高鵬飛,王 鵬*,丁明軍,張 華,聶明華,黃高翔
中國湖泊細(xì)菌群落的生物地理分布格局及驅(qū)動(dòng)機(jī)制——基于文獻(xiàn)數(shù)據(jù)的統(tǒng)計(jì)分析
高鵬飛1,2,王 鵬1,2*,丁明軍1,2,張 華1,2,聶明華1,2,黃高翔1,2
(1.江西師范大學(xué),鄱陽湖濕地與流域研究教育部重點(diǎn)實(shí)驗(yàn)室,江西 南昌 330022;2.江西師范大學(xué)地理與環(huán)境學(xué)院,江西 南昌 330022)
為闡明中國湖泊細(xì)菌群落的生物地理分布格局及驅(qū)動(dòng)機(jī)制,基于已發(fā)表文獻(xiàn),收集了228個(gè)湖泊的浮游或沉積物細(xì)菌門水平分類數(shù)據(jù)和環(huán)境因子數(shù)據(jù)進(jìn)行分析.結(jié)果表明:中國湖泊浮游細(xì)菌群落的優(yōu)勢類群為變形菌門(Proteobacteria,35.92%)、放線菌門(Actinobacteria,25.03%)和擬桿菌門(Bacteroidetes,10.77%),沉積物中的優(yōu)勢類群為變形菌門(Proteobacteria,40.37%)、綠彎菌門(Chloroflexi,8.74%)和擬桿菌門(Bacteroidetes,8.55%).中國湖泊浮游細(xì)菌距離衰減程度顯著低于沉積物細(xì)菌;湖泊細(xì)菌群落結(jié)構(gòu)在北方、南方、青藏高原的空間差異顯著,北方水體及沉積物中細(xì)菌的距離衰減模式均不顯著,南方水體中顯著但沉積物中不顯著,青藏高原水體及沉積物中均顯著.浮游細(xì)菌優(yōu)勢類群中除Proteobacteria外,Actinobacteria(南方>北方>青藏高原)和Bacteroidetes(青藏高原>北方>南方)的豐度在三個(gè)地區(qū)均具有顯著差異;沉積物細(xì)菌優(yōu)勢類群Proteobacteria(北方>南方>青藏高原)、Chloroflexi(南方>北方>青藏高原)、Bacteroidetes(青藏高原>北方>南方)的豐度在三個(gè)地區(qū)均具有顯著差異.影響北方湖泊浮游細(xì)菌群落分布的主要環(huán)境因子是溶解性有機(jī)碳,南方是溶解氧,青藏高原是硝酸鹽氮;影響北方湖泊沉積物細(xì)菌群落分布的主要環(huán)境因子是總氮和pH值,南方是總磷,青藏高原是pH值.空間擴(kuò)散限制與環(huán)境篩選作用共同塑造了中國湖泊細(xì)菌的生物地理分布格局.擴(kuò)散限制對浮游細(xì)菌的影響小于沉積物細(xì)菌,對青藏高原湖泊浮游及沉積物細(xì)菌影響最大,對北方湖泊浮游及沉積物細(xì)菌影響最小;環(huán)境篩選作用對青藏高原湖泊浮游及沉積物細(xì)菌影響最大,對南方湖泊浮游細(xì)菌及北方湖泊沉積物細(xì)菌影響較小.
中國湖泊;細(xì)菌群落;地理距離衰減;環(huán)境篩選;擴(kuò)散限制
湖泊生態(tài)系統(tǒng)對全球氣候變化反應(yīng)迅速[1],在維持地球生態(tài)平衡及促進(jìn)生物地球化學(xué)循環(huán)等方面發(fā)揮著重要作用[2].細(xì)菌是水生微生物食物網(wǎng)的重要組成部分[3],促進(jìn)了湖泊生態(tài)系統(tǒng)的有機(jī)質(zhì)分解和養(yǎng)分循環(huán)[4-5].浮游細(xì)菌和沉積物細(xì)菌的來源、多樣性以及影響因素不同[6-7],對湖泊浮游及沉積物細(xì)菌進(jìn)行綜合研究,有利于加深對菌群構(gòu)建機(jī)制及湖泊生態(tài)功能的理解.
生物地理分布格局包括物種組成的相似性隨地理距離衰減[8]及種群結(jié)構(gòu)的空間異質(zhì)性.細(xì)菌群落存在生物地理分布現(xiàn)象,如以Proteobacteria和Bacteroidetes為優(yōu)勢類群的南極周邊海洋菌群、以Proteobacteria、藍(lán)藻菌門(Cyanobacteria)、Actinobacteria為優(yōu)勢類群的長江浮游菌群,都具有顯著的距離衰減模式[6, 9].細(xì)菌主動(dòng)擴(kuò)散的能力差,因地理隔絕而產(chǎn)生的擴(kuò)散限制可能是菌群呈現(xiàn)特定分布格局的原因;環(huán)境因子的篩選作用也是這一現(xiàn)象產(chǎn)生的原因,湖泊細(xì)菌群落可能受溫度[10-11]、pH值[10,12]、總磷[13-14]、總氮[15]和硝酸鹽氮[13]等環(huán)境因子的影響.研究表明,芬蘭東北部Kitkajarvi湖浮游細(xì)菌群落的構(gòu)建受到了擴(kuò)散限制的強(qiáng)烈影響[16],擴(kuò)散限制還明顯影響了熱帶、亞熱帶海洋表層以及德國地下含水層中微生物群落的構(gòu)建[17-18];此外,總氮對包頭南海湖中的固氮微生物的生長具有明顯的促進(jìn)作用[19],溫度、pH值、透明度等環(huán)境因子會(huì)顯著影響丹江口水庫的浮游細(xì)菌群落[20].研究的空間尺度不同,影響細(xì)菌分布格局的因素可能也會(huì)不同[21].在大規(guī)模尺度上研究湖泊細(xì)菌群落生物地理分布格局及形成原因,對于系統(tǒng)性了解細(xì)菌地帶性分布及湖泊生態(tài)環(huán)境監(jiān)測具有重要意義.然而,相比于動(dòng)植物的廣泛研究,對湖泊細(xì)菌群落在較大空間尺度上分布格局及驅(qū)動(dòng)機(jī)制的研究仍然有限.
目前我國已有許多關(guān)于湖泊細(xì)菌群落特征及影響因素的研究,如我國中東部湖泊、水庫浮游細(xì)菌優(yōu)勢類群主要為Actinobacteria、Bacteroidetes、Proteobacteria和疣微菌門(Verrucomicrobia),豐富和稀有細(xì)菌類群均具有顯著的距離衰減關(guān)系,稀有類群主要受電導(dǎo)率、水體透明度等環(huán)境因子的影響,豐富類群主要受空間變量的影響[22];長江中下游湖泊浮游細(xì)菌優(yōu)勢類群為Proteobacteria和Actinobacteria,菌群距離衰減模式明顯,隨機(jī)過程主導(dǎo)了菌群的構(gòu)建[23];青藏高原湖泊優(yōu)勢類群為Bacteroidetes和Cyanobacteria,鹽度是最重要的影響因子[24].這些研究工作在我國部分地區(qū)開展,研究結(jié)論是否適用于全國仍然未知.本研究基于文獻(xiàn)的統(tǒng)計(jì)數(shù)據(jù),假設(shè)細(xì)菌群落的距離衰減程度反映了擴(kuò)散限制機(jī)制,環(huán)境因子的影響反映了環(huán)境篩選機(jī)制,主要研究目的:(1)闡明中國湖泊浮游及沉積物細(xì)菌群落的生物地理分布格局;(2)探究驅(qū)動(dòng)中國湖泊細(xì)菌群落生物地理分布格局形成的主要機(jī)制.
通過Web of science學(xué)術(shù)搜索引擎(https:// www.webofscience.com)和中國知網(wǎng)(https://www. cnki.net),收集采用第二代測序技術(shù)(高通量測序)對中國湖泊浮游及沉積物細(xì)菌群落開展研究的相關(guān)文獻(xiàn).檢索位置為“主題”,檢索式分別為“bacteria* AND lake AND China”、“細(xì)菌AND 湖泊AND中國”,得到100篇符合研究需求的文獻(xiàn),包含228個(gè)湖泊.由于35%的文獻(xiàn)未提及其是否將原始序列信息上傳至基因數(shù)據(jù)庫,且所收集文獻(xiàn)中細(xì)菌群落的相對豐度多在門水平分類上統(tǒng)計(jì)分析,為便于后續(xù)比較分析,本研究未基于測序原始序列分析中國湖泊細(xì)菌群落特征,而是整理了文獻(xiàn)中細(xì)菌門水平分類的相對豐度數(shù)據(jù).
本研究共統(tǒng)計(jì)了9種常見門分類細(xì)菌的相對豐度,并將未統(tǒng)計(jì)的細(xì)菌門類歸類為其他(Others),將變形菌亞門(Alphaproteobacteria、Betaproteobacteria、Deltaproteobacteria和Gammaproteobacteria)的數(shù)據(jù)統(tǒng)一歸為Proteobacteria.篩選在25%以上的水體或沉積物樣本中都出現(xiàn)的環(huán)境因子,選擇的水體環(huán)境因子為溫度、pH值、溶解氧(DO)、總磷(TP)、總氮(TN)、氨氮(NH4+-N)、硝酸鹽氮(NO3--N)和溶解性有機(jī)碳(DOC),沉積物環(huán)境因子為溫度、pH值、TP、TN、NO3--N和總有機(jī)碳(TOC).如果一個(gè)湖泊采樣點(diǎn)不唯一或在同一季節(jié)內(nèi)有數(shù)次采樣,在統(tǒng)計(jì)細(xì)菌數(shù)據(jù)及環(huán)境因子時(shí)取其平均值;如果文獻(xiàn)數(shù)據(jù)以圖片形式給出,使用Origin2017軟件的Digitizer插件從圖中獲取數(shù)據(jù).此外,統(tǒng)計(jì)的文獻(xiàn)信息還包括“采樣時(shí)間”、“采樣點(diǎn)數(shù)量”、“采樣點(diǎn)經(jīng)緯度及所在省份”等.
某些文獻(xiàn)同時(shí)研究了浮游和沉積物細(xì)菌,將該文獻(xiàn)拆分為不同生境樣本數(shù)據(jù),樣本數(shù)據(jù)統(tǒng)計(jì)量見表1.北方和南方分界線為“秦嶺—淮河”線;青藏高原邊緣線:北至昆侖山、阿爾金山、祁連山,東至橫斷山脈,南至喜馬拉雅山脈,西部為帕米爾高原.中國湖泊細(xì)菌群落已發(fā)表文獻(xiàn)采樣點(diǎn)空間分布見圖1.
表1 樣本數(shù)據(jù)統(tǒng)計(jì)量
圖1 中國湖泊細(xì)菌群落已發(fā)表文獻(xiàn)采樣點(diǎn)空間分布
中國地圖由國家標(biāo)準(zhǔn)地圖網(wǎng)提供(http://bzdt.ch.mnr.gov.cn)
審圖號為GS(2020)4632
在數(shù)據(jù)分析之前,對除pH以外的所有環(huán)境因子進(jìn)行對數(shù)轉(zhuǎn)換,使其盡量符合正態(tài)分布.采用R語言(R 4.0.5)進(jìn)行統(tǒng)計(jì)分析.使用“kruskal.test”函數(shù),基于Kruskal-Wallis檢驗(yàn)比較北方、南方、青藏高原(或稱三個(gè)地區(qū))湖泊門分類細(xì)菌平均相對豐度的空間差異[25],基于“circlize”軟件包繪制弦圖展示細(xì)菌群落結(jié)構(gòu)及菌門空間差異[26].采用“aov”函數(shù)的單因素方差分析(ANOVA)檢驗(yàn)三個(gè)地區(qū)環(huán)境因子差異[27].為研究細(xì)菌群落距離衰減模式,采用“vegan”軟件包的“vegdist”函數(shù)計(jì)算湖泊間細(xì)菌群落的Bray-Curtis相似性矩陣,采用“geosphere”軟件包的“distm”函數(shù),根據(jù)各湖泊的經(jīng)緯度坐標(biāo)計(jì)算地理距離,使用Spearman相關(guān)計(jì)算群落相似性與地理距離的相關(guān)性[28-29].采用“vegan”軟件包的“mrpp”函數(shù)和“adonis”函數(shù),基于多重響應(yīng)排列程序分析MRPP)和置換多元方差分析(PERMANOVA)檢驗(yàn)細(xì)菌群落結(jié)構(gòu)在三個(gè)地區(qū)的空間差異[27, 30].因門分類細(xì)菌與環(huán)境因子的樣本量不一致,不能采用排序分析方法分析二者相關(guān)性;本文使用Spearman相關(guān)計(jì)算細(xì)菌與環(huán)境因子的相關(guān)性,將與各類菌門顯著相關(guān)(<0.05)次數(shù)最多的環(huán)境因子視為影響該地區(qū)菌群的最主要環(huán)境因子,采用Origin 2017軟件繪制相關(guān)性熱圖.
弦圖描述了湖泊細(xì)菌群落在全國三個(gè)地區(qū)的分布情況,連線表示該區(qū)域存在對應(yīng)的細(xì)菌門類,線條越粗,該菌門豐度越高(圖2).全國湖泊浮游細(xì)菌的優(yōu)勢類群為Proteobacteria(35.92%)、Actinobacteria (25.03%)和Bacteroidetes(10.77%). Proteobacteria的平均豐度在青藏高原最高(44.44%),在北方最低(34.22%),在南方為35.19%,但Proteobacteria的平均豐度在三個(gè)地區(qū)差異不顯著; Actinobacteria的平均豐度在三個(gè)地區(qū)有顯著差異,在南方最高(29.83%),在青藏高原最低(9.83%),在北方為16.36%; Bacteroidetes的平均豐度在三個(gè)地區(qū)有顯著差異,在青藏高原最高(15.77%),在南方最低(9.11%),在北方為13.85%.全國湖泊沉積物細(xì)菌的優(yōu)勢類群為Proteobacteria(40.37%)、Chloroflexi (8.74%)、Bacteroidetes(8.55%),這三類菌門的平均豐度在三個(gè)地區(qū)均存在顯著差異.Proteobacteria的平均豐度在北方最高(45.85%),在青藏高原最低(35.81%),在南方為42.14%;Chloroflexi的平均豐度在南方最高(11.78%),在青藏高原最低(3.76%),在北方為10.62%; Bacteroidetes的平均豐度在青藏高原最高(11.74%),在南方最低(5.90%),在北方為9.94%.全國湖泊浮游細(xì)菌中未統(tǒng)計(jì)的細(xì)菌門類(Others, 5.72%)占比低于沉積物細(xì)菌(18.35%).
圖2 中國湖泊浮游細(xì)菌(a)及沉積物細(xì)菌(b)門水平分類群落結(jié)構(gòu)及其在北方、南方、青藏高原的空間差異顯著性
細(xì)菌門類名稱后的“*”表示該細(xì)菌在三個(gè)地區(qū)的空間差異顯著;*表示0.01<<0.05,**表示0.001<£0.01,***表示£0.001
全國湖泊浮游及沉積物細(xì)菌群落結(jié)構(gòu)在北方、南方、青藏高原的空間差異極顯著,且其在任何兩個(gè)地區(qū)之間進(jìn)行比較后均存在顯著空間差異.其中,北方和青藏高原的群落結(jié)構(gòu)空間差異相對較小,但其差異仍顯著(表2).
表2 中國湖泊浮游及沉積物細(xì)菌群落結(jié)構(gòu)空間差異
注: *表示0.01<<0.05,**表示0.001<£0.01,***表示£0.001;<0.05時(shí)用粗體表示;值大于0說明組間差異大于組內(nèi)差異, 小于0說明組內(nèi)差異大于組間差異.
全國湖泊細(xì)菌群落結(jié)構(gòu)Bray-Curtis相似性與地理距離之間呈現(xiàn)出顯著的距離衰減關(guān)系,且浮游細(xì)菌距離衰減程度小于沉積物細(xì)菌,相關(guān)系數(shù)分別為-0.15、-0.27(圖3).
圖3 中國湖泊浮游及沉積物細(xì)菌群落Bray-Curtis相似性與地理距離之間的Spearman相關(guān)性
為比較次數(shù)
這說明距離較近的湖泊比距離較遠(yuǎn)的湖泊具有更相似的細(xì)菌群落結(jié)構(gòu).北方湖泊浮游細(xì)菌存在距離衰減模式但不顯著,沉積物細(xì)菌中不存在距離衰減現(xiàn)象;這一現(xiàn)象在南方湖泊水體中顯著,在沉積物中不顯著;青藏高原湖泊浮游及沉積物細(xì)菌的距離衰減模式均顯著.
全國湖泊浮游細(xì)菌群落中除Proteobacteria與Firmicutes外,其余門分類細(xì)菌均具有顯著的距離衰減關(guān)系(<0,<0.01)(圖4(a)).全國湖泊沉積物中除Actinobacteria與Cyanobacteria外,其余門分類細(xì)菌的距離衰減關(guān)系均顯著(<0,<0.001)(圖4(b)).
圖4 中國湖泊門水平分類浮游細(xì)菌(a)及沉積物細(xì)菌(b)Bray-Curtis相似性與地理距離間的Spearman相關(guān)性
1.Proteobacteria;2.Actinobacteria;3.Cyanobacteria;4.Bacteroidetes;5.Verrucomicrobia;6.Firmicutes;7.Planctomycetes;8.Chloroflexi;9.Acidobacteria
湖泊水體中,北方、青藏高原的NO3--N和DOC的平均含量均顯著高于南方,DO在三個(gè)地區(qū)的大小分別為南方>北方>青藏高原,但差異不顯著.湖泊沉積物中,南方與北方的TP、TN平均含量顯著高于青藏高原,但TP、TN在南北方之間差異不顯著;北方和青藏高原的pH值顯著高于南方,青藏高原的pH值高于北方,但差異不顯著(表3).
影響中國湖泊浮游細(xì)菌群落分布的主要環(huán)境因子是DO、NO3--N和DOC (圖5).北方是DOC, Actinobacteria、Bacteroidetes與DOC顯著負(fù)相關(guān),Cyanobacteria與DOC顯著正相關(guān),其余細(xì)菌門類與DOC呈負(fù)相關(guān)但不顯著;南方是DO, Actinobacteria、Verrucomicrobia、Planctomycetes與DO顯著正相關(guān),Cyanobacteria、Acidobacteria與DO顯著負(fù)相關(guān);青藏高原是NO3--N,Proteobacteria和Acidobacteria與NO3--N顯著負(fù)相關(guān),Cyanobacteria、Bacteroidetes與NO3--N顯著正相關(guān).
表3 中國北方、南方、青藏高原湖泊水體及沉積物環(huán)境因子差異
注: 表中不同字母表示采樣點(diǎn)間顯著性(LSD檢驗(yàn),<0.05);表示樣本數(shù)量.
影響中國湖泊沉積物細(xì)菌群落分布的主要環(huán)境因子是pH值、TP和TN(圖6).北方是TN和pH值,豐度最高的Proteobacteria與TN呈顯著正相關(guān),Firmicutes與pH值顯著負(fù)相關(guān);南方是TP,Actinobacteria、Cyanobacteria和Verrucomicrobia與TP顯著正相關(guān),Bacteroidetes與TP顯著負(fù)相關(guān);青藏高原是pH值,Verrucomicrobia、Planctomycetes、Chloroflexi和Acidobacteria與pH值顯著負(fù)相關(guān).
圖5 中國湖泊門水平分類浮游細(xì)菌與環(huán)境因子的Spearman相關(guān)分析
圖中數(shù)字為相關(guān)系數(shù);顯著相關(guān):*表示0.01<<0.05,**表示0.001<£0.01;-為缺失值
中國湖泊細(xì)菌群落結(jié)構(gòu)在北方、南方、青藏高原的空間差異顯著,全國湖泊浮游及沉積物細(xì)菌群落均存在顯著的距離衰減模式.浮游細(xì)菌群落中最優(yōu)勢類群為Proteobacteria,其次是Actinobacteria和Bacteroidetes;國外研究也表明,Proteobacteria、Actinobacteria、Bacteroidetes是湖泊浮游細(xì)菌群落中豐度排名前三的類群[31-32].Actinobacteria與Bacteroidetes的平均豐度在三個(gè)地區(qū)都存在顯著差異,Actinobacteria在三個(gè)地區(qū)的豐度大小分別為南方>北方>青藏高原,Bacteroidetes為青藏高原>北方>南方;Actinobacteria與Bacteroidetes都存在明顯的距離衰減模式,Actinobacteria的距離衰減程度高于Bacteroidetes.Proteobacteria在三個(gè)地區(qū)的平均豐度大小分別為青藏高原>南方>北方,但三個(gè)地區(qū)的豐度差異不顯著,且不存在距離衰減現(xiàn)象,這可能是因?yàn)樗w表層的Proteobacteria更容易通過河流[33]、空氣[34]或水鳥遷移[35-36]等途徑擴(kuò)散,它的高豐度占比與快速繁殖能力,使其突破擴(kuò)散限制的影響,生物地理分布格局不明顯.全國湖泊沉積物細(xì)菌群落中最優(yōu)勢門類是Proteobacteria,其次是平均豐度接近的Chloroflexi和Bacteroidetes,這與國外湖泊研究結(jié)論類似[37-38].這三種細(xì)菌類群的平均豐度在三個(gè)地區(qū)都具有顯著差異,Proteobacteria在三個(gè)地區(qū)的豐度大小分別為北方>南方>青藏高原,Chloroflexi為南方>北方>青藏高原,Bacteroidetes為青藏高原>北方>南方;這三類細(xì)菌均存在明顯的距離衰減模式,衰減程度大小分別為Chloroflexi>Proteobacteria> Bacteroidetes.此外,浮游細(xì)菌中Others占比低于沉積物細(xì)菌,這表明湖泊浮游細(xì)菌的物種多樣性低于沉積物細(xì)菌.
圖6 中國湖泊門水平分類沉積物細(xì)菌與環(huán)境因子的Spearman相關(guān)分析
圖中數(shù)字為相關(guān)系數(shù);顯著相關(guān):*表示0.01<<0.05,**表示0.001<£0.01;-為缺失值
全國湖泊細(xì)菌群落與多數(shù)細(xì)菌門類均存在顯著的距離衰減模式.這與擴(kuò)散有關(guān)[39],擴(kuò)散是構(gòu)建生物元群落的基本力量,包括均質(zhì)化擴(kuò)散以及擴(kuò)散限制,擴(kuò)散會(huì)影響局地生物群落的組成、多樣性和功能[40].在北美洲五大湖區(qū)及克拉馬斯河等地的研究表明,擴(kuò)散限制是影響該地銅綠微囊藻分布格局的重要因素[41];擴(kuò)散限制也主導(dǎo)了中國東海和南海表層水體中豐富微生物類群的構(gòu)建[42].我國擁有山脈、高原、平原、盆地和丘陵等各類復(fù)雜地形,本次研究的湖泊采樣點(diǎn)遍布全國,地理障礙使得內(nèi)陸湖泊之間的連通性弱,細(xì)菌體積小且主動(dòng)擴(kuò)散的能力差,在大規(guī)??臻g尺度上的擴(kuò)散受到限制,導(dǎo)致全國湖泊細(xì)菌群落的相似性隨地理距離遞減.因此,擴(kuò)散限制是塑造中國湖泊細(xì)菌群落生物地理分布格局的原因之一.
影響北方湖泊浮游細(xì)菌群落分布的主要環(huán)境因子是DOC,南方是DO,青藏高原是NO3--N;影響北方湖泊沉積物細(xì)菌群落分布的主要環(huán)境因子是pH值和TN,南方是TP,青藏高原是pH值.北方湖泊水體的DOC與除Cyanobacteria之外的所有菌門呈負(fù)相關(guān)(圖5),DOC通過影響細(xì)菌的代謝與呼吸作用從而影響微生物的碳素循環(huán)[43].南方湖泊水體的DO與優(yōu)勢菌門Actinobacteria顯著正相關(guān),與另一優(yōu)勢菌門Cyanobacteria顯著負(fù)相關(guān),Actinobacteria的生存對氧含量的依賴度高[44],而Cyanobacteria的呼吸作用則需要消耗大量氧氣,這導(dǎo)致南方湖泊水體中的Actinobacteria平均豐度(29.83%)高于全國平均水平(25.03%),Cyanobacteria的平均豐度(9.55%)低于全國平均水平(10.45%),形成了獨(dú)特的細(xì)菌群落結(jié)構(gòu).NO3--N作為一種營養(yǎng)物質(zhì),在青藏高原湖泊水體中的平均濃度高于其他地區(qū),改變了該地區(qū)湖泊浮游細(xì)菌群落結(jié)構(gòu).北方湖泊沉積物TN與固氮菌Proteobacteria顯著負(fù)相關(guān)(圖6),Proteobacteria大量轉(zhuǎn)化沉積物中的氮進(jìn)而參與更高級別的物質(zhì)循環(huán).南方湖泊沉積物中的TP與優(yōu)勢類群Proteobacteria和Chloroflexi正相關(guān),磷作為一種限制湖泊生產(chǎn)力的關(guān)鍵營養(yǎng)物質(zhì)[45],為細(xì)菌的生長和繁殖提供了必需的能量.pH值通過改變青藏高原湖泊沉積物細(xì)菌細(xì)胞壁上H+和OH-離子的平衡影響細(xì)菌的生長和代謝[46].綜上所述,不同環(huán)境因子對細(xì)菌的篩選作用,使北方、南方、青藏高原湖泊細(xì)菌群落結(jié)構(gòu)的空間差異顯著,是塑造中國湖泊細(xì)菌群落生物地理分布格局的另一重要原因.
全國湖泊浮游細(xì)菌的距離衰減程度比沉積物細(xì)菌更低,這表明擴(kuò)散限制對浮游細(xì)菌的影響比沉積物細(xì)菌更小,對長江流域浮游與沉積物細(xì)菌群落距離衰減現(xiàn)象的研究也有類似發(fā)現(xiàn)[6].此外,由于青藏高原的平均海拔大于4000米[47],其氣候特殊性與地形起伏度[48-49]強(qiáng)于我國其他地區(qū),導(dǎo)致青藏高原湖泊浮游及沉積物細(xì)菌群落的距離衰減程度均高于北方和南方,環(huán)境因子與各類菌門顯著相關(guān)的次數(shù)也比其他地區(qū)更多,這表明擴(kuò)散限制和環(huán)境篩選作用對青藏高原湖泊浮游及沉積物細(xì)菌的影響比北方和南方更強(qiáng).北方湖泊浮游及沉積物細(xì)菌群落距離衰減模式均不顯著,可能是因?yàn)楸狈胶床蓸狱c(diǎn)大多位于黃河及京杭大運(yùn)河沿岸,河湖連通提高了細(xì)菌的擴(kuò)散速率,細(xì)菌受到的擴(kuò)散限制比其他地區(qū)更小,加之該地區(qū)樣本數(shù)量較少,使得菌群未表現(xiàn)出明顯的距離衰減模式.湖泊水體中,環(huán)境因子與各類菌門顯著相關(guān)的次數(shù)在南方最少,湖泊沉積物中為北方最少,這表明環(huán)境篩選作用分別在南方湖泊水體及北方湖泊沉積物中最弱.由于本次研究僅收集了湖泊門分類尺度,未獲得測序原始序列,且各湖泊研究中的環(huán)境因子也不一致,無法準(zhǔn)確量化擴(kuò)散限制與環(huán)境篩選作用的相對貢獻(xiàn)大小;在今后的研究中,可針對全國湖泊微生物群落開展系統(tǒng)性研究,進(jìn)一步明確空間擴(kuò)散限制與環(huán)境篩選作用對中國湖泊細(xì)菌生物地理分布格局的影響.
4.1 中國湖泊浮游細(xì)菌群落的優(yōu)勢類群為Proteobacteria(35.92%)、Actinobacteria(25.03%)和Bacteroidetes(10.77%),沉積物中的優(yōu)勢類群為Proteobacteria(40.37%)、Chloroflexi(8.74%)和Bacteroidetes(8.55%).
4.2 中國湖泊沉積物細(xì)菌距離衰減程度顯著高于浮游細(xì)菌;湖泊細(xì)菌群落結(jié)構(gòu)在北方、南方、青藏高原的空間差異顯著,北方水體及沉積物中細(xì)菌的距離衰減模式均不顯著,南方水體中顯著但沉積物中不顯著,青藏高原水體及沉積物中均顯著.
4.3 浮游細(xì)菌優(yōu)勢類群中除Proteobacteria外, Actinobacteria(南方>北方>青藏高原)和Bacteroidetes (青藏高原>北方>南方)的豐度在三個(gè)地區(qū)均具有顯著差異;沉積物細(xì)菌優(yōu)勢類群Proteobacteria (北方>南方>青藏高原)、Chloroflexi (南方>北方>青藏高原)、Bacteroidetes(青藏高原>北方>南方)的豐度在三個(gè)地區(qū)均具有顯著差異.
4.4 影響北方湖泊浮游細(xì)菌群落分布的主要環(huán)境因子是溶解性有機(jī)碳,南方是溶解氧,青藏高原是硝酸鹽氮;影響北方湖泊沉積物細(xì)菌群落分布的主要環(huán)境因子是總氮和pH值,南方是總磷,青藏高原是pH值.
4.5 空間擴(kuò)散限制與環(huán)境篩選作用共同塑造了中國湖泊細(xì)菌的生物地理分布格局.擴(kuò)散限制對浮游細(xì)菌的影響小于沉積物細(xì)菌,對青藏高原湖泊浮游及沉積物細(xì)菌影響最大,對北方湖泊浮游及沉積物細(xì)菌影響最小;環(huán)境篩選作用對青藏高原湖泊浮游及沉積物細(xì)菌影響最大,對南方湖泊浮游細(xì)菌及北方湖泊沉積物細(xì)菌影響最小.
[1] Adrian R, O'Reilly C M, Zagarese H, et al. Lakes as sentinels of climate change [J]. Limnol and Oceanogr, 2009,54(6,part 2):2283- 2297.
[2] Tranvik L J, Downing J A, Cotner J B, et al. Lakes and reservoirs as regulators of carbon cycling and climate [J]. Limnology and oceanography, 2009,54(6):2298-2314.
[3] Pernthaler J. Predation on prokaryotes in the water column and its ecological implications [J]. Nature Reviews Microbiology, 2005,3(7): 537-546.
[4] Newton R J, Jones S E, Eiler A, et al. A guide to the natural history of freshwater lake bacteria [J]. Microbiology and Molecular Biology Reviews, 2011,75(1):14-49.
[5] Huang W, Chen X, Jiang X, et al. Characterization of sediment bacterial communities in plain lakes with different trophic statuses [J]. Microbiologyopen, 2017,6(5):1-14.
[6] Liu T, Zhang A N, Wang J, et al. Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River [J]. Microbiome, 2018,6(1):16.
[7] Dai Y, Yang Y, Wu Z, et al. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status [J]. Applied Microbiology and Biotechnology, 2016,100(9):4161-4175.
[8] Li Y, Sun L L, Sun M L, et al. Vertical and horizontal biogeographic patterns and major factors affecting bacterial communities in the open South China Sea [J]. Scientific Reports, 2018,8(1):8800.
[9] Wang Z B, Sun Y Y, Li Y, et al Significant bacterial distance-decay relationship in continuous, well-connected Southern ocean surface water [J]. Microbial Ecology, 2020,80(1):73-80.
[10] 薛銀剛,劉 菲,江曉棟,等.太湖不同湖區(qū)冬季沉積物細(xì)菌群落多樣性 [J]. 中國環(huán)境科學(xué), 2018,38(2):719-728.
Xue Y G, Liu F, Jiang X D, et al. The diversity of bacterial communities in the sediment of different lake zones of Lake Taihu in winter [J]. China Environmental Science, 2018,38(2):719-728.
[11] Li Q, Huang Y, Xin S, et al. Comparative analysis of bacterioplankton assemblages from two subtropical karst reservoirs of southwestern China with contrasting trophic status [J]. Scientific Reports, 2020, 10(1):22296.
[12] Shang Y, Wu X, Wei Q, et al. Total arsenic, pH, and sulfate are the main environmental factors affecting the microbial ecology of the water and sediments in Hulun lake, China [J]. Frontiers in Microbiology, 2020,11:548607.
[13] 楊文煥,石大鈞,張 元,等.高原湖泊沉積物中反硝化微生物的群落特征——以包頭南海湖為例 [J]. 中國環(huán)境科學(xué), 2020,40(1):431- 438.
Yang W H, Shi D J, Zhang Y, et al. Community characteristics of denitrifying microorganisms in plateau lake sediments—taking Nanhaihu lake as example [J]. China Environmental Science, 2020, 40(1):431-438.
[14] Song H, Li Z, Du B, et al. Bacterial communities in sediments of the shallow Lake Dongping in China [J]. Journal of Applied Microbiology, 2012,112(1):79-89.
[15] Xie G, Tang X, Shao K, et al. Bacterial diversity, community composition and metabolic function in Lake Tianmuhu and its dammed river: Effects of domestic wastewater and damming [J]. Ecotoxicology and Environmental Safety, 2021,213:112069.
[16] Langenheder S, Wang J, Karjalainen S M, et al. Bacterial metacommunity organization in a highly-connected aquatic system [J]. FEMS Microbiology Ecology, 2016:w225.
[17] Fillinger L, Hug K, Griebler C. Selection imposed by local environmental conditions drives differences in microbial community composition across geographically distinct groundwater aquifers [J]. FEMS Microbiology Ecology, 2019,95(11):fiz160.
[18] Logares R, Deutschmann I M, Junger P C, et al. Disentangling the mechanisms shaping the surface ocean microbiota [J]. Microbiome, 2020,8(1).
[19] 楊文煥,張 元,王志超,等.寒旱區(qū)湖泊沉積物中固氮微生物群落特征——以包頭南海湖為例[J]. 中國環(huán)境科學(xué), 2020,40(6):2674- 2682.
Yang W H, Zhang Y, Wang Z C, et al. Community characteristics of nitrogen-fixing microorganisms in lake sediment—taking Nanhaihu lake as example [J]. China Environmental Science, 2020,40(6):2674- 2682.
[20] 陳兆進(jìn),丁傳雨,朱靜亞,等.丹江口水庫枯水期浮游細(xì)菌群落組成及影響因素研究[J]. 中國環(huán)境科學(xué), 2017,37(1):336-344.
Chen Z J, Ding C Y, Zhu J Y, et al. Community structure and influencing factors of bacterioplankton during low water periods in Danjiangkou Reservoir [J]. China Environmental Science, 2017, 37(1):336-344.
[21] Leibold M A, Holyoak M, Mouquet N, et al. The metacommunity concept: a framework for multi-scale community ecology [J]. Ecology Letters, 2004,7(7):601-613.
[22] Liu L M, Yang J, Yu Z, et al. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China [J]. The ISME journal, 2015,9(9):2068-2077.
[23] Bai C, Cai J, Zhou L, et al. Geographic patterns of bacterioplankton among lakes of the middle and lower reaches of the Yangtze river basin, China J]. Applied and Environmental Microbiology, 2020, 86(6):e02423-19.
[24] Liu Y, Yao T, Jiao N, et al. Salinity impact on bacterial community composition in five high-altitude lakes from the Tibetan Plateau, Western China [J]. Geomicrobiology journal, 2013,30(5):462-469.
[25] Ostertagová E, Ostertag O, Ková? J. Methodology and Application of the Kruskal-Wallis Test [J]. Applied Mechanics and Materials, 2014, 611:115-120.
[26] Gu Z, Gu L, Eils R, et al. Circlize Implements and enhances circular visualization in R [J]. Bioinformatics (Oxford, England), 2014,30(19): 2811-2812.
[27] Yan Q, Stegen J C, Yu Y, et al. Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China) [J]. Molecular Ecology, 2017, 26(14):3839-3850.
[28] Chen W, Ren K, Isabwe A, et al. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons [J]. Microbiome, 2019,7(1):138.
[29] Lu Z, Liu Z, Zhang C, et al. Spatial and seasonal variations of sediment bacterial communities in a river-bay system in South China [J]. Applied Microbiology and Biotechnology, 2021,105(5):1979- 1989.
[30] Dixon P. VEGAN, a package of R functions for community ecology [J]. Journal of Vegetation Science, 2003,14(6):927-930.
[31] Kosek K, Luczkiewicz A, Kozio? K, et al. Environmental characteristics of a tundra river systemin Svalbard. Part 1:Bacterial abundance, community structure and nutrient levels [J]. Science of the Total Environment, 2018,653:1571-1584.
[32] Nú?ez Salazar R, Aguirre C, Soto J, et al. Physicochemical parameters affecting the distribution and diversity of the water column microbial community in the high-altitude Andean lake system of La Brava and La Punta [J]. Microorganisms, 2020,8(8):1181.
[33] Tang X M, Xie G J, Shao K Q, et al. Contrast diversity patterns and processes of microbial community assembly in a riverlake continuum across a catchment scale in northwestern China [J]. Environmental Microbiome, 2020,1(15):10.
[34] Hamilton W D, Lenton T M. Spora and Gaia: how microbes fly with their clouds [J]. Ethology, Ecology & Evolution, 1998,10(1):1-16.
[35] Figuerola J, Green A J, Michot T C. Invertebrate eggs can fly: evidence of waterfowl-mediated gene flow in aquatic invertebrates [J]. The American Naturalist, 2005,165(2):274-280.
[36] Wang W, Zhou L, Fu R, et al. Effects of foraging site distances on the intestinal bacterial community compositions of the sympatric wintering hooded crane and domestic duck () [J]. Avian Research, 2021,12(1):1-11.
[37] Ruuskanen M O, St P K, St L V, et al. Physicochemical Drivers of Microbial Community Structure in Sediments of Lake Hazen, Nunavut, Canada [J]. Frontiers in Microbiology, 2018,9:1138.
[38] Jin L, Lee C S, Ahn C, et al. Abundant iron and sulfur oxidizers in the stratified sediment of a eutrophic freshwater reservoir with annual cyanobacterial blooms [J]. Scientific Reports, 2017,7(1):43814-43827.
[39] Martiny J B H, Bohannan B J M, Brown J H, et al. Microbial biogeography: putting microorganisms on the map [J]. Nature Reviews Microbiology, 2006,4(2):102-112.
[40] Verreydt D, De Meester L, Decaestecker E, et al. Dispersal-mediated trophic interactions can generate apparent patterns of dispersal limitation in aquatic metacommunities [J]. Ecology Letters, 2012, 15(3):218-226.
[41] Shirani S, Hellweger F L. Neutral evolution and dispersal limitation produce biogeographic patterns in microcystis aeruginosa populations of lake systems [J]. Microbial Ecology, 2017,74(2):416-426.
[42] Wu W, Logares R, Huang B, et al. Abundant and rare picoeukaryotic sub-communities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean [J]. Environmental Microbiology, 2017,19(1):287-300.
[43] 葉琳琳,孔繁翔,史小麗,等.富營養(yǎng)化湖泊溶解性有機(jī)碳生物可利用性研究進(jìn)展 [J]. 生態(tài)學(xué)報(bào), 2014,34(4):779-788.
Ye L L, Kong F X, Shi X L, et al. The bioavailability of dissolved organic carbon in the eutrophic lakes [J]. Acta Ecologica Sinica, 2014, 34(4):779-788.
[44] Taipale S, Jones R I, Tiirola M. Vertical diversity of bacteria in an oxygen-stratified humic lake, evaluated using DNA and phospholipid analyses [J]. Aquatic Microbial Ecology, 2009,55:1-16.
[45] Jin X, Wang S, Pang Y, et al. The adsorption of phosphate on different trophic lake sediments [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005,254(1):241-248.
[46] Harrison J P, Gheeraert N, Tsigelnitskiy D, et al. The limits for life under multiple extremes [J]. Trends in Microbiology, 2013,21(4):204- 212.
[47] 張鐿鋰,李炳元,劉林山,等.再論青藏高原范圍 [J]. 地理研究, 2021, 40(6):1543-1553.
Zhang Y L, Li B Y, Liu L S, et al. Redetermine the region and boundaries of Tibetan Plateau [J]. Geographical Research, 2021,40 (6):1543-1553.
[48] 游 珍,封志明,楊艷昭.中國1km地形起伏度數(shù)據(jù)集 [J]. 全球變化數(shù)據(jù)學(xué)報(bào)(中英文), 2018,2(2):151-155.
Y Z, Feng Z M, Yang Y Z. Relief degree of land surface dataset of China (1km) [J]. Journal of Global Change Data & Discovery, 2018, 2(2):151-155.
[49] 封志明,李文君,李 鵬,等.青藏高原地形起伏度及其地理意義[J]. 地理學(xué)報(bào), 2020,75(7):1359-1372.
Feng Z M, Li W J, Li P, et al. Relief degree of land surface and its geographical meanings in the Qinghai-Tibet Plateau, China [J]. Acta Geographica Sinica, 2020,75(7):1359-1372.
Biogeographic patterns and assembly mechanisms of bacterial communities in lakes, China—statistical analysis based on the published literature.
GAO Peng-fei1,2, WANG Peng1,2*, DING Ming-jun1,2, ZHANG Hua1,2, NIE Ming-hua1,2, HUANG Gao-xiang1,2
(1.Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China;2.School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China)., 2022,42(6):2754~2763
In order to examine the biogeographic patterns and assembly of bacterial communities in Chinese lakes, data from the published literature on water or sediment bacteria at the phylum level and environmental factors from 228 lakes were collected. Results showed that the dominant taxa of the water bacteria communities in Chinese lakes were Proteobacteria (35.92%), Actinobacteria (25.03%) and Bacteroidetes (10.77%), and the dominant taxa in sediment were Proteobacteria (40.37%), Chloroflexi (8.74%) and Bacteroidetes (8.55%).Distance decay of water bacteria communities was significantly lower than that of sediment bacteria. There was significant spatial difference of lake bacteria communities between Northern China, Southern China and Tibetan Plateau. The distance decay of bacterial communities was not significant in Northern China, but significant in Tibetan Plateau; in Southern China, the distance decay of bacterial communities was significantin lake water, but not significant in lake sediment. The abundance of Actinobacteria (Southern China>Northern China>Tibetan Plateau) and Bacteroidetes (Tibetan Plateau >Northern China>Southern China) in lake waterwere significantly different between the three regions, while Proteobacteria was not. The abundance of Proteobacteria (Northern China>Southern China> Tibetan Plateau), Chloroflexi (Southern China>Northern China> Tibetan Plateau), and Bacteroidetes (Tibetan Plateau >Northern China>Southern China) in lake sediment were significantly different between the three regions. The main environmental factor influencing bacterial communities in lake water of Northern China was dissolved organic carbon, in Southern Chinawas dissolved oxygen, and in Tibetan Plateau was nitrate nitrogen. The main environmental factor influencing bacterial communities in lake sediment of Northern China were total nitrogen and pH, in Southern China was total phosphorus, and in Tibetan Plateauwas pH. Dispersal limitation and variable selection collectively shaped the biogeographic patterns of lake bacteria in China. Dispersal limitation had less impact on water bacteria than sediment bacteria;it had the greatest impact on water and sediment bacteria inTibetan Plateau lakes, and the least impact on water and sediment bacteria in Northern China lakes. Variable selection had the greatest impact on water and sediment bacteria in Tibetan Plateau lakes, andless impact on water bacteria in Southern China lakes and sediment bacteria in Northern China lakes.
Chinese lakes;bacterial community;geographical distance decay;variable selection;dispersal limitation
X172
A
1000-6923(2022)06-2754-10
高鵬飛(1997-),男,山西陽泉人,江西師范大學(xué)碩士研究生,主要從事水環(huán)境微生物研究.
2021-11-09
國家自然科學(xué)基金項(xiàng)目(42167013);江西省自然科學(xué)基金(20202BABL203032);江西省教育廳研究生創(chuàng)新基金項(xiàng)目(YC2021-S231)
* 責(zé)任作者, 教授, wangpengjlu@jxnu.edu.cn