• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrogen Storage Capabilities of the Low-Lying Ca2B4Clusters

    2022-07-12 07:40:16TANGYuPengZHAOYanFeiYANGHaiYingLINan

    TANG Yu-PengZHAO Yan-FeiYANG Hai-YingLI Nan

    (1Department of Applied chemistry,Yuncheng University,Yuncheng,Shanxi 044000,China)(2Science Experiment Center,Yuncheng University,Yuncheng,Shanxi 044000,China)(3State Key Laboratory of Explosion Science and Technology,School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China)

    Abstract:The structural feature and electronic property of Ca2B4,as well as its potential for hydrogen storage,have been studied using density functional theory.The first,second,and fourth low-lying isomers Ca2B401,Ca2B402,and Ca2B404 have high stabilities in thermodynamics and can adsorb 12,12,and 10 H2molecules with respective H2 gravimetric uptake capacity of 16.3%,16.3%,and 14.0%,which far exceeds the target(5.5%)proposed by the US department of energy(DOE).The average absorption energies per H2molecule are in the range of 0.58-4.21 eV for Ca2B401(H2)12,0.54-3.69 eV for Ca2B402(H2)12,and 0.10-0.12 eV for Ca2B404(H2)10.Born-Oppenheimer molecular dynamic(BOMD)simulations indicate Ca2B401 and Ca2B402 are promising candidates for adsorbing hydrogen,but Ca2B404 is not.The results of hydrogen adsorption energies with Gibbs free energy correction indicate that 12 H2 molecules on Ca2B401 and Ca2B402 are energetically favorable with a wide range of temperatures at 101 325 Pa.

    Keywords:hydrogen storage;density functional theory;absorption;molecular dynamic;Gibbs free energy

    Hydrogen is considered to be a sustainable and eco-friendly energy carrier because of its abundance,easy synthesis,and high heat thermal capacity on the earth[1-2].However,the wide-scale use of hydrogen fuel hinges on our ability to find safe and cost-effective hydrogen storage materials.The ideal hydrogen storage materials should meet the stringent requirements:high gravimetric and volumetric density,fast kinetics,and thermodynamics that allow reversible hydrogen adsorption and desorption in H2molecular form to take place under ambient conditions[3-6].According to the guidelines set by the US Department of Energy(DOE),a minimum requirement for a system to be a potential hydrogen storage candidate is that it should possess a minimum H2gravimetric uptake capacity of 5.5% and delivery under 1 200 kPa pressure in the operating ambient temperature range of 233 to 333 K[7].

    Traditionally,the storage materialsbind the hydrogen atoms primarily through three different processes[1,6].In chemisorption,the H2molecules dissociate into individual atoms,migrate into the storage material,and are strongly bonded with the binding energy in the range of 2-4 eV like chemical hydrides[8-9],in which the strong interaction makes it difficult to release H2during application.On the other hand,like the pure carbon-based nanostructures,the H2is bonded weakly via physisorption and remains in its molecular form with the binding energy in the range of few meV[10].However,the major drawbacks in physisorption are that the adsorption must be carried out at a very low temperature and high gas pressure.Recently,more attempts have been made to design and develop new hydrogen storage materials based on the third form of adsorption,which is intermediate between physisorption and chemisorption with the binding energy of 0.1-0.8 eV and considered to be essential for the faster adsorption and desorption kinetics for vehicular application.It includes metal-decorated nanomaterials[11-18],transition metal-acetylene/ethylene[19-28],and transition metal clusters[29-33].For example,Sun et al.[14]predicted the hydrogen storage capacities of the Li12C60cluster in which each Li atom could adsorb a maximum of 5 H2molecules leading to a gravimetric density(w/w)of 13%.Durgun et al.[23]theoretically indicated Ti2-C2H4could adsorb a maximum of 10 H2molecules with the average binding energy of 0.45 eV.Du et al.[29]recently predicted that the carbon motif CTi72+could bind 20 H2molecules at most,which resulted in a gravimetric density of 19%.

    Compared with carbon-based materials,metaldecorate boron clusters have also been considered a promising candidate for hydrogen storage[34-42].For example,B6Li8was predicted to be an excellent hydrogen storage media with gravimetric density likely reaching up to a theoretical limit of 24%[35].Du et al.[39]have investigated the hydrogen storage capacity of the Saturn-like charge-transfer complex Li4B40,in which each Li atom could bind 6 H2molecules at most resulting in the gravimetric density of 10.4%.Just like the alkali metal decorated materials,boron clusters doped by transition metals have become a research hotspot[43-47].Very recently,the highly stable Sc2B42+cluster was investigated as a promising candidate for hydrogen storage material,which corresponded to a hydrogen uptake of 17.49% and average binding energy of 0.42 eV[46].As we know,the transition metal Sc is expensive and charge neutrality should be a consideration in the engineering of practical materials for hydrogen storage.On the other hand,we have called attention to the isoelectronic relationship of a Ca atom to a Sc+ion.Moreover,calcium has been suggested to functionalize the nanomaterials as hydrogen storage materials because of its relatively small cohesive energy and moderate interaction with H2molecules[15-16,40-41,48].For example,the inverse sandwich Ca2B8was found to be a promising hydrogen storage material that showed moderate adsorption energy and high gravimetric density(10.6%)for H2[48].

    Therefore,in the current work,we choose Ca2B4as the theoretical research model to investigate the corresponding geometrical configuration and electronic structures,and further probe into the hydrogen storage abilities of the low-lying isomers.

    1 Computational methods

    The 1 000 initial structures of Ca2B4were generated by a stochastic search method embedded in the Molclus program[49],and the resulting structures were optimized in the singlet state and triplet state at the PBE0/6-311+G(d)level[50-53],respectively.The PBE0 functional is an effective tool in studies of the metaldoped boron clusters[54-55].The vibrational frequencies of all the local minima were confirmed at the same level to guarantee that the structures optimized are true minima on the potential energy surface.To obtain the reasonable adsorption energy of H2molecules on Ca2B4clusters,the molecular structures of the isolated and H2-adsorbed Ca2B4were further fully optimized without any symmetry constraints using the ωB97XD functional[56]in conjunctions with 6-311+G(d,p)basis set.The ωB97XD functional with the long-range interactions has been proven to be an authentic method for predicting non-covalent interactions[29,39,42-43].The basis set superposition errors(BSSE)[57]were corrected using the full counterpoise method for all the H2-adsorbed Ca2B4structures.To evaluate the reversibility of storage of H2molecules,the successive adsorption energy(ΔEs)and the average absorption energy per H2molecule(ΔEa)were calculated at ωB97XD/6-311+G(d,p)level according to the following formulas:

    WhereEXstands for the total energy of X(X=Ca2B4,H2,Ca2B4(H2)n-1,Ca2B4(H2)n).Notably,the spontaneous adsorption of H2can occur if the ΔEsis positive,and the negative ΔEsmeans the successive adsorption is difficult.

    The H2gravimetric density of Ca2B4was calculated using the following equation:

    Gravimetric density=MH2/(MH2+MCa2B4)×100% (3)WhereMH2represents the mass of the total number of H2molecules adsorbed andMCa2B4represents the mass of the host Ca2B4.

    Besides,Born-Oppenheimer molecular dynamics(BOMD)simulations at the temperatures of 77 and 300 K were performed for the relaxed structures of selected species Ca2B401(H2)12,Ca2B402(H2)12,and Ca2B404(H2)10at the ωB97XD/6-31+G(d,p)level.

    All the geometry optimization and property calculation were performed using the Gaussian 09 package.

    2 Result and discussion

    2.1 Geometrical and electronic structure of Ca2B4

    2.1.1 Geometrical structure of Ca2B4

    A total of 16 low-lying isomers for Ca2B4were identified via extensive structural searches.To ensure the energetics,all optimized isomers were benchmarked using single-point CCSD(T)[58]calculations.Fig.1 represents the structures and relative energies of each isomer at the CCSD(T)/6-311+G(d)//PBE0/6-311+G(d)level.Ca2B401 is the most stable structure,which is only 0.035,0.078,and 0.089 eV less in energy than the top three competitors(Ca2B402,Ca2B403,and Ca2B404),respectively.On the other hand,although Ca2B402 and Ca2B403 have the same geometries,Ca2B402 with a singlet state is more stable than the triplet Ca2B403.Therefore,the geometrical configurations,electronic properties,and the hydrogen storage abilities for the first,second,and fourth low-lying isomers Ca2B401,Ca2B402,and Ca2B404 were researched.The calculated key bond lengths of the bare and H2adsorbed compounds Ca2B401,Ca2B402,and Ca2B404 at ωB97XD/6-311+G(d,p)level are listed in Table 1.Notably,Ca2B401(H2)12and Ca2B402(H2)12have the same geometries.Comparing the isolated Ca2B4isomers,the corresponding B—B and B—Ca bonds in Ca2B402(H2)12and Ca2B404(H2)10are not considerable change,which indicates the structures of Ca2B4are not distorted with adsorption of a maximum of H2molecules.Moreover,the smallest vibrational frequency(Table 1)of the bare isomers is predicted to be 98,115,and 130 cm-1,which are sufficiently large to meet a stability criterion suggested by Hoffmann et al.[59].In addition,the energy gap(ΔEHL)between the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)was also calculated to analyze the stabilities of Ca2B401,Ca2B402,and Ca2B404 due to a large ΔEHLcan reflect the high stabilities of compounds.The ΔEHLof Ca2B401,Ca2B402,and Ca2B404 are 4.02,4.16,and 4.88 eV,respectively,indicating the three clusters have high stabilities.To further study the thermodynamic stabilities,BOMD simulations were carried out for 5 ps at 300 K.As shown in Fig.2,the relative potential energies for Ca2B401,Ca2B402,and Ca2B404 in the simulated time show slight oscillations,suggesting their high stabilities at room temperature.To gain clear geometries,the extracted snapshots of Ca2B401,Ca2B402,and Ca2B404 at different simulation times(50,2 500,and 5 000 fs)are also depicted in Fig.2.

    Fig.1 Optimized low-lying isomeric structures of Ca2B4at PBE0/6-311+G(d)level

    Fig.2 Variations of potential energy vs simulation time at 300 K for Ca2B401,Ca2B402,and Ca2B404

    Table 1 B—B/Ca bond distances(nm)and the lowest vibrational frequency ωL(cm-1)of the isolated and multiple H2adsorbed compounds at ωB97XD/6-311+G(d,p)level

    2.1.2 Electronic structure of Ca2B4

    To analyze the electronic structure and the effect of H2molecules adsorbed,the Mulliken charge for Ca2B4isomer has been calculated at ωB97XD/6-311G(d,p)level.As shown in Fig.3,in Ca2B401,the boron and calcium atoms carry about-0.183e,-0.651e,-0.181e,-0.092e,0.554e,and 0.555e,respectively.For Ca2B402,the four boron atoms(B1-B4)have-0.283e,-0.314e,-0.586e,and-0.314e,respectively.Two calcium atoms(Ca5-Ca6)have 0.749e and 0.749e,respectively.In Ca2B404,the boron and calcium atoms carry about-0.234e,-0.234e,-0.646e,-0.646e,0.880e,and 0.880e,respectively.The strong charges transfer from calcium atoms to boron atoms when these compounds are formed.Therefore,partially charged Ca ion and B4 may produce a local electrostatic field that can polarize H2molecules and then bind them via the polarization mechanism.To further illustrate the above concept,the contour plots of the molecular electrostatic potential(ESP)of Ca2B401,Ca2B402,and Ca2B404 isomers were also obtained by Multiwfn[60].As illustrated in Fig.4,the calcium and boron atoms have a positive and negative potential,respectively.The map ofESPdiffusion accords with the Mulliken charge analysis,indicating the H2molecules should be preferentially ad-sorbed on calcium atoms.

    Fig.3 Mulliken charge of Ca2B401,Ca2B402,and Ca2B404 at the ωB97XD/6-311G(d,p)level

    Fig.4 ESPmaps of Ca2B401,Ca2B402,and Ca2B404 at the ωB97XD/6-311G(d,p)level

    2.2 H2adsorption behavior of Ca2B4

    2.2.1 H2adsorption behavior of Ca2B401

    We next studied the sequential hydrogenation of Ca2B401.Based on the above analysis,the Ca atom is the most active atom in all sites during the process of H2adsorption.Considering the symmetry of the isomers Ca2B401,a number of H2molecules were successively placed around every Ca atom,and the structures were optimized without any symmetry constraints at the ωB97XD level of theory,respectively.The optimized structures of the isomer Ca2B401 with adsorbed multiple H2molecules at the ωB97XD level of theory are depicted in Fig.S1 (Supporting information).The selected relaxed configurations Ca2B401(H2)12is depicted in Fig.5.

    Fig.5 Optimized geometries of Ca2B401(H2)12,Ca2B402(H2)12,and Ca2B404(H2)10at the ωB97XD/6-311+G(d,p)level

    Ca2B401 can at most adsorb 12 H2molecules and the gravimetric density of stored hydrogen is 16.3%,which is about 3.3 times larger than the criteria of 5.5% proposed by DOE[7].As listed in Table 2,the bond lengths of the adsorbed molecular form H2in Ca2B401(H2)12are 0.075 nm,which is elongated compared to the bond length(0.074 nm)of isolated H2at the same calculated level.Notably,the binding of the first molecule to Ca2B401 isomer has five different characteristics(Fig.S1).Among them,the H2molecule interacts dissociatively with two B atoms and the resulting borohydride structure is the ground-state(1a),which is 0.35,0.37,0.46,and 4.21 eV lower in energy than 1b,1c,1d,and 1e,respectively.It is for this reason that we have concentrated an adding successive H2molecules to the ground-state structure.Next,the adsorption of the second H2molecule to Ca2B401(H2)1(1a)has two different characteristics.Here,hydrogen binds molecularly to one of the Ca atoms and the resulting isomer(Fig.S1,2b)is 0.72 eV higher in energy than the ground-state structure(2a)in which the second H2molecule dissociates with two H atoms bridging between two Ca atoms.As listed in Table 3,the successive binding energies of the ground states of Ca2B401(H2)1and Ca2B401(H2)2are 4.21 and 1.67 eV respectively,indicating the binding of the first two molecules belongs to the chemisorption process.It is only when the third H2molecule is added to 2a that the binding becomes molecular,with successive energy of 0.11 eV.The H2molecules from the fourth to the twelfth also bind to the Ca atoms in nearly molecular form.The binding energies of each successive H2molecule are in the range of 0.11-0.12 eV as one proceeds from Ca2B401(H2)3to Ca2B401(H2)12.To confirm the adsorption of H2molecules to Ca2B401 is reversible or not,the ΔEaof Ca2B401(H2)n(n=1-12)are also illustrated in Table 3.Ca2B401 adsorbs 1-12 H2molecules with the ΔEaof 4.21 to 0.58 eV.It can be found that some ΔEavalues are too large and exceed the energy criteria(0.1-0.8 eV)of the reversible hydrogen storage.Because the strong chemical bonds between the dissociation of the first two H2molecules and B/Ca atoms improve the ΔEaof compounds.However,more remarkably,the average adsorptions energy of Ca2B401(H2)12is 0.58 eV,which is ideal for reversible hydrogen storage at near ambient conditions.

    Table 2 Ca—H and corresponding H—H distances(nm)of Ca2B401(H2)12/Ca2B402(H2)12and Ca2B404(H2)10at ωB97XD/6-311+G(d,p)level

    Table 3 Calculated ΔEsand ΔEawith BSSE correction and without zero-point energy correction at ωB97XD/6-311+G(d,p)level

    2.2.2 H2adsorption behavior of Ca2B402

    The optimized structures of H2-adsorbed Ca2B402 are depicted in Fig.S2.Notably,the binding of the first molecule to Ca2B401 isomer has three different characteristics(Fig.S2)and the ground-state structure of Ca2B402(H2)1(1a′)is exactly the same as Ca2B401(H2)1(1a).As illustrated in Table 3,the successive binding energies of the ground state Ca2B401(H2)1(1a′)is 3.69 eV,indicating the binding of the first molecule belongs to the chemisorption process.It is when the second H2molecule is added to 1a′that the H2adsorbed structures Ca2B402 are exactly the same as the corresponding H2adsorbed structures Ca2B401.The ΔEaof Ca2B402(H2)n(n=1-12)are also listed in Table 3.Ca2B402 adsorbs 1-12 H2molecules with the ΔEaof 3.69 to 0.54 eV.The ΔEaof Ca2B402(H2)12is 0.54 eV,which is ideal for reversible hydrogen storage at near ambient conditions.

    2.2.3 H2adsorption behavior of Ca2B404

    The optimized structures of H2-adsorbed Ca2B404 are depicted in Fig.S2.Ca2B404 can successively adsorb 10 H2molecules in total,from one to five H2molecules on each Ca atom.The selected relaxed configuration Ca2B404(H2)10is depicted in Fig.5.The Ca—H distances and the corresponding H—H bond lengths are listed in Table 2.The Ca—H distances are in a range of 0.235-0.267 nm,and the corresponding H—H bond lengths are elongated to 0.076-0.077 nm.As shown in Table 3,the ΔEsvalues are in a range of 0.10-0.14 eV for H2-adsorbed Ca2B404.The positive energy values of ΔEsindicate that 10 H2molecules can be effectively adsorbed on Ca2B404.Besides,the ΔEaof Ca2B404(H2)n(n=1-10)are in a range of 0.10 to 0.12 eV which meets the criteria(0.1-0.8 eV)of reversible hydrogen storage.For Ca2B404(H2)10,the gravimetric density of stored hydrogen is 14.0%.The result surpasses the target for hydrogen uptake capacity specified by DOE.

    2.3 Reversibility of H2molecules on Ca2B401,Ca2B402,and Ca2B404

    To test the hydrogen release for Ca2B401(H2)12,Ca2B402(H2)12,and Ca2B404(H2)10at ambient conditions,we performed the BOMD simulations at the ωB97XD/6-31+G(d,p)level.The BOMD simulations were carried out with a time of scale of 800 fs with a trajectory step size of 0.5 fs at the temperatures of 77 and 298 K.Fig.6 shows the potential energies as functions of time,and the extracted snapshots at different simulation times(50,100,200,300,400,and 500 fs)are depicted in Fig.S3-S6.For Ca2B401(H2)12/Ca2B402(H2)12,10 H2molecules far from Ca sites have begun to run away from the host Ca2B401 cluster within 100 fs,and the H2molecules desorb faster at the higher temperatures.On the other hand,at the end of simulations of 77 and 298 K,only the first two H2molecules are still adsorbed in atom form,whereas the other ten H2in the molecular form completely escape from Ca2B401,corresponding to a release ratio of 83.3%,which is excellent agreement with the discussed adsorption mechanism above.Interestingly,Ca2B401(H2)2structure shows a high dynamic stability at 77 and 298 K,being in line with the values of ΔEaand ΔEs.Moreover,it can be found from the snapshots of Fig.S3 and S4 that the host clusters Ca2B401 and Ca2B402 are not significantly deformed during the dynamic simulation processes.Therefore,we can conclude that the clusters Ca2B401 and Ca2B402 are appropriate candidates for reversible hydrogen storage.For Ca2B404(H2)10,at the processes of simulations of 77 and 298 K,although most of the H2adsorbed can also completely escape from Ca2B404,the host cluster Ca2B404 is significantly deformed.Thus,Ca2B404 is not an appropriate candidate for reversible hydrogen storage.

    Fig.6 Potential energy trajectories of(a)Ca2B401(H2)12/Ca2B402(H2)12and(b)Ca2B404(H2)10complexes at the temperatures of 77 and 298 K

    2.4 Gibbs free energy corrected adsorption energies(ΔEG)

    To confirm the adsorptions of Ca2B401(H2)12and Ca2B402(H2)12are favorable or not at different temperatures,the ΔEGwas calculated at different temperatures and 101 325 Pa.The formula isare the calculated Gibbs free energies of the bare cluster Ca2B4,H2molecule,and Ca2B4(H2)12,respectively.The positive ΔEGvalue reflects that the adsorption of multiple H2molecules on Ca2B4is energetically favorable at the corresponding condition.As shown in Fig.7,the ΔEGof Ca2B401(H2)12and Ca2B402(H2)12are still positive at 400 K at 101 325 Pa.It indicates that both Ca2B401(H2)12and Ca2B402(H2)12have fairly wide temperature ranges on which we can tune the thermodynamically favorable hydrogen adsorption just near room temperature at 101 325 Pa.

    Fig.7 Temperature dependence of ΔEGvalues for Ca2B401(H2)12and Ca2B402(H2)12at ωB97XD/6-311+G(d,p)level

    3 Conclusions

    In this work,the structures,stabilities,and hydrogen storage behavior of Ca2B4have been researched using density functional theory.According to the calculations,the first,second,and fourth low-lying isomers Ca2B401,Ca2B402,and Ca2B404 have high stabilities in thermodynamics at 300 K.For Ca2B401 and Ca2B402,the resulting H2adsorbed structures are the same and up to 12 H2molecules can be bound.Ca2B404 can adsorb 10 H2molecules at most.The systems can have a maximum gravimetric density of 16.3% and 14.0% for Ca2B401(H2)12/Ca2B402(H2)12and Ca2B404(H2)12,respectively,which satisfy the target specified by US DOE.The ΔEaof 0.58-4.21 eV for Ca2B401(H2)12,0.54-3.69 eV for Ca2B402(H2)12,and 0.10-0.12 eV for Ca2B404(H2)10are in the range of the physisorption and chemisorption energy.The results of BOMD simulations indicate Ca2B401 and Ca2B402 can be promising candidates for adsorbing dihydrogen,but Ca2B404 is not.Moreover,the temperature-dependent Gibbs free energy corrected adsorption energies indicate Ca2B401 and Ca2B402 are suitable for storage H2with a wide range of temperatures at 101 325 Pa.

    Supporting information is available at http://www.wjhxxb.cn

    一级毛片电影观看 | 人人妻人人澡欧美一区二区| 国产午夜精品久久久久久一区二区三区| 神马国产精品三级电影在线观看| 欧美最新免费一区二区三区| 国内精品一区二区在线观看| 波多野结衣巨乳人妻| 大又大粗又爽又黄少妇毛片口| 看片在线看免费视频| 尾随美女入室| 亚洲国产精品合色在线| 夫妻性生交免费视频一级片| 中文亚洲av片在线观看爽| 中文天堂在线官网| 村上凉子中文字幕在线| 亚洲美女视频黄频| 国产男人的电影天堂91| 国产亚洲精品久久久com| 亚洲图色成人| 欧美最新免费一区二区三区| 美女黄网站色视频| 亚洲精品国产av成人精品| 欧美高清性xxxxhd video| 看黄色毛片网站| 亚洲第一区二区三区不卡| 黄片wwwwww| 嫩草影院新地址| 色视频www国产| 18+在线观看网站| 日本黄大片高清| 国内揄拍国产精品人妻在线| 狠狠狠狠99中文字幕| 三级毛片av免费| 国产淫语在线视频| 亚洲精品亚洲一区二区| 偷拍熟女少妇极品色| 韩国av在线不卡| 亚洲av中文字字幕乱码综合| 日韩精品青青久久久久久| 变态另类丝袜制服| 99热全是精品| 免费av观看视频| 亚洲激情五月婷婷啪啪| 18禁在线播放成人免费| 国产黄色视频一区二区在线观看 | 国国产精品蜜臀av免费| 久久精品国产亚洲网站| 亚洲欧美日韩东京热| 中文欧美无线码| 中国国产av一级| 久久人人爽人人片av| 天堂av国产一区二区熟女人妻| 边亲边吃奶的免费视频| 床上黄色一级片| 国产老妇伦熟女老妇高清| 一级爰片在线观看| 国产乱人视频| 色哟哟·www| 国产真实乱freesex| 国产探花在线观看一区二区| 日韩一本色道免费dvd| 国产一区二区在线av高清观看| 国产片特级美女逼逼视频| av在线老鸭窝| 三级国产精品欧美在线观看| 噜噜噜噜噜久久久久久91| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线观看播放| 久久精品人妻少妇| 一夜夜www| 特大巨黑吊av在线直播| 国产熟女欧美一区二区| 国产亚洲午夜精品一区二区久久 | 最后的刺客免费高清国语| 亚洲天堂国产精品一区在线| 男的添女的下面高潮视频| 久久人人爽人人爽人人片va| 1024手机看黄色片| 日韩欧美在线乱码| 日本色播在线视频| 成人无遮挡网站| 精品久久久久久久久久久久久| 老司机影院毛片| 亚洲一级一片aⅴ在线观看| 禁无遮挡网站| 国产又色又爽无遮挡免| av国产免费在线观看| av视频在线观看入口| 中文字幕亚洲精品专区| 三级男女做爰猛烈吃奶摸视频| 日韩制服骚丝袜av| 久久久久网色| 亚洲国产日韩欧美精品在线观看| 久久精品久久久久久噜噜老黄 | 你懂的网址亚洲精品在线观看 | 亚洲欧美成人精品一区二区| 久久99蜜桃精品久久| 午夜亚洲福利在线播放| 18禁动态无遮挡网站| 精品酒店卫生间| av国产免费在线观看| 欧美成人a在线观看| 国产 一区 欧美 日韩| 国产午夜福利久久久久久| 一边亲一边摸免费视频| 蜜桃亚洲精品一区二区三区| 99视频精品全部免费 在线| 精品午夜福利在线看| 亚洲国产精品成人久久小说| 91精品一卡2卡3卡4卡| 亚洲av中文av极速乱| 超碰av人人做人人爽久久| 嘟嘟电影网在线观看| 精品酒店卫生间| 美女国产视频在线观看| 久久人人爽人人片av| 内射极品少妇av片p| 3wmmmm亚洲av在线观看| 亚洲av免费高清在线观看| 可以在线观看毛片的网站| 男女啪啪激烈高潮av片| 一二三四中文在线观看免费高清| 国产一区有黄有色的免费视频 | 欧美日韩精品成人综合77777| 一区二区三区四区激情视频| 日本一本二区三区精品| 亚洲精品,欧美精品| 日本爱情动作片www.在线观看| 成年av动漫网址| 最近中文字幕2019免费版| 国产伦精品一区二区三区视频9| 国产成人福利小说| 中国国产av一级| 国产在视频线精品| 午夜免费男女啪啪视频观看| 最新中文字幕久久久久| 亚洲国产精品成人久久小说| 大香蕉久久网| 国产欧美另类精品又又久久亚洲欧美| 人妻系列 视频| 九草在线视频观看| 色哟哟·www| 干丝袜人妻中文字幕| 久久久久久久久久久免费av| 少妇的逼好多水| 中文字幕精品亚洲无线码一区| 久久精品国产亚洲av涩爱| 国产精品av视频在线免费观看| 亚洲精品国产av成人精品| 免费一级毛片在线播放高清视频| eeuss影院久久| 亚洲va在线va天堂va国产| 精品国内亚洲2022精品成人| 国产精品无大码| 美女内射精品一级片tv| 91精品一卡2卡3卡4卡| 久久久久精品久久久久真实原创| 国产老妇伦熟女老妇高清| 尾随美女入室| 国产高清视频在线观看网站| 韩国av在线不卡| 女人久久www免费人成看片 | kizo精华| 99热网站在线观看| 99热这里只有是精品在线观看| 97在线视频观看| 青春草国产在线视频| 久久久久国产网址| 一边亲一边摸免费视频| 久久久久久久国产电影| 国产乱人视频| 亚洲精品国产av成人精品| 国产午夜精品一二区理论片| 国产成人免费观看mmmm| 国产亚洲一区二区精品| 国产一级毛片七仙女欲春2| 淫秽高清视频在线观看| 国产高清三级在线| 精华霜和精华液先用哪个| 亚洲国产最新在线播放| 国产伦一二天堂av在线观看| 在线免费观看的www视频| 在线免费十八禁| 欧美人与善性xxx| 亚洲美女视频黄频| 青春草国产在线视频| 老司机影院毛片| 国产一区二区亚洲精品在线观看| 日本三级黄在线观看| 中文天堂在线官网| 成人无遮挡网站| 看黄色毛片网站| 国产精品av视频在线免费观看| 国产真实乱freesex| 日韩,欧美,国产一区二区三区 | 亚洲,欧美,日韩| 国产成人91sexporn| 亚洲人与动物交配视频| 日本黄色视频三级网站网址| 国产高清有码在线观看视频| 成人综合一区亚洲| 五月伊人婷婷丁香| 最近的中文字幕免费完整| 亚洲色图av天堂| 床上黄色一级片| 中文字幕免费在线视频6| 1000部很黄的大片| 性插视频无遮挡在线免费观看| 免费一级毛片在线播放高清视频| 国产精品国产三级国产av玫瑰| 秋霞在线观看毛片| 免费观看在线日韩| 丝袜美腿在线中文| 亚洲国产日韩欧美精品在线观看| 亚洲av成人av| 中文在线观看免费www的网站| 国产极品天堂在线| videossex国产| 亚洲欧美成人精品一区二区| 日韩三级伦理在线观看| 色视频www国产| 日本黄色视频三级网站网址| 天美传媒精品一区二区| 国产淫语在线视频| 丰满人妻一区二区三区视频av| 韩国高清视频一区二区三区| ponron亚洲| 免费搜索国产男女视频| 国产午夜精品论理片| 日韩大片免费观看网站 | 国产免费福利视频在线观看| 卡戴珊不雅视频在线播放| 国产激情偷乱视频一区二区| 九九久久精品国产亚洲av麻豆| 最近的中文字幕免费完整| av福利片在线观看| 我要看日韩黄色一级片| 联通29元200g的流量卡| 久久久久久伊人网av| 成人鲁丝片一二三区免费| 大话2 男鬼变身卡| 插阴视频在线观看视频| 中文资源天堂在线| 国产一区二区亚洲精品在线观看| 乱码一卡2卡4卡精品| 只有这里有精品99| 国产人妻一区二区三区在| 欧美不卡视频在线免费观看| 美女xxoo啪啪120秒动态图| 亚洲人成网站高清观看| 国产伦精品一区二区三区视频9| a级毛色黄片| 国产一级毛片七仙女欲春2| av视频在线观看入口| 亚洲人成网站在线观看播放| 国产亚洲91精品色在线| 国产高清三级在线| 99热网站在线观看| 亚洲国产精品久久男人天堂| 国产一区二区在线观看日韩| 99热6这里只有精品| 免费观看在线日韩| 免费搜索国产男女视频| 亚洲最大成人中文| 免费大片18禁| 中文字幕av在线有码专区| 最近最新中文字幕免费大全7| 国产69精品久久久久777片| 大话2 男鬼变身卡| 美女内射精品一级片tv| 色综合色国产| 成人午夜高清在线视频| 午夜免费男女啪啪视频观看| 国产一区二区亚洲精品在线观看| 久久久久久久亚洲中文字幕| 亚洲欧美日韩无卡精品| 久久精品夜色国产| 欧美精品一区二区大全| 久久久色成人| 夫妻性生交免费视频一级片| av卡一久久| 国产伦在线观看视频一区| 久久人人爽人人爽人人片va| 亚洲在线观看片| 国内揄拍国产精品人妻在线| 午夜福利成人在线免费观看| 日本午夜av视频| 狂野欧美白嫩少妇大欣赏| 免费观看在线日韩| 国产精华一区二区三区| 欧美日韩综合久久久久久| 两个人视频免费观看高清| 秋霞伦理黄片| 国产精品一及| av女优亚洲男人天堂| 国产欧美日韩精品一区二区| 国产午夜福利久久久久久| 国国产精品蜜臀av免费| 亚洲在线观看片| 色综合亚洲欧美另类图片| 婷婷色av中文字幕| 亚洲欧美日韩无卡精品| 午夜激情福利司机影院| 亚洲精品亚洲一区二区| 少妇人妻精品综合一区二区| 日本免费一区二区三区高清不卡| 国产人妻一区二区三区在| 全区人妻精品视频| 最近手机中文字幕大全| 夜夜看夜夜爽夜夜摸| 69av精品久久久久久| 亚洲,欧美,日韩| 国产高清国产精品国产三级 | 国产精品女同一区二区软件| 国产又色又爽无遮挡免| 日韩强制内射视频| 18+在线观看网站| 精品久久久久久久久av| 久久这里有精品视频免费| 黑人高潮一二区| 又爽又黄a免费视频| eeuss影院久久| 又爽又黄无遮挡网站| 亚洲av中文av极速乱| 亚洲欧美中文字幕日韩二区| 人妻夜夜爽99麻豆av| 久久国内精品自在自线图片| 国产熟女欧美一区二区| 免费观看的影片在线观看| www.av在线官网国产| 99九九线精品视频在线观看视频| 亚洲成av人片在线播放无| 欧美一区二区国产精品久久精品| 日韩视频在线欧美| 久久人人爽人人爽人人片va| 在线免费十八禁| 国产一级毛片七仙女欲春2| 午夜免费激情av| 国产白丝娇喘喷水9色精品| 午夜亚洲福利在线播放| 少妇熟女aⅴ在线视频| 少妇裸体淫交视频免费看高清| 美女被艹到高潮喷水动态| 99久久中文字幕三级久久日本| 色尼玛亚洲综合影院| 国内揄拍国产精品人妻在线| 亚洲久久久久久中文字幕| 久久精品国产自在天天线| 国产精品久久久久久久久免| 亚洲成人中文字幕在线播放| 欧美成人精品欧美一级黄| 村上凉子中文字幕在线| 晚上一个人看的免费电影| 国产 一区精品| 亚洲国产精品成人久久小说| 国产乱人视频| 三级国产精品片| 国产亚洲5aaaaa淫片| 日韩一区二区三区影片| 欧美日韩在线观看h| 啦啦啦啦在线视频资源| 免费观看a级毛片全部| 成人鲁丝片一二三区免费| 亚洲成人精品中文字幕电影| 又爽又黄无遮挡网站| 欧美日韩在线观看h| 干丝袜人妻中文字幕| 91aial.com中文字幕在线观看| 国产精品国产三级国产专区5o | 色尼玛亚洲综合影院| 久久婷婷人人爽人人干人人爱| 亚洲av电影不卡..在线观看| 免费播放大片免费观看视频在线观看 | 九九爱精品视频在线观看| 自拍偷自拍亚洲精品老妇| 亚洲va在线va天堂va国产| 99久国产av精品| 亚洲久久久久久中文字幕| 永久网站在线| 搡老妇女老女人老熟妇| 精品国内亚洲2022精品成人| 久久99蜜桃精品久久| 麻豆成人午夜福利视频| 成人一区二区视频在线观看| 国产av在哪里看| 能在线免费看毛片的网站| 国产成人午夜福利电影在线观看| 久久婷婷人人爽人人干人人爱| 精品欧美国产一区二区三| 亚洲,欧美,日韩| 国产成人福利小说| 国产乱人偷精品视频| 精华霜和精华液先用哪个| 午夜爱爱视频在线播放| 精品酒店卫生间| 男女国产视频网站| 又爽又黄a免费视频| 久久精品久久久久久噜噜老黄 | 熟女电影av网| 男女视频在线观看网站免费| 国产成人一区二区在线| 丰满乱子伦码专区| 国产av一区在线观看免费| 亚洲成人中文字幕在线播放| 色视频www国产| 精品人妻偷拍中文字幕| 精品久久久久久久末码| 欧美高清成人免费视频www| 久久人人爽人人爽人人片va| 99久国产av精品| 男女啪啪激烈高潮av片| 国产精品嫩草影院av在线观看| 亚洲最大成人中文| 亚洲内射少妇av| 国产91av在线免费观看| 久久精品91蜜桃| 国产成人a∨麻豆精品| 日韩欧美在线乱码| 国产精品,欧美在线| 亚洲一区高清亚洲精品| 国产精品久久久久久久电影| 视频中文字幕在线观看| 十八禁国产超污无遮挡网站| 国产午夜精品久久久久久一区二区三区| 老司机影院成人| 精品酒店卫生间| 狠狠狠狠99中文字幕| 亚洲成av人片在线播放无| 国产精品一区二区三区四区久久| 亚洲不卡免费看| 亚洲av中文av极速乱| 午夜精品在线福利| 久久久久国产网址| 一个人免费在线观看电影| 欧美潮喷喷水| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜免费男女啪啪视频观看| 看非洲黑人一级黄片| 一本一本综合久久| 大香蕉久久网| 变态另类丝袜制服| 99久国产av精品| 寂寞人妻少妇视频99o| 超碰av人人做人人爽久久| 欧美潮喷喷水| 久久久久久久久大av| 亚洲一区高清亚洲精品| 22中文网久久字幕| 日本一二三区视频观看| 国产精品乱码一区二三区的特点| 亚洲精品色激情综合| 女人被狂操c到高潮| 日韩一本色道免费dvd| 一级毛片久久久久久久久女| 久久99热6这里只有精品| 亚洲经典国产精华液单| 色综合亚洲欧美另类图片| 丰满少妇做爰视频| 亚洲人成网站高清观看| 天天躁夜夜躁狠狠久久av| 久久久精品欧美日韩精品| 美女被艹到高潮喷水动态| 男女下面进入的视频免费午夜| 亚洲av免费高清在线观看| 免费看光身美女| 一边亲一边摸免费视频| 中文字幕久久专区| av免费在线看不卡| 建设人人有责人人尽责人人享有的 | 一边摸一边抽搐一进一小说| 联通29元200g的流量卡| 自拍偷自拍亚洲精品老妇| 六月丁香七月| 久久这里有精品视频免费| 婷婷六月久久综合丁香| 高清毛片免费看| 午夜a级毛片| 国产乱来视频区| 全区人妻精品视频| 最近中文字幕高清免费大全6| 国产免费又黄又爽又色| 91av网一区二区| 麻豆成人午夜福利视频| www.av在线官网国产| 久久久久久大精品| 亚洲精品一区蜜桃| 久久亚洲精品不卡| 亚洲国产精品成人久久小说| 人妻制服诱惑在线中文字幕| 精品久久久久久久久av| 久久精品国产99精品国产亚洲性色| 国产熟女欧美一区二区| 国产亚洲最大av| 特大巨黑吊av在线直播| 身体一侧抽搐| 狠狠狠狠99中文字幕| 赤兔流量卡办理| 国产成人精品婷婷| 国产色爽女视频免费观看| 久久99蜜桃精品久久| 99在线视频只有这里精品首页| 国语自产精品视频在线第100页| 乱人视频在线观看| 成人午夜精彩视频在线观看| 亚洲18禁久久av| 婷婷色av中文字幕| 久久99精品国语久久久| 国产黄色视频一区二区在线观看 | 久久精品久久精品一区二区三区| 亚洲欧美成人精品一区二区| 变态另类丝袜制服| 国产久久久一区二区三区| 又粗又爽又猛毛片免费看| av国产久精品久网站免费入址| 日韩欧美在线乱码| 亚洲av免费在线观看| 久久草成人影院| 两个人的视频大全免费| 欧美激情在线99| a级一级毛片免费在线观看| 久久久成人免费电影| 啦啦啦啦在线视频资源| 男的添女的下面高潮视频| 欧美成人一区二区免费高清观看| 国产伦一二天堂av在线观看| 变态另类丝袜制服| 精品久久久久久久久久久久久| 日韩欧美精品v在线| 国产精品一区www在线观看| 亚洲经典国产精华液单| 久久综合国产亚洲精品| 欧美潮喷喷水| 色吧在线观看| 欧美成人精品欧美一级黄| 又粗又爽又猛毛片免费看| 毛片女人毛片| 久久久久久久久久久免费av| 免费看美女性在线毛片视频| 国产探花极品一区二区| 中文字幕熟女人妻在线| 人人妻人人看人人澡| 国产亚洲91精品色在线| 又爽又黄a免费视频| www日本黄色视频网| 国产乱来视频区| ponron亚洲| 国产亚洲精品久久久com| 免费看a级黄色片| 国产精品久久久久久av不卡| 亚洲在久久综合| 噜噜噜噜噜久久久久久91| 联通29元200g的流量卡| 色综合亚洲欧美另类图片| 国模一区二区三区四区视频| 久久久久性生活片| 亚洲欧美中文字幕日韩二区| 九九爱精品视频在线观看| 亚洲精品成人久久久久久| 又爽又黄a免费视频| 亚洲国产精品专区欧美| 国产成人精品一,二区| 亚洲欧洲日产国产| 欧美激情国产日韩精品一区| 毛片一级片免费看久久久久| 边亲边吃奶的免费视频| 色视频www国产| 国产精品久久久久久精品电影| 一本久久精品| 边亲边吃奶的免费视频| 亚洲精品乱码久久久v下载方式| 亚洲自偷自拍三级| 伊人久久精品亚洲午夜| 亚洲va在线va天堂va国产| 蜜臀久久99精品久久宅男| 精品久久久久久久久久久久久| 亚洲乱码一区二区免费版| 麻豆成人午夜福利视频| 看非洲黑人一级黄片| 成人美女网站在线观看视频| 精品免费久久久久久久清纯| 国产熟女欧美一区二区| 色视频www国产| 国产成人精品婷婷| 两性午夜刺激爽爽歪歪视频在线观看| 能在线免费看毛片的网站| 男人舔奶头视频| 精品人妻一区二区三区麻豆| 精品久久国产蜜桃| 一个人看的www免费观看视频| 午夜激情欧美在线| 99热网站在线观看| 看黄色毛片网站| 日韩高清综合在线| 欧美日本亚洲视频在线播放| 亚洲av成人精品一区久久| 69人妻影院| 欧美一区二区精品小视频在线| 老司机福利观看| 国产一区二区亚洲精品在线观看| 人人妻人人澡人人爽人人夜夜 | 国产免费一级a男人的天堂| 女的被弄到高潮叫床怎么办| 有码 亚洲区| av福利片在线观看| 99热这里只有是精品在线观看| 在线免费观看的www视频| 精品少妇黑人巨大在线播放 | 国产午夜精品久久久久久一区二区三区| 观看免费一级毛片| 日本av手机在线免费观看| 永久免费av网站大全| 蜜桃久久精品国产亚洲av| 国产亚洲最大av| 日本免费在线观看一区| 国产单亲对白刺激|