚洲av| 极品教师在线免费播放| 熟女少妇亚洲综合色aaa.| 欧美乱码精品一区二区三区| 国产一区二区在线观看日韩 | 高清毛片免费观看视频网站| 真人做人爱边吃奶动态| 日韩成人在线观看一区二区三区| 这个男人来自地球电影免费观看| 精品一区二区三区av网在线观看| 国产av在哪里看| 久久中文字幕一级| 黄色片一级片一级黄色片| 日韩欧美国产在线观看| 午夜视频精品福利| 91av网站免费观看| 国产久久久一区二区三区| 小说图片视频综合网站| 亚洲精品粉嫩美女一区| 欧美黄色淫秽网站| 99视频精品全部免费 在线 | 国内精品一区二区在线观看| 1024香蕉在线观看| 三级毛片av免费| 欧美高清成人免费视频www| 婷婷精品国产亚洲av在线| 嫩草影院精品99| 欧美黄色淫秽网站| 午夜两性在线视频| 国产精品爽爽va在线观看网站| 欧美黄色淫秽网站| 变态另类成人亚洲欧美熟女| 亚洲18禁久久av| 最近在线观看免费完整版| 国产欧美日韩精品一区二区| 婷婷精品国产亚洲av在线| 搡老妇女老女人老熟妇| 黑人欧美特级aaaaaa片| 日韩免费av在线播放| 俄罗斯特黄特色一大片| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉精品热| 变态另类丝袜制服| 亚洲成a人片在线一区二区| 不卡av一区二区三区| av欧美777| 又大又爽又粗| 欧美日韩国产亚洲二区| 午夜a级毛片| 老鸭窝网址在线观看| 黑人欧美特级aaaaaa片| 在线视频色国产色| 亚洲色图 男人天堂 中文字幕| 成人一区二区视频在线观看| 精华霜和精华液先用哪个| 一边摸一边抽搐一进一小说| 黑人操中国人逼视频| 亚洲国产看品久久| 亚洲国产色片| 激情在线观看视频在线高清| 国产精品日韩av在线免费观看| 欧美丝袜亚洲另类 | 搡老岳熟女国产| 一夜夜www| 精品久久久久久成人av| 一区二区三区高清视频在线| 狠狠狠狠99中文字幕| 欧美国产日韩亚洲一区| av天堂在线播放| 免费人成视频x8x8入口观看| 99精品在免费线老司机午夜| 国产不卡一卡二| 欧美成人一区二区免费高清观看 | 国产精品av久久久久免费| 精品日产1卡2卡| 亚洲 欧美 日韩 在线 免费| a级毛片a级免费在线| 精品午夜福利视频在线观看一区| ponron亚洲| 一个人免费在线观看电影 | 女生性感内裤真人,穿戴方法视频| 欧美黄色淫秽网站| 久久精品91蜜桃| 精品久久久久久久毛片微露脸| 校园春色视频在线观看| 18禁观看日本| 亚洲av熟女| 亚洲av成人精品一区久久| 成人国产一区最新在线观看| 国产精品 国内视频| 高潮久久久久久久久久久不卡| 国产精品影院久久| 18禁裸乳无遮挡免费网站照片| 一级毛片女人18水好多| 久久亚洲精品不卡| 亚洲人成电影免费在线| 在线十欧美十亚洲十日本专区| 97超视频在线观看视频| 午夜福利成人在线免费观看| 亚洲精品在线美女| 欧美在线一区亚洲| 亚洲国产中文字幕在线视频| 成人国产一区最新在线观看| 十八禁人妻一区二区| 日韩欧美在线乱码| 美女黄网站色视频| 99久久综合精品五月天人人| 日本黄大片高清| 黄色视频,在线免费观看| 欧美中文综合在线视频| 国产三级中文精品| 嫩草影院入口| 99精品在免费线老司机午夜| 中文字幕人成人乱码亚洲影| 精品欧美国产一区二区三| 搡老熟女国产l中国老女人| 国产高清激情床上av| 99精品久久久久人妻精品| 亚洲国产精品合色在线| 视频区欧美日本亚洲| 蜜桃久久精品国产亚洲av| av在线蜜桃| 免费大片18禁| 中文在线观看免费www的网站| 亚洲真实伦在线观看| 精品久久久久久久末码| 成人永久免费在线观看视频| 久久精品影院6| 午夜福利成人在线免费观看| av天堂在线播放| 这个男人来自地球电影免费观看| 一本综合久久免费| 亚洲国产欧美人成| 国产精品一区二区免费欧美| 亚洲美女视频黄频| 国产97色在线日韩免费| 日韩人妻高清精品专区| 久久九九热精品免费| 在线观看舔阴道视频| 18禁国产床啪视频网站| 美女扒开内裤让男人捅视频| 亚洲美女黄片视频| 别揉我奶头~嗯~啊~动态视频| 欧美激情久久久久久爽电影| 久久中文字幕人妻熟女| 真人做人爱边吃奶动态| 在线免费观看的www视频| 国产亚洲欧美98| 精品国产亚洲在线| 18美女黄网站色大片免费观看| 中文字幕av在线有码专区| 日本 av在线| 麻豆国产av国片精品| 曰老女人黄片| 九九热线精品视视频播放| 级片在线观看| 一区福利在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲欧美精品综合一区二区三区| 国产黄色小视频在线观看| 亚洲欧美日韩高清在线视频| 香蕉av资源在线| 国产精品亚洲av一区麻豆| 免费在线观看影片大全网站| 免费搜索国产男女视频| 超碰成人久久| 99国产综合亚洲精品| 久久久久精品国产欧美久久久| 无遮挡黄片免费观看| av女优亚洲男人天堂 | 男人和女人高潮做爰伦理| www日本在线高清视频| 免费高清视频大片| 天堂影院成人在线观看| 亚洲国产精品999在线| 欧美日韩福利视频一区二区| 欧美日韩黄片免| 岛国在线免费视频观看| 中文资源天堂在线| 欧美一区二区国产精品久久精品| 人妻丰满熟妇av一区二区三区| 精品国产三级普通话版| 久久精品国产99精品国产亚洲性色| 亚洲一区二区三区色噜噜| 亚洲欧美日韩卡通动漫| 亚洲自偷自拍图片 自拍| 国产精品九九99| 最近最新中文字幕大全电影3| 国产成人系列免费观看| 欧美丝袜亚洲另类 | 亚洲欧美激情综合另类| 国产精品综合久久久久久久免费| 男人和女人高潮做爰伦理| 国产精品一区二区精品视频观看| 久久久久久久精品吃奶| 成人永久免费在线观看视频| 国产精品日韩av在线免费观看| 国产又黄又爽又无遮挡在线| 亚洲美女视频黄频| 99热这里只有精品一区 | 成年人黄色毛片网站| 国语自产精品视频在线第100页| 国产精品精品国产色婷婷| 久久久精品大字幕| 欧美黑人欧美精品刺激| 亚洲天堂国产精品一区在线| 国产高清激情床上av| 少妇的丰满在线观看| 伊人久久大香线蕉亚洲五| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 夜夜爽天天搞| 国产毛片a区久久久久| 精品久久久久久久毛片微露脸| 免费观看精品视频网站| 免费高清视频大片| 日韩大尺度精品在线看网址| 男女床上黄色一级片免费看| 国产综合懂色| 美女黄网站色视频| xxx96com| 亚洲av免费在线观看| 成人18禁在线播放| 亚洲美女视频黄频| 国产久久久一区二区三区| 精华霜和精华液先用哪个| e午夜精品久久久久久久| 国产高潮美女av| 午夜福利视频1000在线观看| 在线观看免费视频日本深夜| 这个男人来自地球电影免费观看| 女同久久另类99精品国产91| 国产成人影院久久av| h日本视频在线播放| 亚洲七黄色美女视频| 亚洲av片天天在线观看| 国产精品日韩av在线免费观看| 国内精品久久久久精免费| 宅男免费午夜| 黑人欧美特级aaaaaa片| 中文字幕人妻丝袜一区二区| 亚洲天堂国产精品一区在线| 久久中文看片网| 久久久久精品国产欧美久久久| 一区福利在线观看| 成人亚洲精品av一区二区| 日韩欧美精品v在线| 中文字幕精品亚洲无线码一区| 欧美一区二区精品小视频在线| 日本一二三区视频观看| 欧美日韩综合久久久久久 | 在线国产一区二区在线| 亚洲国产欧洲综合997久久,| 久久人妻av系列| 日韩欧美一区二区三区在线观看| 中文字幕最新亚洲高清| 日韩欧美三级三区| 日韩欧美国产在线观看| 欧美黄色片欧美黄色片| 中文字幕久久专区| 国产三级黄色录像| 日韩欧美在线乱码| 国产精品女同一区二区软件 | 亚洲av电影在线进入| 亚洲 欧美一区二区三区| 波多野结衣高清作品| 国产成人av激情在线播放| 亚洲av免费在线观看| 久久国产精品人妻蜜桃| 亚洲av成人av| 精品久久久久久久人妻蜜臀av| 国产av不卡久久| 日本与韩国留学比较| 欧美高清成人免费视频www| 久久精品综合一区二区三区| 看黄色毛片网站| 90打野战视频偷拍视频| 久久久久免费精品人妻一区二区| 露出奶头的视频| 国产精品野战在线观看| 国产一区二区三区在线臀色熟女| 99久久99久久久精品蜜桃| 国产亚洲欧美在线一区二区| 国产亚洲精品综合一区在线观看| 亚洲性夜色夜夜综合| 91九色精品人成在线观看| 国产精品av久久久久免费| 搡老熟女国产l中国老女人| 欧美性猛交╳xxx乱大交人| 欧美日本视频| 成在线人永久免费视频| 日本熟妇午夜| 精品久久久久久久末码| 精品一区二区三区视频在线观看免费| 国产真实乱freesex| 精品电影一区二区在线| 99热6这里只有精品| 国产av在哪里看| 欧美3d第一页| 色噜噜av男人的天堂激情| 欧美成人免费av一区二区三区| 午夜福利欧美成人| 伦理电影免费视频| 亚洲18禁久久av| 国产激情欧美一区二区| 最近视频中文字幕2019在线8| 香蕉久久夜色| 亚洲国产精品成人综合色| 婷婷精品国产亚洲av| 18禁裸乳无遮挡免费网站照片| 亚洲电影在线观看av| 免费观看的影片在线观看| 欧美日韩综合久久久久久 | 99久久99久久久精品蜜桃| 国产精品av久久久久免费| 超碰成人久久| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩一区二区精品| 久久久久亚洲av毛片大全| 欧美丝袜亚洲另类 | 久久久久精品国产欧美久久久| 久久精品国产清高在天天线| 99热这里只有是精品50| 欧美性猛交黑人性爽| 小蜜桃在线观看免费完整版高清| 黄频高清免费视频| 手机成人av网站| 丝袜人妻中文字幕| 国产一区二区三区视频了| 日韩有码中文字幕| 国产av在哪里看| 99久国产av精品| 草草在线视频免费看| 丰满人妻熟妇乱又伦精品不卡| 精品乱码久久久久久99久播| 啦啦啦观看免费观看视频高清| 美女cb高潮喷水在线观看 | 欧美日韩乱码在线| 亚洲最大成人中文| 精品久久久久久久毛片微露脸| 久久精品亚洲精品国产色婷小说| 国产成人精品无人区| 三级男女做爰猛烈吃奶摸视频| 日韩高清综合在线| 日韩中文字幕欧美一区二区| 一进一出抽搐动态| 国产成人系列免费观看| 久久久久精品国产欧美久久久| 日本精品一区二区三区蜜桃| 亚洲国产欧美网| 51午夜福利影视在线观看| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影院入口| 1000部很黄的大片| 国产97色在线日韩免费| 久久婷婷人人爽人人干人人爱| 黑人欧美特级aaaaaa片| 久久久久久大精品| 久久久久免费精品人妻一区二区| 久久亚洲真实| 国产极品精品免费视频能看的| 操出白浆在线播放| 亚洲自拍偷在线| 国产成人啪精品午夜网站| 亚洲av美国av| 小蜜桃在线观看免费完整版高清| 日本a在线网址| 日本成人三级电影网站| 久99久视频精品免费| 日本五十路高清| 一卡2卡三卡四卡精品乱码亚洲| 色综合亚洲欧美另类图片| 看免费av毛片| 观看美女的网站| 亚洲色图av天堂| 国产亚洲av嫩草精品影院| 国产精品综合久久久久久久免费| 免费看日本二区| 草草在线视频免费看| 久久久精品大字幕| 国产精品av久久久久免费| 手机成人av网站| 午夜精品在线福利| 国产三级在线视频| av黄色大香蕉| 亚洲av日韩精品久久久久久密| 天天一区二区日本电影三级| 日本一二三区视频观看| 精品人妻1区二区| 成人三级做爰电影| 丰满人妻一区二区三区视频av | 久久精品亚洲精品国产色婷小说| 欧美成人一区二区免费高清观看 | 又爽又黄无遮挡网站| 九九久久精品国产亚洲av麻豆 | 99re在线观看精品视频| 久久午夜综合久久蜜桃| 成年女人永久免费观看视频| www日本在线高清视频| 美女cb高潮喷水在线观看 | 熟女人妻精品中文字幕| 国产高潮美女av| 国产视频内射| 久久精品国产亚洲av香蕉五月| 可以在线观看毛片的网站| 精品免费久久久久久久清纯| 亚洲中文字幕日韩| 在线观看免费午夜福利视频| 国产一区在线观看成人免费| 亚洲欧美日韩高清在线视频| 男女之事视频高清在线观看| 精品国产超薄肉色丝袜足j| 亚洲欧美激情综合另类| 丰满的人妻完整版| 在线国产一区二区在线| 色精品久久人妻99蜜桃| www.自偷自拍.com| 法律面前人人平等表现在哪些方面| 哪里可以看免费的av片| 欧美精品啪啪一区二区三区| 后天国语完整版免费观看| 少妇人妻一区二区三区视频| 久久久久久久久免费视频了| 少妇裸体淫交视频免费看高清| 午夜两性在线视频| e午夜精品久久久久久久| 国产欧美日韩一区二区三| 99久久精品一区二区三区| 日本a在线网址| 亚洲一区二区三区色噜噜| www国产在线视频色| 99精品欧美一区二区三区四区| 欧美日本视频| 丝袜人妻中文字幕| 亚洲精品一区av在线观看| 成人18禁在线播放| 亚洲av电影在线进入| 久久国产精品影院| 日本撒尿小便嘘嘘汇集6| 久久精品aⅴ一区二区三区四区| 国产伦精品一区二区三区四那| 亚洲aⅴ乱码一区二区在线播放| 两个人的视频大全免费| 午夜福利成人在线免费观看| 19禁男女啪啪无遮挡网站| 免费看光身美女| 99在线视频只有这里精品首页| 啦啦啦免费观看视频1| 免费在线观看日本一区| 99国产精品一区二区蜜桃av| 1000部很黄的大片| 精品99又大又爽又粗少妇毛片 | 看黄色毛片网站| 中国美女看黄片| 女人高潮潮喷娇喘18禁视频| 久久国产精品人妻蜜桃| 日本免费a在线| 动漫黄色视频在线观看| 老司机午夜福利在线观看视频| 岛国视频午夜一区免费看| 日韩国内少妇激情av| 亚洲国产色片| 国产精品av视频在线免费观看| 成人欧美大片| 免费搜索国产男女视频| 国产精品影院久久| 久久人妻av系列| 搡老妇女老女人老熟妇| 国产高潮美女av| 亚洲国产精品久久男人天堂| 舔av片在线| 精品一区二区三区视频在线观看免费| 中出人妻视频一区二区| 久久香蕉国产精品| 亚洲欧美精品综合一区二区三区| 日本撒尿小便嘘嘘汇集6| 岛国视频午夜一区免费看| 亚洲最大成人中文| 国产精品美女特级片免费视频播放器 | 一个人免费在线观看电影 | 久久草成人影院| 亚洲精品粉嫩美女一区| 变态另类成人亚洲欧美熟女| 色视频www国产| 亚洲av成人av| 国产精品一区二区精品视频观看| 97超级碰碰碰精品色视频在线观看| 深夜精品福利| 少妇熟女aⅴ在线视频| 一级作爱视频免费观看| 久久精品国产亚洲av香蕉五月| 在线观看舔阴道视频| 男人和女人高潮做爰伦理| avwww免费| 看黄色毛片网站| 禁无遮挡网站| 国产又色又爽无遮挡免费看| 亚洲av片天天在线观看| a在线观看视频网站| 五月伊人婷婷丁香| 看片在线看免费视频| 欧美成人一区二区免费高清观看 |