• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Path prediction of flexible needles based on Fokker-Planck equation and disjunctive Kriging model

    2022-07-13 02:52:28XiongPengwenZhouXuetingLiQianSongAiguoLiuPeterXiaoping

    Xiong Pengwen Zhou Xueting Li Qian Song Aiguo Liu Peter Xiaoping

    (1School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China)(2School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)(3Department of Systems and Computer Engineering, Carleton University, Ottawa KIS5B6, Canada)

    Abstract:Path prediction of flexible needles based on the Fokker-Planck equation and disjunctive Kriging model is proposed to improve accuracy and consider the nonlinearity and anisotropy of soft tissues.The stochastic differential equation is developed into the Fokker-Planck equation with Gaussian noise, and the position and orientation probability density function of flexible needles are then optimized by the stochastic differential equation.The probability density function obtains the mean and covariance of flexible needle movement and helps plan puncture paths by combining with the probabilistic path algorithm.The weight coefficients of the ordinary Kriging are extended to nonlinear functions to optimize the planned puncture path, and the Hermite expansion is used to calculate nonlinear parameter values of the disjunctive Kriging optimization model.Finally, simulation experiments are performed.Detailed comparison results under different path planning maps show that the kinematics model can plan optimal puncture paths under clinical requirements with an error far less than 2 mm.It can effectively optimize the path prediction model and help improve the target rate of soft tissue puncture with flexible needles through data analysis and processing of the mean value and covariance parameters derived by the probability density and disjunctive Kriging algorithms.

    Key words:flexible needle puncture; nonlinear; Fokker-Planck equation; disjunctive Kriging; error analysis

    Minimally invasive surgery has been substantially improved through percutaneous punctures in the past decades, and flexible needle puncture has been widely used for biopsy, brachytherapy, seed implantation, and anesthesia[1].However, performing the percutaneous puncture operation for some refined procedures is still difficult due to the lack of sufficient accuracy on motion control of puncture.The accuracy requirement for general operations is approximately at the millimeter level, while the accuracy requirement for the needle is quite crucial considering eye or infant surgery[2].

    Many research achievements have been realized by flexible needle movement modeling in the past years[3].Park et al.[4-5]proposed a probability density equation to calculate the reachable probability density of the needle tip for the random performance of bevel-tip flexible needles during puncture.Furthermore, the random movement is planned in accordance with the probability that the needle tip would reach the predetermined state.Alterovitz et al.[6]considered the uncertain factors caused by individual differences between patients as well as the difficulty in predicting the interaction between the needle and the tissue and described these uncertain factors with a random probability distribution.Zhao et al.[7]established a needle-tissue interaction model that considers the nonlinear and anisotropic characteristics of soft tissues.However, the accuracy of these methods is insufficiently high due to the assumption of linear models for complex nonlinear human tissues.

    Many algorithms have also been proposed to plan a suitable puncture path for flexible needles.Huo et al.[8]designed a puncture path plan based on the target particle swarm algorithm and regarded the flexible needle path planning problem as a multi-objective optimization problem.Arora et al.[9]used the Markov decision process to carry out robust path planning and guidance in a complex organization as well as the needle interaction environment.Gao et al.[10]planned the puncture path of flexible needles by using a geometric approximation method and established a forward and inverse kinematics model of flexible needles through D-H parameters and accessibility conditions to pierce the target point accurately.

    1 Symbols and Definitions

    1.1 Needle tip coordinate system

    A bevel-tip flexible needle is constructed to analyze model parameters.The needle comprises an insertion speedυ, a rotation speedω, and a rotation angleα.When the flexible needle is inserted into human tissue, the soft tissue will exert a reaction force on the oblique surface of the needle tip, which deflects the flexible needle and facilitates its movement along a certain arc.The bending curvature of the flexible needle is approximately constant during the puncture movement; that is, the flexible needle moves along an arc of a fixed radiusr.

    As shown in Fig.1, the D-H parameter method[10]is used to establish the forward motion model of the puncture needle, and the coordinate(r,L1,L2)is used to obtain the pose transformation of the needle tip relative to the global coordinate system.

    Fig.1 Establishment of puncture needle model in the turning process

    1.2 Orthogonal set of flexible needle movement

    Assume that the functionf(t)considers the time of flexible needle movement, and the vectorζcontains angular velocityωand linear velocityυin the fixed reference framef(t).The special orthogonal vector set SO(3)represents the space rotation matrixR3×3, and the Euclidean motion group SE(3)represents the three-dimensional motion of a rigid body[5].SO(3)can then be expressed as Euler anglesα,β, andγby the following:

    R=RZ(γ)RX(α)RY(β)

    (1)

    (2)

    2 Flexible Needle Error Analysis Model

    2.1 Random error term

    Suppose the input observation points in the experiment areS={S1,S2,…,Sm} andSi∈D?Rn, and the corresponding output response points areZ={Z1,Z2,…,Zm} andZi?Rq.

    The puncturing process of the needle into the soft tissue can be regarded as quasi-static, which is discretized to establish a model of the interaction between the needle and the soft tissue.Owing to the uncertainty of the needle insertion system, a simple way to capture random phenomena is to add a noise term such that the designed model can search for a reachable workspace with probability.The relational expression of the nonlinear functionY(Si)under Gaussian random noise is as follows:

    ω(t)=ω0(t)+λn(t)

    (3)

    dN(t)=N(t+Δt)-N(t)=n(t)dt

    (4)

    whereλis the noise parameter;n(t)is Gaussian white noise.

    2.2 Fokker-Planck equation model

    (5)

    Assume that a flexible needle is inserted at a constant speedυ(t)with a rotation at an angular velocityω(t)and finally reaches the desired posture(position and direction).Withkas the curvature of the needle trajectory, an incomplete stochastic differential model with noise(3)can be established

    ζdt=[kυ00ω0(t)0 0υ0]Tdt+[0 0λ0 0 0]TdN=

    h(t)dt+HdN(t)

    (6)

    The Fokker-Planck equation is the development of the stochastic differential equation, which describes the probability density distribution function of the flexible needle position and its orientation with timet[5-6]

    (7)

    (8)

    The new functionF(g,t)can be described as shown below to obtain an approximate functional form off(g,t)in Eq.(8):

    ρ(g,t)=F(m-1(t)g,t)

    (9)

    Suppose that the initial state of flexible needle movement can be expressed asρ(g0|g,0)=ζ(g-g0), andD1(g,t)andD2(g,t)are respectively the growth rate of the mean and standard deviation of the probability distribution function, i.e., the drift and diffusion terms of the Fokker-Planck equation[5].

    The following formulas can be obtained considering the Brownian motion of molecular collision to calculate the growth rate of the mean and standard deviation:

    (10)

    (11)

    (12)

    whereMandTare the Brownian coefficients;uis the growth rate of the mean;γrepresents the particle radius;kis medium viscosity.

    The following equation can be derived from Eq.(12):

    (13)

    Assuming the presence of some diffusion in the model, the Fokker-Planck equation can be approximated as a Gaussian distribution function:

    (14)

    (15)

    (16)

    The probability density functionρ(g,t)lasts for a short period of timet.Meanwhile, the Fourier transform, which lasts for a long period of time, is used to convert the convolution in the time domain to the product in the frequency domain.

    ρ(g,t1+t2)=ρ(g,t1)*ρ(g,t2)

    (17)

    2.3 Disjunctive Kriging model

    Kriging is used to predict spatial modeling and the regression algorithm of random processes based on the covariance function, and its model considers the global certainty and local uncertainty in the experimental process[11].This model is also widely used in prediction, sensitivity analysis, and optimization conditions.However, the ordinary Kriging method is mainly used for linear models and ignores the uncontrollable factors, such as the nonlinearity and anisotropy of flexible needle movements in the soft tissue in puncture environments.Thus, this method produces inevitable errors in needle movement.The innovative point aims to extend the weight coefficient in ordinary Kriging into a nonlinear function and is used for nonlinear estimation on the random motion field of flexible needles.Therefore, this model mainly discusses the establishment of a prediction model based on the disjunctive Kriging method.

    The deterministic responseZi∈Rof ordinary Kriging[12]for anySi∈D?Rncan be expressed as a sum ofFi(t)andNi(t).Fi(t)describes the motion of flexible needle tips involving position and velocity.Ni(t)is the deviation of Gaussian white noise, which can be defined as:

    Zi(t)=Fi(t)+Ni(t)i=0,1,…,q

    (18)

    (19)

    (20)

    The sample set in this model is assumed to obey the joint normal distribution.Among them,Z(Si)corresponds to the standard normal distributionY(Si), and the normal deformation function isψ; therefore,Z(Si)=ψ[Y(Si)], and the equation can be obtained from Eqs.(19)and(20):

    (21)

    If the function is satisfied, then

    (22)

    Using the orthogonality of Hermite polynomials,ψ(y)can be expressed as

    (23)

    (24)

    whereηk(y)is a Hermitian polynomial;Ckis a coefficient;kis an integer.

    As in Eqs.(20)and(21), the equation can be obtained by using thek-order Hermitian polynomial to convert the above equation:

    (25)

    wherefikis the coefficient of determination;ηkis thek-order Hermitian polynomial;iandkare both integers.

    The following equations are obtained in accordance with the conditions of unbiasedness and minimum variance estimated by disjunctive Kriging:

    (26)

    whereZ(S0)represents the true value at the observation pointS0;Eis the mathematical expectation; VAR is the variance.The following can be deduced from the above formula:

    (27)

    whereψ0jis the correlation coefficient betweenY(S0)andY(Sj).

    (28)

    (29)

    The disjunctive Kriging variance can be obtained as shown below to solve the error assessment after Hermite polynomial expansion in Eq.(29):

    (30)

    Finally, the parameters obtained by the disjunctive Kriging algorithm(DKA)are evaluated, and the flexible needle puncture path model predicted by the probabilistic path algorithm(PPA)is simultaneously optimized.The errors due to uncertainty and nonlinearity are also reduced.

    3 Model Simulation and Experiments

    Many path planning algorithms are available for flexible needle puncture[13].The proposed model can improve the adaptability of puncture areas and avoidance of obstacles considering the nonlinearity and uncertainty of flexible needle puncture environments.Moreover, the model introduces Gaussian noise into the Fokker-Planck equation, optimizes the probability density function, obtains the mean value and covariance, and plans the puncture path with the PPA.The same starting and target points are provided for this simulation experiment in the current study, and the weight coefficient in the ordinary Kriging is extended into a nonlinear function.The nonlinear variance, mean square error, mean, and weighted mean of the disjunction Kriging optimization model are calculated on the basis of Hermitian expansion.The puncture path planned by the PPA based on the Fokker-Planck equation can then be optimized, thereby determining whether the path is optimal.Finally, the results based on the Fokker-Planck equation and DKA are used to predict the flexible needle path.

    3.1 Probabilistic path planning based on the PPA

    Flexible needle trajectory is assumed to be close to a perfect arc with determinate insertion position and direction to simulate the probabilistic path planning of the flexible needle in an ideal(no obstacle)situation.The unideal situations, including those involving obstacles or the insertion position and direction errors in the system, are also considered.

    Errors will occur in the actual operation of the flexible needle due to the uncertainty of the needle position system.Fig.2 shows the path error caused by the insertion position and direction of the flexible needle, and Fig.2(a)demonstrates the prediction of the successful arrival path generated by the PPA for various starting positions near the optimal position.Fig.2(b)shows various starting directions.Fig.2(c)reveals probabilistic path simulation prediction from the starting to the target point under the uncertain situation with random obstacles, and the needle trajectory close to arcs avoids the obstacles.

    (a)

    3.2 Error simulation test based on the DKA

    The current study evaluates and predicts factors, such as global certainty, local uncertainty, nonlinearity, and anisotropy, according to the covariance function and continuously optimizes puncture path based on the random probability path planning process to obtain the result of modeling random data using disjunctive Kriging.Assuming that the input is random white noise, the parameter values of the flexible needle puncture process are obtained through multiple simulation verifications.

    The variance VAR, mean square error MSE, mean EI, and weighted mean WEI calculated by the DKA with random noise input of the flexible needle are used to evaluate the error simulation effect of flexible needle puncture, as shown in Fig.3.Among the 25 sets of test values, some inherent variability abnormal values caused by irregular muscle tissues are eliminated.VAR is the variance of model evaluation, and the range of all test values after removing outlier values is between 0.4 and 0.8 mm2, which is used to estimate the error of the simulation results of flexible needle puncture.The clinical requirements of flexible needle puncture surgery indicate that the error should not exceed 4 mm2and the abnormal value is also 1.16 mm2<4 mm2; thus, the simulation results meet the clinical requirements.MSE calculates the average error of the model by evaluating the MSE of multiple points.The measurement range after removing the outlier value is between 0.30 and 0.05 mm2, which is a small error value obtained after several optimizations.EI, which is the expected improvement value of the prediction model, is used to optimize the model continuously, and the range of measurement results after removing outlier values is between 0.02 and 0.08 mm.WEI is based on EI and forecasts the weighted expected value according to the level of different influencing factors, thereby reducing errors.

    (a)

    Fig.4 shows that the simulation tests of the interpolation process have a good fitting effect based on the puncture experiment of the optimal planning path and the error comparison between test and training values under the DKA.The system error of the flexible needle puncture model is much less than 2 mm, which meets the clinical requirements of interventional surgery.This model also increases the probability of reaching the target and reduces errors in an uncertain nonlinear environment, which verifies the effectiveness of the proposed model.

    Fig.4 Error distribution map between the test and training values under the DKA

    The prediction model, which is based on the DKA as well as the insertion position, insertion direction, and irregularity of inserted tissues and obstacles, reduces the errors in the process of flexible needle puncture.Some previous studies are available in[14-15].The current study used the path planning diagram in the two-dimensional environment to demonstrate the path of the flexible needle puncture soft tissue.The simulation path diagrams under the PPA are shown in Fig.5.Meanwhile, Figs.5(a)to 5(d)present a continuous optimization process plan by the PPA under definite starting and target points and similar obstacle environments.The red line represents the puncture path.The result indicates that the optimization process performed by disjunctive Kriging via continuous interpolation obtains optimized training values based on the test results of the above-mentioned parameters, such as variance and mean, thus allowing the gradual planning of the optimal path based on the PPA.This process also improves the targeting rate of flexible puncture needles.

    (a)

    3.3 Comparison of the PPA and PPA+DKA

    The parameter values that must be optimized for puncture simulation are obtained from the formula derived in module three.Meanwhile, the parameters in the program are optimized through the PPA+DKA and data processing, such as box plots, to obtain the parameter values for the soft tissue puncture optimization of the flexible needle continuously.

    Four different organization maps with obstacles in a nonlinear and uneven environment under the same starting and target point are designed to further verify the proposed model.A comparison simulation with the PPA and PPA + DKA models based on the path model is also performed, as shown in Fig.6.

    (a)

    As shown in Fig.6 and Tab.1, path planning by the PPA+DKA is more flexible than that of the PPA under the same uncertain simulated map environment.The path planning time is slightly increased under the PPA+DKA, but the optimal path length is reduced, and the uncertainty and nonlinearity of the environment are fully considered.The puncture path length of flexible needles in a random environment should be considered for nonlinear soft tissue with different obstacles.A total of 32 experiments on 4 different maps were performed, and each group performed 8 tests.The simulation results are still consistent with the above conclusions.The simulation path planning time and puncture path length value based on the random selection of eight sets of the test are shown in Fig.7.

    Tab.1 Simulation data contrast of the PPA and PPA+DKA

    Fig.7 indicates that the path training time of most groups of the PPA is longer than that of the PPA+DKA.Meanwhile, the time difference of the selected training groups between the PPA and PPA+DKA after the data filtering process is negligible.The path length of the PPA+DKA is significantly better than that of the PPA.Considering the damage to the human body by flexible needles and the complex environment of nonlinear soft tissues, the PPA+DKA is effective because it can reduce the puncture error and the length of the puncture path and finally reach the target point despite its slightly long calculation time.

    (a)

    The simulation test path diagram is imitated as a flexible needle tip puncture process shown in Fig.8, which is recorded as the path planning diagram of the PPA and PPA+DKA.The detailed needle tip path planning diagram in Fig.8 shows that the path length of Fig.8(b)is significantly smaller than that of Fig.8(a).The simulation test times of Figs.8(a)and 8(b)are 6.14 and 6.08 ms, respectively, which again verifies the simulation test results in Figs.6 and 7.The above comparative simulation experiment shows that flexible needles can accurately reach target points with the shortest path under the proposed model.

    (a)

    4 Conclusions

    1)The flexible needle path prediction model effectively improves the target accuracy in needle surgery.The prediction model can reduce uncertainty errors in body membrane tissues.Thus, the proposed model is crucial for biopsy, brachytherapy, and other medical procedures that require accurate needle implantation.

    2)This model combines the Fokker-Planck equation to plan the probabilistic path of flexible needles, analyzes the nonlinearity and uncertainty through disjunctive Kriging interpolation, continuously optimizes the model according to test parameter values, and obtains the predicted path error of flexible needles.The results prove that this model improves the target rate and obtains the optimal path in an uncertain environment during the insertion.

    3)The proposed algorithm model can also effectively optimize puncture paths under uncertain conditions.Compared with other algorithms, the proposed model uses the Fokker-Planck equation combined with disjunctive Kriging to predict external conditions, thus avoiding the assumption errors caused by the ideal state of linearity and uniformity in soft tissue puncture.This model can effectively handle the generality, uncertainty, and complexity of the puncture environment; it is also consistent with the application of flexible puncture needles in realistic operations.

    99国产综合亚洲精品| 国产在线精品亚洲第一网站| 51午夜福利影视在线观看| 精品人妻1区二区| 麻豆久久精品国产亚洲av| 丝袜在线中文字幕| 日韩国内少妇激情av| 成人18禁高潮啪啪吃奶动态图| 9色porny在线观看| 91大片在线观看| 亚洲色图综合在线观看| 久久久久久久久中文| 美国免费a级毛片| 精品福利观看| 国产成+人综合+亚洲专区| 午夜免费鲁丝| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区三| 亚洲黑人精品在线| 亚洲avbb在线观看| 亚洲色图av天堂| 久久国产精品男人的天堂亚洲| 视频区欧美日本亚洲| 制服诱惑二区| 国产成人av激情在线播放| 国产精品1区2区在线观看.| 日本欧美视频一区| 久久久久久久久久久久大奶| 亚洲国产精品久久男人天堂| 女同久久另类99精品国产91| 天堂动漫精品| 久久香蕉激情| 色综合婷婷激情| 12—13女人毛片做爰片一| 美女高潮喷水抽搐中文字幕| 免费在线观看黄色视频的| 啦啦啦观看免费观看视频高清 | 日韩高清综合在线| 黄色a级毛片大全视频| 在线观看66精品国产| 一区福利在线观看| 18禁裸乳无遮挡免费网站照片 | 可以在线观看毛片的网站| 久久久久久免费高清国产稀缺| 久久中文看片网| 久久久久国内视频| 一级毛片女人18水好多| 日韩精品青青久久久久久| 亚洲中文av在线| 99精品久久久久人妻精品| 一级毛片女人18水好多| 亚洲少妇的诱惑av| 高清黄色对白视频在线免费看| 操出白浆在线播放| av电影中文网址| 最好的美女福利视频网| 亚洲九九香蕉| 大码成人一级视频| 欧美日韩瑟瑟在线播放| 欧美在线黄色| a在线观看视频网站| 国产片内射在线| 变态另类成人亚洲欧美熟女 | 可以在线观看毛片的网站| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美在线一区二区| 国产精品亚洲av一区麻豆| 国产成+人综合+亚洲专区| 亚洲国产精品sss在线观看| 欧美日韩乱码在线| 日韩欧美在线二视频| 精品福利观看| 亚洲精品美女久久久久99蜜臀| 波多野结衣一区麻豆| 一级毛片女人18水好多| 村上凉子中文字幕在线| 久久久久久久久久久久大奶| 国产在线精品亚洲第一网站| 日韩欧美国产一区二区入口| 国产高清有码在线观看视频 | 亚洲黑人精品在线| 淫妇啪啪啪对白视频| 999精品在线视频| 变态另类丝袜制服| 狂野欧美激情性xxxx| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三| 国产精品99久久99久久久不卡| 老司机靠b影院| ponron亚洲| 啦啦啦免费观看视频1| 国产精品,欧美在线| 国产一区二区三区综合在线观看| 国产亚洲精品久久久久5区| 久久精品91无色码中文字幕| 亚洲黑人精品在线| 女生性感内裤真人,穿戴方法视频| 午夜福利,免费看| 一个人免费在线观看的高清视频| 日日干狠狠操夜夜爽| 91国产中文字幕| 欧美色欧美亚洲另类二区 | 亚洲精品中文字幕在线视频| 免费少妇av软件| 亚洲精品美女久久久久99蜜臀| 免费看美女性在线毛片视频| 波多野结衣一区麻豆| 欧美一级毛片孕妇| 一级毛片精品| 亚洲电影在线观看av| 美女大奶头视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美一级毛片孕妇| 亚洲精品在线美女| or卡值多少钱| 国产片内射在线| 老汉色∧v一级毛片| 久久久久久国产a免费观看| 老司机午夜十八禁免费视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品免费一区二区三区在线| 操出白浆在线播放| 欧美不卡视频在线免费观看 | 一区二区日韩欧美中文字幕| 久久久国产成人免费| 啦啦啦韩国在线观看视频| 啦啦啦韩国在线观看视频| 色在线成人网| 亚洲欧美日韩无卡精品| 国产xxxxx性猛交| 午夜福利,免费看| 久久亚洲精品不卡| 亚洲人成77777在线视频| 久久精品国产亚洲av高清一级| 真人一进一出gif抽搐免费| 精品日产1卡2卡| 制服人妻中文乱码| 亚洲一区中文字幕在线| 日韩精品青青久久久久久| 岛国视频午夜一区免费看| 一个人观看的视频www高清免费观看 | 757午夜福利合集在线观看| 韩国精品一区二区三区| 宅男免费午夜| 满18在线观看网站| 首页视频小说图片口味搜索| 一级毛片高清免费大全| 一区二区三区激情视频| 国产不卡一卡二| 亚洲九九香蕉| 国产精品秋霞免费鲁丝片| 国产成人av激情在线播放| 又黄又爽又免费观看的视频| 亚洲国产精品999在线| 欧美激情高清一区二区三区| 高清毛片免费观看视频网站| 免费看a级黄色片| 日本五十路高清| 亚洲,欧美精品.| 日日干狠狠操夜夜爽| 99久久国产精品久久久| 最新在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产精品亚洲美女久久久| 欧美成人午夜精品| 国产av在哪里看| АⅤ资源中文在线天堂| 午夜福利在线观看吧| 国产区一区二久久| 精品国产乱子伦一区二区三区| 亚洲一区中文字幕在线| 无遮挡黄片免费观看| 大陆偷拍与自拍| www.精华液| 老汉色∧v一级毛片| 91av网站免费观看| 怎么达到女性高潮| 日本 av在线| 午夜精品久久久久久毛片777| 美国免费a级毛片| 国产欧美日韩一区二区三| 午夜精品久久久久久毛片777| 日韩国内少妇激情av| 午夜免费观看网址| 首页视频小说图片口味搜索| 女人被躁到高潮嗷嗷叫费观| 一级,二级,三级黄色视频| 国产激情欧美一区二区| avwww免费| 国产av又大| 又黄又粗又硬又大视频| 免费在线观看完整版高清| 国产精品秋霞免费鲁丝片| 欧美精品亚洲一区二区| 美女高潮到喷水免费观看| 狂野欧美激情性xxxx| 在线观看www视频免费| 嫩草影院精品99| 老司机午夜十八禁免费视频| www.熟女人妻精品国产| 久久久久久久久久久久大奶| 国内精品久久久久久久电影| 国产成人精品久久二区二区免费| 岛国在线观看网站| 脱女人内裤的视频| 亚洲精品av麻豆狂野| 美国免费a级毛片| 一边摸一边做爽爽视频免费| 亚洲第一青青草原| 亚洲国产精品成人综合色| www国产在线视频色| 怎么达到女性高潮| 91在线观看av| 韩国精品一区二区三区| 午夜福利一区二区在线看| 此物有八面人人有两片| 婷婷六月久久综合丁香| 琪琪午夜伦伦电影理论片6080| 黄片大片在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 成人18禁在线播放| 午夜福利影视在线免费观看| 在线观看66精品国产| 欧美黑人精品巨大| 亚洲精华国产精华精| 可以在线观看的亚洲视频| 丁香六月欧美| 亚洲精品中文字幕在线视频| 男女床上黄色一级片免费看| 高清黄色对白视频在线免费看| 桃色一区二区三区在线观看| 国产亚洲精品av在线| 18禁观看日本| 国产午夜精品久久久久久| 午夜福利在线观看吧| 婷婷丁香在线五月| 亚洲一区中文字幕在线| 日本欧美视频一区| av视频在线观看入口| 色av中文字幕| 女性被躁到高潮视频| 99在线人妻在线中文字幕| 亚洲国产中文字幕在线视频| 欧美日本亚洲视频在线播放| 国产极品粉嫩免费观看在线| 在线观看66精品国产| 香蕉丝袜av| 看免费av毛片| 亚洲第一青青草原| 国产片内射在线| 无遮挡黄片免费观看| 午夜精品久久久久久毛片777| 国产乱人伦免费视频| 国产成人精品在线电影| 日日摸夜夜添夜夜添小说| av视频免费观看在线观看| 亚洲一区高清亚洲精品| 亚洲伊人色综图| 国产av又大| 女人爽到高潮嗷嗷叫在线视频| 精品久久久久久,| 国产精品av久久久久免费| 一边摸一边抽搐一进一小说| 国产精品久久久人人做人人爽| 黄色视频,在线免费观看| 亚洲欧美激情综合另类| 9热在线视频观看99| 黄色女人牲交| 久久人妻熟女aⅴ| 久久香蕉激情| 可以在线观看毛片的网站| 欧美成人午夜精品| avwww免费| 亚洲人成电影免费在线| 亚洲五月色婷婷综合| 亚洲精品中文字幕一二三四区| 窝窝影院91人妻| 国产91精品成人一区二区三区| 亚洲成国产人片在线观看| 91字幕亚洲| 欧美成狂野欧美在线观看| 久久久久国产精品人妻aⅴ院| 国产精品爽爽va在线观看网站 | 亚洲国产中文字幕在线视频| 久久欧美精品欧美久久欧美| 宅男免费午夜| 成年版毛片免费区| 亚洲专区中文字幕在线| 嫩草影院精品99| 国产精品久久视频播放| 精品久久蜜臀av无| 亚洲午夜精品一区,二区,三区| 久久狼人影院| 亚洲国产欧美一区二区综合| 亚洲国产精品久久男人天堂| 午夜两性在线视频| 国产黄a三级三级三级人| 99久久国产精品久久久| 亚洲专区字幕在线| 成人三级黄色视频| 亚洲av第一区精品v没综合| 女人被狂操c到高潮| 777久久人妻少妇嫩草av网站| 国产精品二区激情视频| 国产精品美女特级片免费视频播放器 | 精品久久久久久久久久免费视频| 亚洲精品久久成人aⅴ小说| 桃色一区二区三区在线观看| 91字幕亚洲| 69精品国产乱码久久久| 欧美日韩黄片免| 久久天躁狠狠躁夜夜2o2o| 一本综合久久免费| 久久久精品欧美日韩精品| 久久伊人香网站| 国产三级在线视频| 麻豆国产av国片精品| 亚洲国产精品合色在线| 国产一区二区在线av高清观看| 国产aⅴ精品一区二区三区波| 国产不卡一卡二| 亚洲免费av在线视频| 国产高清视频在线播放一区| 真人一进一出gif抽搐免费| 黄网站色视频无遮挡免费观看| 国产伦人伦偷精品视频| 少妇熟女aⅴ在线视频| 久久人妻福利社区极品人妻图片| 亚洲一区二区三区不卡视频| 久久中文字幕人妻熟女| 亚洲专区字幕在线| а√天堂www在线а√下载| 男男h啪啪无遮挡| 国产黄a三级三级三级人| 夜夜躁狠狠躁天天躁| 久久天堂一区二区三区四区| √禁漫天堂资源中文www| av在线播放免费不卡| 久久久国产成人精品二区| 伊人久久大香线蕉亚洲五| 在线观看日韩欧美| 久久人人97超碰香蕉20202| 69精品国产乱码久久久| 大型黄色视频在线免费观看| 精品一区二区三区四区五区乱码| 日本五十路高清| 免费在线观看亚洲国产| 欧美日本亚洲视频在线播放| 99久久精品国产亚洲精品| 国产精品久久久久久亚洲av鲁大| 两人在一起打扑克的视频| 亚洲av成人不卡在线观看播放网| 很黄的视频免费| 国产精品影院久久| 久久这里只有精品19| 久久久久久免费高清国产稀缺| 一区二区三区精品91| 夜夜看夜夜爽夜夜摸| 中国美女看黄片| 一级黄色大片毛片| 两性夫妻黄色片| 国产一区二区三区视频了| 大香蕉久久成人网| 精品国产亚洲在线| 欧美日韩一级在线毛片| 乱人伦中国视频| 99久久国产精品久久久| 人人妻,人人澡人人爽秒播| 一级作爱视频免费观看| 乱人伦中国视频| 欧美日韩一级在线毛片| 成人国产一区最新在线观看| 国产97色在线日韩免费| 一a级毛片在线观看| 欧美中文综合在线视频| 他把我摸到了高潮在线观看| 精品一区二区三区av网在线观看| 国产欧美日韩精品亚洲av| 法律面前人人平等表现在哪些方面| 国产又爽黄色视频| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 国产片内射在线| 亚洲,欧美精品.| 黄色a级毛片大全视频| 久久精品影院6| 国产精品野战在线观看| 亚洲人成77777在线视频| 色综合婷婷激情| 欧美日本中文国产一区发布| 国产亚洲精品综合一区在线观看 | 精品国产美女av久久久久小说| 亚洲欧洲精品一区二区精品久久久| 色综合亚洲欧美另类图片| 久久国产精品人妻蜜桃| 一二三四社区在线视频社区8| 国产激情欧美一区二区| 黄色视频,在线免费观看| 熟妇人妻久久中文字幕3abv| 电影成人av| 亚洲一区中文字幕在线| 高清毛片免费观看视频网站| 欧美亚洲日本最大视频资源| 国产国语露脸激情在线看| 99国产极品粉嫩在线观看| 免费不卡黄色视频| 欧美在线黄色| 欧美大码av| 天堂动漫精品| 精品国产国语对白av| 国产精品av久久久久免费| 亚洲va日本ⅴa欧美va伊人久久| 狠狠狠狠99中文字幕| 午夜福利影视在线免费观看| 久久亚洲真实| 久久国产精品影院| tocl精华| 乱人伦中国视频| 久久草成人影院| 在线观看一区二区三区| 黑人欧美特级aaaaaa片| 国产精品日韩av在线免费观看 | 麻豆av在线久日| 亚洲熟女毛片儿| 一区在线观看完整版| 欧美+亚洲+日韩+国产| 亚洲成a人片在线一区二区| 精品乱码久久久久久99久播| 欧美日韩亚洲国产一区二区在线观看| 午夜免费观看网址| 日日摸夜夜添夜夜添小说| 久久香蕉国产精品| 亚洲自偷自拍图片 自拍| 亚洲av熟女| 国产精品亚洲一级av第二区| 在线观看日韩欧美| 亚洲国产精品sss在线观看| 欧美中文综合在线视频| 91精品三级在线观看| 精品高清国产在线一区| av视频在线观看入口| 国产亚洲av高清不卡| 久9热在线精品视频| 亚洲全国av大片| 在线av久久热| 欧美午夜高清在线| 麻豆一二三区av精品| 国产黄a三级三级三级人| 91九色精品人成在线观看| 久久久久久久精品吃奶| 99国产精品99久久久久| 长腿黑丝高跟| 女人精品久久久久毛片| 久99久视频精品免费| www日本在线高清视频| 国产一区二区激情短视频| 亚洲在线自拍视频| 国产欧美日韩一区二区三| 国产成人啪精品午夜网站| 欧美黑人精品巨大| 一卡2卡三卡四卡精品乱码亚洲| 欧美+亚洲+日韩+国产| 亚洲成av人片免费观看| 国产成人精品久久二区二区免费| 日韩欧美一区视频在线观看| 性少妇av在线| 妹子高潮喷水视频| 搡老妇女老女人老熟妇| 国产亚洲精品一区二区www| 亚洲成a人片在线一区二区| 乱人伦中国视频| 老司机福利观看| 免费av毛片视频| 欧美最黄视频在线播放免费| 搡老妇女老女人老熟妇| 亚洲国产高清在线一区二区三 | 精品熟女少妇八av免费久了| 美女大奶头视频| 亚洲天堂国产精品一区在线| 欧美日韩中文字幕国产精品一区二区三区 | 淫妇啪啪啪对白视频| 一个人免费在线观看的高清视频| 成年版毛片免费区| 一级作爱视频免费观看| 美女免费视频网站| 黄色a级毛片大全视频| 国产三级黄色录像| 亚洲最大成人中文| 亚洲色图 男人天堂 中文字幕| 婷婷精品国产亚洲av在线| 亚洲国产中文字幕在线视频| 黄色视频不卡| 女性被躁到高潮视频| 欧美成狂野欧美在线观看| 免费看a级黄色片| 亚洲第一电影网av| 美女高潮到喷水免费观看| 欧美精品啪啪一区二区三区| tocl精华| 搡老岳熟女国产| 久久久久久久久免费视频了| 国产一区二区三区在线臀色熟女| 亚洲欧美精品综合一区二区三区| 国产麻豆成人av免费视频| av在线播放免费不卡| 日韩大尺度精品在线看网址 | 亚洲中文字幕日韩| 99久久精品国产亚洲精品| 少妇被粗大的猛进出69影院| 久久久久久久久中文| 老鸭窝网址在线观看| 12—13女人毛片做爰片一| 老司机午夜福利在线观看视频| 亚洲视频免费观看视频| 亚洲中文日韩欧美视频| av超薄肉色丝袜交足视频| 999久久久国产精品视频| 国产精品亚洲av一区麻豆| 亚洲成人国产一区在线观看| 亚洲午夜理论影院| 久久天躁狠狠躁夜夜2o2o| 自线自在国产av| √禁漫天堂资源中文www| 免费av毛片视频| 欧美久久黑人一区二区| 亚洲精品美女久久久久99蜜臀| 男男h啪啪无遮挡| 久久亚洲真实| 亚洲中文字幕一区二区三区有码在线看 | 久久国产亚洲av麻豆专区| 人成视频在线观看免费观看| 18禁观看日本| 丰满人妻熟妇乱又伦精品不卡| 亚洲无线在线观看| 亚洲欧美日韩另类电影网站| 性少妇av在线| 亚洲,欧美精品.| 国产成+人综合+亚洲专区| 国产色视频综合| 国产成人系列免费观看| 免费在线观看日本一区| 免费人成视频x8x8入口观看| 亚洲 国产 在线| 亚洲国产精品久久男人天堂| 亚洲av电影在线进入| 国产精品亚洲一级av第二区| 久久久久久亚洲精品国产蜜桃av| 男女床上黄色一级片免费看| 亚洲国产精品合色在线| 国产极品粉嫩免费观看在线| 国产免费av片在线观看野外av| 久久久久久久久中文| 在线观看午夜福利视频| 欧美日本亚洲视频在线播放| 黄片播放在线免费| 高清黄色对白视频在线免费看| 欧美一区二区精品小视频在线| 欧美中文综合在线视频| 亚洲狠狠婷婷综合久久图片| 精品少妇一区二区三区视频日本电影| 性少妇av在线| 国产精品二区激情视频| 美女国产高潮福利片在线看| 人人妻人人澡人人看| 久久婷婷人人爽人人干人人爱 | 午夜福利在线观看吧| 国产av在哪里看| 精品久久久久久久久久免费视频| 最近最新中文字幕大全免费视频| 精品电影一区二区在线| 高清在线国产一区| 日韩欧美免费精品| 女人被躁到高潮嗷嗷叫费观| 久久伊人香网站| 色综合站精品国产| 亚洲熟女毛片儿| 久久草成人影院| 国产精品九九99| 亚洲欧美日韩另类电影网站| 性欧美人与动物交配| 变态另类丝袜制服| 侵犯人妻中文字幕一二三四区| 两人在一起打扑克的视频| 99国产精品免费福利视频| www日本在线高清视频| 99久久国产精品久久久| 国产精品免费一区二区三区在线| 欧美性长视频在线观看| 免费在线观看黄色视频的| 欧美午夜高清在线| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美午夜高清在线| 国产免费男女视频| 国产极品粉嫩免费观看在线| 午夜免费观看网址| 亚洲最大成人中文| 国产精品秋霞免费鲁丝片| 欧美黄色片欧美黄色片| www日本在线高清视频| 午夜老司机福利片| 深夜精品福利| 激情在线观看视频在线高清| 欧美色欧美亚洲另类二区 | 亚洲自偷自拍图片 自拍| 在线观看免费午夜福利视频| 宅男免费午夜| 国产精品国产高清国产av| 性少妇av在线| 国产一区二区三区综合在线观看| 久热爱精品视频在线9| 亚洲一区高清亚洲精品| 久久香蕉国产精品| 一区二区三区激情视频| 亚洲国产中文字幕在线视频| 在线天堂中文资源库|