• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and thermoelectric properties of Bi-doped SnSe thin films?

    2021-11-23 07:29:48JunPang龐軍XiZhang張析LimengShen申笠蒙JiayinXu徐家胤YaNie聶婭andGangXiang向鋼
    Chinese Physics B 2021年11期
    關(guān)鍵詞:徐家

    Jun Pang(龐軍), Xi Zhang(張析), Limeng Shen(申笠蒙),Jiayin Xu(徐家胤), Ya Nie(聶婭), and Gang Xiang(向鋼)

    College of Physics,Sichuan University,Chengdu 610064,China

    Keywords: SnSe thin films,Bi doping,thermoelectric properties,Seebeck coefficient

    1. Introduction

    Thermoelectric (TE) materials, enabling energy conversion between heat and electricity,[1,2]offer a possibility for electricity generation and refrigeration.[3-7]The efficiency of TE materials is usually measured by power factor (σS2) and a dimensionless figure of merit, which is defined asZT=σS2T/κ, whereσis the electrical conductivity,Sis the Seebeck coefficient,Tis the absolute temperature, andκis the thermal conductivity,respectively.A highσS2or a lowκis required for excellent thermoelectric materials. There are three strategies to optimizeZTvalues. First, the Seebeck coefficient can be increased through carrier doping or energy filtering of charge carriers.[8,9]Second, the electrical conductivity can be increased by lowering the effective mass of the carriers or modulation doping in a quantum well.[10,11]Third, the thermal conductivity can be reduced by adding interfaces and phonon scattering centers in a nanowire, nanotube, superlattice,alloy or composite.[12,13]Such methods are typically used in the synthesis of excellent polycrystalline thermoelectric materials.

    As a new generation of thermoelectric materials with great potential, SnSe and its related thermoelectric materials have drawn extensive attention for its excellent thermoelectric properties.[14-20]For example,Zhaoet al. reported that p-type SnSe single crystals exhibited ultralow thermal conductivity and an outstandingZTvalue of 2.6 at 923 K.[15]Bi doped ntype SnSe single crystals also showed a highZTvalue of 2.2 at 733 K.[16]Geet al. found that Re and Cl co-doping could significantly enhance the electrical transport performance and reduce the thermal conductivity of n-type SnSe bulk samples,which results in aZTvalue of 1.5 at 793 K.[18]As we know,thin film fabrication is important for modern micro-and nanodevices since thin film materials can be easily incorporated into complex structures for various applications.[21]Because of this, SnSe thin films have been extensively investigated and shown great potentials in the fields of miniaturized optoelectronic,photovoltaic,and thermoelectric devices.[22-24]At the same time, researches have shown that the thermoelectric and optoelectronic properties of p-type SnSe thin films can be improved by doping suitable elements such as Ag, Co, Pb,and Zn.[25-27]At the same time, n-type Bi-doped SnSe bulk samples have been studied and exhibited good thermoelectric properties.[16,28]However,the report on the synthesis of n-type SnSe thin films,especially Bi-doped SnSe thin films,is rare.

    In this work, we synthesized Bi-doped n-type SnSe thin films by chemical vapor deposition and investigated the thermoelectric properties of Bi-doped SnSe thin films. Our data show that the Seebeck coefficient of the Bi-doped SnSe thin films reaches a maximum absolute value of?905.8 μV·K?1at 600 K.Further first-principles calculations indicate that appropriate Bi-doping can shift the Fermi level up in the energy band and improve the overall thermoelectric performance of the SnSe thin films. Our results suggest the potentials of ntype SnSe thin films in the thermoelectric application.

    2. Experimental and theoretical methods

    SnSe powder (purity 99.999%, 100 mg) was first evenly mixed with different amount of Bi powder (purity 99.999%,0, 2.5, 3, 4 mg), then the mixed powder was placed in the center of the high-temperature zone in the CVD system as the source. A piece of intrinsic Si (100) was placed in the lowtemperature zone as the substrate to grow continuous SnSe thin films. The mixed powder was heated to 1100 K at a rate of 20 K·min?1, and the low-temperature zone was heated to 900 K at a rate of 15 K·min?1. Ar (5% H2) gas with a flow ratio of 40-standard cubic centimeter per minute(SCCM)was introduced as the carrier gas. The pressure was adjusted to 10 Torr(1 Torr=1.33322×102Pa)during the film growth.After a growth duration of 40 min,the system was cooled to room temperature naturally.

    Density functional theory (DFT) was used to calculate electronic properties of the SnSe samples, which is implemented in Viennaab initiosimulation package(VASP)[29-31]with the projector augmented wave (PAW) method. The exchange-correlation functional was defined using a generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof(PBE).[32]A supercell with 48 Sn atoms and 48 Se atoms (3×2×2,Pnma) was built, and a Sn atom was randomly replaced with a Bi atom corresponding to a doping concentration of 2%.The plane wave cutoff was set to 520 eV,and a Monkhorst-Packk-mesh of 3×3×3 was used to sample the Brillouin zone(BZ)for integrations in reciprocal space. Both atomic positions and lattice constants were fully relaxed until the magnitude of the force acting on all atoms became less than 0.01 eV·?A?1and electronic convergence threshold for energy was set to be 10?5eV.

    The crystal structures were analyzed by x-ray diffraction(XRD,Fangyuan,DX-2500)with a CuKα(λ=0.15418 nm)radiation source. X-ray photoelectron spectroscopy (XPS,Thermo Scientific Escalab 250Xi) measurement was carried out to study the chemical state of the sample. The morphologies of the Bi-doped SnSe thin films were characterized by scanning electron microscopy (SEM, Thermo Scientific, Apreo-S). The elementary compositions of the SnSe film were investigated by energy dispersive x-ray spectrometry(EDS,Oxford, X-MaxN 80). The microstructures were characterized by high resolution transmission electron microscope(HRTEM, FEI Tecnai, G2 F20). The electrical properties of the samples were measured using a van der Pauw method in an east changing magneto-transport equipment (ET9007).The Seebeck coefficient was measured by an SB1000 Seebeck measurement system with K2000 digital temperature controller. Owing to its high resistivity, the intrinsic silicon substrate can be viewed as an insulator that has little effect on the electrical conductivities of our samples.

    3. Results and discussion

    The structures of the synthsized SnSe thin films were first studied. The XRD patterns of undoped and Bi-doped SnSe thin films with different Bi concentrationx(x=0,0.005,0.01,0.02) were shown in Fig. 1(a). The actual elemental compositions of the samples were obtained from energy dispersive x-ray spectrometry. The major diffraction peaks can be well indexed to the orthorhombic SnSe (JCPDS: 48-1224). The obvious difference in relative diffraction intensity in(400)and(111)planes indicates the existence of anisotropy of the samples. Owing to the substitution of a smaller atom Sn by a bigger atom Bi, the peak positions of the Sn0.99Bi0.01Se sample shift a little bit to smaller angles with respect to that of the undoped sample. However,the peak positions of Sn0.98Bi0.02Se sample shift toward bigger angles, which indicates that some of Bi ions may be incorporated into the lattice interstitial of SnSe,which were also observed in other studies.[28,33]

    Fig.1. (a)XRD of undoped and Bi-doped SnSe thin films. (b)SEM image and the inset shows the cross-section SEM image of Sn0.99Bi0.01Se thin film. (c)HRTEM image and the inset shows the corresponding SAED of Sn0.99Bi0.01Se thin film. (d)-(f)EDS mapping images of Sn,Se,and Bi from Sn0.99Bi0.01Se thin film.

    Fig.2. XPS of Sn0.99Bi0.01Se thin film. (a)Survey scans and high-resolution scans of(b)Sn 3d,(c)Se 3d,and(d)Bi 4f in Sn0.99Bi0.01Se thin film.

    In Fig. 1(b), the SEM image shows that our film is uniform except some dots formed on it. EDS mapping shows that the Bi concentration of white dots is same as that of the thin film (not shown). The total thickness of our thin film was also measured and estimated as 90 nm as shown in the cross-section SEM image. Further structural characterizations were performed by using high-resolution transmission electron microscope. Figure 1(c) reveals that the layer distance is 0.316 nm, corresponding to that of the(011)face of SnSe.The corresponding selected area electron diffraction (SAED)data exhibit a clear orthogonally symmetric spot pattern, as shown in the inset of Fig. 1(c), indicating the high phase purity and high crystallinity of the SnSe thin film. Figures 1(d)-1(f) show the EDS mapping images of Sn, Se, and Bi from Sn0.99Bi0.01Se film, we can see that the elementary distribution of the Bi-doped SnSe film is uniform.

    The composition and the chemical states of Bi-doped SnSe thin films were then studied by x-ray photoelectron spectroscopy(XPS).In Fig.2(a),the XPS survey scan of the sample shows the presence of Sn, Se, Bi, C, and O in a typical Bi-doped thin film (Sn0.99Bi0.01Se). In Fig. 2(b), the Sn 3d spin-orbit doublet peaks appear at 486.42 eV and 494.81 eV with splitting of 8.4 eV,which can be assigned to Sn 3d5/2and Sn 3d3/2,[34]respectively. Figure 2(c) shows the broad peak of Se can be deconvoluted as Se 3d5/2and Se 3d3/2peaks at binding energies of 53.10 eV and 53.96 eV, respectively.[35]In Fig. 2(d), the presence of Bi 4f7/2and Bi 4f5/2peaks at 157.6 eV and 162.9 eV can be attributed to Bi3+states in Bidoped SnSe sample,[28,34]while the peaks at 159.48 eV and 164.76 eV belong to the Bi5+ions.[36]Considering the facts the XRD patterns show peak shifting owing to the Bi-doping and EDS mappings indicate that Bi elements were evenly distributed in the sample,the XPS results agree with the previous analysis.

    Then the thermoelectric properties of the Bi-doped SnSe thin films were characterized in Fig. 3. Figure 3(a)shows the temperature-dependent Seebeck coefficients(S)for Sn1?xBixSe (x= 0, 0.005, 0.01, 0.02) thin films. The undoped SnSe shows positiveSvalues but three Bi-doped SnSe show negativeSvalues. The reason for positiveSvalue in undoped SnSe is that undoped SnSe samples often have Sn vacancy defects unavoidably generated during growth,and exhibit p-type characteristics.[16,37,38]The reason for negativeSvalue in Bi-doped SnSe is that the Bi-dopants are donors and will generate electrons in SnSe, which makes SnSe change from p-type to n-type. If one look at the absoluteSvalues,the temperature dependencies of the absoluteSvalues of Bi doped SnSe are similar to that of the undoped SnSe,in which the absoluteSvalues decrease as the temperature increases above 600 K due to the so called bipolar transport.[15,39]The maximalSvalue is achieved as?905.8 μV·K?1at 600 K in Sn0.99Bi0.01Se thin film, which is better than previously reported values of?400 μV·K?1to?900 μV·K?1in highquality Bi-doped SnSe crystalline bulks at 300 K-700 K.[16,28]Since the lattice mismatchε=(asi?aSnSe)/asibetween the SnSe thin film and Si substrate is negative and n-type Seebeck coefficient can be increased by compressive strain,[40]the higherSvalue of our n-type SnSe thin films is probably owing to the compressive strain between the SnSe thin films and the Si substrate. As shown in Fig. 3(b), the electrical conductivity (σ) of undoped SnSe and Bi-doped SnSe shows different trends. The explanations are as follows. As to the undoped SnSe,theσvalue first increases with increasing temperature up to 450 K owing to the thermal excitation of minority carriers, and then starts to decrease from 450 K owing to the formation of deep level defects,[41]which is like those observed in undoped SnSe bulks.[28,42]Theσvalues of all the Bi-doped SnSe samples show increasing trends as the temperature increases up to 700 K,since Bi dopants decrease the deep level defect concentration by suppressing the formation of traps.[43,44]Doping n-type dopant Bi into p-type SnSe will decrease the electrical conductivity first,which is accompanied by the decreased Hall carrier concentration, as shown in Fig. 3(d). The carrier type changes from hole to electron and carrier concentration decreases from 6.14×1017cm?3to 1.36×1017cm?3when the undoped SnSe (more accurately,p-type unintentionally doped) is doped and become n-type Sn0.995Bi0.005Se with 0.5%Bi dopants,owing to the electrons generated by Bi dopants. After that, the carrier type remain electron and carrier concentration keep increasing as Bi doping concentration increases. Meanwhile, the Hall mobility of carrier first increases owing to less carrier scattering resulted from the neutralization effect between n-type Bi dopants and unintentionally doped p-type defects, and then decreases owing to more and more carrier scattering when the Bi doping concentration increases. It is noted that the mobility of the SnSe thin film is lower than that of bulk materials,[28,45]which is probably caused by the phonon scattering at the surface and grain boundary in the thin films.

    Fig. 3. Temperature-dependent (a) Seebeck coefficient, (b) electrical conductivity, (c) power factor (σS2), and (d) room-temperature Hall carrier concentration and Hall mobility of Sn1?xBixSe(x=0,0.005,0.01,0.02)thin films.

    Figure 3(c) shows the temperature-dependent PF of different SnSe thin films. Low PF values with small variations are obtained in undoped SnSe and Sn0.995Bi0.005Se thin films due to their low Seebeck coefficients. Owing to the significant increase of Seebeck coefficient, the higher PF values are obtained in Sn0.99Bi0.01Se and Sn0.98Bi0.02Se thin films. Specifically,the PF value reaches a maximum of 0.6μW·cm?1·K?2at 700 K when Bi doping concentration is 2%.

    In fact, the measurement of thermal conductivity of thin films is notoriously difficult.[46-48]As other groups have pointed out, thin films are usually expected to have lower thermal conductivity than their bulk counterparts due to the phonon scattering at the surface and grain boundary,and hence many of them have used the thermal conductivity of the corresponding bulk materials to estimate the lower bound ofZTs of the thin films.[46-48]At the same time, previous studies have shown that the thermal conductivity of Bi-doped SnSe bulk samples is comparable to or even lower than that of bulk SnSe.[16,49,50]Therefore,we use the thermal conductivity of the bulk polycrystalline SnSe reported in the literature[51]to estimate the lower bound ofZTs of our Bi-doped SnSe films. Temperature dependence of the thermal conductivity of the bulk polycrystalline SnSe is shown in Fig. 4, owing to the fact that phonon scattering increases gradually with increasing temperature,κdecreases with increasing temperature. The conservatively estimateZTvalues as a function of temperature for all samples are shown in Fig. 4. TheZTvalues of Sn0.99Bi0.01Se and Sn0.98Bi0.02Se are significantly improved compared to that of pristine SnSe,which can be attributed to enhanced PF values. The obtained maximumZTof Sn0.98Bi0.02Se is 0.074 at 700 K.As discussed earlier,the actualZTof our SnSe thin film may be higher than the estimated value here.

    Fig. 4. Temperature-dependent figure of merit (ZT) for the Sn1?xBixSe(x=0, 0.005, 0.01, 0.02)thin films. The bottom curve is the total thermal conductivity of the reported bulk SnSe,[51] which is used to conservatively estimate the ZT of our SnSe thin films.

    Since the Seebeck coefficients of Sn0.99Bi0.01Se and Sn0.98Bi0.02Se are improved dramatically compared to that of undoped SnSe,we calculated their electronic structures to understand the effect of Bi-doping on the thermoelectric properties of the SnSe samples. Figure 5 shows the comparison between the pristine SnSe sample and a typical Bi-doped SnSe sample (Sn0.98Bi0.02Se). The density of states (DOSs) near the Fermi level are mainly composed of the s-orbitals and porbitals of Sn, and the p-orbitals of Se. After doping Bi into SnSe, the Fermi level is shifted up into the conduction band,and hence the DOSs near the Fermi level is increased and Bidoped SnSe become n-type, as shown Fig. 5. According to Mott expression,[52]the increase in the local DOSs near the Fermi level can enhance the Seebeck coefficient. The band structure of Sn0.98Bi0.02Se is shown in Fig. 5(d) where four conduction bands named CB1, CB2, CB3, and CB4 are near theΓpoint in the Brillouin zone. The differences between the four band energies are on the order ofkBT, suggesting that doping Bi into SnSe will introduce some carrier pockets near the Fermi level. Previous studies have shown that the increase of carrier pockets near the Fermi level will also improve the Seebeck coefficient.[53-55]Therefore, doping Bi into SnSe is indeed an effective way to improve the thermoelectric properties of SnSe. The results of theoretical calculations agree well with the experimental results.

    Fig.5. [(a)and(b)]DOSs and[(c)and(d)]electronic band structures of the undoped SnSe and Sn0.98Bi0.02Se samples.

    4. Conclusion

    In this work, Bi-doped SnSe thin films were prepared on Si substrate by CVD and their structures and thermoelectric properties were studied. TheZTvalues of Sn0.99Bi0.01Se and Sn0.98Bi0.02Se thin films are significantly improved compared to that of pristine SnSe, which can be attributed to the enhanced PF values. The obtained maximumZTof Sn0.98Bi0.02Se thin film is 0.074 at 700 K.The enhancement of the thermoelectric properties is related to the Fermi level lifting and the carrier pockets increasing near the Fermi level due to Bi doping in the SnSe samples. Our results thus provide an effective way to improve the thermoelectric properties of SnSe thin films.

    Acknowledgements

    We are very grateful to the help from the Analytical and Testing Center of Sichuan University.

    猜你喜歡
    徐家
    Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
    The existence and blow-up of the radial solutions of a (k1, k2)-Hessian system involving a nonlinear operator and gradient
    Broadband low-frequency acoustic absorber based on metaporous composite
    徐家玨作品
    美術(shù)界(2022年4期)2022-04-26 11:07:00
    STABILITY ANALYSIS OF CAUSAL INTEGRAL EVOLUTION IMPULSIVE SYSTEMS ON TIME SCALES?
    南京市棲霞區(qū)徐家村M4 出土器物
    南京市棲霞區(qū)徐家村M1 出土器物
    徐家柱 用愛(ài)喚醒沉睡12年的妻子
    “多多益善”的政協(xié)主席
    徐家河尾礦庫(kù)潰壩分析
    久久中文字幕一级| 香蕉av资源在线| 欧美+亚洲+日韩+国产| 日韩精品青青久久久久久| 最好的美女福利视频网| 免费在线观看影片大全网站| 老汉色∧v一级毛片| 久久欧美精品欧美久久欧美| 亚洲自拍偷在线| 日韩欧美精品v在线| 日本 av在线| 久久天堂一区二区三区四区| 丁香欧美五月| 久久亚洲精品不卡| 日本精品一区二区三区蜜桃| 国产伦人伦偷精品视频| 91国产中文字幕| xxxwww97欧美| 色尼玛亚洲综合影院| 国产99久久九九免费精品| 欧美高清成人免费视频www| 人妻丰满熟妇av一区二区三区| 少妇熟女aⅴ在线视频| 亚洲电影在线观看av| 老司机靠b影院| 国产精品影院久久| 欧美在线黄色| 日韩欧美一区二区三区在线观看| 欧美黑人精品巨大| 琪琪午夜伦伦电影理论片6080| 日韩av在线大香蕉| 国产成人影院久久av| 欧美zozozo另类| 午夜精品久久久久久毛片777| 夜夜夜夜夜久久久久| 欧美日韩亚洲国产一区二区在线观看| 中文字幕高清在线视频| 亚洲av片天天在线观看| 亚洲一区二区三区不卡视频| 老司机深夜福利视频在线观看| 久久国产精品影院| 麻豆成人av在线观看| 波多野结衣高清无吗| 巨乳人妻的诱惑在线观看| 久久久国产欧美日韩av| 88av欧美| 嫩草影院精品99| 免费看美女性在线毛片视频| 人成视频在线观看免费观看| 欧美成狂野欧美在线观看| 国产熟女午夜一区二区三区| 免费在线观看成人毛片| 国产精品一区二区免费欧美| 国产熟女xx| 午夜视频精品福利| 成人特级黄色片久久久久久久| 免费看a级黄色片| 一a级毛片在线观看| 国产私拍福利视频在线观看| 国产精品一区二区三区四区久久| 国产av不卡久久| 亚洲七黄色美女视频| 亚洲色图 男人天堂 中文字幕| 亚洲一区高清亚洲精品| 五月伊人婷婷丁香| 99re在线观看精品视频| 日韩三级视频一区二区三区| 精品国产乱码久久久久久男人| 欧美乱妇无乱码| 国产v大片淫在线免费观看| 国产片内射在线| 国产伦一二天堂av在线观看| 国产高清videossex| 国产伦一二天堂av在线观看| 国产精品综合久久久久久久免费| 久久久国产欧美日韩av| 国产精品久久久人人做人人爽| www.999成人在线观看| 欧美日韩乱码在线| 99精品久久久久人妻精品| 午夜成年电影在线免费观看| 免费观看精品视频网站| 又黄又粗又硬又大视频| 在线观看舔阴道视频| 超碰成人久久| 2021天堂中文幕一二区在线观| av在线播放免费不卡| 在线观看一区二区三区| 亚洲性夜色夜夜综合| 香蕉国产在线看| 久久久久久亚洲精品国产蜜桃av| 免费看日本二区| 亚洲av片天天在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲av高清不卡| 亚洲精品一区av在线观看| 亚洲精品国产精品久久久不卡| 男女视频在线观看网站免费 | 一本一本综合久久| 91大片在线观看| 亚洲国产日韩欧美精品在线观看 | 好男人在线观看高清免费视频| 国产成人一区二区三区免费视频网站| 熟女少妇亚洲综合色aaa.| 波多野结衣巨乳人妻| 全区人妻精品视频| 男人舔女人下体高潮全视频| 88av欧美| av超薄肉色丝袜交足视频| 亚洲黑人精品在线| 免费看日本二区| 久久国产精品人妻蜜桃| 特级一级黄色大片| 男人舔奶头视频| 美女高潮喷水抽搐中文字幕| 久久中文字幕一级| 欧美色欧美亚洲另类二区| 一本精品99久久精品77| 757午夜福利合集在线观看| 亚洲国产精品合色在线| 国产一级毛片七仙女欲春2| 午夜视频精品福利| 亚洲精品一卡2卡三卡4卡5卡| 岛国在线观看网站| 国产精品98久久久久久宅男小说| 又粗又爽又猛毛片免费看| 久久99热这里只有精品18| 叶爱在线成人免费视频播放| 国产熟女午夜一区二区三区| 国产成人欧美在线观看| 免费观看精品视频网站| 国产乱人伦免费视频| 国内少妇人妻偷人精品xxx网站 | 国产av不卡久久| a级毛片在线看网站| 少妇的丰满在线观看| 成人欧美大片| 变态另类成人亚洲欧美熟女| 久久国产乱子伦精品免费另类| 久久精品综合一区二区三区| av福利片在线| 欧美国产日韩亚洲一区| 三级国产精品欧美在线观看 | 黄色片一级片一级黄色片| 黑人操中国人逼视频| 美女大奶头视频| 一边摸一边抽搐一进一小说| 中文字幕av在线有码专区| 日韩欧美精品v在线| 色精品久久人妻99蜜桃| 国产成人精品久久二区二区免费| 日韩 欧美 亚洲 中文字幕| 这个男人来自地球电影免费观看| 午夜日韩欧美国产| av欧美777| 禁无遮挡网站| av福利片在线| 欧美日本视频| 日韩 欧美 亚洲 中文字幕| 男人的好看免费观看在线视频 | 精品免费久久久久久久清纯| 久久久精品大字幕| 午夜福利在线在线| 18美女黄网站色大片免费观看| 欧美一级a爱片免费观看看 | 久久久精品大字幕| av国产免费在线观看| 午夜福利在线观看吧| 一级毛片女人18水好多| 色在线成人网| 两性夫妻黄色片| 9191精品国产免费久久| 国产精品一及| 国产日本99.免费观看| 国产精品一区二区三区四区免费观看 | 亚洲专区中文字幕在线| 亚洲欧美一区二区三区黑人| 高潮久久久久久久久久久不卡| ponron亚洲| 最近最新中文字幕大全免费视频| 国产精品野战在线观看| 亚洲美女视频黄频| 亚洲人与动物交配视频| 老司机在亚洲福利影院| 亚洲精品粉嫩美女一区| 日本在线视频免费播放| 国产男靠女视频免费网站| 夜夜爽天天搞| 亚洲中文日韩欧美视频| 在线永久观看黄色视频| 国产精品美女特级片免费视频播放器 | 亚洲色图av天堂| 十八禁网站免费在线| 欧美丝袜亚洲另类 | 久久婷婷人人爽人人干人人爱| 亚洲成av人片免费观看| 欧美不卡视频在线免费观看 | 亚洲一区二区三区不卡视频| 亚洲熟妇中文字幕五十中出| 国产精品久久电影中文字幕| 久久久久亚洲av毛片大全| 一个人观看的视频www高清免费观看 | 久久热在线av| 国产精品久久久av美女十八| 在线观看日韩欧美| 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产av一区在线观看免费| 91字幕亚洲| 日本a在线网址| 亚洲在线自拍视频| 男女下面进入的视频免费午夜| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机深夜福利视频在线观看| 国产成年人精品一区二区| 国产亚洲欧美98| 国产亚洲精品久久久久久毛片| 欧美性猛交╳xxx乱大交人| www.熟女人妻精品国产| 亚洲美女黄片视频| 成人av在线播放网站| 亚洲国产精品合色在线| 中文字幕熟女人妻在线| 国产片内射在线| 每晚都被弄得嗷嗷叫到高潮| 91成年电影在线观看| 亚洲国产欧美一区二区综合| 国产精品影院久久| 床上黄色一级片| 午夜免费激情av| 99热这里只有是精品50| 99久久久亚洲精品蜜臀av| 美女高潮喷水抽搐中文字幕| 桃红色精品国产亚洲av| 一本精品99久久精品77| 亚洲精品中文字幕在线视频| 亚洲九九香蕉| 欧美国产日韩亚洲一区| 国产精品免费视频内射| 国产主播在线观看一区二区| 亚洲五月天丁香| 正在播放国产对白刺激| 欧美日韩精品网址| 午夜影院日韩av| 日韩欧美免费精品| 成人国语在线视频| 搡老熟女国产l中国老女人| 亚洲成人精品中文字幕电影| 国产真实乱freesex| 成人国产综合亚洲| 亚洲av日韩精品久久久久久密| 天堂影院成人在线观看| 日韩 欧美 亚洲 中文字幕| 狂野欧美白嫩少妇大欣赏| 久热爱精品视频在线9| 久久久精品欧美日韩精品| 99热这里只有是精品50| 欧美午夜高清在线| 亚洲第一欧美日韩一区二区三区| 久久欧美精品欧美久久欧美| 99精品久久久久人妻精品| 黄色成人免费大全| 国产高清有码在线观看视频 | 国产亚洲精品第一综合不卡| 中文字幕精品亚洲无线码一区| 欧美成人午夜精品| 色精品久久人妻99蜜桃| 搞女人的毛片| 免费看美女性在线毛片视频| 人人妻人人看人人澡| 99热只有精品国产| 欧美极品一区二区三区四区| 国产在线观看jvid| 首页视频小说图片口味搜索| 人人妻,人人澡人人爽秒播| 在线观看免费日韩欧美大片| 精品不卡国产一区二区三区| 色精品久久人妻99蜜桃| 免费无遮挡裸体视频| 丝袜美腿诱惑在线| 亚洲午夜理论影院| 黄色视频不卡| 脱女人内裤的视频| 在线永久观看黄色视频| svipshipincom国产片| 嫩草影视91久久| 免费高清视频大片| 国产又色又爽无遮挡免费看| 舔av片在线| 久久久久国产一级毛片高清牌| 亚洲专区国产一区二区| 国产精品一及| 首页视频小说图片口味搜索| 精品不卡国产一区二区三区| 日韩欧美三级三区| 最近在线观看免费完整版| 日韩欧美在线乱码| 婷婷六月久久综合丁香| 久9热在线精品视频| 两个人看的免费小视频| 两个人的视频大全免费| 精品国产乱码久久久久久男人| 国产精品永久免费网站| 变态另类成人亚洲欧美熟女| 亚洲男人天堂网一区| 午夜精品久久久久久毛片777| 一级毛片精品| 亚洲欧美日韩无卡精品| 日本 欧美在线| 怎么达到女性高潮| 亚洲成人精品中文字幕电影| 精品久久久久久久末码| 中文字幕久久专区| 国产三级在线视频| 夜夜爽天天搞| 免费观看精品视频网站| 亚洲自拍偷在线| 亚洲五月婷婷丁香| 精品久久久久久久人妻蜜臀av| 成人三级黄色视频| 91国产中文字幕| 精品久久蜜臀av无| 每晚都被弄得嗷嗷叫到高潮| 麻豆国产av国片精品| 熟女电影av网| 午夜免费激情av| 国产精品1区2区在线观看.| 一个人免费在线观看电影 | 国产精品98久久久久久宅男小说| av视频在线观看入口| 国产精品亚洲美女久久久| 90打野战视频偷拍视频| 看片在线看免费视频| 哪里可以看免费的av片| 久久久精品大字幕| 亚洲精品美女久久av网站| 两个人看的免费小视频| 国产精品一区二区三区四区久久| 日韩欧美国产在线观看| 91麻豆精品激情在线观看国产| 欧美国产日韩亚洲一区| 91麻豆精品激情在线观看国产| 国内久久婷婷六月综合欲色啪| av欧美777| 成人三级做爰电影| 国内揄拍国产精品人妻在线| 欧美国产日韩亚洲一区| 18禁国产床啪视频网站| xxx96com| 美女高潮喷水抽搐中文字幕| 啦啦啦观看免费观看视频高清| 国产成年人精品一区二区| 精品第一国产精品| www.999成人在线观看| 精品久久久久久久久久免费视频| 天堂√8在线中文| 亚洲人成网站高清观看| 床上黄色一级片| 99精品在免费线老司机午夜| videosex国产| 9191精品国产免费久久| 精品国产乱码久久久久久男人| 国产熟女xx| 国产精品av久久久久免费| 在线观看舔阴道视频| 听说在线观看完整版免费高清| 国产成人精品久久二区二区免费| 国产精品av久久久久免费| 好看av亚洲va欧美ⅴa在| 国产精品av久久久久免费| 好看av亚洲va欧美ⅴa在| 丝袜美腿诱惑在线| 岛国在线观看网站| 色精品久久人妻99蜜桃| 亚洲电影在线观看av| 91国产中文字幕| 妹子高潮喷水视频| 99精品久久久久人妻精品| 久久久久久九九精品二区国产 | 国产一区在线观看成人免费| 国产久久久一区二区三区| avwww免费| 日本三级黄在线观看| 日本 av在线| 国产精品 欧美亚洲| 久久精品夜夜夜夜夜久久蜜豆 | 又粗又爽又猛毛片免费看| 黄片大片在线免费观看| 免费观看精品视频网站| 国产高清videossex| 亚洲全国av大片| 久久人妻福利社区极品人妻图片| 亚洲男人的天堂狠狠| 97碰自拍视频| 男插女下体视频免费在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品精品国产色婷婷| 国产在线精品亚洲第一网站| 97人妻精品一区二区三区麻豆| av福利片在线| 国产亚洲av高清不卡| 欧美日韩乱码在线| 一级毛片女人18水好多| 亚洲精品久久成人aⅴ小说| 精品一区二区三区四区五区乱码| 亚洲熟女毛片儿| 69av精品久久久久久| 亚洲av成人一区二区三| 51午夜福利影视在线观看| 成人国产综合亚洲| 一本久久中文字幕| 日韩免费av在线播放| 在线看三级毛片| 国产成人系列免费观看| 色尼玛亚洲综合影院| 在线免费观看的www视频| 日本一本二区三区精品| 国产三级黄色录像| 韩国av一区二区三区四区| 黄频高清免费视频| 亚洲专区国产一区二区| 1024手机看黄色片| 久久精品人妻少妇| www国产在线视频色| 久久精品夜夜夜夜夜久久蜜豆 | 男人舔女人下体高潮全视频| 观看免费一级毛片| 视频区欧美日本亚洲| 亚洲av成人一区二区三| 久久久久久久精品吃奶| 午夜两性在线视频| 99久久国产精品久久久| 巨乳人妻的诱惑在线观看| 国产激情久久老熟女| 国产精品免费一区二区三区在线| 麻豆一二三区av精品| 天天添夜夜摸| 亚洲av五月六月丁香网| 欧美成狂野欧美在线观看| 大型黄色视频在线免费观看| 久久久久国产一级毛片高清牌| 两个人免费观看高清视频| 九色国产91popny在线| 国产一区二区在线av高清观看| 欧美高清成人免费视频www| 亚洲av第一区精品v没综合| 不卡av一区二区三区| 一个人观看的视频www高清免费观看 | 成人高潮视频无遮挡免费网站| aaaaa片日本免费| 日韩欧美精品v在线| 日韩欧美在线二视频| 亚洲成人国产一区在线观看| 一级毛片精品| 久久精品国产亚洲av高清一级| 在线观看66精品国产| 亚洲成av人片免费观看| av天堂在线播放| 色综合欧美亚洲国产小说| 国产精品久久久久久精品电影| 看免费av毛片| 一个人免费在线观看电影 | 免费电影在线观看免费观看| 真人做人爱边吃奶动态| 狠狠狠狠99中文字幕| 精品少妇一区二区三区视频日本电影| 成人av在线播放网站| 色在线成人网| 欧美大码av| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美日韩东京热| 99riav亚洲国产免费| 18禁观看日本| 欧美极品一区二区三区四区| 国产精品一区二区三区四区久久| 国产亚洲精品一区二区www| 夜夜爽天天搞| 久久久久久九九精品二区国产 | 亚洲av美国av| 黑人操中国人逼视频| 久久亚洲真实| 两个人的视频大全免费| 老司机午夜福利在线观看视频| 国产精品久久久人人做人人爽| 啦啦啦韩国在线观看视频| 国内毛片毛片毛片毛片毛片| 国产精品亚洲一级av第二区| 精品一区二区三区四区五区乱码| 亚洲美女视频黄频| 国产精品野战在线观看| 69av精品久久久久久| 亚洲精品中文字幕在线视频| 女人被狂操c到高潮| 亚洲激情在线av| 国产精品电影一区二区三区| 两个人视频免费观看高清| 夜夜看夜夜爽夜夜摸| 午夜激情福利司机影院| 亚洲精品久久成人aⅴ小说| 怎么达到女性高潮| 搡老妇女老女人老熟妇| 国产一区二区三区视频了| 最新在线观看一区二区三区| 精品国产美女av久久久久小说| 精品久久久久久久人妻蜜臀av| 亚洲一码二码三码区别大吗| 悠悠久久av| 国产v大片淫在线免费观看| 免费在线观看完整版高清| 又爽又黄无遮挡网站| 国产精品,欧美在线| netflix在线观看网站| 免费人成视频x8x8入口观看| 老熟妇仑乱视频hdxx| 成年女人毛片免费观看观看9| 久久精品夜夜夜夜夜久久蜜豆 | 久久中文看片网| 亚洲午夜理论影院| 久久精品成人免费网站| 人人妻,人人澡人人爽秒播| 亚洲第一电影网av| 欧美日韩中文字幕国产精品一区二区三区| 免费无遮挡裸体视频| 亚洲人成电影免费在线| avwww免费| 国产av麻豆久久久久久久| 69av精品久久久久久| 午夜视频精品福利| 国产激情久久老熟女| 国产精品九九99| 欧美激情久久久久久爽电影| 午夜精品久久久久久毛片777| 亚洲国产精品sss在线观看| 久久久久久久久免费视频了| 搡老妇女老女人老熟妇| 老司机靠b影院| 人妻久久中文字幕网| 床上黄色一级片| 手机成人av网站| 成人av在线播放网站| 国产精品香港三级国产av潘金莲| 国产精品野战在线观看| 亚洲五月天丁香| 亚洲精品在线观看二区| 九色国产91popny在线| 日韩欧美免费精品| 国产99白浆流出| 久久久久国产一级毛片高清牌| 亚洲av成人av| 国产精品一区二区三区四区免费观看 | 亚洲精品国产精品久久久不卡| 亚洲国产精品合色在线| 亚洲成人久久爱视频| 久久精品aⅴ一区二区三区四区| 日日爽夜夜爽网站| 最近最新免费中文字幕在线| 午夜免费成人在线视频| 久久国产精品人妻蜜桃| 男女之事视频高清在线观看| 一区二区三区高清视频在线| 亚洲国产精品久久男人天堂| 国产一区二区在线av高清观看| 欧美日韩精品网址| 国内精品久久久久久久电影| 在线免费观看的www视频| 欧美绝顶高潮抽搐喷水| 久久久国产成人免费| 男女下面进入的视频免费午夜| 一区二区三区国产精品乱码| www.www免费av| 日韩欧美精品v在线| 欧美最黄视频在线播放免费| 日本 欧美在线| 男女午夜视频在线观看| 日本一本二区三区精品| 国产成人精品久久二区二区91| 悠悠久久av| 色尼玛亚洲综合影院| 亚洲九九香蕉| 亚洲成人久久性| 亚洲国产中文字幕在线视频| 一个人免费在线观看的高清视频| 亚洲 欧美 日韩 在线 免费| 99久久综合精品五月天人人| 床上黄色一级片| 在线观看66精品国产| 成人国语在线视频| 日韩三级视频一区二区三区| 在线a可以看的网站| 性欧美人与动物交配| 国产黄a三级三级三级人| 国产精品99久久99久久久不卡| 国产视频内射| 亚洲熟妇中文字幕五十中出| 777久久人妻少妇嫩草av网站| 国产成人一区二区三区免费视频网站| 美女黄网站色视频| 欧美激情久久久久久爽电影| 国内精品久久久久久久电影| 久久精品国产清高在天天线| 日日爽夜夜爽网站| 一个人免费在线观看电影 | 亚洲精品中文字幕在线视频| 黄色片一级片一级黄色片| 久久久国产欧美日韩av| 欧美国产日韩亚洲一区| 天堂动漫精品| 黑人操中国人逼视频| 日韩av在线大香蕉| 久久精品91蜜桃| 18禁黄网站禁片午夜丰满| 亚洲成人中文字幕在线播放| 国产又黄又爽又无遮挡在线| 黄色视频不卡| 成人高潮视频无遮挡免费网站|