• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol by Mg-Doped Ceria Monolithic Catalyst

    2022-07-12 07:40:18YANYueYingLIYueDENGJieZHAOXiTANaCHENYongDong

    YAN Yue-YingLI YueDENG JieZHAO XiTA NaCHEN Yong-Dong*,

    (1College of Chemistry and Chemical Engineering,Southwest Petroleum University,Chengdu 610500,China)(2State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian,Liaoning 116023,China)

    Abstract:In this paper,Ce1-xMgxO2(x=0.05,0.10,0.15,0.20)solid solution catalytic materials with different molar ratios were successfully synthesized by co-precipitation method.These materials were characterized by transmission electron microscope(TEM),X-ray diffraction(XRD),nitrogen adsorption-desorption test,Raman spectroscopy,X-ray photoelectron spectroscopy(XPS),CO2temperature-programmed desorption(CO2-TPD)and other techniques.It was found that the particle size,specific surface area,surface defects,etc.of the prepared Ce1-xMgxO2catalytic materials can be tuned by regulating the content of Mg in the CeO2lattice.Among them,Ce0.90Mg0.10O2exhibited the best surface properties,with the smallest average particle size of about 5.8 nm,the largest specific surface area of about 136 m2·g-1,and the highest surface oxygen content(31.98%).Ce1-xMgxO2catalytic material was coated on the cordierite honeycomb ceramic to make a monolithic catalyst,and its catalytic performance for the direct synthesis of dimethyl carbonate from CO2and CH3OH was investigated.Under the conditions of 140℃,2.4 MPa,and 2 h reaction,the yield of dimethyl carbonate on Ce0.90Mg0.10O2monolith catalyst was as high as 20.21%,and the catalytic activity was significantly higher than that of CeO2and other Ce1-xMgxO2(x=0.05,0.15,0.20)catalytic materials.

    Keywords:CO2conversion;dimethyl carbonate;oxygen vacancies;monolithic catalyst;magnesium-cerium oxides

    0 Introduction

    Dimethyl carbonate(DMC)has been widely applied as a fuel additive,in electrochemistry and organic synthesis due to its environmental-friendly properties[1-3].Although many methods have been applied for DMC synthesis,such as phosgene method,transesterification method,urea alcoholysis method,epoxy alkane method,methanol,and CO2direct synthesis method,etc.[4-6].Direct synthesis of DMC from CO2and methanol has attracted great attention(Scheme 1)[7].The utilization of CO2as the carbon source instead of fossil feedstock may promote the sustainability of the chemical industry and terminate the greenhouse effect caused by excessive CO2emission.However,there are still some vital challenges such as low yield,deactivation of the catalyst,and thermodynamic limitations for this route[6,8].Thus,designing novel catalysts and developing efficient water removing methods from the reaction mixture are crucial to overcoming the thermodynamic equilibrium of the reaction.

    Scheme 1 Direct synthesis of DMC from CO2and methanol

    Ceria-based nanomaterials have been widely studied in the direct synthesis of DMC from CO2and methanol.This is mainly due to its fascinating CO2capture ability which significantly affects the reaction efficiency.Inert CO2molecular in the gas phase needs to be adsorbed and activated by the surface oxygen vacancy sites and then can react with methanol to generate DMC[9-12].Doping metal ions while maintaining the fluorite crystalline structure of ceria is one of the effective ways to enhance the concentration of surface oxygen vacancy of CeO2[9,13-14].Because the impurity ions can reduce the crystalline size,generate more surface defects and boost the reducibility of surface oxygen[15-16].On another hand,the surface acid-base property of CeO2can be mediated by the doping method,which will further favor the formation of DMC to improve the selectivity[9].According to Scheme 1,the reaction equilibrium can shift toward the right side by water removal[17].Usually,inorganic dehydrating agents are introduced to physically remove water with limited effect due to the low dehydration capacity at reaction temperatures[18-21].While organic dehydrating agents are applied to remove water by chemical reactions which may form lots of by-products complicating the entire process[22-25].Coating the catalyst powder on the surface of cordierite honeycomb ceramics can improve the phase-phase mass transfer performance[26-28].Therefore,it is reasonable to expect an enhanced efficiency for water removal using a honeycomb structure catalyst,which will improve the DMC yield in return.

    In this contribution,Ce1-xMgxO2(x=0.05,0.10,0.15,0.20)solid solutions with a variation of magnesium content were prepared by the co-precipitation method to find an optimal ratio.Mg ions doping in CeO2lattice adjusted the surface acid-base property and the surface oxygen vacancies.Among all the obtained catalytic materials,Ce0.90Mg0.10O2was found to show the best catalytic activity in the direct synthesis of DMC from methanol and carbon dioxide.Using a unique structure,monolithic catalyst produced by coating powder on cordierite honeycomb ceramics showed high effective and stable catalytic performance.At 140℃,2.4 MPa,and 2 h continuous reaction,the yield of DMC over Ce0.90Mg0.10O2monolithic catalyst was the highest(20.21%).

    1 Experimental

    1.1 Materials preparations

    The preparation of Ce0.90Mg0.10O2by the coprecipitation method is described as an example.We weighed 15.000 0 g(NH4)2Ce(NO3)6,0.779 5 g Mg(NO3)2·6H2O,and 70.000 0 g urea(CH4N2O)and dissolved them completely with 500 mL deionized water under stirring.The mixture was transferred to a 1 000 mL three-neck flask and gradually heated to 90℃under mechanical stirring(600 r·min-1)for 5 h.After the reaction,the product was cooled to room temperature naturally,the precipitate was filtered and washed with water(over 4 000 mL)and absolute ethanol(about 300 mL),dried overnight at 80℃,and calcined at 400℃for 4 h in the air to obtain the target product.The obtained Ce1-xMgxO2powder was ground with the required deionized water to obtain a slurry,which was coated on a cordierite honeycomb ceramics(64 cells per cm2,Φ:10 mm,L:25 mm).The load was maintained at 0.5 g,and the excess slurry was blown away.Finally,the coated catalyst was dried overnight at 80℃and calcined at 400℃for 4 h in the air to obtain a Ce0.90Mg0.10O2monolithic catalyst.The preparation method of Ce0.95Mg0.05O2,Ce0.85Mg0.15O2,and Ce0.80Mg0.20O2monolithic catalysts were the same as above,only the mass of Mg(NO3)2·6H2O was changed.

    1.2 Catalytic tests

    The catalytic activity of the prepared catalyst for the direct synthesis of DMC from CO2and methanol was evaluated in a continuous fixed-bed reactor.Water was the main disadvantageous factor for the formation of DMC in the synthesis reaction.The flow of the reaction system can remove the water vapor well and detect the reaction products online.A typical procedure was to place the prepared Ce1-xMgxO2monolith catalyst in a stainless steel reaction tube.The reactor was sealed and purged with a CO2stream for 30 min to drain the internal air.When the reaction system reached the required temperature,a mixed gas stream of CH3OH(0.145 mL·min-1)and CO2(40 mL·min-1)(nCH3OH∶nCO2=2∶1)was introduced.Then the reaction was carried out at 140℃,2.4 MPa,and 2 880 h-1of gas hourly space velocity(GHSV).The outlet component after the reaction was analyzed online using gas chromatography(Agilent 7890B)equipped with a hydrogen flame ionization detector.The calculation formula for CH3OH conversion and DMC selectivity is as follows:Wherecirepresents the concentration of a component(i).

    2 Results and discussion

    2.1 Characterization of as-prepared solid solutions

    Fig.1 shows the X-ray diffraction(XRD)patterns of the prepared Ce1-xMgxO2composite oxides(Detailed characterization conditions can be found in Supporting Information).CeO2samples showed typical diffraction lines of cubic fluorite structure(PDF No.43-1002).Besides,it can be seen that the catalyst doped with Mg2+still maintained the characteristic peak of cubic fluorite ceria after calcination,no diffraction line representing MgO or any other impurities was detected.Compared with pure CeO2,the(111)plane peak shifted to a higher angle with increased Mg concentration(Fig.1b),indicating a lattice contraction.The calculated lattice constant decreased from 0.541 8 nm for CeO2to 0.540 6 nm for Ce0.80Mg0.20O2(Table 1)because the ionic radius of Mg2+(0.089 nm)is smaller than that of Ce4+(0.097 nm).The XRD patterns imply that the Mg2+incorporate into the CeO2lattice forming no MgO species and part of them substitutes the Ce4+leading to lattice contraction.These results are in good agreement with previous reports[15,29-30].The calculated grain size from(111)for all samples ranges from 5.8 to 6.1 nm and the specific surface area is basically the same,indicating that the addition of Mg has little influence on the micro-textural property.

    Table 1 Structural and textural properties of Ce1-xMgxO2composite oxides

    The N2adsorption-desorption isotherms and pore size distributions of Ce1-xMgxO2catalyst are shown in Fig.S1.As shown in Fig.S1,all catalysts obtained typeⅣ isotherms with clear H3 hysteresis lines,indicating typical mesoporous materials.In Fig.S2,all catalysts contain mesopore pore size distributions with pore sizes ranging from 2 to 20 nm.The above results show that the Mg2+content has a significant effect on the pore size distribution.The BET(Brunauer-Emmett-Teller)surface area and pore volume of the synthesized Ce1-xMgxO2catalyst are summarized in Table 1.It can be observed that Ce0.90Mg0.10O2composite oxide possesses the highest specific surface area of 136 m2·g-1and pore volume of 0.188 cm3·g-1.

    Transmission electron microscope(TEM)images(Fig.2)of as-prepared Ce1-xMgxO2composite oxides indicated that all samples were in irregular spherical shape exposing no specific facets.The average particle size of as-prepared Ce1-xMgxO2is consistent with the grain size.

    Fig.2 (a-e)TEM images of Ce1-xMgxO2composite oxides;(f)Size distribution of Ce0.90Mg0.10O2

    There are two bands observed in Raman spectra(Fig.3).The vibration peak around 461 cm-1can be attributed to theF2gvibrational mode of Ce—O,which usually shows a sharp and symmetric band at 466 cm-1[9,31].Considering the high specific surface area of the prepared material,the peak shifted to low frequency and showed asymmetric character,which are mainly attributed to the small particle size.Compared with asprepared CeO2nanoparticles,theF2gband gradually blue-shifted with increased Mg2+content,which demonstrates the decreased average length of Ce—O bondand lattice contraction further.Therefore,it is reasonable to deduce that smaller Mg2+cations substitute some Ce4+ions in the fluorite lattice.It is also noted that the intensity ofF2gdecreased with increased Mg2+content,revealing structural distortion[32-33].Another band near 596 cm-1is related to the oxygen vacancies caused by the Ce3+ion in the CeO2lattice(Fig.3b)[34].The intensity of this mode increased with an increase of Mg2+content,pointing at increased intrinsic oxygen vacancy concentration.No Raman shifts of MgO were observed in Ce1-xMgxO2,which further infers Ce1-xMgxO2prefers a solid solution state.

    To elaborate on changes in the CeO2chemical state after Mg doping,X-ray photoelectron spectroscopy(XPS)analysis was carried out.The XPS spectra of Ce3d(Fig.4a)exhibit complex features with eight peaks.U and V represent spin-orbits of Ce3d3/2and Ce3d5/2,respectively.Spin-orbit doublet(V?ca.898.3 eV and U?ca.916.8 eV,V″ca.888.9 eV and U″ca.907.4 eV,Vca.882.4 eV and Uca.900.9 eV)are attributed to the Ce4+species,while(V′ca.884.9 eV and U′ca.903.4 eV)are assigned to the Ce3+species[29,31].Then the concentration of Ce3+can be estimated by taking the ratio of the area of the integrated peak corresponding to Ce3+to the total area of fitted peaks.It is shown that Mg doping has enhanced the concentration of Ce3+on the surface remarkably,and the maximum ratio(19.42%)has been obtained when 10% Mg doping.The O1sXPS spectra(Fig.4b)of Ce1-xMgxO2composite oxides can be deconvoluted into 3 surface oxygen species:lattice oxygen(OLca.529.3 eV),surface oxygen vacancies(OVca.530.5 eV);and chemisorption oxygen species(OC)at the highest binding energy(ca.532.2 eV)[35].The intensity ratio of surface oxygen vacancies to the sum of all oxygen species was summarized in Table 2.It was observed that the incorporation of Mg2+can effectively increase the number of surface oxygen species(OV+OC).These results confirm that there are enhanced mobility and availability of lattice oxygen species due to the synergistic effect between MgO and CeO2.

    Table 2 Relative ratio of Ce3+species and oxygen vacancies on the surface

    Fig.5 shows the temperature-programmed reduction by hydrogen(H2-TPR)profile of as-prepared Ce1-xMgxO2composite oxides.The TPR of pure CeO2showed a broad peak starting at 500℃and one peak at 825℃,representing the surface and the bulk reduction process,respectively.The surface reduction initiated around a lower temperature 500℃after Mg2+ions(less than 20%)were introduced,which means the reducibility of surface oxygen species has been significantly improved.Meanwhile,the area of this broad peak increased gradually with higher Mg concentration as well,indicating the lattice oxygen in bulk can move to the surface and participate in chemical reactions at a relatively lower temperature.Thus not only the reducibility of surface oxygen but also the mobility of lattice have activated due to Mg2+introduction,resulting in more oxygen vacancies,probably by reducing the interaction between Ce—O with a distorted crystalline structure.This feature will facilitate chemical reactions whose reactants would be activated by oxygen vacancies.According to the related literature,the oxygen vacancy is crucial for activating carbon dioxide in the direct synthesis of DMC from CO2and methanol[11,34,36].

    Fig.5 H2-TPR profiles of CeO2and Ce1-xMgxO2composite oxides

    2.2 Catalytic performance

    Fig.6a illustrates photographs of as-prepared monolithic catalyst.A scanning electron microscope(SEM)image(Fig.6)revealed that the average thickness of the catalyst coating wasca.60 μm.Well uniform coating layers were found,as evidenced in the corner,inner,and frontal channel views from the energy dispersion X-ray spectrum (EDS) mappings of Ce0.90Mg0.10O2-coated monolithic catalyst.The abnormal distribution of Mg is due to a small amount of Mg in cordierite.It also demonstrates that Ce0.90Mg0.10O2-coated monolithic catalyst can be insufficient contact with the reaction gas stream to promote the conversion and the yield of the product[37].Catalyst activity of monolithic and particulate(40-60 mesh)Ce0.90Mg0.10O2catalyst was comparatively studied(Fig.7).It is easy to conclude this monolithic do have enhanced the DMC yield and methanol conversion even though both were carried out in the same fixed bed reactor.Therefore,it is probable that the unique structure of the monolithic catalyst accelerates the water removal and shifts the reaction equilibrium successfully.Fig.8 shows the performance of Ce1-xMgxO2monolithic catalysts on direct DMC synthesis.The optimum temperature and optimum pressure can be obtained from Fig.S4 and S5.The activity of the catalyst was Ce0.90Mg0.10O2> Ce0.95Mg0.05O2>CeO2> Ce0.85Mg0.15O2> Ce0.80Mg0.20O2.Whenx=0.10,the yield of DMC reached the maximum of 20.21% and decreased with a higher doping concentration.It is mainly reflected in the decrease of DMC selectivity and the increase of HCHO and DME selectivity.

    Fig.6 (a)Photographs,(b)SEM image,and(c-e)EDS element mappings on Ce0.90Mg0.10O2-coated monolithic catalyst

    Fig.7 Catalytic activity of monolithic and particulate Ce0.90Mg0.10O2catalyst

    Fig.8 Catalytic performance of Ce1-xMgxO2monolithic catalysts

    According to our previous studies,there are the following reaction processes in this process:(Ⅰ)2CH3OH → CH3OCH3+H2O;(Ⅱ) 2CH3O+CO2→HCHO+CO+H2O[35].It can be seen that the doping of Mg can promote the process of(Ⅰ) and(Ⅱ),which leads to a decrease in the selectivity of DMC.

    Fig.9 Durability test of Ce0.90Mg0.10O2monolithic catalyst

    To provide referable information for the industry,we examined the stability of Ce0.90Mg0.10O2monolithic catalyst at 140℃and 2.4 MPa.There is little deactivation for this catalyst(DMC yield from 20.21% to 19.56%)during the 50 h durability test implies it is a quite promising application for the direct synthesis of DMC from CO2and methanol.

    3 Conclusions

    In conclusion,doping Mg in CeO2lattice can enhance the catalytic performance on the direct formation of DMC from methanol and CO2.Since Mg2+ions play an important role in the activation of oxygen species in CeO2lattice,which favors the oxygen vacancies formation.At the same time,the honeycomb structure of the monolithic catalyst greatly improves the removal of reaction products,overcoming thermodynamic limitations to some extent.Consequently,the yield of DMC and the stability of the catalyst can be improved.

    Supporting information is available at http://www.wjhxxb.cn

    Acknowledgments:We acknowledge XIAO Yong-Li,JIANG Lan for their aid in this work.

    久久午夜亚洲精品久久| 波多野结衣巨乳人妻| 白带黄色成豆腐渣| 成年女人看的毛片在线观看| 免费看a级黄色片| 精华霜和精华液先用哪个| 久久久成人免费电影| 嫩草影院精品99| 1024手机看黄色片| 99精品在免费线老司机午夜| 欧美日韩黄片免| 久久99热这里只有精品18| 日日干狠狠操夜夜爽| 最新在线观看一区二区三区| 老司机深夜福利视频在线观看| 在线观看av片永久免费下载| 欧美日韩中文字幕国产精品一区二区三区| 99热6这里只有精品| 精品国内亚洲2022精品成人| 欧美+亚洲+日韩+国产| 长腿黑丝高跟| 99热6这里只有精品| 午夜视频国产福利| 国产野战对白在线观看| 亚洲七黄色美女视频| 亚洲精品久久国产高清桃花| 国产精品亚洲av一区麻豆| 成人精品一区二区免费| 日本与韩国留学比较| 国产精品爽爽va在线观看网站| 熟女人妻精品中文字幕| 99久久99久久久精品蜜桃| 国产爱豆传媒在线观看| 国产黄a三级三级三级人| 久久午夜亚洲精品久久| 少妇的逼水好多| 午夜福利高清视频| 国产精品自产拍在线观看55亚洲| 首页视频小说图片口味搜索| 日韩精品中文字幕看吧| 日韩欧美一区二区三区在线观看| 日日干狠狠操夜夜爽| 又爽又黄无遮挡网站| 亚洲无线观看免费| 美女免费视频网站| 波多野结衣高清作品| 亚洲五月婷婷丁香| 窝窝影院91人妻| 悠悠久久av| 免费高清视频大片| 国产中年淑女户外野战色| 美女被艹到高潮喷水动态| 两个人的视频大全免费| 中文字幕熟女人妻在线| 老司机福利观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品一区av在线观看| 综合色av麻豆| 久久久国产成人精品二区| 波多野结衣巨乳人妻| 精品电影一区二区在线| 久久久久久大精品| 99久国产av精品| 国内精品一区二区在线观看| 色噜噜av男人的天堂激情| 69av精品久久久久久| 亚洲avbb在线观看| 亚洲 欧美 日韩 在线 免费| 久久香蕉国产精品| 国产亚洲欧美98| 无限看片的www在线观看| 日韩欧美精品v在线| 欧美日韩乱码在线| 久久伊人香网站| 久久国产精品影院| 国产av不卡久久| 亚洲人成电影免费在线| 国产免费男女视频| 高清日韩中文字幕在线| 国产麻豆成人av免费视频| 午夜免费男女啪啪视频观看 | 首页视频小说图片口味搜索| av天堂中文字幕网| 色吧在线观看| 热99re8久久精品国产| 欧美高清成人免费视频www| 亚洲av成人不卡在线观看播放网| 两个人视频免费观看高清| 99热这里只有精品一区| 中文亚洲av片在线观看爽| 88av欧美| 欧美色欧美亚洲另类二区| 欧美乱码精品一区二区三区| 久久这里只有精品中国| 欧美乱妇无乱码| 脱女人内裤的视频| 久久国产乱子伦精品免费另类| 男女之事视频高清在线观看| 亚洲天堂国产精品一区在线| 国产三级中文精品| 欧美zozozo另类| 国产精品永久免费网站| 悠悠久久av| 九九热线精品视视频播放| 亚洲成a人片在线一区二区| 欧美乱色亚洲激情| 高清日韩中文字幕在线| 中文字幕精品亚洲无线码一区| 18+在线观看网站| 精品久久久久久,| 18禁美女被吸乳视频| 亚洲av不卡在线观看| 少妇高潮的动态图| 波多野结衣高清作品| 亚洲人成电影免费在线| 岛国在线观看网站| www.999成人在线观看| 在线观看免费午夜福利视频| 又黄又粗又硬又大视频| 97超视频在线观看视频| 最新在线观看一区二区三区| 久久香蕉精品热| www.999成人在线观看| 日韩有码中文字幕| 亚洲欧美日韩东京热| 国产一区二区在线观看日韩 | 韩国av一区二区三区四区| 亚洲国产精品999在线| 99久久无色码亚洲精品果冻| 日日夜夜操网爽| 婷婷精品国产亚洲av在线| 日本免费a在线| 精品99又大又爽又粗少妇毛片 | 国产精品国产高清国产av| 亚洲美女视频黄频| 女警被强在线播放| 老司机在亚洲福利影院| 国产亚洲欧美在线一区二区| 国产久久久一区二区三区| 999久久久精品免费观看国产| 国产一区二区亚洲精品在线观看| 熟女少妇亚洲综合色aaa.| 欧美区成人在线视频| 九色成人免费人妻av| 非洲黑人性xxxx精品又粗又长| 国产激情欧美一区二区| 午夜福利在线观看免费完整高清在 | 国产极品精品免费视频能看的| 亚洲无线在线观看| 99久久成人亚洲精品观看| 老汉色∧v一级毛片| 中文字幕熟女人妻在线| 久久人妻av系列| 欧美+亚洲+日韩+国产| 69人妻影院| 一本精品99久久精品77| 日本五十路高清| 欧美在线一区亚洲| 小蜜桃在线观看免费完整版高清| 他把我摸到了高潮在线观看| 国产97色在线日韩免费| 免费观看精品视频网站| 国产三级中文精品| 一个人观看的视频www高清免费观看| 亚洲av成人精品一区久久| 久久欧美精品欧美久久欧美| 日韩高清综合在线| 精品久久久久久久人妻蜜臀av| 最好的美女福利视频网| 免费人成视频x8x8入口观看| 亚洲av中文字字幕乱码综合| 国产蜜桃级精品一区二区三区| 99精品久久久久人妻精品| 国产伦一二天堂av在线观看| 天堂动漫精品| 欧美极品一区二区三区四区| 日韩精品青青久久久久久| 欧美激情在线99| 淫妇啪啪啪对白视频| 国产精品久久久久久亚洲av鲁大| 亚洲黑人精品在线| 脱女人内裤的视频| 国产精品久久久人人做人人爽| 女警被强在线播放| 午夜两性在线视频| 偷拍熟女少妇极品色| 国产精品永久免费网站| 无遮挡黄片免费观看| 99riav亚洲国产免费| 亚洲中文日韩欧美视频| 国产91精品成人一区二区三区| 无人区码免费观看不卡| 成年女人看的毛片在线观看| 色播亚洲综合网| 丁香六月欧美| 18禁国产床啪视频网站| 国产69精品久久久久777片| 欧美区成人在线视频| 欧美黑人欧美精品刺激| 久久久久九九精品影院| 国产成人啪精品午夜网站| 黄色成人免费大全| 在线观看美女被高潮喷水网站 | 高潮久久久久久久久久久不卡| 午夜影院日韩av| 禁无遮挡网站| h日本视频在线播放| 久久久国产精品麻豆| 色尼玛亚洲综合影院| 久久精品人妻少妇| 男人的好看免费观看在线视频| 国产亚洲精品av在线| 国产精品一及| 99热这里只有精品一区| 国产乱人视频| 亚洲最大成人手机在线| 波野结衣二区三区在线 | 国产成人a区在线观看| 精品久久久久久,| 欧美成狂野欧美在线观看| 成人永久免费在线观看视频| 国产一区二区在线av高清观看| 中出人妻视频一区二区| 男人舔奶头视频| 性色avwww在线观看| 韩国av一区二区三区四区| 美女黄网站色视频| 蜜桃亚洲精品一区二区三区| 99久久久亚洲精品蜜臀av| 欧美zozozo另类| 中文字幕久久专区| 久久精品国产清高在天天线| 国产日本99.免费观看| 三级男女做爰猛烈吃奶摸视频| 天天添夜夜摸| 国产伦精品一区二区三区四那| 久久婷婷人人爽人人干人人爱| 在线免费观看不下载黄p国产 | 成人高潮视频无遮挡免费网站| 国产国拍精品亚洲av在线观看 | 国产三级在线视频| 国产精品美女特级片免费视频播放器| 亚洲中文字幕日韩| 免费观看人在逋| 中文字幕久久专区| 精品乱码久久久久久99久播| 欧洲精品卡2卡3卡4卡5卡区| 国产成人系列免费观看| 中文字幕精品亚洲无线码一区| 三级男女做爰猛烈吃奶摸视频| 国产精品自产拍在线观看55亚洲| 国产激情偷乱视频一区二区| 88av欧美| svipshipincom国产片| 此物有八面人人有两片| 亚洲五月婷婷丁香| 麻豆成人av在线观看| 久久久久久大精品| 高潮久久久久久久久久久不卡| 欧美在线黄色| 一进一出抽搐动态| 亚洲一区二区三区色噜噜| 亚洲aⅴ乱码一区二区在线播放| 免费一级毛片在线播放高清视频| 男女床上黄色一级片免费看| 国产av一区在线观看免费| 最好的美女福利视频网| 国产麻豆成人av免费视频| 久久香蕉精品热| 18禁在线播放成人免费| 亚洲av电影不卡..在线观看| 亚洲欧美日韩东京热| 真人一进一出gif抽搐免费| 亚洲av免费高清在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲av二区三区四区| 九九久久精品国产亚洲av麻豆| 午夜福利视频1000在线观看| 精品久久久久久久久久免费视频| 日韩欧美 国产精品| 美女黄网站色视频| 久久久久久久精品吃奶| 99久久精品国产亚洲精品| 麻豆一二三区av精品| 亚洲真实伦在线观看| 99国产精品一区二区蜜桃av| 国内久久婷婷六月综合欲色啪| 黄色日韩在线| 亚洲,欧美精品.| 三级毛片av免费| 久久精品国产亚洲av涩爱 | 中文资源天堂在线| 久久久久亚洲av毛片大全| 亚洲精品粉嫩美女一区| a在线观看视频网站| 久久久精品大字幕| 国产爱豆传媒在线观看| 欧美激情在线99| 国产 一区 欧美 日韩| 日韩精品青青久久久久久| 观看美女的网站| 99热这里只有是精品50| 国产三级中文精品| 女生性感内裤真人,穿戴方法视频| 三级毛片av免费| 伊人久久精品亚洲午夜| 国产真实伦视频高清在线观看 | 国产老妇女一区| 精品午夜福利视频在线观看一区| 黄色日韩在线| 欧美性猛交黑人性爽| 97超级碰碰碰精品色视频在线观看| 午夜精品一区二区三区免费看| 国产精品综合久久久久久久免费| 亚洲精品美女久久久久99蜜臀| 欧美丝袜亚洲另类 | 国产精品日韩av在线免费观看| 老司机午夜十八禁免费视频| 国产亚洲精品一区二区www| av天堂在线播放| 成年人黄色毛片网站| 99热这里只有是精品50| 1000部很黄的大片| 天美传媒精品一区二区| 欧美日韩亚洲国产一区二区在线观看| 国语自产精品视频在线第100页| 国产精品一区二区三区四区久久| 亚洲国产色片| 韩国av一区二区三区四区| 一进一出抽搐gif免费好疼| 88av欧美| e午夜精品久久久久久久| 国产欧美日韩精品一区二区| 人人妻人人澡欧美一区二区| 亚洲黑人精品在线| 精品一区二区三区av网在线观看| 国产精品98久久久久久宅男小说| 免费电影在线观看免费观看| 在线免费观看不下载黄p国产 | 我要搜黄色片| 国产精品久久电影中文字幕| 国语自产精品视频在线第100页| 久久久久久久久久黄片| 可以在线观看的亚洲视频| 韩国av一区二区三区四区| 免费看a级黄色片| 免费人成视频x8x8入口观看| 国产在视频线在精品| 身体一侧抽搐| 变态另类丝袜制服| 亚洲第一欧美日韩一区二区三区| 一区二区三区激情视频| 国产精品精品国产色婷婷| xxxwww97欧美| 亚洲色图av天堂| 免费电影在线观看免费观看| 欧美日韩一级在线毛片| 欧美乱码精品一区二区三区| 少妇丰满av| 男人的好看免费观看在线视频| 99热精品在线国产| 中文字幕人成人乱码亚洲影| 免费看十八禁软件| 男女那种视频在线观看| 午夜福利在线在线| 国产精华一区二区三区| 在线国产一区二区在线| 五月伊人婷婷丁香| 一本久久中文字幕| 丁香六月欧美| 欧美bdsm另类| www.www免费av| 精品一区二区三区av网在线观看| 一区二区三区高清视频在线| 中文字幕熟女人妻在线| 色综合欧美亚洲国产小说| 免费无遮挡裸体视频| 在线免费观看的www视频| 欧美日韩福利视频一区二区| 久久精品国产综合久久久| 国产免费av片在线观看野外av| 久久久国产成人免费| 亚洲最大成人中文| 国产精品免费一区二区三区在线| 99热6这里只有精品| 国语自产精品视频在线第100页| 天堂√8在线中文| 特大巨黑吊av在线直播| 午夜福利在线观看免费完整高清在 | 亚洲欧美日韩卡通动漫| 国产探花在线观看一区二区| 少妇人妻一区二区三区视频| a在线观看视频网站| 久久久久免费精品人妻一区二区| 国产91精品成人一区二区三区| 亚洲av免费高清在线观看| 午夜免费男女啪啪视频观看 | 热99在线观看视频| 非洲黑人性xxxx精品又粗又长| 欧美精品啪啪一区二区三区| 亚洲自拍偷在线| 久久久久九九精品影院| 内射极品少妇av片p| 国产真人三级小视频在线观看| 在线观看午夜福利视频| 天堂av国产一区二区熟女人妻| 亚洲成人中文字幕在线播放| 久久午夜亚洲精品久久| 在线国产一区二区在线| 草草在线视频免费看| 日韩有码中文字幕| 手机成人av网站| 国产av不卡久久| 欧美另类亚洲清纯唯美| 亚洲 国产 在线| 色播亚洲综合网| 国产av麻豆久久久久久久| 3wmmmm亚洲av在线观看| 1024手机看黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 久久99热这里只有精品18| 99在线视频只有这里精品首页| 欧美不卡视频在线免费观看| 亚洲精品粉嫩美女一区| 蜜桃久久精品国产亚洲av| 国产男靠女视频免费网站| 一本久久中文字幕| 国产探花极品一区二区| 国产av不卡久久| 欧美国产日韩亚洲一区| 91字幕亚洲| 香蕉丝袜av| 一本精品99久久精品77| 亚洲欧美日韩无卡精品| 美女cb高潮喷水在线观看| 欧美+日韩+精品| 久久久久久久久久黄片| 欧美一级毛片孕妇| 欧美三级亚洲精品| a级毛片a级免费在线| 欧美国产日韩亚洲一区| ponron亚洲| 欧美成狂野欧美在线观看| 亚洲人成网站在线播放欧美日韩| 韩国av一区二区三区四区| 亚洲内射少妇av| 99久久精品一区二区三区| 亚洲18禁久久av| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| bbb黄色大片| 一本综合久久免费| 啪啪无遮挡十八禁网站| 欧美国产日韩亚洲一区| 男女做爰动态图高潮gif福利片| 亚洲avbb在线观看| 搡女人真爽免费视频火全软件 | 人妻丰满熟妇av一区二区三区| 1000部很黄的大片| 中文字幕人成人乱码亚洲影| 三级毛片av免费| 老熟妇仑乱视频hdxx| 久久天躁狠狠躁夜夜2o2o| 真人做人爱边吃奶动态| 丰满的人妻完整版| 亚洲一区高清亚洲精品| 国产精品影院久久| aaaaa片日本免费| 此物有八面人人有两片| av女优亚洲男人天堂| 亚洲成人免费电影在线观看| 欧美黑人巨大hd| 国产精品国产高清国产av| 偷拍熟女少妇极品色| 亚洲无线观看免费| 观看美女的网站| 欧美日韩瑟瑟在线播放| 一夜夜www| 一个人看的www免费观看视频| 国产精品久久视频播放| 成人特级黄色片久久久久久久| 精品欧美国产一区二区三| 两个人的视频大全免费| 51国产日韩欧美| 国产男靠女视频免费网站| 国产精品亚洲av一区麻豆| www日本黄色视频网| 国产成人啪精品午夜网站| 国产欧美日韩一区二区三| 亚洲人成网站高清观看| 长腿黑丝高跟| 小蜜桃在线观看免费完整版高清| 国产精品女同一区二区软件 | 最近在线观看免费完整版| 日韩免费av在线播放| 亚洲成人久久爱视频| 欧美三级亚洲精品| 欧美在线一区亚洲| 无限看片的www在线观看| 欧美性猛交╳xxx乱大交人| 国产激情欧美一区二区| 在线免费观看的www视频| 亚洲天堂国产精品一区在线| 久久这里只有精品中国| 亚洲第一电影网av| 亚洲精品成人久久久久久| 美女高潮的动态| 男人舔奶头视频| 女警被强在线播放| 每晚都被弄得嗷嗷叫到高潮| 青草久久国产| 亚洲电影在线观看av| 免费观看的影片在线观看| 午夜两性在线视频| 99久久无色码亚洲精品果冻| 国产伦一二天堂av在线观看| 亚洲狠狠婷婷综合久久图片| 成人精品一区二区免费| 国产一区二区激情短视频| av专区在线播放| 亚洲精品美女久久久久99蜜臀| 亚洲人成网站高清观看| 黄片小视频在线播放| 亚洲国产精品久久男人天堂| 亚洲国产精品999在线| 久久精品国产99精品国产亚洲性色| 国产野战对白在线观看| 首页视频小说图片口味搜索| 2021天堂中文幕一二区在线观| 在线看三级毛片| 最好的美女福利视频网| 99久久精品国产亚洲精品| 人人妻,人人澡人人爽秒播| 国产亚洲精品久久久com| 精品一区二区三区视频在线观看免费| 亚洲精品久久国产高清桃花| 岛国在线观看网站| 亚洲国产精品成人综合色| 欧美激情久久久久久爽电影| а√天堂www在线а√下载| 国产免费男女视频| 露出奶头的视频| 免费一级毛片在线播放高清视频| 亚洲av日韩精品久久久久久密| 国产激情偷乱视频一区二区| 国产精品三级大全| 18+在线观看网站| 丰满乱子伦码专区| 国产亚洲精品综合一区在线观看| 精品免费久久久久久久清纯| 91九色精品人成在线观看| 久久久久久久午夜电影| 特级一级黄色大片| 最近最新中文字幕大全免费视频| 欧美日韩瑟瑟在线播放| 欧美成人性av电影在线观看| 搡老熟女国产l中国老女人| 香蕉丝袜av| 欧美日韩瑟瑟在线播放| 成人午夜高清在线视频| 日韩精品中文字幕看吧| 天美传媒精品一区二区| 天天一区二区日本电影三级| 亚洲七黄色美女视频| 婷婷亚洲欧美| 欧美成人a在线观看| 国产精品亚洲一级av第二区| 给我免费播放毛片高清在线观看| 日本黄大片高清| 热99re8久久精品国产| 少妇人妻一区二区三区视频| 欧美中文综合在线视频| 国产欧美日韩一区二区三| 黑人欧美特级aaaaaa片| 波多野结衣高清作品| 可以在线观看毛片的网站| a级毛片a级免费在线| 女同久久另类99精品国产91| 国产97色在线日韩免费| www.999成人在线观看| 欧美激情久久久久久爽电影| 女警被强在线播放| 18禁国产床啪视频网站| 久久久久免费精品人妻一区二区| 亚洲最大成人手机在线| 在线观看一区二区三区| 波多野结衣巨乳人妻| 亚洲欧美一区二区三区黑人| 又紧又爽又黄一区二区| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区三| 国产亚洲精品一区二区www| 亚洲精华国产精华精| 免费在线观看影片大全网站| 国产97色在线日韩免费| 免费高清视频大片| 在线观看66精品国产| 国产97色在线日韩免费| 国产av不卡久久| 又紧又爽又黄一区二区| 又爽又黄无遮挡网站| 九色成人免费人妻av| 亚洲精品一卡2卡三卡4卡5卡| 一级黄片播放器| 男女床上黄色一级片免费看| 精品福利观看| 免费在线观看成人毛片| 欧美黑人欧美精品刺激| 亚洲欧美日韩东京热| 成人性生交大片免费视频hd| 91麻豆精品激情在线观看国产| 日韩国内少妇激情av| 国产麻豆成人av免费视频| 美女高潮喷水抽搐中文字幕| 亚洲av五月六月丁香网|