• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Broadband low-frequency acoustic absorber based on metaporous composite

    2022-06-29 09:19:32JiaHaoXu徐家豪XingFengZhu朱興鳳DiChaoChen陳帝超QiWei魏琦andDaJianWu吳大建
    Chinese Physics B 2022年6期
    關(guān)鍵詞:徐家

    Jia-Hao Xu(徐家豪) Xing-Feng Zhu(朱興鳳) Di-Chao Chen(陳帝超) Qi Wei(魏琦) and Da-Jian Wu(吳大建)

    1Jiangsu Key Laboratory on Opto-Electronic Technology,School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China

    2Key Laboratory of Modern Acoustics,School of Physics,Nanjing University,Nanjing 210093,China

    Keywords: acoustic metamaterial,low-frequency acoustic absorber,broadband,metaporous

    1. Introduction

    Low-frequency acoustic absorption has been a challenging problem due to the weak energy dissipation in conventional acoustic absorbers, such as porous or fibrous materials.[1–3]A thickness comparable to the working wavelength is required to achieve prominent acoustic absorption, which hinders practical applications in a low-frequency range.[4]The emergence of metamaterials provides a new approach to the high acoustic absorption at low frequency because of their locally resonant units along with large density of states inside.[5–23]Many metamaterial absorbers, such as acoustic membranes,[5–7]Helmholtz resonators,[8–12]labyrinthine metamaterials,[13–15]metasurface-based absorbers,[16–18]and split-tube resonators,[19–23]have been devised to improve the low-frequency acoustic absorption. However, most of these absorbers work in single or multiple discrete narrow bands since the high absorption occurs only at resonance.

    In recent years,absorbers constructed by embedding resonators in porous materials have been proposed to widen the absorption band.[24–31]Longet al.[29]achieved perfect absorption for low-frequency audible sound waves by embedding the split ring resonator into the porous material. In Zhouet al.’s work,[30]an acoustic metaporous composite (AMC)constructed by embedding Archimedean spiral structure in the porous materials was proposed to realize the low-frequency acoustic absorption. In these absorbers, a resonant absorption is introduced into the low-frequency range based on the critical coupling mechanism in the combined systems. But their absorption bandwidths are also limited and an absorption valley will appear between the resonant absorption and the trapped mode. To further extend the bandwidth, multiple resonant units are generally required to be integrated,[32–35]which inevitably brings some restrictions on the applications in limited space.

    In this work, an absorber based on an AMC is proposed for achieving the broadband low-frequency acoustic absorption. The AMC contains an embedded metamaterial resonator(two split squares with a channel structure)and a porous material layer. The finite-element simulations show that two resonant absorption peaks and one trapped mode peak can be obtained by the AMC absorber. The two resonance frequencies can be manipulated by adjusting the length of the channel. By coupling the three absorption modes, a high absorption can be achieved in a frequency range from 290 Hz to 1074 Hz.Acoustic field distribution and impedance matching theory are demonstrated to reveal the origin of the absorption peaks. Furthermore,the simulations are confirmed by the experiment results.

    2. The model of the AMC

    Figure 1 illustrates the two-dimensional (2D) crosssection of the AMC absorber,which is constructed by a metamaterial resonator embedded in porous material. The AMC is backed by a rigid wall that is located in thexdirection.The length of the porous material layer isL=120 mm, and its thickness isD=90 mm. The metamaterial resonator consists of two 180°-twisted split squares and a narrow channel attached to the inner split. The orientation of the splits and channel are along theydirection. The side lengths of outer and inner square area1=60 mm anda2=43 mm, respectively. The thickness of resonator walls ist= 2 mm. The widths of two splits and channel arew=3 mm. Theldenotes the length of the channel and theθis the incident angle of the sound wave as shown in Fig.1.

    Based on the Johnson–Champoux–Allard (JCA)model,[2]the air-saturated porous material can be considered as a homogeneous effective fluid. The effective densityρeand bulk modulusKecan be described as

    whereρ0is the air density,P0is the atmospheric pressure,ηis the air dynamic viscosity,γis the specific heat ratio,Pris the Prandtl number,ων=σφ/ρ0α∞andω′c=σ′φ/ρ0α∞are the angular Biot and adiabatic cross-over angular frequencies,respectively. Other parameters that describe the acoustic properties of porous material are porosityφ,tortuosityα∞,flow resistivityσ,thermal characteristic lengthΛ′,viscous characteristic lengthΛ,and thermal resistivityσ′=8α∞η/φΛ′.According to the simulated and measured absorptances of the porous material, the five acoustic parameters can be obtained by the backward deduction method based on genetic algorithm.[36,37]In the present study, the parameters of the used porous material areφ=0.96,α∞=1.43,σ=7000.1 N·s·m-4,Λ′=342.9 μm,andΛ=190.5 μm.

    Fig.1. Geometry of modeled system,where acoustic metaporous composite(AMC)is constructed by a metamaterial resonator embedded in porous material.

    Finite element method (FEM) based on COMSOL Multiphysics software is employed to perform numerical simulations,and acoustic–thermoacoustic interaction module is used.The surrounding medium is air with densityρ0=1.21 kg/m3and sound speedc0= 343 m/s. The walls are modeled as being acoustically rigid with respect to air due to the huge impedance mismatch between them. The plane wave with incident angleθ=0°is modeled as a background pressure field with an amplitude of 1.0 Pa. Figure 1 shows the geometry of the modeled system, in which the solid and dashed lines indicate the boundaries of the model domain. Floquet–Bloch periodicity conditions are applied to the left side and right side of the porous material, and the rigid boundary condition and the plane-wave radiation boundary condition are applied to the up boundary and bottom boundary.The complex reflectanceRcan be obtained from the numerical simulations and the transmittanceTequals zero due to the rigid wall backed. Then the absorptanceAcan be calculated fromA=1-R.

    3. Results and discussion

    Figure 2(a) shows the absorption spectrum as a function of channel lengthl, with other parameters fixed. Three absorption peaks(marked by P1,P2,and P3)can be observed in a frequency range from about 200 Hz to 1300 Hz. The P1undergoes a slight frequency shift from about 360 Hz to 305 Hz whenlincreases from 0 to 25 mm. The P2remains almost unchanged, while the P3moves markedly from about 1210 Hz to 855 Hz withlincreasing. Without the narrow channel(l=0 mm), an absorption valley appears at about 1050 Hz due to the large distance between P2and P3. Aslincreases,the enhanced coupling between P2and P3compensates for the valley between them, making the absorption continuous and efficient. Further increasingl,the P3gets too close to P2and the absorption bandwidth decreases. Meanwhile, the separation between P1and P2leads to an absorption valley at about 385 Hz. Here, the split-square with a channel structure can give rise to another absorption peak P3, and the absorption peaks P1and P3can be tuned by changing the channel length in the target frequency band. Thus, by selecting an appropriate length ofl, the three absorption peaks can be connected together to get high acoustic absorption in a broad frequency range.In Fig.2(b),we plot the absorptance forl=14 mm as a function of frequency for a better view. The absorptances are all above 0.8 in the frequency range from 290 Hz to 1074 Hz.Therefore, by embedding a single metamaterial resonator in porous material, high broadband acoustic absorption can be obtained.

    Fig.2. (a)Acoustic absorption spectrum as a function of the channel length l, with other parameters fixed. Three white dash–dot–dot lines represent the positions of three peaks P1,P2,and P3,respectively. (b)Acoustic absorptance of the AMC for l=14 mm. Black arrows mark the positions of three absorption peaks P1,P2,and P3. Distribution of((c),(d),(e))acoustic pressure|P/P0|and((f),(g),(h))velocity fields at the three peak frequencies for l=14 mm,with P being scattered acoustic pressure and P0 denoting incident acoustic pressure.

    To reveal the origin of the absorption peaks,the distributions of the|P/P0| and velocity fields at the three peak frequencies forl=14 mm are displayed in Figs. 2(c)–2(e) and 2(f)–2(h),respectively.ThePis the scattered acoustic pressure andP0is the incident acoustic pressure. Figure 2(c) exhibits a maximum pressure field in the inner cavity of the AMC at 325 Hz, corresponding to a resonance mode. The large difference in acoustic pressure amplitude between inner cavity and outer split leads to a large sound velocity along the path of the splits as shown in Fig. 2(f). In consequence, the incidence sound energy is dissipated into heat due to the friction between the sound wave and walls at resonance, resulting in the absorption peak P1. Similarly,the absorption peak P3occurs at 949 Hz due to another resonance mode, which can be seen in Figs.2(e)and 2(h).Thus the principle of the metamaterial resonator is similar to that of a lossy Helmholtz resonator.For the absorption peak P1,the interior cavity acts as the tank of the Helmholtz resonator and contributes the acoustic capacitance. The function of the coiled tube between the inner and outer split shells is the long neck of the resonator,contributing the acoustic inductance and also acoustic resistance for an efficient absorption. While for another absorption peak P3, the coiled tube and the split parts of the shells paly the roles of the tank and the neck of the resonator,respectively. The added narrow channel can change the effective length of the coiled tube and then influence the positions and amplitudes of the resonance modes P1and P3.As shown in Fig.2(d),a large acoustic pressure is located between the resonator and the rigid wall at 609 Hz,which is the characteristic of a trapped mode.[24–28]The trapped mode is excited by the energy trapping between the resonator and the rigid backing,which can enhance the viscous loss and thermal loss inside the porous materials. Here,the trapped mode P2is not strong because of the large distance between resonator and the backed rigid wall,[25–27]but it can link the two resonance modes(P1and P3)and make a high absorption in a wide frequency band.The distribution of velocity field in Fig.2(g)shows that both the loss of the sound wave in porous material layer and the coupling between the resonator and porous material layer contribute to the absorption of P2.

    We also conduct an analysis from the viewpoint of the impedance to explain the absorption peaks. The acoustic absorptanceAhas a relationship with the normalized acoustic impedanceZ/Z0of the AMC and it can be expressed as

    where ˉpis the average pressure and ˉvis the average velocity at the interface between air and AMC. Figures 3(a) and 3(b)exhibit the real parts and imaginary parts ofZ/Z0forl=0,14, and 24 mm, respectively. Forl=14 mm, the real and imaginary parts of the normalized impedance get close to 1 and 0 (green dot line) respectively in the range of 300 Hz–1100 Hz,which is consistent with high absorption in our calculation result. The real parts and imaginary parts of the normalized impedance get away from 1 and 0 at about 1050 Hz and 385 Hz forl=0 mm and 24 mm,respectively,where the absorption valleys appear.

    Fig. 3. (a) Real parts and (b) imaginary parts of normalized acoustic impedance for l =0, 14, 24 mm, with arrows indicating positions of three absorption peaks when l=14 mm.

    Fig. 4. (a) Schematic diagram of experimental setup, with resonator used in the work being fabricated by standard 3D printing technology and the porous material being a kind of polyurethane sponge. (b)Simulated (Sim., black solid line) and measured (Exp. red dots) absorptances of AMC compared with simulated (blue dashed line) and measured(green triangles)absorptances of the porous material without the embedded resonator.

    To verify our simulation results,we measure the absorption of the AMC and the absorption of the porous material without the embedded resonator in an impedance tube by using the two-microphone method.[38]Figure 4(a) shows the schematic of the experiment setup. The resonator that we are using is fabricated by standard 3D printing technology. The porous material is the polyurethane sponge, which is commonly used for acoustic testing and sound applications. The side length of the square tube is 120 mm, corresponding to a plane wave cut-off frequency at 1429 Hz. A loudspeaker and the AMC are placed at two ends of the impedance tube to emit and absorb plane waves, respectively. The acoustic signals are received by two microphones (1/4 in., B&K Type-4938-A-011) and then analyzed by a multi-analyzer system (B&K Type-3160-A-042) to obtain the amplitude and phase of the sound wave.The acoustic absorptances measured in the experiment are shown with red dots in Fig.4(b),and the black solid line represents the simulated results. The measured(green triangles)and simulated(blue dashed line))absorptances for the porous material without the embedded resonator are also plotted in Fig. 4(b) for comparison. It is observed that the absorption of the polyurethane sponge can be described well by using the acoustic parameters of porous material in the JCA model and the porous layer has a weak absorption in the low frequency region. Three absorption peaks are observed in the presetting frequency range from about 300 Hz to 1100 Hz,which are generally consistent with the simulation results.The higher measured absorption than the simulated ones can be attributed to additional losses in the experimental setup,such as the energy leakage between different pieces forming the apparatus,the material losses,or the visco-thermal losses in the tube. The deviation of the absorption peaks P1and P3can be ascribed to the imperfect metamaterial resonator sample fabrication.

    Fig.5. (a)Absorptances of AMC at different incident angles. (b)Absorptances of AMC(black solid line)compared with porous material without the embedded resonator(red dashed line)at random incident angle.

    We finally study the effect of the incident angleθon the absorption of AMC. The absorptances forθ=0°, 30°, and 60°are plotted in Fig. 5(a). The absorption peaks are robust against the variation of the incident angle due to the subwavelength spatial dimension of the AMC.The frequencies of two resonance peaks (P1and P3) are almost unvaried while the frequency of trapped peak (P2) increases withθincreasing,which is in accord with the results reported previously.[30,31]The whole absorption increases with the incident angleθincreasing, because the increase of incidence angle is similar to the increase of the thickness of the porous material in the direction of sound wave propagation. Thus,the broadband absorption of the AMC can be maintained under the oblique incidence. In reality,a complicated sound field includes a number of waves with various directions rather than a single plane wave. To show the acoustic absorption of such a sound field,the random incidence absorptanceαrandof the AMC is illustrated by black solid line in Fig.5(b). Theαrandis calculated from[39]

    whereA(θ) is the simulated absorptance atθ. In Fig. 5(b),theαrandfor the porous material without embedded resonator is also plotted with a red dashed curve for comparison. It can be seen that the AMC enhances the acoustic absorption especially at low frequency. These results demonstrate that the proposed AMC absorber still keeps broadband high-efficient absorption in the case of random incident acoustic waves.

    4. Conclusions

    We proposed an AMC absorber composed of a porous layer with a single embedded metamaterial resonator. High absorptions occur at resonant and trapped modes for the AMC absorber. The resonance frequency can be tuned by adjusting the length of the channel of the AMC, while the trapped mode frequency remains almost unchanged. The broadband absorption is achieved when the resonant modes and trapped mode are close enough to excite coupled modes. It is found that a high absorption(A >0.8)is obtained within a frequency range from 290 Hz to 1074 Hz, but the thickness of AMC is only 1/13 of the relevant wavelength at 290 Hz. The numerical simulations are experimentally validated. Additionally,the proposed AMC absorber still kept broadband high-efficient absorption in the case of random incident acoustic waves. The characteristics of high-efficiency,broadband,and compact absorber can possess the applications in building acoustics and noise remediation.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12174197, 11874222, and 12027808).

    猜你喜歡
    徐家
    Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
    The existence and blow-up of the radial solutions of a (k1, k2)-Hessian system involving a nonlinear operator and gradient
    徐家玨作品
    美術(shù)界(2022年4期)2022-04-26 11:07:00
    Synthesis and thermoelectric properties of Bi-doped SnSe thin films?
    STABILITY ANALYSIS OF CAUSAL INTEGRAL EVOLUTION IMPULSIVE SYSTEMS ON TIME SCALES?
    南京市棲霞區(qū)徐家村M4 出土器物
    南京市棲霞區(qū)徐家村M1 出土器物
    徐家柱 用愛喚醒沉睡12年的妻子
    “多多益善”的政協(xié)主席
    徐家河尾礦庫潰壩分析
    国产aⅴ精品一区二区三区波| 成人三级做爰电影| 亚洲最大成人中文| 国产av在哪里看| 一二三四社区在线视频社区8| 久久精品91无色码中文字幕| 中出人妻视频一区二区| 亚洲成av人片在线播放无| 久久久久久免费高清国产稀缺| av国产免费在线观看| 亚洲av电影在线进入| 好男人在线观看高清免费视频| 国产激情久久老熟女| 久久精品亚洲精品国产色婷小说| 村上凉子中文字幕在线| 国产伦人伦偷精品视频| 99久久综合精品五月天人人| 欧美乱色亚洲激情| 午夜福利欧美成人| а√天堂www在线а√下载| 很黄的视频免费| 91老司机精品| 免费在线观看影片大全网站| 国产午夜精品久久久久久| 毛片女人毛片| 日日爽夜夜爽网站| 国产三级中文精品| 琪琪午夜伦伦电影理论片6080| 好男人在线观看高清免费视频| 精品久久久久久久久久免费视频| 麻豆久久精品国产亚洲av| 亚洲,欧美精品.| 麻豆av在线久日| 国产成人啪精品午夜网站| 欧美精品啪啪一区二区三区| 日韩精品免费视频一区二区三区| 中国美女看黄片| 欧美国产日韩亚洲一区| 亚洲电影在线观看av| 亚洲激情在线av| 色精品久久人妻99蜜桃| 欧美久久黑人一区二区| 精品国产超薄肉色丝袜足j| 精品国产美女av久久久久小说| 亚洲黑人精品在线| 亚洲男人的天堂狠狠| 不卡av一区二区三区| 日韩精品青青久久久久久| 88av欧美| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品久久男人天堂| 国产午夜福利久久久久久| 国产精品免费一区二区三区在线| 欧美人与性动交α欧美精品济南到| 99热这里只有是精品50| 成人av一区二区三区在线看| 欧美一区二区国产精品久久精品 | 亚洲欧洲精品一区二区精品久久久| 白带黄色成豆腐渣| 国产主播在线观看一区二区| 91国产中文字幕| 两个人看的免费小视频| 日韩免费av在线播放| 国产三级黄色录像| 亚洲免费av在线视频| 黑人操中国人逼视频| 神马国产精品三级电影在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品影院久久| 精品免费久久久久久久清纯| 在线播放国产精品三级| 亚洲国产高清在线一区二区三| 亚洲成人国产一区在线观看| 精品欧美国产一区二区三| 黄色a级毛片大全视频| 欧美日韩黄片免| 亚洲18禁久久av| 1024手机看黄色片| 中文字幕av在线有码专区| 日韩精品青青久久久久久| 亚洲av电影在线进入| e午夜精品久久久久久久| 好看av亚洲va欧美ⅴa在| 欧美日本亚洲视频在线播放| 岛国在线免费视频观看| 国产人伦9x9x在线观看| 老汉色∧v一级毛片| 免费高清视频大片| 亚洲免费av在线视频| 日本熟妇午夜| 国产主播在线观看一区二区| 久久久久国内视频| 国产av麻豆久久久久久久| 精品电影一区二区在线| 亚洲欧美一区二区三区黑人| 国产片内射在线| 一边摸一边做爽爽视频免费| 视频区欧美日本亚洲| 国产成人av教育| 黑人操中国人逼视频| 久久国产乱子伦精品免费另类| 亚洲七黄色美女视频| 色av中文字幕| 精品国产亚洲在线| 日韩三级视频一区二区三区| 在线看三级毛片| 一本大道久久a久久精品| 男女下面进入的视频免费午夜| 一级片免费观看大全| 国产又黄又爽又无遮挡在线| 久久精品人妻少妇| 国产成人精品久久二区二区91| 午夜成年电影在线免费观看| 亚洲精品在线美女| 中文字幕熟女人妻在线| 欧美中文综合在线视频| 两个人的视频大全免费| 在线观看美女被高潮喷水网站 | 久久精品人妻少妇| 国产成人精品无人区| svipshipincom国产片| 午夜两性在线视频| 精品久久久久久久毛片微露脸| 欧美3d第一页| 久久香蕉精品热| 免费高清视频大片| 精品欧美一区二区三区在线| 久久久久久免费高清国产稀缺| 国产精品九九99| 欧美色欧美亚洲另类二区| 又黄又粗又硬又大视频| 国产免费av片在线观看野外av| 在线观看免费日韩欧美大片| 国产精品亚洲美女久久久| 五月伊人婷婷丁香| 午夜精品在线福利| 欧美乱码精品一区二区三区| 91麻豆精品激情在线观看国产| 一本一本综合久久| 亚洲午夜理论影院| 精品国产美女av久久久久小说| 精品欧美国产一区二区三| 亚洲国产欧美网| 五月伊人婷婷丁香| 一级作爱视频免费观看| 成人永久免费在线观看视频| 婷婷六月久久综合丁香| 国产成人aa在线观看| 成人永久免费在线观看视频| 久久天堂一区二区三区四区| 久久这里只有精品19| 亚洲专区字幕在线| 亚洲精品美女久久久久99蜜臀| 黄色片一级片一级黄色片| 国产伦在线观看视频一区| 国产精品av视频在线免费观看| 男人的好看免费观看在线视频 | 日韩av在线大香蕉| 日日夜夜操网爽| 国产野战对白在线观看| 久久久久国内视频| 搞女人的毛片| 99精品欧美一区二区三区四区| 女警被强在线播放| 国产免费男女视频| 中文字幕人妻丝袜一区二区| 午夜福利成人在线免费观看| 日韩欧美 国产精品| 亚洲性夜色夜夜综合| 欧美另类亚洲清纯唯美| 波多野结衣高清无吗| 亚洲av熟女| 观看免费一级毛片| 日韩欧美精品v在线| 1024视频免费在线观看| 一本综合久久免费| 国产欧美日韩精品亚洲av| 两人在一起打扑克的视频| 777久久人妻少妇嫩草av网站| 五月玫瑰六月丁香| 成熟少妇高潮喷水视频| 亚洲全国av大片| 亚洲欧美一区二区三区黑人| 天堂av国产一区二区熟女人妻 | av片东京热男人的天堂| 亚洲 欧美 日韩 在线 免费| 亚洲精品中文字幕一二三四区| 亚洲人成网站高清观看| 色在线成人网| 99精品久久久久人妻精品| 亚洲自偷自拍图片 自拍| 久久精品国产清高在天天线| 久久久久国产一级毛片高清牌| 动漫黄色视频在线观看| 国产精品爽爽va在线观看网站| 欧美另类亚洲清纯唯美| 天天躁夜夜躁狠狠躁躁| 69av精品久久久久久| 欧美一级a爱片免费观看看 | 人妻丰满熟妇av一区二区三区| 欧美日本亚洲视频在线播放| 国产真实乱freesex| 欧美绝顶高潮抽搐喷水| 19禁男女啪啪无遮挡网站| 欧美成人免费av一区二区三区| 国产精品久久久久久久电影 | 麻豆国产97在线/欧美 | 欧美av亚洲av综合av国产av| a在线观看视频网站| 亚洲国产欧美网| 免费av毛片视频| 免费在线观看亚洲国产| 我的老师免费观看完整版| 欧美日韩乱码在线| 国产探花在线观看一区二区| 亚洲美女视频黄频| 免费在线观看成人毛片| 久久婷婷成人综合色麻豆| 黄频高清免费视频| 精品久久久久久久人妻蜜臀av| 午夜a级毛片| 黄色片一级片一级黄色片| 国产精品免费视频内射| 亚洲av第一区精品v没综合| 日韩欧美国产在线观看| 午夜福利欧美成人| 午夜老司机福利片| 国产一区二区三区视频了| 欧美成人性av电影在线观看| 日韩欧美在线乱码| 国产精品一区二区三区四区久久| 特大巨黑吊av在线直播| 波多野结衣高清无吗| www.www免费av| netflix在线观看网站| 日韩欧美 国产精品| 欧美在线一区亚洲| 国产午夜精品论理片| 日本精品一区二区三区蜜桃| 国产片内射在线| 欧美日本亚洲视频在线播放| 18禁黄网站禁片午夜丰满| 777久久人妻少妇嫩草av网站| 国产精品爽爽va在线观看网站| 日韩欧美国产在线观看| 国内揄拍国产精品人妻在线| 性欧美人与动物交配| 免费在线观看影片大全网站| 一个人观看的视频www高清免费观看 | svipshipincom国产片| 亚洲av成人不卡在线观看播放网| 麻豆av在线久日| 国产精品亚洲美女久久久| 亚洲国产欧洲综合997久久,| 正在播放国产对白刺激| 亚洲国产精品999在线| 久9热在线精品视频| 国产精品一区二区精品视频观看| 51午夜福利影视在线观看| 国产99久久九九免费精品| 国产精品香港三级国产av潘金莲| 无人区码免费观看不卡| 不卡一级毛片| 久久精品成人免费网站| 成人国产综合亚洲| 日本免费a在线| 免费在线观看日本一区| 亚洲成人国产一区在线观看| 色尼玛亚洲综合影院| 亚洲自拍偷在线| 欧美人与性动交α欧美精品济南到| 国产精品1区2区在线观看.| 国内毛片毛片毛片毛片毛片| 男男h啪啪无遮挡| 宅男免费午夜| 欧美成人免费av一区二区三区| 97碰自拍视频| 女警被强在线播放| 欧美一区二区精品小视频在线| 丝袜人妻中文字幕| 老司机在亚洲福利影院| 69av精品久久久久久| 国产亚洲精品综合一区在线观看 | 亚洲午夜理论影院| 色综合站精品国产| 国产激情偷乱视频一区二区| 变态另类丝袜制服| 欧美一级a爱片免费观看看 | 99国产精品99久久久久| 老汉色av国产亚洲站长工具| 亚洲在线自拍视频| 久久这里只有精品中国| 99久久综合精品五月天人人| 欧美av亚洲av综合av国产av| 欧美丝袜亚洲另类 | 99在线人妻在线中文字幕| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品999在线| 午夜老司机福利片| 人妻夜夜爽99麻豆av| 亚洲精品久久国产高清桃花| 国产精品99久久99久久久不卡| 91av网站免费观看| 国产精品亚洲美女久久久| 亚洲av日韩精品久久久久久密| 九色国产91popny在线| 国产主播在线观看一区二区| 国产激情久久老熟女| 日韩成人在线观看一区二区三区| 国产视频内射| 欧美日本亚洲视频在线播放| 国产区一区二久久| av天堂在线播放| 国产真实乱freesex| 亚洲 欧美 日韩 在线 免费| 国产精华一区二区三区| 在线观看免费视频日本深夜| 俺也久久电影网| 老司机在亚洲福利影院| 亚洲国产欧美一区二区综合| 老司机在亚洲福利影院| 老鸭窝网址在线观看| 欧美 亚洲 国产 日韩一| 最近视频中文字幕2019在线8| 高潮久久久久久久久久久不卡| 国产免费av片在线观看野外av| 人妻久久中文字幕网| 亚洲乱码一区二区免费版| 美女 人体艺术 gogo| 麻豆久久精品国产亚洲av| 桃红色精品国产亚洲av| 在线观看www视频免费| 最近最新免费中文字幕在线| 久热爱精品视频在线9| 啪啪无遮挡十八禁网站| 免费在线观看视频国产中文字幕亚洲| 久久人妻福利社区极品人妻图片| 久久精品国产综合久久久| 19禁男女啪啪无遮挡网站| 午夜精品一区二区三区免费看| 美女黄网站色视频| 亚洲在线自拍视频| АⅤ资源中文在线天堂| 国产精品电影一区二区三区| 亚洲熟妇中文字幕五十中出| 啦啦啦韩国在线观看视频| 亚洲男人天堂网一区| 正在播放国产对白刺激| 黄片小视频在线播放| 久久久久精品国产欧美久久久| 男女下面进入的视频免费午夜| 91麻豆av在线| 一区福利在线观看| 亚洲国产精品久久男人天堂| 免费av毛片视频| 丰满人妻熟妇乱又伦精品不卡| 欧美黑人精品巨大| 午夜久久久久精精品| 在线永久观看黄色视频| 亚洲天堂国产精品一区在线| 精品乱码久久久久久99久播| 国产精品一区二区免费欧美| 长腿黑丝高跟| 真人做人爱边吃奶动态| 嫩草影院精品99| 国产亚洲精品av在线| 色综合站精品国产| 欧美乱码精品一区二区三区| 国产伦人伦偷精品视频| 99国产精品一区二区三区| 性色av乱码一区二区三区2| 亚洲一区二区三区不卡视频| 国产高清有码在线观看视频 | 91成年电影在线观看| 亚洲av中文字字幕乱码综合| 国产精品日韩av在线免费观看| 成人一区二区视频在线观看| 亚洲av日韩精品久久久久久密| 一区二区三区国产精品乱码| 国产精品精品国产色婷婷| 91九色精品人成在线观看| 欧美性猛交╳xxx乱大交人| 午夜日韩欧美国产| 叶爱在线成人免费视频播放| 在线十欧美十亚洲十日本专区| 男女之事视频高清在线观看| 老司机在亚洲福利影院| 俺也久久电影网| 久久精品91蜜桃| 国产av又大| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 午夜免费成人在线视频| 国产成人欧美在线观看| 亚洲成人中文字幕在线播放| www.精华液| 久久婷婷人人爽人人干人人爱| 国产av一区在线观看免费| 国产精品久久久久久精品电影| 中文在线观看免费www的网站 | 韩国av一区二区三区四区| 国产精品av久久久久免费| 国产免费男女视频| a级毛片在线看网站| 国产精品亚洲一级av第二区| 欧美成狂野欧美在线观看| 两个人的视频大全免费| 免费在线观看亚洲国产| 啦啦啦免费观看视频1| 成人三级做爰电影| 国产精品久久久久久精品电影| 最新美女视频免费是黄的| 中文字幕人妻丝袜一区二区| 中文字幕高清在线视频| 亚洲九九香蕉| 欧美不卡视频在线免费观看 | 欧美+亚洲+日韩+国产| 国产日本99.免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人啪精品午夜网站| 亚洲精品美女久久久久99蜜臀| 人妻丰满熟妇av一区二区三区| 亚洲精品国产精品久久久不卡| 亚洲国产欧美网| 精品国产乱码久久久久久男人| 国产免费男女视频| 18美女黄网站色大片免费观看| 欧美三级亚洲精品| 国产成人av教育| 精品久久久久久,| 亚洲avbb在线观看| 久久中文看片网| 国内精品久久久久精免费| 琪琪午夜伦伦电影理论片6080| 日本一区二区免费在线视频| 麻豆成人av在线观看| 欧美成狂野欧美在线观看| 999久久久国产精品视频| 99热6这里只有精品| 2021天堂中文幕一二区在线观| 99久久综合精品五月天人人| 国产精品一及| 黄色毛片三级朝国网站| 丝袜美腿诱惑在线| 黄色成人免费大全| 国产欧美日韩一区二区精品| 久久久久亚洲av毛片大全| 老司机午夜福利在线观看视频| 国产不卡一卡二| 久久伊人香网站| 亚洲av美国av| 久久久久久久久中文| 搡老妇女老女人老熟妇| 一级黄色大片毛片| 亚洲成人久久爱视频| 国产亚洲精品第一综合不卡| 亚洲精品国产一区二区精华液| 日韩欧美一区二区三区在线观看| 日韩大尺度精品在线看网址| 欧美性猛交黑人性爽| 一本综合久久免费| 一边摸一边抽搐一进一小说| 一进一出抽搐gif免费好疼| 精品一区二区三区四区五区乱码| 美女大奶头视频| 伦理电影免费视频| 琪琪午夜伦伦电影理论片6080| 一本大道久久a久久精品| 最近最新免费中文字幕在线| 身体一侧抽搐| 欧美3d第一页| 18禁国产床啪视频网站| 在线国产一区二区在线| 国产亚洲精品久久久久5区| 一级黄色大片毛片| 狂野欧美白嫩少妇大欣赏| 国产野战对白在线观看| 亚洲欧洲精品一区二区精品久久久| 老汉色av国产亚洲站长工具| 特级一级黄色大片| 午夜福利在线观看吧| 午夜视频精品福利| 精品午夜福利视频在线观看一区| 免费电影在线观看免费观看| 亚洲av中文字字幕乱码综合| 69av精品久久久久久| 国产99白浆流出| 97超级碰碰碰精品色视频在线观看| 国产真人三级小视频在线观看| 伦理电影免费视频| 淫秽高清视频在线观看| 欧美不卡视频在线免费观看 | 午夜福利18| 久久久久精品国产欧美久久久| 国产精品九九99| 欧美性长视频在线观看| 欧美乱妇无乱码| 99国产极品粉嫩在线观看| 午夜成年电影在线免费观看| 国产一区二区激情短视频| 熟妇人妻久久中文字幕3abv| 丝袜人妻中文字幕| 人人妻,人人澡人人爽秒播| 午夜福利成人在线免费观看| 久久精品影院6| 超碰成人久久| 久久午夜亚洲精品久久| av天堂在线播放| 色尼玛亚洲综合影院| 国产一区二区在线av高清观看| 亚洲自偷自拍图片 自拍| 午夜免费激情av| 精品人妻1区二区| 在线播放国产精品三级| 国产精品爽爽va在线观看网站| 国产黄片美女视频| 成人av在线播放网站| 国产真人三级小视频在线观看| 夜夜躁狠狠躁天天躁| 我要搜黄色片| 久久久久久免费高清国产稀缺| 桃色一区二区三区在线观看| 久久中文看片网| 亚洲成av人片在线播放无| 夜夜爽天天搞| 999久久久国产精品视频| 亚洲精品国产一区二区精华液| 99在线人妻在线中文字幕| 亚洲最大成人中文| 欧美人与性动交α欧美精品济南到| 美女免费视频网站| 欧美一级a爱片免费观看看 | 日本黄大片高清| 可以免费在线观看a视频的电影网站| 免费电影在线观看免费观看| 国产午夜精品论理片| 亚洲五月婷婷丁香| 欧美av亚洲av综合av国产av| 精品国产乱子伦一区二区三区| 一个人免费在线观看电影 | 国产欧美日韩精品亚洲av| 天天一区二区日本电影三级| 国产熟女午夜一区二区三区| 美女午夜性视频免费| 日日夜夜操网爽| 免费人成视频x8x8入口观看| 好男人电影高清在线观看| 欧美国产日韩亚洲一区| 精品久久久久久久毛片微露脸| 久久国产精品影院| 久久久久性生活片| 日韩欧美三级三区| 久久精品亚洲精品国产色婷小说| 久久午夜亚洲精品久久| 五月伊人婷婷丁香| 久久 成人 亚洲| 色精品久久人妻99蜜桃| 亚洲精品一区av在线观看| 精品第一国产精品| 一个人免费在线观看电影 | 19禁男女啪啪无遮挡网站| 亚洲av五月六月丁香网| 午夜激情福利司机影院| 色综合亚洲欧美另类图片| 亚洲国产日韩欧美精品在线观看 | 母亲3免费完整高清在线观看| 亚洲专区中文字幕在线| 亚洲国产中文字幕在线视频| 一个人免费在线观看的高清视频| 女同久久另类99精品国产91| 97超级碰碰碰精品色视频在线观看| 国产精品,欧美在线| 国产午夜精品论理片| 后天国语完整版免费观看| 男人舔女人下体高潮全视频| 天堂av国产一区二区熟女人妻 | 欧美精品啪啪一区二区三区| 亚洲成人久久爱视频| 色综合亚洲欧美另类图片| 国产伦在线观看视频一区| 亚洲欧美日韩高清专用| 日韩 欧美 亚洲 中文字幕| 波多野结衣巨乳人妻| a在线观看视频网站| 亚洲欧美日韩无卡精品| 日日爽夜夜爽网站| 这个男人来自地球电影免费观看| 精品久久久久久,| 窝窝影院91人妻| 中国美女看黄片| 天天躁狠狠躁夜夜躁狠狠躁| 日日爽夜夜爽网站| 又大又爽又粗| 精华霜和精华液先用哪个| 看片在线看免费视频| 日韩大码丰满熟妇| 日韩欧美精品v在线| 日日爽夜夜爽网站| www.www免费av| 一级a爱片免费观看的视频| 成人欧美大片| 18禁裸乳无遮挡免费网站照片| 丁香欧美五月| 波多野结衣巨乳人妻| 亚洲五月婷婷丁香| 国产精品香港三级国产av潘金莲| 亚洲午夜理论影院| 好男人在线观看高清免费视频| 国产精品av视频在线免费观看| 亚洲一区二区三区不卡视频| 99精品久久久久人妻精品| 午夜免费观看网址| www日本在线高清视频| x7x7x7水蜜桃| 亚洲精品美女久久久久99蜜臀|