高揚(yáng), 蘇香楠, 于亮
運(yùn)動(dòng)重置骨骼肌生物鐘調(diào)控線粒體質(zhì)量控制的研究進(jìn)展*
高揚(yáng), 蘇香楠, 于亮△
(北京體育大學(xué)運(yùn)動(dòng)人體科學(xué)學(xué)院,北京 100084)
晝夜節(jié)律;骨骼?。痪€粒體質(zhì)量控制;運(yùn)動(dòng)
晝夜節(jié)律是指生物體的行為、生理和生化反應(yīng)呈現(xiàn)出近24 h的節(jié)律活動(dòng),這些節(jié)律受生物鐘系統(tǒng)控制調(diào)節(jié)。流行病學(xué)調(diào)查表明,長時(shí)間的光照或輪班工作擾亂了生物鐘系統(tǒng),導(dǎo)致生物鐘基因節(jié)律性表達(dá)出現(xiàn)紊亂,不僅增加了罹患腫瘤[1]、心血管疾病[2]、糖尿病及肥胖等代謝系統(tǒng)疾?。?]的風(fēng)險(xiǎn),也可能造成骨骼肌質(zhì)量[4]及運(yùn)動(dòng)能力下降[5]。骨骼肌作為人體最大的運(yùn)動(dòng)器官,其線粒體穩(wěn)態(tài)對(duì)機(jī)體的運(yùn)動(dòng)能力具有重要的影響,而線粒體質(zhì)量控制是維持線粒體穩(wěn)態(tài)的有效手段。因此,確定骨骼肌中與線粒體質(zhì)量控制相關(guān)的潛在生物鐘基因,可以作為改善骨骼肌線粒體功能、提高機(jī)體晝夜節(jié)律健康以及減少/預(yù)防疾病發(fā)展的靶點(diǎn)。另外,運(yùn)動(dòng)作為一種授時(shí)因子可以調(diào)節(jié)骨骼肌生物鐘基因的節(jié)律性表達(dá)[6],然而運(yùn)動(dòng)狀態(tài)下骨骼肌生物鐘與線粒體質(zhì)量控制之間的關(guān)系尚不明確。因此,本文從骨骼肌生物鐘概述、骨骼肌生物鐘與線粒體質(zhì)量控制以及運(yùn)動(dòng)重置骨骼肌生物鐘及其可能機(jī)制幾個(gè)方面進(jìn)行綜述,以期從骨骼肌生物鐘角度觀察運(yùn)動(dòng)對(duì)線粒體質(zhì)量控制的調(diào)節(jié)作用。
1.1生物鐘系統(tǒng)和骨骼肌生物鐘在哺乳動(dòng)物中,生物鐘系統(tǒng)是由感光神經(jīng)元、神經(jīng)內(nèi)分泌系統(tǒng)及基因時(shí)序振蕩表達(dá)調(diào)控共同形成的功能體系,由位于下丘腦視交叉上核(suprachiasmatic nucleus, SCN)的中樞生物鐘(central clocks)和位于肝臟、心臟及骨骼肌等外周組織器官的外周生物鐘(peripheral clocks)組成,對(duì)調(diào)節(jié)生物體內(nèi)在生理節(jié)律和生物行為具有重要作用。其中,SCN是生物鐘的起搏器,在接收光信號(hào)刺激后可通過神經(jīng)和內(nèi)分泌系統(tǒng)對(duì)外周生物鐘進(jìn)行同步化調(diào)節(jié)[7],使整個(gè)機(jī)體的節(jié)律與外界環(huán)境相適應(yīng)。而骨骼肌生物鐘作為外周生物鐘之一,除了受SCN調(diào)節(jié)以實(shí)現(xiàn)全身晝夜節(jié)律同步運(yùn)轉(zhuǎn)外,還受運(yùn)動(dòng)和飲食等其他因素調(diào)節(jié),致使在中樞生物鐘不同步的情況下產(chǎn)生節(jié)律性振蕩[8],調(diào)節(jié)骨骼肌生成、轉(zhuǎn)錄和代謝等生理過程。已有研究表明長期輪班工作改變了機(jī)體正常的生物節(jié)律,間接導(dǎo)致骨骼肌結(jié)構(gòu)和功能以及代謝水平受損。例如,骨骼肌肌纖維類型發(fā)生轉(zhuǎn)換,線粒體結(jié)構(gòu)和功能出現(xiàn)異常及呼吸活性下降等現(xiàn)象,進(jìn)而影響了骨骼肌力量以及有氧和無氧運(yùn)動(dòng)能力。因此,調(diào)節(jié)骨骼肌生物鐘使其產(chǎn)生節(jié)律性振蕩對(duì)改善骨骼肌結(jié)構(gòu)與功能具有重要意義。
1.2骨骼肌生物鐘分子機(jī)制骨骼肌生物鐘的調(diào)節(jié)作用主要基于生物鐘基因的節(jié)律性表達(dá)。人類骨骼肌中存在2 300多個(gè)以晝夜節(jié)律模式表達(dá)的生物鐘基因,這些基因受正向/負(fù)向轉(zhuǎn)錄-翻譯反饋回路(transcriptional-translational feedback loop, TTFL)調(diào)節(jié)產(chǎn)生振蕩性節(jié)律[4]。其中,(brain and muscle Arnt-like protein 1)和(circadian locomotor output cycles kaput)是TTFL正向調(diào)控基因,兩者結(jié)合形成異源二聚體可與負(fù)向調(diào)控基因//(period 1/2/3)和/(cryptochrome 1/2)啟動(dòng)子上的E-box(enhancer box)結(jié)合,激活//和/基因的轉(zhuǎn)錄。反之,//與/結(jié)合形成的復(fù)合物會(huì)抑制和基因的表達(dá)。而哺乳動(dòng)物//和-/基因作為核心時(shí)鐘的一部分,也參與TTFL的調(diào)節(jié),兩者分別與ROR結(jié)合可激活/抑制的節(jié)律性轉(zhuǎn)錄[9](圖1)。
Fugure 1. Molecular mechanism of skeletal muscle circadian clock. Bmal1: brain and muscle ARNT-like protein 1; Clock: circadian locomotor output cycles kaput; PERs: periods; CRYs: cryptochromes; CCGs: clock-controlled genes; E-box: enhancer Box; RORs: retinoic acid-related orphan receptors.
另外,生物鐘核心基因的節(jié)律性表達(dá)通過表觀遺傳、轉(zhuǎn)錄和翻譯等不同方式調(diào)控下游鐘控基因(clock-controlled genes, CCGs)的表達(dá),能夠有效調(diào)節(jié)生物體生理、代謝和行為水平的節(jié)律性。其中,骨骼肌特異性CCGs有(myogenic differentiation 1)[10]、-[11]、(dynamin-related protein 1)[12]、(Bcl-2 nineteen-kilodalton interacting protein 3)[13]等,這些骨骼肌特異性CCGs不僅能通過調(diào)節(jié)肌萎縮因子來維持骨骼肌質(zhì)量、防止肌萎縮發(fā)生,而且還能調(diào)節(jié)線粒體生物發(fā)生、自噬以及線粒體融合與分裂等過程。例如,杜氏肌營養(yǎng)不良的小鼠缺失基因后骨骼肌中肌萎縮因子Atrogin-1和MURF-1上調(diào),加劇了肌營養(yǎng)不良的癥狀[14],而且敲除后,過氧化物酶體增殖物激活受體γ輔激活因子1α(peroxisome proliferator-activated receptor γ coactivator-1α, PGC-1α)和TFAM的表達(dá)顯著下調(diào)[15],線粒體分裂蛋白Fis1和動(dòng)力相關(guān)蛋白Drp1顯示出晝夜節(jié)律性表達(dá)增加[16]。除此之外,當(dāng)生物鐘基因-缺失后,骨骼肌自噬標(biāo)志物L(fēng)C3-II水平顯著增加,線粒體的含量和氧化能力迅速下降。相反,-過表達(dá)時(shí)線粒體呼吸能力和機(jī)體運(yùn)動(dòng)能力得到改善[17]??傊?,轉(zhuǎn)錄-翻譯反饋回路不僅能夠調(diào)節(jié)骨骼肌核心生物鐘的節(jié)律表達(dá),而且能夠激活下游鐘控基因網(wǎng)絡(luò),有助于維持骨骼肌生理結(jié)構(gòu)和功能以及骨骼肌晝夜節(jié)律穩(wěn)態(tài)。
骨骼肌作為人體最大的代謝和內(nèi)分泌器官,對(duì)機(jī)體代謝調(diào)控至關(guān)重要。而線粒體作為骨骼肌細(xì)胞的“能量動(dòng)力工廠”,其線粒體質(zhì)量控制在應(yīng)對(duì)環(huán)境刺激發(fā)生的代謝性適應(yīng)過程中也起關(guān)鍵調(diào)節(jié)作用。線粒體質(zhì)量控制受晝夜節(jié)律變化的調(diào)節(jié),且骨骼肌生物鐘基因參與調(diào)控線粒體生物發(fā)生[18]、線粒體融合與分裂[19]以及線粒體自噬[20]等過程(圖2)。
Figure 2. The relationship between skeletal muscle circadian clock and mitochondrial quality control. Bmal1: brain and muscle Arnt-like protein 1; Clock: circadian locomotor output cycles kaput; PERs: periods; CRYs: cryptochromes; BNIP3: Bcl-2 nineteen-kilodalton interacting protein 3; PINK1: PTEN-induced putative kinase 1; AMPK: AMP-activated protein kinase; PGC-1α: peroxisome proliferator-activated receptor γ coactivator-1α; SIRT: silent information regulator; NAMPT: nicotinamide phosphoribosyl transferase; OPA1: optic atrophy 1; MFN1/2: mitofusin 1/2; DRP1: dynamin-related protein 1; FIS1: fission protein 1.
2.1骨骼肌生物鐘與線粒體生物發(fā)生骨骼肌生物鐘與線粒體生物合成密切聯(lián)系,生物鐘基因可與線粒體生物發(fā)生的關(guān)鍵因子PGC-1α相互作用以調(diào)節(jié)骨骼肌線粒體生物發(fā)生。有研究觀察到全身性敲除Bmal1小鼠和Clock基因突變小鼠都出現(xiàn)了肌絲結(jié)構(gòu)破壞、收縮肌力下降、骨骼肌線粒體形態(tài)異常和功能障礙等現(xiàn)象,這種現(xiàn)象可能與PGC-1α和TFAM的表達(dá)減少有關(guān)[15]。而且Stephen等[21]也證實(shí)了Jessica的這一假想,觀察到Clock基因突變小鼠線粒體生物合成蛋白PGC-1α和TFAM含量顯著減少且伴隨線粒體含量及功能下降。而且小鼠肝臟和骨骼肌中PGC-1α能夠協(xié)同激活核受體ROR家族基因,刺激和-等生物鐘基因的表達(dá)[22]。相反,敲除基因后PGC-1α表達(dá)顯著下調(diào)。除了在肝臟和骨骼肌出現(xiàn)這一現(xiàn)象外,在心肌中也出現(xiàn)類似情況。心臟特異性敲除基因后,心肌中線粒體生物發(fā)生基因-和分別降低了50%和40%[23]。這些證據(jù)均表明了生物鐘基因與線粒體生物發(fā)生的關(guān)鍵因子PGC-1α的相互作用,以及PGC-1α在生物鐘基因TTFL中可能起關(guān)鍵作用,但是其具體作用機(jī)制還有待進(jìn)一步探究。
2.2骨骼肌生物鐘與線粒體動(dòng)力學(xué)線粒體動(dòng)力學(xué)是線粒體不斷融合與分裂的過程,通過循環(huán)的分裂與融合過程及時(shí)清除受損和功能失調(diào)的線粒體,實(shí)現(xiàn)線粒體質(zhì)量控制,完成生物體內(nèi)多種生理及病理修復(fù)過程[24]。在哺乳動(dòng)物中,49/51 kD線粒體動(dòng)力學(xué)蛋白(mitochondrial dynamics proteins of 49/51 kD, MiD49/51)、線粒體分裂蛋白1(fission protein 1, Fis1)、線粒體分裂因子(mitochondrial fission factor, Mff)和Drp1是線粒體分裂的主要調(diào)控因子,而線粒體融合主要受視神經(jīng)萎縮蛋白1(optic atrophy 1, OPA1)和線粒體融合蛋白1/2(mitofusin 1/2, Mfn1/2)調(diào)控。研究表明,線粒體形態(tài)的變化(融合與分裂)以及線粒體的產(chǎn)生依賴于生物鐘,哺乳動(dòng)物線粒體融合與分裂過程顯示出與明/暗周期一致的晝夜變化[25],這一現(xiàn)象在肝臟和心臟組織已經(jīng)得到證實(shí)。當(dāng)小鼠肝臟特異性敲除后,F(xiàn)is1和Drp1顯示出晝夜節(jié)律性表達(dá)增加[16];而心臟特異性敲除后,出現(xiàn)心肌線粒體形態(tài)和功能異常現(xiàn)象,呼吸復(fù)合酶內(nèi)酶活性顯著降低,Mfn1和Opa1表達(dá)下調(diào)[23],均表明了生物鐘基因能夠間接影響肝臟和心臟的線粒體融合和分裂過程。2018年,Schmitt等[12]觀察到介導(dǎo)線粒體分裂與融合的關(guān)鍵基因Drp1磷酸化可以調(diào)節(jié)控制線粒體生物節(jié)律,當(dāng)生物鐘受損時(shí)出現(xiàn)了線粒體網(wǎng)絡(luò)紊亂和細(xì)胞整體產(chǎn)能下降,導(dǎo)致一系列與線粒體功能受損疾病的發(fā)生。另外,敲除神經(jīng)節(jié)苷脂誘導(dǎo)分化相關(guān)蛋白1(ganglioside-induced differentiation-associated protein 1,;一種涉及線粒體融合的蛋白)后,生物鐘基因表達(dá)增加,DBP表達(dá)下降[26]。而且可以替代與結(jié)合誘導(dǎo)其他生物鐘基因轉(zhuǎn)錄[27]。總之,線粒體動(dòng)力學(xué)相關(guān)蛋白參與了外周器官核心生物鐘的信號(hào)傳遞和調(diào)節(jié)。
2.3骨骼肌生物鐘與線粒體自噬自噬是細(xì)胞內(nèi)的降解過程,能夠?qū)⒓?xì)胞溶質(zhì)成分靶向溶酶體進(jìn)行降解,以維持細(xì)胞穩(wěn)態(tài)并為能量產(chǎn)生提供底物。在19世紀(jì)70年代最早發(fā)現(xiàn)了自噬與生物鐘基因之間的調(diào)節(jié)關(guān)系,證實(shí)了哺乳動(dòng)物的自噬核心因子具有晝夜節(jié)律[28],且哺乳動(dòng)物不同組織的自噬水平受多個(gè)與自噬相關(guān)的生物鐘基因和控制。例如,小鼠核心生物鐘基因缺失會(huì)導(dǎo)致擴(kuò)張型心肌病,心肌收縮力下降、鈣失調(diào)和肌絲紊亂,而且線粒體分裂與自噬過程被抑制,導(dǎo)致線粒體氧化磷酸化的水平顯著下降,心肌細(xì)胞功能受損[23]。基因過表達(dá)導(dǎo)致PI3K-Akt通路下調(diào)以及自噬通量的變化[29]。另外,基因在骨骼肌中高度表達(dá),當(dāng)骨骼肌缺失基因后,線粒體含量和氧化功能下降,自噬標(biāo)志物L(fēng)C3-II的水平顯著增加,伴隨著機(jī)體清除細(xì)胞器的能力增加,運(yùn)動(dòng)能力也會(huì)隨之下降[30]。這些數(shù)據(jù)均證實(shí)線粒體功能障礙和自噬水平受到骨骼肌生物鐘基因的調(diào)節(jié)和控制,重置骨骼肌生物鐘可能會(huì)改善線粒體的功能,進(jìn)而提高機(jī)體的運(yùn)動(dòng)能力。
3.1運(yùn)動(dòng)與骨骼肌生物鐘運(yùn)動(dòng)作為授時(shí)因子之一,能夠引起核心溫度、激素反應(yīng)以及組織特異性轉(zhuǎn)錄和代謝等顯著變化。多項(xiàng)研究表明,運(yùn)動(dòng)可以改善骨骼肌生物鐘節(jié)律性表達(dá)[31-32]。本部分將闡述不同的運(yùn)動(dòng)方式和運(yùn)動(dòng)時(shí)間對(duì)骨骼肌生物鐘基因的影響及其可能的作用機(jī)制。
3.1.1運(yùn)動(dòng)方式與骨骼肌生物鐘骨骼肌有自己的生物鐘,當(dāng)骨骼肌生物鐘被破壞時(shí)可能會(huì)出現(xiàn)一系列代謝性疾病,而運(yùn)動(dòng)具有恢復(fù)骨骼肌生物鐘節(jié)律的能力,從而改善機(jī)體代謝健康[6]。雖然目前已經(jīng)有關(guān)于運(yùn)動(dòng)對(duì)生物鐘基因的研究,但是不同的運(yùn)動(dòng)方式對(duì)骨骼肌生物鐘基因的影響尚不清楚。
急性運(yùn)動(dòng)能夠影響骨骼肌生物鐘基因的表達(dá)。動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn)小鼠在光照情況下進(jìn)行一次急性有氧運(yùn)動(dòng)后,和基因的節(jié)律性表達(dá)增強(qiáng)[33]。同樣,人體實(shí)驗(yàn)觀察到急性中等強(qiáng)度有氧運(yùn)動(dòng)[34]不僅能導(dǎo)致骨骼肌中基因的表達(dá)增加,而且在急性有氧運(yùn)動(dòng)后1 h后骨骼肌中Per2 mRNA表達(dá)增加[35],低強(qiáng)度和中等強(qiáng)度的運(yùn)動(dòng)能力出現(xiàn)顯著提升[36]。
除了急性運(yùn)動(dòng)之外,長期有規(guī)律的有氧運(yùn)動(dòng)也能導(dǎo)致骨骼肌生物鐘基因的表達(dá)發(fā)生明顯變化。肥胖和糖尿病患者進(jìn)行12周有氧運(yùn)動(dòng)干預(yù)后,骨骼肌生物鐘蛋白Bmal1、Clock、Cry1、Cry2、Per1和Per2等表達(dá)增加,導(dǎo)致骨骼肌生物鐘分子機(jī)制與代謝過程發(fā)生“對(duì)話”,有助于治療和改善代謝性疾病[37]。另外,生物鐘基因?qū)趋兰〗】狄仓陵P(guān)重要。當(dāng)基因缺失時(shí),小鼠肌肉和單根肌纖維的最大力量下降,肌纖維結(jié)構(gòu)被破壞,線粒體體積明顯減少[15]。而且Stephen等[38]的研究也觀察到Clock蛋白對(duì)骨骼肌線粒體的影響,并顯示出耐力訓(xùn)練后基因突變小鼠中PGC-1α和線粒體的含量顯著上調(diào),且運(yùn)動(dòng)耐力得到提高。除此之外,4周有氧運(yùn)動(dòng)在提高骨骼肌中Bmal1和Clock蛋白表達(dá)的同時(shí)[39],改變::轉(zhuǎn)基因小鼠SCN和骨骼肌中Per蛋白表達(dá)的振幅與時(shí)相[40]等。
但是,目前大多數(shù)關(guān)于運(yùn)動(dòng)和骨骼肌生物鐘的研究都是基于有氧運(yùn)動(dòng)形式,也有研究認(rèn)為抗阻運(yùn)動(dòng)是最容易受晝夜節(jié)律影響的運(yùn)動(dòng)形式。Alexander等[41]通過肌肉活檢觀察急性抗阻運(yùn)動(dòng)對(duì)生物鐘基因調(diào)控的影響,抗阻運(yùn)動(dòng)導(dǎo)致骨骼肌核心生物鐘基因和顯著上調(diào)。而且在新生兒心肌細(xì)胞中也發(fā)現(xiàn),心肌的收縮活動(dòng)可能通過Clock蛋白的作用調(diào)節(jié)心肌生物鐘[42]。盡管以上研究表明了急性運(yùn)動(dòng),長期有氧和抗阻運(yùn)動(dòng)能夠調(diào)節(jié)骨骼肌核心生物鐘基因的振幅和時(shí)相,但是運(yùn)動(dòng)類型和運(yùn)動(dòng)強(qiáng)度對(duì)骨骼肌生物鐘的影響存在一定的差異。因此,選擇最佳運(yùn)動(dòng)方式重置骨骼肌生物鐘的研究還有待進(jìn)一步深入。
3.1.2運(yùn)動(dòng)時(shí)間與骨骼肌生物鐘運(yùn)動(dòng)雖然能夠改善晝夜節(jié)律紊亂帶來的危害,有望成為預(yù)防和治療代謝性疾病、改善骨骼肌健康及提高運(yùn)動(dòng)能力的工具[3]。但是不同運(yùn)動(dòng)時(shí)間下骨骼肌生物鐘的振幅和相位具有差異。Denise等[43]在每日的不同時(shí)間點(diǎn)對(duì)::轉(zhuǎn)基因小鼠進(jìn)行一次60 min跑步運(yùn)動(dòng),觀察到在ZT5(開燈后5 h)鍛煉時(shí)能誘導(dǎo)::轉(zhuǎn)基因小鼠骨骼肌生物鐘相位提前,而在ZT11(開燈后11 h)鍛煉時(shí)骨骼肌生物鐘沒有明顯變化。Shogo等[44]也證實(shí)了Denise等[43]的研究。另外,Saar等[45]對(duì)未經(jīng)訓(xùn)練的年輕大鼠進(jìn)行低強(qiáng)度或中等強(qiáng)度跑臺(tái)運(yùn)動(dòng)干預(yù)時(shí),活動(dòng)晚期的運(yùn)動(dòng)表現(xiàn)比活動(dòng)早期低,而以高強(qiáng)度跑步時(shí)兩者之間運(yùn)動(dòng)表現(xiàn)沒有顯著差異,這表明了其運(yùn)動(dòng)能力的差異主要取決于骨骼肌生物鐘基因的節(jié)律性表達(dá)和運(yùn)動(dòng)強(qiáng)度。目前關(guān)于運(yùn)動(dòng)最佳時(shí)機(jī)和運(yùn)動(dòng)時(shí)間對(duì)骨骼肌生物鐘的影響及作用機(jī)制的研究較少,未來可深入研究兩者之間的關(guān)系,為教練員選取運(yùn)動(dòng)最佳時(shí)機(jī)安排運(yùn)動(dòng)訓(xùn)練提供理論依據(jù)。
3.2運(yùn)動(dòng)重置骨骼肌生物鐘對(duì)線粒體質(zhì)量控制的可能作用機(jī)制晝夜節(jié)律紊亂會(huì)引起骨骼肌及-等核心生物鐘基因的節(jié)律性振蕩失調(diào),同時(shí)可能伴隨著肌纖維類型、肌節(jié)結(jié)構(gòu)發(fā)生改變,以及線粒體結(jié)構(gòu)和功能障礙的出現(xiàn)[46],而運(yùn)動(dòng)作為骨骼肌生物鐘發(fā)生機(jī)制的一種授時(shí)因子,雖然能夠調(diào)節(jié)骨骼肌生物鐘的振幅和相位及其下游鐘控基因的表達(dá),改善晝夜節(jié)律紊亂帶來的危害,但是具體的作用機(jī)制還有待進(jìn)一步探究。
3.2.1AMP活化蛋白激酶(AMP-activated protein kinase, AMPK)/沉默信息調(diào)節(jié)因子(silent information regulator, SIRT)信號(hào)通路目前已有研究證實(shí)糖皮質(zhì)激素受體[47]、PGC-1α[48]、氧化還原傳感器SIRT[49]以及能量開關(guān)AMPK[50]等信號(hào)分子能夠影響核心生物鐘。其中,SIRT1作為一種組蛋白脫乙酰酶,既能夠誘導(dǎo)、和去乙?;{(diào)控生物鐘基因的表達(dá)[49],又能對(duì)PGC-1α進(jìn)行去乙?;せ頟GC-1α,促進(jìn)線粒體生物合成[51-52]。另外,骨骼肌特異性敲除生物鐘基因-后,LKB1-AMPK-SIRT1-PGC-1α信號(hào)通路失活,大鼠骨骼肌線粒體含量和氧化功能降低、運(yùn)動(dòng)能力下降[53],但-過表達(dá)逆轉(zhuǎn)了上述現(xiàn)象。而且補(bǔ)充二甲雙胍可以通過AMPK-NAMPT-SIRT1信號(hào)通路激活A(yù)MPK,增加下游分子NAMPT、SIRT1以及核心生物鐘基因和的表達(dá)[54]。除了SIRT1能使和脫乙?;哉{(diào)節(jié)晝夜節(jié)律外,SIRT6在調(diào)節(jié)TTFL及晝夜節(jié)律中也發(fā)揮了重要作用,SIRT6不僅能與Bmal1相互作用,也能使Per2脫乙酰化,防止其蛋白酶體降解[55]。而運(yùn)動(dòng)作為一種調(diào)節(jié)晝夜節(jié)律的方式,可通過提高SIRT蛋白表達(dá)水平以及去乙酰化激活PGC-1α活性加速線粒體生物合成[56]。
因此,運(yùn)動(dòng)可能通過AMPK/SIRT信號(hào)通路介導(dǎo)骨骼肌核心生物鐘基因的表達(dá),促進(jìn)骨骼肌線粒體生物合成,增加線粒體的含量和氧化功能,進(jìn)而提升運(yùn)動(dòng)能力。這可能是運(yùn)動(dòng)重置骨骼肌生物鐘改善線粒體質(zhì)量控制的作用機(jī)制之一。
3.2.2缺氧誘導(dǎo)因子1α(hypoxia-inducible factor-1α, HIF-1α)/BNIP3信號(hào)通路除了AMPK/SIRT信號(hào)通路外,HIF-1與生物鐘基因也密切相關(guān)。HIF-1α能夠直接與和啟動(dòng)子結(jié)合,以維持機(jī)體供氧和需氧平衡;而且在缺氧的條件下,骨骼肌細(xì)胞和成纖維細(xì)胞中的缺失會(huì)損害線粒體呼吸并增加HIF-1α的水平[57],這表明HIF-1α和生物鐘基因能夠雙向調(diào)節(jié)以維持適當(dāng)?shù)木€粒體功能。生物鐘基因可以與基因啟動(dòng)子區(qū)的E-box元件結(jié)合調(diào)節(jié)基因的轉(zhuǎn)錄和蛋白表達(dá)。當(dāng)基因敲除后BNIP3的蛋白水平下降,線粒體自噬增加,線粒體功能發(fā)生障礙,心肌細(xì)胞功能受損[13]。而有研究顯示是HIF-1α的下游靶基因之一,參與心血管系統(tǒng)中HIF-1α對(duì)自噬的調(diào)節(jié)[58],且4周中等強(qiáng)度運(yùn)動(dòng)后骨骼肌中BNIP3蛋白表達(dá)增加引起線粒體去極化和自噬增加,清除損傷線粒體并維持了骨骼肌功能[59]。因此考慮機(jī)體在運(yùn)動(dòng)狀態(tài)下,可能通過HIF-1α/BNIP3信號(hào)通路介導(dǎo)骨骼肌生物鐘基因轉(zhuǎn)錄和表達(dá),上調(diào)BNIP3蛋白表達(dá)水平以清除損傷線粒體,改善骨骼肌健康。
近年來的研究逐步深入探討了外周生物鐘與線粒體質(zhì)量控制之間的內(nèi)在機(jī)制,包括線粒體動(dòng)力學(xué)、線粒體自噬、線粒體生物合成等,為介導(dǎo)骨骼肌生物鐘調(diào)控線粒體質(zhì)量控制,改善骨骼肌質(zhì)量提供了參考。而運(yùn)動(dòng)作為生物鐘的“授時(shí)因子”之一,能夠重置骨骼肌生物鐘的時(shí)相和振幅,進(jìn)而減弱晝夜節(jié)律紊亂對(duì)骨骼肌造成的不利影響。但是目前關(guān)于不同類型以及不同時(shí)間的運(yùn)動(dòng)重置骨骼肌生物鐘以調(diào)控骨骼肌線粒體質(zhì)量控制的機(jī)制還有待進(jìn)一步探究。因此,建立運(yùn)動(dòng)與骨骼肌生物鐘和線粒體質(zhì)量控制之間的密切關(guān)系,將為運(yùn)動(dòng)促進(jìn)骨骼肌健康,提高機(jī)體運(yùn)動(dòng)能力提供參考依據(jù)。
[1] Gabriele S, Michael TY, Satchidananda P. Interplay between circadian clock and cancer: new frontiers for cancer treatment[J]. Trends Cancer, 2019, 5(8): 475-494.
[2] Sarah LC, VuNina, Jonathan SW, et al. Impact of circadian disruption on cardiovascular function and disease[J]. Trends Endocrinol Metab, 2019, 30(10):767-779.
[3] Brendan MG, JuleenRZ. Circadian rhythms and exercise-resetting the clock in metabolic disease[J]. Nat Rev Endocrinol, 2019, 15(4):197-206.
[4] Young JC, Jink YC, Mi HN, et al. Re-setting the circadian clockusing exercise against Sarcopenia[J]. Int J Mol Sci, 2020, 21(9):3106-3018.
[5] Austin A, Gillian M, Meaghan H, et al. Circadian effects on performance and effort in collegiate swimmers[J]. J Circadian Rhythms, 2018, 16(1):1-9.
[6] Gretchen W, Karyn AE. Schedule exercise phase shifts the circadian clock in skeletal muscle[J]. Med Sci Sports Exerc, 2012, 44(9):1663-1670.
[7] Hastings MH, Maywood ES, Marco B. Generation of circadian rhythms in the suprachiasmatic nucleus[J]. Nature Revs Neuro, 2018, 19(8):453-469.
[8] MayeufLA, Staels B, Duez H. Skeletal muscle functions around the clock[J]. Diabetes Obes Metab, 2015, 17(1):39-46.
[9]郭金虎. 生物節(jié)律與行為[M]. 北京:國防工業(yè)出版社, 2019:29-31.
[10] XipingZh, Samir PP, John JM, et al. A non-canonical E-box within the MyoD core enhancer is necessary for circadian expression in skeletal muscle[J]. Nucleic Acids Res, 2012, 40(8):3419-3430.
[11] Brian AH, Yuan W, Lance AR, et al. The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle[J]. Skeletal Muscle, 2015, 5(1):1-17.
[12] Schmitt K, Grimm A, Dallmann R, et al. Circadian control of DRP1 activity regulates mitochondrialdynamics and bioenergetics[J]. Cell Metab, 2018, 27(3):657-666.
[13] Ermin L, Xiuya L, Jie H, et al. Bmal1 regulates mitochondrial fission and mitophagy throughmitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy[J]. Protein Cell, 2020, 11(9):661-679.
[14] Gao H, Xiong X, Lin Y, et al. The clock regulator Bmal1 protects against muscular dystrophy[J]. Exp Cell Res, 2020, 397(1):e112348.
[15] Andrews JL, Zhang X, McCarthy JJ, et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function[J]. Proc Natl Acad Sci U S A, 2010, 107(44):19090-19095.
[16] Jacobi D, Liu S, Burkewitz K, et al. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness[J]. Cell Metab, 2015, 22(4):709-720.
[17] Estelle W, Yasmine S, Laura AS, et al. Rev-erbα modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy[J]. Nat Med, 2013, 19(8):1039-1046.
[18] Verónica E, Martin P, Gyorgy H. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses[J]. Nat Cell Biol, 2018, 20(7):755-765.
[19] Hoque A, Sivakumaran P, Bond ST, et al. Mitochondrial fission protein Drp1 inhibition promotes cardiac mesodermal differentiation of human pluripotent stem cells[J]. Cell Death Discov, 2018, 4:39.
[20] Shally A, Mcdonagh B. The redox environment and mitochondrial dysfunction in age-related skeletal muscle atrophy[J]. Bioge, 2020, 21(4):461-473.
[21] Stephen P, David A. Hood endurance training ameliorates the metabolic and performance characteristics of circadian clock mutant mice[J]. J Appl Physiol, 2013, 114(8):1076-1084.
[22] Chang L, Siming L, Tiecheng L, et al. Transcriptional coactivator PGC-1a integrates the mammalian clock and energy metabolism[J]. Nature, 2007, 447(7):477-481.
[23] Akira K, Partha D, Izumi H, et al. The circadian clock maintains cardiac function by regulating mitochondrial metabolism in mice[J]. PLoS One, 2014, 9(11):e112811.
[24] Sophie H, Julia B, Jana K, et al. Mitochondrial DNA mutations induced mitochondrial biogenesis and increase the tumorigenic potential of Hodgkin and Reed-Sternberg cells[J]. Carcinogenesis, 2020, 41(12):1735-1745.
[25] Paul G, Jakob W, Eline CB, et al. Circadian rhythms in mitochondrial respiration[J]. J Mol Endocrinol, 2018, 60(3):115-130.
[26] David GL, Rasmus JO, Brendan MG, et al. AMPK activation negatively regulates GDAP1, which influences metabolic processes and circadian gene expression in skeletal muscle[J]. Mol Metab, 2018,16(1):12-23.
[27] Kenneth AD, Stefano C, Lauren EW, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock[J]. Mol Metab, 2013, 3(1):29-41.
[28] Guodong H, Fanmiao Z, Qiang Y, et al. The circadian clock regulates autophagy directly through the nuclear hormone receptor Nr1d1/Rev-Erbα and indirectly via Cebpb/(C/Ebpβ) in zebrafish[J]. Autophagy. 2016,12(8):1292-1309.
[29] Zhaoxia W, Li L, Yang W. Effects of Per2 overexpression on growth inhibition and metastasis, and on MTA1, Nm23H1 and the autophagy-associated PI3K/PKB signaling path[J]. Mol Med Rep, 2016, 13(6):4561-4568.
[30] Estelle W, Yasmine S, Laura AS, et al. Rev-erbαmodulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy[J]. Nat Med, 2013, 19(8):1039-1046.
[31] Clara BP, Daniel CL, Jonathan C, et al. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle[J]. Cell Metab, 2017, 25(1):86-92.
[32] Nicholas JS, David JB, Jonathan DB. Is exercise a viable therapeutic intervention to mitigate mitochondrial dysfunction and insulin resistance induced by sleep loss?[J].Sleep Med Rev, 2018, 37(1):60-68.
[33] Shogo S, Astrid LB, Milena S, et al. Time of exercise specifies the impact on muscle metabolic pathways and systemic energy homeostasis[J]. Cell Metab, 2019, 30(1):78-91.
[34] Daniil VP, Pavel AM, Nadia SK, et al. Intensity-dependent gene expression after aerobic exercise in endurance-trained skeletal muscle[J]. Biol Sport, 2018, 35(3):277-289.
[35] Patrick GS, Michael LR, Jennifer LS, et al. Hormonal regulation of core clock gene expression in skeletal muscle following acute aerobic exercise[J]. Biochem Biophys Res Commun, 2019, 508(3):871-876.
[36] Saar E, Ziv Z, Jonathan S, et al. Physiological and molecular dissection of daily variance in exercise capacity[J]. Cell Metab, 2019, 30(1):78-91.
[37] Melissa LE, Hui Z, Jacob TM, et al.Exercise training impacts skeletal muscle clock in adults with prediabetes[J]. Med Sci Sports Exerc, 2020, 52(10):2078-2085.
[38] Stephen P, David AH. Endurance training ameliorates the metabolic and performance characteristics of circadian clock mutant mice[J]. J Appl Physiol, 2013, 114(8):1076-1084.
[39] Emilie D, Astrid LB, Juleen RZ, et al. Voluntary wheel running in the late dark phase ameliorates diet-induced obesity in mice without altering insulin action[J]. J Appl Physiol, 2019, 126(4):993-1005.
[40] Analyne MS, Danny T, Dawn HL, et al. Voluntary scheduled exercise alters diurnal rhythms of behaviour,physiology and gene expression in wild?type and vasoactive intestinal peptide-deficient mice:Effects of scheduled exercise on the circadian system[J]. J Physiol, 2012, 590(23):6213-6226.
[41] Alexander CZ, Erin LM, Nathan S. Time-and exercise-dependent gene regulation in human skeletal muscle[J]. Genome Biol, 2003, 4(10):61-73.
[42] Li XQ, Samuel YB. The circadian protein Clock localizes to the sarcomeric Z-disk and is a sensor of myofilament cross-bridge activity in cardiac myocytes[J]. Biochem Biophys Res Commun, 2006, 351(4):1054-1059.
[43] Denise K, Christopher AW, Karyn AE. Time-of-day dependent effects of contractile activity on the phase of the skeletal muscle clock[J]. J Physiol, 2020, 598(17):3631-3644.
[44] Shogo S, Astrid LB, Milena S, et al. Time of exercise specifies the impact on muscle metabolic pathways and systemic energy homeostasis[J]. Cell Metab, 2019, 30(1):92-110.
[45] Saar E, Ziv Z, Jonathan S, et al. Physiological and molecular dissection of daily variance in exercise capacity[J]. Cell Metab, 2019, 30(1):78-91.
[46] Brianna DH, Elizabeth AS, Karyn AE. Circadian rhythms, the molecular clock, and skeletal muscle[J]. J Biol Rhythms, 2015, 30(2):84-94.
[47] Balsalobre A, Brown SA, MarcacciL. Resetting of circadian time in peripheral tissues by glucocorticoid signaling[J]. Science, 2000, 289(5):2344-2347.
[48] Chang L, Siming L, Tiecheng L, et al. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism[J]. Nature, 2007, 447(7):477-481.
[49] Gad A, David G, Markus S, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation[J]. Cell, 2008, 134(2):317-328.
[50] Katja AL, Uma MS, Luciano DT. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation[J]. Science, 2009, 326(5):437-440.
[51] Brendon JG. Deacetylation of PGC-1α by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis[J]. Appl Physiol Nutr Metab, 2011, 36(5):589-597.
[52] 胡閩閩,秦虹. 沉默信息調(diào)節(jié)因子1調(diào)控骨骼肌生理及病理過程的研究進(jìn)展[J]. 中國病理生理雜志, 2021, 37(7):1303-1309.
Hu MM, Qin H. Research progress of silent information regulator 1 regulating physiological processes of skeletal muscle[J]. Chin J Pathophysiol, 2021, 37(7):1303-1309.
[53] Estelle W, Yasmine S, Laura AS. Rev-erbαmodulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy[J]. Nat Med, 2013, 19(8):1039-1046.
[54] Caton PW, KieswichJ, Yaqoob MM, et al. Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein[J]. Diabetes Obes Metab, 2011, 13(12):1097-1104.
[55] Shimin S, Zuojun L, Yu KF, et al. Sirt6 deacetylase activity regulates circadian rhythms via Per2[J].Biochem Biophys Res Commun, 2019, 511(2):234-238.
[56] Hayley MO, Graham PH, Gregory RS. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity[J]. Mol Cell Endocrinol, 2013, 366(2):135-151.
[57] Clara BP, Daniel CL, Jonathan C, et al. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle[J]. Cell Metab, 2017, 25(1):86-92.
[58] Konstantinos P, Eirini L, Nektarios T. Mitophagy: in sickness and in health[J]. Mol Cell Oncol, 2015, 3(1): e1056332.
[59] 于亮,趙澤銘,趙斌婷,等. BNIP3介導(dǎo)骨骼肌線粒體自噬:不同強(qiáng)度運(yùn)動(dòng)的影響[J]. 中國組織工程研究, 2020, 24(5):682-688.
Yu L, Zhao ZM, Zhao BT, et al. Effects of different intensities of exercises on BNIP3-mediated mitophagy in skeletal muscle[J]. Chin J Tissue Eng Res, 2020, 24(5):682-688.
Progress in re-setting skeletal muscle circadian clock by exercise to regulate mitochondrial quality control
GAO Yang, SU-Xiang nan, YU Liang△
(,,100084,)
Circadian clock, a “clock oscillator”, regulates the life activities of living bodies. It is expressed in many tissues and organs, such as suprachiasmatic nucleus of hypothalamus, liver, heart, and skeletal muscles. It is essential for metabolic regulation and homeostasis maintenance. Abnormal expression of circadian clock genes is observed in skeletal muscles in response to prolonged light exposure or shift work. Prolonged light exposure or shift work also influences the quality control system and the function of mitochondria. As an effective metabolic regulator, exercise improves the expression of circadian clock genes, and structure and function of mitochondria in skeletal muscles. However, the effects and potential mechanisms of different exercises on circadian clock gene expression in skeletal muscles remain unclear. The clarification of the relationship among skeletal muscle circadian clock, mitochondrial quality control, and exercise restoring skeletal muscle circadian clock, thus preventing the adverse effects of circadian rhythm disorders on skeletal muscles, improves the quality of life and exercise.
Circadian rhythms; Skeletal muscle; Mitochondrial quality control; Exercise
R87; R337.1
A
10.3969/j.issn.1000-4718.2022.06.021
1000-4718(2022)06-1128-07
2021-12-27
2022-01-21
中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)基金資助(No. 2021ZD001);航天醫(yī)學(xué)基礎(chǔ)與應(yīng)用國家重點(diǎn)實(shí)驗(yàn)室開放課題(No. SMFA20K04)
Tel: 010-62989582; E-mail: yuliang@bsu.edu.cn
(責(zé)任編輯:李淑媛,羅森)