• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Co(Ⅱ)/Ni(Ⅱ) Coordination Polymer of Isomeric Terphenyl-2,2″,4,4″-tetracarboxylic Acids with a Single Water Bridge:Syntheses,Structures,and Magnetic Properties

    2022-07-12 07:40:20SUFengLIShaoDongHANChunWULinTaoWANGZhiJun
    無機化學(xué)學(xué)報 2022年7期

    SU Feng LI Shao-Dong HAN Chun WU Lin-Tao WANG Zhi-Jun

    (Department of Chemistry,Changzhi University,Changzhi,Shanxi 046011,China)

    Abstract:Two single water-bridged Co(Ⅱ)/Ni(Ⅱ) chains coordination polymers,namely[Co(m-H2tpta)(H2O)3]n(1)and{[Ni2(p-tpta)(H2O)6]·2H2O}n(2)were synthesized based on isomeric terphenyl-2,2″,4,4″-tetracarboxylic acid(m-H4tpta and p-H4tpta)ligands under hydrothermal conditions.They have been structurally characterized by FT-IR,elemental analysis,single-crystal,and powder X-ray diffraction analysis.Structurally,the central metal ions display slightly distorted octahedral geometries in 1 and 2,and are linked to 1D metal chains by single bridging water molecules.The isomeric H4tpta ligands coordinate metal ions in different μ1-η1∶η0∶η1∶η0and μ4-η1∶η1∶η1∶η1coordination modes,leading to the formation of 1D chain and 3D network structure.Complex 2 displays a 3D network with(4,4)-connected NbO net topology.Magnetically,complex 1 exhibited an antiferromagnetic interaction through μ2-H2O in the uniform Co(Ⅱ) chain model.Complex 2 also showed an antiferromagnetic coupling between Ni(Ⅱ) ions corresponding to magnetic coupling Ni—Ow—Ni angles.CCDC:1415021,1;1415020,2.

    Keywords:coordination polymers;1,1′∶3′,1″-terphenyl-2,2″,4,4″-tetracarboxylic acid;1,1′∶4′,1″-terphenyl-2,2″,4,4″-tetracarboxylic acid;crystal structures;magnetism

    0 Introduction

    The studies of magnetochemistry have been of interest for decades in transition metal coordination compounds due to the diverse structures and magnetic properties of single-molecule magnets(SMMs)and single-chain magnets(SCMs)systems[1-5].A large number of coordination polymers based on metal chains were constructed by different bridging paths such asμ2-oxo,μ2-COO-,μ2-N3-,andμ2-X-(X=F,Cl),which exhibited intriguing structures and interesting magnetic properties[6-10].In general,the main influence factors of the magnetic behavior are paramagnetic metal ions and the nature of the bridging mediums[11-12].For example,a series of isostructural polymers[M(o,p-H2bpta)]n,(o,p-H4bpta=2,2′,4,4′-biphenyltetracarboxylic acid,M=Mn(Ⅱ),Fe(Ⅱ),Co(Ⅱ),Ni(Ⅱ),and Cu(Ⅱ))with[M(μ2-COO)2]nchains showing weak ferro-or anti-ferromagnetic interactions transmitted by doublesyn-anticarboxylate bridges[13].[Mn2(4,4′-bipy)(m,m-bpta)]n(m,m-H4bpta=3,3′,5,5′-biphenyltetracarboxylic acid)with 1D zigzag chains exhibited intrachain antiferromagnetic coupling between Mn(Ⅱ)ions related to raresyn-syncarboxylate bridges[14].Three isomorphous[M(L)(N3)]n·3nH2O(L-=1-(4-carboxylatobenzyl)pyridinium-4-carboxylate,M=Mn(Ⅱ),Co(Ⅱ),and Ni(Ⅱ))polymers with triple-bridged chains showed antiferromagnetic interaction in the Mn(Ⅱ)compound but ferromagnetic interactions in the Co(Ⅱ)and Ni(Ⅱ) analogs[15].Two water-bridged Co(Ⅱ) chains,[Co(H2O)3(2-na)2]nand{[Co(H2O)3(1-na)2]·2H2O}n,with isomeric naphthoate(na-)spacers exhibited metamagnetic transition and unusual single-chain magnetic behaviors mediated by single water bridges[16].Additionally,the magnitude of magnetic coupling can be correlated with the distances of M…M or the geometrical configurations of metal ions and the types of the bridging mediums.

    This family ofμ-oxo systems has motivated interesting studies,aimed at gaining insight into magnetic phenomena and developing potential functional materials[17-19].Some experiments and theoretical research had given influence factors of magnetic coupling(geometric features such as the M—O—M angles and M—O bond lengths)[20-21].Whileμ-oxo bridges associated with other O-bridging moieties(hydroxo,carboxylato,carbonato,alkoxo,phenoxo,etc.)are also common in metal clusters and metal chain compounds[22-23].The most common feature of these compounds withμ-oxo bridges involves multiple bridges(double,or triple bridges).By contrast,the magnetic exchanges depending on the M—O—M angles could be justified and counterbalanced by other simultaneous bridging mediums[24].Hence,it is useful to clarify the relationship between structural features and the value of the intramolecular magnetic exchange interaction in the singlyμ-oxo bridged systems.Recently,we focus on the chain coordination polymers with a single water bridge that have shown a great diversity of intramolecular magnetic exchange phenomena.

    Herein,we report two magnetic Co/Ni(Ⅱ)coordination polymers with single-water bridges,namely[Co(m-H2tpta)(H2O)3]n(1)(m-H4tpta=1,1′∶3′,1″-terphenyl-2,2″,4,4″-tetracarboxylic acid),and{[Ni2(p-tpta)(H2O)6]·2H2O}n(p-H4tpta=1,1′∶4′,1″-terphenyl-2,2″,4,4″-tetracarboxylic acid)(2).The complexes contain 1D uniform metal chains formed by single water bridging metal ions.Complex 1 is a supramolecular architecture with 1D metal chains,and complex 2 exhibits a 3D network with(4,4)-connected NbO nets topology.The variable-temperature magnetic susceptibility measurements reveal that single water bridges can effectively mediate magnetic interactions between the spin carriers.Complex 1 exhibited an antiferromagnetic behavior.Complex 2 showed an antiferromagnetic coupling between the intrachain Ni(Ⅱ)ions.

    1 Experimental

    1.1 Material and measurement

    m-H4tpta andp-H4tpta were received from Jinan Camolai Trading Company,China.Other reagents and solvents were obtained from commercial sources and used without further purification.Powder X-ray diffraction(PXRD)data were collected on a Bruker D8-ADVANCE X-ray diffractometer with CuKαradiation(λ=0.154 18 nm,U=40 kV,I=25 mA)and 2θranging from 5°to 50°.The carbon,nitrogen,and hydrogen contents of the complexes were determined by CHNO-Rapid instrument.The FT-IR spectra were recorded from a pure solid sample in a range of 4 000-400 cm-1on a Bruker TENSOR27 spectrometer.Thermogravimetric(TG)studies were carried out on a Labsys Evo thermal analyzer with a temperature range of 298-1 073 K under nitrogen flow with a heating rate of 10 K·min-1.Magnetic susceptibility measurement data were performed by a SQUID magnetometer(Quantum MPMS)in a temperature range of 2-300 K by using an applied field of 1 000 Oe.Electron spin resonance(ESR)spectra were recorded with a Bruker EMXplus 10/12 spectrometer equipped with an ER4119 High-Q cylindrical cavity and Oxford ESR910 liquid helium continuous flow cryostat(Microwave power:1 mW)

    1.2 Preparation of complexes 1 and 2

    The pH value of a mixture ofm-H4tpta(0.041 g,0.10 mmol),CoCl2·6H2O(47.5 mg,0.20 mmol)in H2O(8 mL)was adjusted to about 6.5 with dilute KOH solution and then transferred to 13 mL Teflon-lined stainless steel reactor.The mixture was heated under autogenous pressure at 423 K for 72 h and then cooled to room temperature naturally.The pink block crystals of 1 were collected and washed with water.Yield:60%(based on Co). Elemental analysis Calcd. for C22H18O11Co(%):C 51.08,H 3.51.Found(%):C 50.96,H 3.68.IR(KBr,cm-1):3 274(s),1 945(w),1 690(s),1 606(m),1 555(s),1 432(s),1 371(m),1 220(s),1 123(m),899(w),780(m),685(m),511(w).

    A mixture ofp-H4tpta(0.041 g,0.10 mmol),NiCl2·6H2O(71.3 mg,0.30 mmol)in H2O(6 mL)was placed in a 13 mL Teflon-lined stainless steel reactor.When the pH value was adjusted toca.7.5 by KOH solution,the mixture was sealed and heated at 423 K for 72 h.After the mixture was slowly cooled to room temperature,green block crystals of 2 were obtained.Yield:72%(based on Ni).Elemental analysis Calcd.for C22H26O16Ni2(%):C 39.81,H 3.95.Found(%):C 38.92,H 3.88.IR(cm-1):3 166(m),2 035(w),1 607(s),1 575(s),1 535(s),1 440(s),1 382(s),1 170(w),1 073(w),914(w),821(m),781(m),729(m),670(w),530(w).

    1.3 X-ray crystallography

    Single-crystal X-ray diffraction data of complexes 1 and 2 were collected on a Bruker D8-Quest diffractometer equipped with a photon 100 detector by using a graphite monochromator utilizing MoKαradiation(λ=0.071 073 nm).Data integration and absorption correction were processed by the SAINT and SADABS programs.The structures were solved by intrinsic phasing with the SHELXS and refined by full-matrix leastsquares methods onF2by using the SHELXL-2018 program.H atoms bound to C atoms and carboxyl groups were placed in their expected positions accounting for the hybridization of the supporting atoms with C—H 0.093 nm and O—H 0.082 nm,and withUiso(H)=1.2Ueq(C).The H atoms of the water molecules were found from difference Fourier maps and fixed at their ideal positions according to hydrogen-bond geometries with O—H distances restraints of 0.082(1)nm andUiso(H)=1.5Ueq(O).For complex 2,the refinement of a twin processing improved the agreement between the structural model and the experimental data significantly.During the refinement,the reflection data were read via the HKLF 5 option in SHELXL and a parameter BASF was introduced,which was used to describe the fractional contribution of the twin domains.The fractional contributions of the two minor twin domains refined to 0.281 8(19)and 0.358 1(14).In addition,the water molecule(O8)of 2 was disordered over two positions with the site-occupation factors of 0.62(2)and 0.38(2)and treated anisotropically.A summary of the crystallographic data for complexes 1 and 2 is listed in Table 1.Selected bond lengths and angles for 1 and 2 are shown in Table S1(Supporting information).

    Table 1 Crystal data and structure refinement parameters for complexes 1 and 2

    CCDC:1415021,1;1415020,2.

    2 Results and discussion

    2.1 Crystal structure description

    Single-crystal X-ray crystallographic analysis reveals that complex 1 crystallizes in the orthorhombic crystal system with thePnmaspace group.Complex 1 consists of one Co(Ⅱ)ion,a halfm-H2tpta2-anion,and one and a half coordinated water molecules in the asymmetric unit.As illustrated in Fig.1a,the Co(Ⅱ)ion exhibits octahedral geometry,which is composed of two carboxylate oxygen atoms(O1 and O1i,Symmetry code:ix,-y+3/2,z)from onem-H2tpta2-ligand and two termi-nal water molecules(O6 and O6i)in the equatorial positions.The axial sites are occupied by two water molecules(O5 and O5ii,Symmetry code:iix+1/2,y,-z+1/2).The Co—O bond lengths range from 0.204 9(2)to 0.216 3(1)nm,and the O—Co—O bond angles are in a range of 85.14(7)°-95.88(8)°(Table S1).

    Fig.1 (a)Perspective view of the coordination of the Co(Ⅱ)ion for 1 with the thermal ellipsoids at a 30% probability level;(b)1D chain running along the a-axis(hydrogen atoms omitted for clarity);(c)A 2D sheet formed through the localized π-bonding interactions in the ac plane;(d)Packing hexagonal-shaped architecture viewed along the central projection,where hydrogen atoms are omitted for clarity

    Herein,m-H4tpta is partly deprotonated and the 2,2″-carboxylate groups chelate one Co(Ⅱ) ion with an O1—Co—O1 angle of 85.14(7)°.The dihedral angle is 31.455(7)°between the planes of the two terminal aromatic rings.Adjacent Co(Ⅱ)ions are bridged by a water molecule with the Co…Co distance of 0.391 4(2)nm and the Co1—O5—Co1iangle of 130.59(8)°,resulting in the formation of a singly water-bridged Co(Ⅱ)chain along thea-axis(Fig.1b).The bridging water molecule assumes a radial-radial disposition with Co—O distances of 0.214 5(1)and 0.216 3(1)nm.

    Thus,the coordination sites could be properly described ascis-arrangement concerning carboxylate groups and terminal water.In addition,intramolecular hydrogen bonds are observed between the carboxylate groups and coordinated water molecules,which form a compact structure.The intra-chain hydrogen bonds are formed between the water molecule(O6)and carboxylate(O6…O1 0.271 1(1)nm,Table S2),which produces a compact 1D chain.Additionally,weakp-πinteractions are established by C10/C12 and the phenyl rings(from C9 to C12 atoms)with the perpendicular distances of 0.308 6(2)and 0.317 0(2)nm.These chains are stacked through localizedπ-bonding interactions to form a 2D sheet in theacplane(Fig.1c),and further,give rise to a 3D supramolecular network by hydrogen bonds from carboxylate groups(O3…O2 0.274 9(2)nm,Fig.1d).

    Complex 2 features a chain-based 3D network constituted by thep-tpta4-ligands and bridging water molecules.It crystallizes in the triclinicP1 space group with the Ni(Ⅱ)ions located in the inversion centers.The asymmetric unit consists of one crystallographically independent Ni(Ⅱ)ions,halfp-tpta4-anions,three coordinated water molecules,and one lattice water molecule.As depicted in Fig.2a,the Ni(Ⅱ)ions adopt slightly distorted octahedral geometries defined by four water molecules and two carboxylate oxygen atoms from twop-tpta4-ligands.The Ni—O bond lengths are 0.202 8(5)-0.211 5(4)nm(Table S1),similar to those reported for other Ni(Ⅱ)multicarboxylates[25].The completely deprotonatedp-tpta4-ligand serves as a tetradentate ligand to bind four Ni(Ⅱ)ions withμ4-η1∶η1∶η1∶η1coordination mode.The dihedral angle formed by the planes of the two adjacent aromatic rings is 47.939(7)°.Thep-tpta4-ligand is linked to four Ni(Ⅱ)ions in monodentate mode,forming a 2D sheet in theabplane(Fig.2b).Adjacent Ni(Ⅱ)ions are bridged by water molecules to produce a water-bridged metal chain with Ni…Ni 0.387 1(1)nm and Ni—O7—Ni 133.3(2)°along thea-axis(Fig.2c).The octahedral geometries of Ni1 and Ni2 centers are interlinked to each other in a vertex-sharing fashion.Such neighboring 1D chains are further cross-linked via the organic backbonep-tpta4-ligands,generating a 3D pillaredlayered structure with channels along thea-axis(Fig.2d).The lattice water molecules(O8)are located in voids and fixed by coordinated water molecules by hydrogen bonds with O8…O3 0.278 2(9)nm and O5…O8 0.284 9(10)nm.In addition,the intra-chain hydro-gen bonds are generated between water molecules and carboxylate groups(Table S2),forming a compact network structure.From the topological point of view,thep-tpta4-ligand acts as a 4-connector linking four Ni(Ⅱ)ions and each Ni(Ⅱ)ion is a 4-connected node,the network can be simplified as a(4,4)-connected NbO topology[26]with the point symbol{64.82}(Fig.2e).

    Fig.2 (a)Perspective view of the coordination of the Ni(Ⅱ)ion for 2 with the thermal ellipsoids at 45% probability level;(b)2D layered structure formed by p-tpta4-ligands linking to Ni(Ⅱ)ions in the ab plane;(c)1D chain formed by water-bridged Ni(Ⅱ)ions running along[100]direction;(d)Packing of the 3D rhombus structure of 2 with the water molecules residing in channels(hydrogen atoms omitted for clarity);(e)NdO net topology with the point symbol{64.82}for 2

    2.2 PXRD analyses and thermal stability

    PXRD analyses of complexes 1 and 2 had been further performed at room temperature.The experimental patterns were in good agreement with the calculated patterns obtained from the crystal structures,indicating that the single-crystal structures are representative of the bulk materials(Fig.3).

    Fig.3 PXRD patterns of complexes 1(a)and 2(b)

    To investigate the thermal stability of complexes 1 and 2,thermal analyses were performed(Fig.4).For 1,the first weight loss was 10.02% at 398 K,corresponding to the sharp exothermic peak in the DSC(differential scanning calorimetry)curve,which is attributable to the loss of three coordinated water molecules(Calcd.10.43%).Framework decomposition of 1 occurred at 600 K,corresponding to the endothermic peaks of the DSC curve.The TG curve of 2 exhibited two continuous weight loss stages in a range of 333-434 K(16.35%),corresponding to the loss of two lattice water molecules(Calcd.5.42%)and four coordinated water molecules(Calcd.10.85%),respectively.Further,a weight loss of 5.30% is ascribed to the loss of two coordinated water molecules(Calcd.5.42%)in a range of 463-505 K.Finally,the decomposition of organic groups occurred at 723 K.The observed endothermic peaks of the DSC curve were approximate consistency with the TG results.

    2.3 Magnetic properties

    Magnetic measurements of complexes 1 and 2 were performed on powder samples.Magnetic susceptibility data were collected in the 2-300 K range with an applied magnetic field of 1 000 Oe.The magnetic couplings between metal ions with 3d7or 3d8electronic configurations could be effectively transmitted by a single atom bridge.According to the structural features,the complexes can exhibit antiferromagnetic interactions due to the larger bonding angles of M(Ⅱ)—O—M(Ⅱ).

    For complex 1,the temperature dependences of the molar susceptibilitiesχMand its productχMTare depicted in Fig.5.TheχMTvalue was 2.89 cm3·mol-1·K at 300 K,and largely exceeded that expected for the spin-only case(1.875 cm3·mol-1·K)withS=3/2 andg=2.0,indicating that an orbital contribution is involved.Upon cooling,theχMTcurve exhibited a continuous decrease with a minimum of 0.059 cm3·mol-1·K at 2 K,which is indicative of the antiferromagnetic coupling between the Co (Ⅱ) ions.While theχMvalue first increased to a broad maximum at 25 K,then decreased until 6 K,and finally increased again.The increasing trend can be attributed to the trace of paramagnetic impurities in the low-temperature range.Moreover,the presence of a broad maximum in theχMcurve at 25 K shows an antiferromagnetic ordering(Fig.5a).The magnetic susceptibility above 25 K was fitted by the Curie-Weiss law and the parameter(θ=-74.80(2)K,Fig.5b,Inset)can be the combined effect of the orbital contribution and possible antiferromagnetic coupling between the high-spin Co(Ⅱ)ions.The field-dependent magnetization at 2 K further confirms the antiferromagnetic interaction at low temperature,which had a value of 0.16μBat 7 T without saturation(Fig.5b).The hysteresis loop of 1 measured at 2 K exhibited no obvious opening,consistent with the antiferromagnetic phase of 1 under low fields.

    Fig.5(a)Temperature dependence of χMand χMT curves of complex 1;(b)Field dependent magnetization of 1 at 2 K

    For Co(Ⅱ)systems with the spin-orbit coupling contribution,it is difficult to find a precise expression to explain the magnetic properties of polymeric chains.This is due to the strong orbital contribution to the magnetic moment and thus to a strong magnetic anisotropy.The lines model is only valid for the ideal octahedral geometries of the Co(Ⅱ)ions with theOhsymmetry.However,a small deviation of the octahedron does not exert a significant influence on the magnetic property of the 1D infinite Co(Ⅱ)chain.Firstly,we have attempted to reproduce theoretically the experimental susceptibility by using the classical spin Heisenberg chain model[27]through the Hamiltonian(H→ =-J∑S→iS→i+1,J<0),in whichJis the nearest neighbor magnetic exchange constant andS→iis the total spin operator on sitei.Thus,the magnetic data of 1 was fitted by Eq.1:

    whereNA,g,μB,k,andTare the Avogadro constant,gfactor,the Bohr magneton,the Boltzmann constant,and the temperature of magnetic coupling,respectively.In addition,x=|J|/(kT),whereJis the intrachain spinexchange parameter between the adjacent Co(Ⅱ)ions.Some correction terms for a proportionρof paramagnetic impurity and temperature-independent paramagnetism(TIP)are included as appropriate.Srepresents the spin quantum number associated with mononuclear high spin Co(Ⅱ)ions.The total magnetic susceptibility is Eq.2:

    The best fits to the experimental data wereg=2.41(3),J=-9.94(3)cm-1,ρ=0.002 2(1),TIP=1.41(2)×10-4cm3·mol-1,andR=9.82×10-5for 1 in the total temperature range.A negativeJvalue indicates an antiferromagnetic coupling occurring between the Co(Ⅱ)ions.To determine thegfactor of the antiferromagnetic interaction,the ESR of the crystal powder sample was recorded.The ESR spectra of complex 1 had broad signals at 2 and 100 K and thegvalue obtained was 2.376(Fig.6).We did not try to assign other spectra since complicated transitions between spectral terms of the octahedral Co(Ⅱ)system.

    Fig.6 ESR spectra of the powder sample of complex 1 at 2 and 100 K

    Additionally,theχMTcurve can be fitted by using an expression derived from Rueff et al[28-29].According to the above description of theχMvsTcurve,the contribution of the paramagnetic Co(Ⅱ) ions(ρ)was added.The expression has been modified to be the following Eq.3,which can estimate the antiferromagnetic interactions of low-dimensional Co(Ⅱ)systems and adequately describe the spin-orbit coupling.Some reasonable results for magnetic coupling and spin-orbit interaction have been reported for 1D and,even,for 2D cobalt(Ⅱ)complexes.

    Here,the sum ofAandBis Curie constant(2.8-3.4 cm3·mol-1·K)for octahedral Co(Ⅱ) ions,andE1andE2represent the“activation energies”corresponding to the spin-orbit coupling and the antiferromagnetic exchange interaction,respectively.The best fit to the experimental data wasA=1.86(7)cm3·mol-1·K,E1/k=54.08(1)K,B=1.61(8)cm3·mol-1·K,E2/k=14.99(7)K,and the paramagnetic impurityρ=0.047(Fig.5a).The value found forA+B(3.47 cm3·mol-1·K)perfectly agreed with the Curie constant.Likewise,E1/k=55.72(2)K was consistent with those given by Rueff et al.for both the effects of spin-orbit coupling and site distortion in various Co(Ⅱ) complexes.E2> 0 indicates the antiferromagnetic interaction within the chain.

    For complex 2,the temperature dependences of the molar susceptibilities are shown in Fig.7a.TheχMTvalue was around 1.67(2)cm3·mol-1·K for 2 at 300 K,larger than the spin-only value(1.00 cm3·mol-1·K)expected for an isolated high-spin Ni(Ⅱ)ion(g=2.0 andS=1).Upon cooling,theχMTvalue gradually decreased to a minimum of 0.030(2)cm3·mol-1·K at 2 K,indicating the presence of an antiferromagnetic coupling between the Ni(Ⅱ) ions.The value ofχMcontinuously increased to a peak maximum(0.011 cm3·mol-1)at about 35 K,and then increased rapidly at 8 K,which shows the appearance of the trace of paramagnetic impurities in the low-temperature range.The magnetic susceptibility in a range of 50-300 K followed the Curie-Weiss law withC=2.39(2)cm3·mol-1·K andθ=-148.73(2)K(Fig.7b,Inset)for 2.The significantly negativeθvalue further indicates antiferromagnetic interaction between the Ni(Ⅱ)ions.

    According to the magnetic structure of 2,the magnetic coupling model can be handled as 1D uniform spin chains,whereas the interchain magnetic interaction should be ignored due to the longer distance of the ligand(Ni…Ni 0.898 4(1)nm).Thus,the magnetic exchange of 2 is only transmitted by a single waterbridged pathway with the Ni…Ni distance of 0.387 1(1)nm and Ni—Ow—Ni bonding angle of 133.34°,respectively.To estimate the intrachain interaction,we employed an isotropic Heisenberg chain to simulate the intra-chain antiferromagnetic coupling.The magnetic susceptibility was simulated within the classical approach according to Eq.4[30-31]:

    wherex=|J|/(kT),Jis the intrachain spin-exchange parameter of the adjacent Ni(Ⅱ)ions.According to the above description of theχMvsTcurve,the contribution of the paramagnetic Ni(Ⅱ) ions(ρ)and the TIP for the Ni(Ⅱ)complex were added.Thus,the fitting equation of total magnetic susceptibilities of 2 can be modified to Eq.5:

    The lines model can be successfully used to treat the magnetic data of the Ni(Ⅱ)compound.The best fits to the experimental data wereg=2.19(2),J=-31.31(4)cm-1,ρ=0.011(3)and TIP=4.74(2)×10-4cm3·mol-1,and

    R=1.62×10-5for 2 over the whole temperature range.Thegvalue is corresponding to the expectation for the reported Ni(Ⅱ) complexes[15,32].NegativeθandJvalues indicate antiferromagnetic interaction exchanged by the single water bridge between the Ni(Ⅱ)ions.The magnetization at 70 kOe(about 0.14μB)was far from the saturation value for one octahedral Ni(Ⅱ)ion at 2 K(Fig.7b),indicating antiferromagnetic coupling between the Ni(Ⅱ)ions.The hysteresis loop measured at 2 K exhibited no obvious opening,consistent with the antiferromagnetic phase under low fields.Compared with the Ni(Ⅱ) complexes involvingμ-oxo bridges(Table 2),one of the influence factors of magnetic exchange depends on the Ni—O—Ni bonding angles.The relationship is found between theJvalues and the bridging angles,for which a limit value of 97°,the magnetic interaction being antiferromagnetic for larger values of this angle.The most common feature of complexes containingμ-oxo bridges is several multiplicity bridges(double or triple bridges).The magnetic exchange could be mediated and counterbalanced depending on the Ni—O—Ni angles.However,magneto-structural studies on similar Ni(Ⅱ)complexes with a single-water bridge are scarce.The magnetic behavior of 2 agrees with the view that an anti-ferromagnetic interaction occurs by the larger Ni—O—Ni bonding angles between adjacent Ni(Ⅱ)ions.The coupling interaction is transmitted by a singleμ-oxo bridge,avoiding other effects from magnetic exchange mediums.It is worthwhile to the analysis of magnetic exchange relying on simultaneously multiple bridges.

    Table 2 Structural and magnetic parameters with the μ-oxo-bridged unit

    3 Conclusions

    In summary,two water-bridged Co(Ⅱ) and Ni(Ⅱ)complexes based on isomericm-H4tpta andp-H4tpta ligands have been successfully synthesized and structurally characterized.Complex 1 shows a 1D chain structure and is further extended to a 3D supramolecular architecture by intermolecular interactions.Complex 2 displays a(4,4)-connected 3D network with a single water-bridged Ni(Ⅱ)metal chain.Magnetic studies indicate that complex 1 shows antiferromagnetic behavior(E2/k=14.99(7)K)in the uniform chain model.Complex 2 exhibits an antiferromagnetic interaction(J=-31.31(4)cm-1)between intrachain Ni(Ⅱ)ions corresponding to larger Ni—Ow—Ni angles.Magnetic exchange interactions involvingμ-oxo bridges are com-mon in the coordination compounds.However,magnetic interactions transmitted via a single water-bridged mode are scarce,especially in Co(Ⅱ)/Ni(Ⅱ) coordination polymers.Single water-bridged Co(Ⅱ)/Ni(Ⅱ) chain complexes are rich sources for magnetic models,which provide an option for the analysis of multiple-bridged magnetic interaction involvingμ-oxo bridge.

    Conflicts of interest:The authors declare no competing financial interest.

    Supporting information is available at http://www.wjhxxb.cn

    亚洲三级黄色毛片| 夜夜看夜夜爽夜夜摸| 国产精品国产三级专区第一集| 99热网站在线观看| 一区二区三区免费毛片| 免费黄频网站在线观看国产| 国产黄片美女视频| 亚洲国产av新网站| 亚洲va在线va天堂va国产| 在线亚洲精品国产二区图片欧美 | 伦精品一区二区三区| 国产免费福利视频在线观看| 高清av免费在线| 美女福利国产在线| 亚洲美女搞黄在线观看| 国产欧美亚洲国产| 美女主播在线视频| 国产日韩一区二区三区精品不卡 | 特大巨黑吊av在线直播| 高清视频免费观看一区二区| 美女主播在线视频| 久久午夜福利片| 中文字幕免费在线视频6| 国产精品99久久久久久久久| 欧美日韩视频精品一区| 高清不卡的av网站| 极品少妇高潮喷水抽搐| 国产免费福利视频在线观看| 免费av中文字幕在线| 国产老妇伦熟女老妇高清| 国产亚洲av片在线观看秒播厂| 三级经典国产精品| 99久久中文字幕三级久久日本| 久久午夜福利片| 亚洲精品乱码久久久v下载方式| 看免费成人av毛片| 国产一区二区在线观看av| 久久韩国三级中文字幕| 中文字幕人妻熟人妻熟丝袜美| 夫妻性生交免费视频一级片| 亚洲激情五月婷婷啪啪| 国产午夜精品久久久久久一区二区三区| 中文字幕人妻丝袜制服| 中文字幕人妻丝袜制服| 久久99一区二区三区| 国产精品福利在线免费观看| 99热网站在线观看| 国产精品一区二区在线不卡| 最近2019中文字幕mv第一页| 国产精品99久久久久久久久| 少妇人妻一区二区三区视频| 少妇猛男粗大的猛烈进出视频| 三上悠亚av全集在线观看 | 性色avwww在线观看| 精品人妻一区二区三区麻豆| 99精国产麻豆久久婷婷| 色婷婷av一区二区三区视频| 日韩av免费高清视频| 日日爽夜夜爽网站| 乱人伦中国视频| h日本视频在线播放| 人人妻人人澡人人看| 久久韩国三级中文字幕| 亚洲美女搞黄在线观看| 日本黄大片高清| 中文精品一卡2卡3卡4更新| av不卡在线播放| av在线老鸭窝| 男女边摸边吃奶| 噜噜噜噜噜久久久久久91| 青春草国产在线视频| 日韩精品免费视频一区二区三区 | 99久久精品国产国产毛片| 乱系列少妇在线播放| 精品99又大又爽又粗少妇毛片| 亚洲丝袜综合中文字幕| 午夜福利在线观看免费完整高清在| 97超视频在线观看视频| 久久人人爽人人片av| 日韩在线高清观看一区二区三区| 国产黄频视频在线观看| av卡一久久| 久久精品国产a三级三级三级| 亚洲av二区三区四区| 日本vs欧美在线观看视频 | 国产女主播在线喷水免费视频网站| 午夜激情久久久久久久| 国产69精品久久久久777片| 99re6热这里在线精品视频| 成人黄色视频免费在线看| 一区二区三区四区激情视频| 国产91av在线免费观看| 亚洲av日韩在线播放| 一边亲一边摸免费视频| 超碰97精品在线观看| 日韩,欧美,国产一区二区三区| 69精品国产乱码久久久| 一本大道久久a久久精品| 美女中出高潮动态图| 国内少妇人妻偷人精品xxx网站| 免费av中文字幕在线| 青春草国产在线视频| 欧美日本中文国产一区发布| 成人国产麻豆网| 最后的刺客免费高清国语| tube8黄色片| 我的老师免费观看完整版| 97在线视频观看| 人妻系列 视频| 国产成人freesex在线| 日韩不卡一区二区三区视频在线| 精品国产国语对白av| 亚洲国产精品国产精品| 欧美xxⅹ黑人| 一级a做视频免费观看| 能在线免费看毛片的网站| 最近手机中文字幕大全| 一本久久精品| 久久久久国产精品人妻一区二区| 国产一区有黄有色的免费视频| 我的老师免费观看完整版| 夫妻午夜视频| 午夜精品国产一区二区电影| .国产精品久久| 精品午夜福利在线看| 狂野欧美激情性bbbbbb| 欧美人与善性xxx| 少妇丰满av| 亚洲va在线va天堂va国产| 精品视频人人做人人爽| 婷婷色综合大香蕉| 亚洲精品日本国产第一区| 另类亚洲欧美激情| 亚洲欧洲国产日韩| 国产精品99久久99久久久不卡 | 亚洲精品久久久久久婷婷小说| 日韩成人av中文字幕在线观看| 免费黄网站久久成人精品| 国产av码专区亚洲av| 久久久国产一区二区| a级毛色黄片| 五月开心婷婷网| 一本色道久久久久久精品综合| 国产精品久久久久久精品电影小说| 18+在线观看网站| 亚洲欧美精品专区久久| 一本久久精品| 在线精品无人区一区二区三| 日本wwww免费看| 日本欧美国产在线视频| 精品人妻熟女毛片av久久网站| 亚洲欧美成人综合另类久久久| 亚洲精品国产av成人精品| 80岁老熟妇乱子伦牲交| 久久99一区二区三区| 只有这里有精品99| 精品久久久久久久久亚洲| 草草在线视频免费看| 最新中文字幕久久久久| 男女国产视频网站| 中文乱码字字幕精品一区二区三区| 国产深夜福利视频在线观看| 五月开心婷婷网| 亚洲国产欧美在线一区| 欧美日韩亚洲高清精品| 交换朋友夫妻互换小说| av在线播放精品| 丝袜喷水一区| 69精品国产乱码久久久| av不卡在线播放| 午夜福利,免费看| 精品久久久久久电影网| 99热这里只有是精品在线观看| 久久久久久久久久久免费av| 国产亚洲91精品色在线| 纯流量卡能插随身wifi吗| 精品熟女少妇av免费看| 亚洲欧美日韩卡通动漫| 日韩视频在线欧美| 街头女战士在线观看网站| 美女内射精品一级片tv| 秋霞伦理黄片| 国产成人免费观看mmmm| 国产精品久久久久久久久免| 日本免费在线观看一区| 免费观看无遮挡的男女| 国产又色又爽无遮挡免| 爱豆传媒免费全集在线观看| 人妻系列 视频| 久久国产亚洲av麻豆专区| 国产日韩欧美在线精品| 日韩不卡一区二区三区视频在线| a 毛片基地| 国产在线视频一区二区| 伦理电影免费视频| 丝袜喷水一区| 视频区图区小说| 亚洲欧美一区二区三区国产| www.av在线官网国产| 国产男人的电影天堂91| 久久久久久人妻| 精品人妻偷拍中文字幕| 午夜老司机福利剧场| 国产精品国产av在线观看| 久久久久精品久久久久真实原创| 成年人午夜在线观看视频| 十八禁网站网址无遮挡 | 久久婷婷青草| 99热网站在线观看| 国产精品久久久久久久久免| 午夜福利网站1000一区二区三区| 久久97久久精品| 大又大粗又爽又黄少妇毛片口| 日本色播在线视频| 亚洲欧美日韩另类电影网站| h日本视频在线播放| 男女国产视频网站| 国产色婷婷99| 女人精品久久久久毛片| 三级国产精品片| 国产有黄有色有爽视频| 丰满迷人的少妇在线观看| 久久久a久久爽久久v久久| 国产精品成人在线| 亚洲国产精品成人久久小说| 性高湖久久久久久久久免费观看| 国产精品免费大片| 人妻系列 视频| 亚洲无线观看免费| 男人舔奶头视频| 一边亲一边摸免费视频| 欧美 亚洲 国产 日韩一| 亚洲av不卡在线观看| 国产探花极品一区二区| 亚洲熟女精品中文字幕| 亚洲色图综合在线观看| 三上悠亚av全集在线观看 | 欧美 亚洲 国产 日韩一| 一个人看视频在线观看www免费| 日韩三级伦理在线观看| 国产欧美日韩一区二区三区在线 | 伦理电影免费视频| 国产淫语在线视频| 各种免费的搞黄视频| 一级av片app| 国产成人精品无人区| 91精品伊人久久大香线蕉| 蜜桃在线观看..| 国产精品国产三级国产av玫瑰| 国产无遮挡羞羞视频在线观看| 亚洲欧美精品自产自拍| 久久6这里有精品| 国产伦精品一区二区三区四那| 日韩不卡一区二区三区视频在线| 日韩一区二区三区影片| 国产精品一区二区性色av| 久久精品久久精品一区二区三区| 伊人久久国产一区二区| 国产精品久久久久成人av| 国产精品一二三区在线看| 日韩精品免费视频一区二区三区 | 亚洲国产av新网站| 人妻人人澡人人爽人人| 国产日韩欧美在线精品| 久久免费观看电影| 免费大片18禁| 91精品国产九色| 日韩一本色道免费dvd| 亚洲综合精品二区| 国产精品一区二区三区四区免费观看| 观看美女的网站| 日韩一区二区视频免费看| 成人国产av品久久久| 国产亚洲av片在线观看秒播厂| 欧美激情极品国产一区二区三区 | 99热这里只有精品一区| 国产精品久久久久久久电影| 亚洲国产欧美在线一区| 97精品久久久久久久久久精品| 一个人看视频在线观看www免费| 国产精品国产三级国产av玫瑰| 18禁动态无遮挡网站| 国产极品天堂在线| 亚洲人与动物交配视频| 男的添女的下面高潮视频| 日韩免费高清中文字幕av| 女人久久www免费人成看片| 91久久精品国产一区二区三区| 亚洲av成人精品一区久久| 亚洲欧美成人综合另类久久久| 啦啦啦啦在线视频资源| 蜜臀久久99精品久久宅男| 男人爽女人下面视频在线观看| 亚洲成人av在线免费| 久久6这里有精品| 午夜福利,免费看| 夫妻午夜视频| a级一级毛片免费在线观看| 国产一区亚洲一区在线观看| 老熟女久久久| 国产一区二区在线观看av| 女的被弄到高潮叫床怎么办| 自拍偷自拍亚洲精品老妇| 亚洲欧美一区二区三区国产| 三级国产精品欧美在线观看| 最后的刺客免费高清国语| 五月开心婷婷网| 色视频在线一区二区三区| 少妇被粗大的猛进出69影院 | 高清黄色对白视频在线免费看 | 热re99久久国产66热| 久久久久久久精品精品| 热99国产精品久久久久久7| 色5月婷婷丁香| 桃花免费在线播放| 国产乱来视频区| 亚洲欧美日韩东京热| 成人国产av品久久久| 欧美日韩一区二区视频在线观看视频在线| √禁漫天堂资源中文www| 国产欧美日韩一区二区三区在线 | 99国产精品免费福利视频| 久久99精品国语久久久| 久久午夜福利片| 国产av一区二区精品久久| 又大又黄又爽视频免费| 韩国高清视频一区二区三区| 久久女婷五月综合色啪小说| 男女边吃奶边做爰视频| 香蕉精品网在线| 人体艺术视频欧美日本| 精华霜和精华液先用哪个| 永久网站在线| 日韩三级伦理在线观看| 国产老妇伦熟女老妇高清| 亚洲精华国产精华液的使用体验| 久久精品国产自在天天线| 日韩强制内射视频| 亚洲精品456在线播放app| 国产高清不卡午夜福利| 国产欧美另类精品又又久久亚洲欧美| 国产 精品1| 下体分泌物呈黄色| 色视频www国产| 女性生殖器流出的白浆| 精品久久久久久久久av| 狠狠精品人妻久久久久久综合| 交换朋友夫妻互换小说| 免费观看性生交大片5| 成年女人在线观看亚洲视频| 国产一区二区在线观看日韩| 老司机影院成人| 欧美激情国产日韩精品一区| 777米奇影视久久| 亚洲国产成人一精品久久久| 成人毛片a级毛片在线播放| 亚洲精品久久午夜乱码| 久久久久久久亚洲中文字幕| 久久99蜜桃精品久久| 美女cb高潮喷水在线观看| 亚洲国产精品999| 日韩中文字幕视频在线看片| 成人二区视频| 在线看a的网站| 热re99久久国产66热| 国产伦理片在线播放av一区| 十分钟在线观看高清视频www | 精品亚洲成国产av| 91aial.com中文字幕在线观看| 高清欧美精品videossex| 一个人看视频在线观看www免费| 精品午夜福利在线看| 国产精品久久久久久精品古装| 亚洲国产精品一区二区三区在线| av国产精品久久久久影院| av专区在线播放| 亚洲国产精品专区欧美| 少妇熟女欧美另类| 夜夜看夜夜爽夜夜摸| 校园人妻丝袜中文字幕| 中文字幕久久专区| 看非洲黑人一级黄片| 乱系列少妇在线播放| 国产精品.久久久| 国产高清国产精品国产三级| 日本91视频免费播放| 日本av免费视频播放| 精品一区二区三区视频在线| 夫妻性生交免费视频一级片| 国产精品女同一区二区软件| 在线观看一区二区三区激情| 69精品国产乱码久久久| 免费黄色在线免费观看| 成人亚洲欧美一区二区av| 少妇裸体淫交视频免费看高清| 大又大粗又爽又黄少妇毛片口| 少妇人妻 视频| 在线观看www视频免费| 在线看a的网站| 毛片一级片免费看久久久久| 国产成人午夜福利电影在线观看| 成人国产av品久久久| 日产精品乱码卡一卡2卡三| 亚洲高清免费不卡视频| av专区在线播放| 亚洲国产av新网站| 国产黄色视频一区二区在线观看| 国产男女超爽视频在线观看| 天堂8中文在线网| 国产淫语在线视频| 桃花免费在线播放| 欧美日韩亚洲高清精品| 91午夜精品亚洲一区二区三区| 最后的刺客免费高清国语| 日本黄色日本黄色录像| 成人特级av手机在线观看| 国产高清三级在线| 亚洲av成人精品一二三区| 99热这里只有是精品在线观看| 人妻夜夜爽99麻豆av| 亚洲婷婷狠狠爱综合网| 亚洲在久久综合| 国产精品一区二区在线不卡| 中文字幕久久专区| 女人精品久久久久毛片| 晚上一个人看的免费电影| av在线观看视频网站免费| 丝袜脚勾引网站| 中文字幕人妻丝袜制服| 卡戴珊不雅视频在线播放| 久久av网站| 国产亚洲午夜精品一区二区久久| 久久精品国产a三级三级三级| 自拍偷自拍亚洲精品老妇| 最近2019中文字幕mv第一页| 亚洲欧美精品自产自拍| 亚洲国产最新在线播放| 国产一区二区三区综合在线观看 | 永久网站在线| 精品国产国语对白av| 女性生殖器流出的白浆| 国产综合精华液| 人妻一区二区av| 激情五月婷婷亚洲| 精品视频人人做人人爽| 亚洲精品乱久久久久久| 亚洲国产精品国产精品| 国内揄拍国产精品人妻在线| 婷婷色av中文字幕| 国产极品天堂在线| 日韩 亚洲 欧美在线| 亚洲欧美精品自产自拍| 99久国产av精品国产电影| 一级毛片aaaaaa免费看小| 国产一区二区在线观看av| 中文字幕亚洲精品专区| 国产精品无大码| 人妻系列 视频| 久久久亚洲精品成人影院| 在现免费观看毛片| 插逼视频在线观看| 91精品国产国语对白视频| 国产成人一区二区在线| av有码第一页| 黄色怎么调成土黄色| 色5月婷婷丁香| 久久影院123| 国产av一区二区精品久久| 国产成人精品婷婷| 一个人免费看片子| 亚洲av.av天堂| 中文字幕免费在线视频6| 中文欧美无线码| 99热6这里只有精品| 日本黄大片高清| 免费观看的影片在线观看| 久久国产精品大桥未久av | 大香蕉久久网| 啦啦啦中文免费视频观看日本| 麻豆成人av视频| 久久人人爽av亚洲精品天堂| 亚洲欧美成人精品一区二区| 一级a做视频免费观看| 日韩电影二区| 国产亚洲91精品色在线| 在线观看一区二区三区激情| 成人国产av品久久久| 免费观看a级毛片全部| 另类精品久久| 久久99蜜桃精品久久| 国产乱来视频区| 免费高清在线观看视频在线观看| 51国产日韩欧美| 久久久亚洲精品成人影院| 男人爽女人下面视频在线观看| 永久网站在线| 免费观看的影片在线观看| 精品熟女少妇av免费看| 午夜老司机福利剧场| 在线天堂最新版资源| 王馨瑶露胸无遮挡在线观看| .国产精品久久| 一区二区三区免费毛片| 老司机影院毛片| 美女内射精品一级片tv| 国产精品一区二区在线观看99| 六月丁香七月| 国产白丝娇喘喷水9色精品| 亚洲欧美日韩卡通动漫| www.av在线官网国产| 国产黄片视频在线免费观看| 伦精品一区二区三区| 人人澡人人妻人| 久久精品国产亚洲av涩爱| 最近中文字幕高清免费大全6| 久久久久久久久久成人| 午夜免费鲁丝| 欧美+日韩+精品| 天堂8中文在线网| 日本黄色日本黄色录像| 啦啦啦中文免费视频观看日本| 国产在线视频一区二区| 亚洲欧美日韩卡通动漫| 女性生殖器流出的白浆| 毛片一级片免费看久久久久| 久久女婷五月综合色啪小说| 成人无遮挡网站| 精品国产露脸久久av麻豆| 一级毛片我不卡| 大陆偷拍与自拍| 亚洲国产最新在线播放| 全区人妻精品视频| 色婷婷久久久亚洲欧美| 国产女主播在线喷水免费视频网站| 男人和女人高潮做爰伦理| 欧美精品一区二区大全| 亚洲国产色片| 日韩一本色道免费dvd| 免费在线观看成人毛片| 日日啪夜夜撸| 韩国高清视频一区二区三区| 日本av免费视频播放| 18禁动态无遮挡网站| 视频区图区小说| 亚洲图色成人| 一级毛片 在线播放| 乱码一卡2卡4卡精品| 亚洲av福利一区| 国产在线男女| 狂野欧美激情性xxxx在线观看| 亚洲,欧美,日韩| 9色porny在线观看| 亚洲欧美日韩东京热| 亚洲成人手机| 免费观看av网站的网址| 亚洲国产色片| 久久久亚洲精品成人影院| 99热这里只有是精品在线观看| 欧美日韩在线观看h| 蜜桃久久精品国产亚洲av| 日本vs欧美在线观看视频 | 亚洲国产精品专区欧美| 久久久久久久亚洲中文字幕| 又粗又硬又长又爽又黄的视频| 80岁老熟妇乱子伦牲交| 一级毛片电影观看| 色5月婷婷丁香| 91精品国产国语对白视频| 欧美日韩综合久久久久久| 亚洲四区av| 日韩人妻高清精品专区| 三级国产精品片| 国产精品无大码| 国产乱人偷精品视频| 精品久久久久久久久av| 国产av一区二区精品久久| 91久久精品国产一区二区三区| 亚洲欧美成人精品一区二区| 午夜免费鲁丝| 国产白丝娇喘喷水9色精品| 2021少妇久久久久久久久久久| 交换朋友夫妻互换小说| 免费在线观看成人毛片| av福利片在线| 91成人精品电影| 欧美国产精品一级二级三级 | 偷拍熟女少妇极品色| www.av在线官网国产| 好男人视频免费观看在线| 亚洲第一区二区三区不卡| 国产精品99久久99久久久不卡 | 久久久久国产网址| 六月丁香七月| 三级国产精品欧美在线观看| 51国产日韩欧美| 免费观看a级毛片全部| 国产乱人偷精品视频| 日韩中文字幕视频在线看片| 国产精品国产av在线观看| 亚洲色图综合在线观看| 老司机影院毛片| 9色porny在线观看| 国产毛片在线视频| 久久韩国三级中文字幕| 欧美三级亚洲精品| 在线免费观看不下载黄p国产| 久久国产乱子免费精品| 精品人妻一区二区三区麻豆| 2018国产大陆天天弄谢| 亚洲精品一二三| 亚洲婷婷狠狠爱综合网| 中文天堂在线官网| 丝袜在线中文字幕| 五月玫瑰六月丁香| 亚洲国产精品999|